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MuGSI: Distilling GNNs with Multi-Granularity Structural
Information for Graph Classification

Anonymous Author(s)

ABSTRACT
Recent works have introduced GNN-to-MLP knowledge distillation
(KD) frameworks to combine both GNN’s superior performance
and MLP’s fast inference speed. However, existing KD frameworks
are primarily designed for node classification within single graphs,
leaving their applicability to graph classification largely unexplored.
Two main challenges arise when extending KD for node classifica-
tion to graph classification: (1) The inherent sparsity of learning
signals due to soft labels being generated at the graph level; (2)
The limited expressiveness of student MLPs, especially in datasets
with limited input feature spaces. To overcome these challenges,
we introduce MuGSI, a novel KD framework that employs Multi-
granularity Structural Information for graph classification. Specif-
ically, we propose multi-granularity distillation loss in MuGSI to
tackle the first challenge. This loss function is composed of three
distinct components: graph-level distillation, subgraph-level distil-
lation, and node-level distillation. Each component targets a spe-
cific granularity of the graph structure, ensuring a comprehensive
transfer of structural knowledge from the teacher model to the
student model. To tackle the second challenge, MuGSI proposes
to incorporate a node feature augmentation component, thereby
enhancing the expressiveness of the student MLPs and making
them more capable learners. We perform extensive experiments
across a variety of datasets and different teacher/student model
architectures. The experiment results demonstrate the effectiveness,
efficiency, and robustness of MuGSI. Codes are publicly available
at: https://github.com/uyfhtdrwww2024/MuGSI.

CCS Concepts
• Information systems→ Data mining; • Computing method-
ologies→ Supervised learning; Neural networks.
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Graph neural networks, Knowledge distillation, Graph classification
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PROTEINS BZR DD IMDB-B

GIN 79.25±3.22 93.09±1.89 77.67±2.86 79.60±3.02
MLP 72.61±2.98 79.26±1.50 73.59±2.90 77.11±2.76

GLNN𝑀𝐿𝑃 72.96±2.54 79.51±1.94 74.49±2.94 77.58±3.27

Table 1: Experiment results for soft logits-based KD method.
Here the student is MLP and the teacher is GIN[52]. Details
about experiment setting can be found in Section 5.1.

1 INTRODUCTION
In recent years, Graph Neural Networks (GNNs) have emerged as
a powerful tool for graph-structured data and have consistently
achieved superior performance in graph-related tasks in a variety of
domains, such as bioinformatics [16], social network analysis [12]
and personalized recommendation [21]. Building on this, GNNs are
highly relevant to the Graph Algorithms and Modelling for the Web.

To facilitate the deployment of latency-sensitive applications,
several works [45, 49, 51, 61] employ Knowledge Distillation (KD)
[22] to transfer the learned knowledge from a well-trained teacher
GNN model to a student MLP model, combining GNN’s superior
performance with MLP’s fast inference speed. However, existing
GNN-to-MLP KD methods mainly focus on node classification, and
its application to graph classification is largely overlooked. This
gap is significant as KD for graph classification presents unique
challenges that are fundamentally distinct from those in node clas-
sification: (1) Sparse learning signals. For node classification, dense
learning signals can be generated through node-level gradient up-
dates using soft labels, especially for large-scale graphs that consist
of thousands or even millions of nodes. Conversely, graph classifi-
cation inherently provides sparse learning signals, as soft labels are
obtained at the level of entire graphs, making the KD process for
graph classification more challenging; (2) Limited expressive power
of MLPs. Previous work [7, 61] has established that a key factor for
the success of KD for node classification is the small gap in the
number of equivalence classes generated by GNNs and MLPs due to
the enormous input feature space of the real-world node classifica-
tion datasets (more details can be found in the Appendix D of [61]).
However, this condition is often not met in graph classification
tasks due to the limited input feature space, which severely limits
the expressive power and learning capability of student MLPs. The
empirical results illustrated in Table 1 also align with our analysis,
i.e., due to the outlined challenges, a GNN-to-MLP KD framework
effective for node classification only yields slight gains for graph
classification. Here, we adopt GLNN𝑀𝐿𝑃 as the KD framework,
our implementation is similar to the one from GLNN [61], except
that a graph pooling function is utilized to obtain a graph-level
representation.

Present Work. In this work, we introduce a novel Knowledge
Distillation framework titledMuGSI (Multi-Granularity Structural
Information for Graph distillation) to address the aforementioned

1

https://github.com/uyfhtdrwww2024/MuGSI
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

challenges, namely sparse learning signals and limited expressive
power of MLPs. (1) To tackle the first challenge, we propose multi-
granularity distillation loss to align multiple distributions across
various scales of graph structures between the teacher model and
the student model (as discussed in Appendix A.4). Our intuition is
that both local and global structural information play a critical role
in graph classification as GNNs first encode a rooted subtree for
each node to capture the local substructures, then a graph pooling
function is utilized to obtain a whole-graph representation, which
captures the global structures. The proposed multi-granularity dis-
tillation loss in MuGSI is composed of three distinct components:
graph-level distillation, subgraph-level distillation, and node-level
distillation. Each component targets a specific granularity of the
graph structure, ensuring a comprehensive transfer of structural
knowledge from the teacher model to the student model. By leverag-
ing this multi-granularity approach, we can provide dense learning
signals during the KD process and facilitate the effective transfer
of structural knowledge. (2) To tackle the second challenge, MuGSI
proposes to incorporate a node feature augmentation component,
thereby enlarging the input feature space and enhancing the expres-
siveness of the student MLPs to make them more capable learners.
We further utilize a specific type of Graph-Augmented MLP (GA-
MLP) as a more expressive student. Notably, the time complexity
of the GA-MLP is almost identical to that of a traditional MLP.

Our work also reveals the multifaceted advantages of employing
KD for graph classification, addressing key challenges in computa-
tional efficiency, robustness, and resource constraints: (1) Recently,
there is a line of work aiming to improve the model expressive-
ness [3, 5, 6, 11, 30, 33–35, 37, 44, 46, 56, 60, 63], but they are usually
costly in computational time and memory space. An effective KD
framework can mitigate these issues by training a lightweight stu-
dent model that retains, or even surpasses the performance of a
more complex teacher model. (2) Graphs are often dynamically
changed, leading to distribution shifts that can adversely affect
model performance at test time. Our experiments validate that an
effective KD framework can serve as a potent technique to address
test-time distribution shifts. (3) In dynamic environments, student
MLP-type models enable incremental computation, thus signifi-
cantly improve the inference speed, which facilitates the inference
in CPU machines and environments with limited computational
resources.

Our contributions can be summarized as follows:

• We identify an under-explored problem: the GNN-to-MLP
distillation for graph classification. Furthermore, we of-
fer an analysis explaining why existing GNN-to-MLP KD
frameworks are suboptimal for graph classification tasks.

• We propose MuGSI, the first GNN-to-MLP KD framework
for graph classification to the best of our knowledge, which
facilitates efficient structural knowledge distillation at mul-
tiple granularities.

• Weperform extensive experiments across a variety of datasets,
where the results validate MuGSI’s effectiveness, efficiency,
and robustness. Additionally, MuGSI effectively addresses
test-time distribution shifts and enables efficient inference
in dynamic settings, with the student GA-MLP model being
17.18x faster than the teacher GIN model.

2 PRELIMINARY
2.1 Notations and Problem Definition
Weuse {} to denote sets. The index set is denoted as [𝑛] := {1, · · · , 𝑛}.
Throughout this paper, we consider simple undirected graphs 𝐺 =

(V, E), whereV = {𝑣1, . . . , 𝑣𝑛} is the node set and E ⊆ V ×V is
the edge set. For a node𝑢, denote its neighbors asN(𝑢) := {𝑣 ∈ V :
{𝑢, 𝑣} ∈ E}.𝐺𝐾𝑢 is the node-induced 𝐾-hop ego-network where the
central node is 𝑢.

In the context of graph classification tasks, the input is typically
represented as a set of graphs, where each graph𝐺𝑖 is characterized
by its node setV𝑖 , edge set E𝑖 , a node feature matrix X𝑖 ∈ R𝑁𝑖×𝐷 ,
and an adjacency matrix A𝑖 ∈ R𝑁𝑖×𝑁𝑖 . Here, 𝑁𝑖 is the total number
of nodes in graph 𝐺𝑖 , and 𝐷 is the dimensionality of the node
features. The node feature matrix X𝑖 represents the attributes of
nodes in graph𝐺𝑖 . Each row, x𝑖,𝑣 corresponds to the 𝐷-dimensional
feature vector of a node 𝑣 ∈ V𝑖 . The adjacency matrix A𝑖 describes
the structure of the graph, where A𝑖 [𝑢, 𝑣] = 1 if an edge (𝑢, 𝑣)
exists in E𝑖 , and A𝑖 [𝑢, 𝑣] = 0 otherwise. 𝐺𝐾

𝑖,𝑢
is the node-induced

𝐾-hop ego-network in graph 𝐺𝑖 where the central node is 𝑢, and
X[𝑢 ]
𝑖

denotes the feature matrix for the involved nodes in𝐺𝐾
𝑖,𝑢

. The
prediction targets for graph classification tasks are represented as
Y ∈ R𝑁×𝐾 , where 𝑁 is the number of graphs in the dataset, and
𝐾 is the number of classes. Each row y𝑖 in Y is a one-hot vector
representing the true class of graph 𝐺𝑖 .

The entire dataset D = {𝐺𝑖 , y𝑖 }𝑁𝑖=1 is divided into a training and
validation set D𝐿 = {𝐺𝑖 , y𝑖 }𝑁𝐿𝑖=1 and a test set D𝑈 = {𝐺𝑖 }𝑁𝑖=𝑁𝐿+1,
where 𝑁𝐿 is the number of graphs in the training/validation set.
In the training/validation phase, our goal is to learn a mapping
function Φ : 𝐺𝑖 → y𝑖 ,∀𝑖 ∈ 1, . . . , 𝑁𝐿 , using the labeled set D𝐿 .
Once learned, the function Φ is expected to predict the true class
labels of the unlabeled graphs in the test set D𝑈 .

2.2 Graph Neural Networks
In this paper, we focus on message-passing GNNs, where the rep-
resentation h(𝑙 )𝑣 of each node 𝑣 in a graph 𝐺 is iteratively updated
by aggregating information from its neighbors N(𝑣). For the 𝑙-th
layer, the updated representation is obtained via an AGGREGATE
operation followed by an UPDATE operation:

m(𝑙 )𝑣 = AGGREGATE(𝑙 )
({

h(𝑙−1)
𝑢 : 𝑢 ∈ N (𝑣)

})
, (1)

h(𝑙 )𝑣 = UPDATE(𝑙 )
(
h(𝑙−1)
𝑣 ,m(𝑙 )𝑣

)
, (2)

where h(0)𝑣 = x𝑣 is the initial node feature of node 𝑣 in graph 𝐺 .
For graph classification tasks, GNNs employ a READOUT function
to aggregate the final layer node features

{
h(𝐿)𝑣 : 𝑣 ∈ V

}
into a

graph-level representation h𝐺 :

h𝐺 = READOUT
({

h(𝐿)𝑣 : 𝑣 ∈ V
})
. (3)

This graph-level representation is used for graph classification.

2.3 Graph Augmented Multi-Layer Perceptrons
GA-MLP (Graph-Augmented Multi-Layer Perceptrons) models [7]
are a class of graph neural networks designed to understand graph

2
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structure and enhance computational efficiency. These models op-
erate in two primary steps: augmenting node features with lin-
ear operators based on the graph topology, and applying a node-
wise learnable function. Formally, given a set of linear operators
Ω = {𝜔1 (A), . . . , 𝜔𝑘 (A)} ⊆ R |𝑉 |× |𝑉 | , derived from the adjacency
matrix A, a GA-MLP first computes augmented features

X̃𝑘 = 𝜔𝑘 (A) · 𝜑 (X) ∈ R𝑛×𝑑 , (4)

where 𝜑 : R𝑑 → R𝑑 is a learnable feature transformation, often
realized by an MLP. The model then concatenates these features to
get X̃ and applies a learnable node-wise function 𝜌 , to compute the
final representation

𝑍 = 𝜌 (X̃) ∈ R𝑛×𝑑
′
. (5)

A simplified version of GA-MLP takes 𝜑 as the identity function,
allowing pre-computation of the matrix products, thus improving
computational efficiency. Various GA-MLP-type models, including
SGC [48], GFN [8], gfNN [38], and SIGNs [15] have been proposed,
showing competitive performances on diverse datasets.

3 RELATEDWORK
Recently, Knowledge Distillation has proven to be effective for
graph learning. Some previous works [14, 20, 27, 31, 41, 50, 53, 58,
62] have explored the distillation of knowledge from large teacher
GNNs to smaller student GNNs. To further reduce the inference time
and enable real-time applications, some recent works in this field ex-
plore GNN-to-MLP knowledge distillation. GLNN[61] adopts a soft
logits-based KD method, which achieves predictive performance
comparable to teacher GNN models, enabling real-time applica-
tions and significantly reducing inference time. KRD [51] explores
the reliability of different knowledge points in GNNs and the di-
versity of roles they play in the distillation process. It introduces
the KRD framework, which leverages reliable knowledge points
to provide additional supervision signals. NOSMOG [45] intro-
duces three key components: the incorporation of position features,
representational similarity distillation, and adversarial feature aug-
mentation to enhance the predictive performance of the student
MLP compared to the vanilla soft logits-based KD method. FF-G2M
[49] leverages both low-frequency and high-frequency components
extracted from a single graph for full-frequency knowledge dis-
tillation. However, it is important to note that these methods are
primarily designed for node classification and mainly operate on
a single graph. It is not straightforward to adapt them to graph
classification. In this work, we propose the first GNN-to-MLP KD
framework for graph classification to bridge this gap.

4 PROPOSED FRAMEWORK
In this section, we present the details of MuGSI, which consists
of three key components: graph-level distillation, subgraph-level
distillation, and node-level distillation. The overall framework of
MuGSI is illustrated in Figure 1.

4.1 Graph-Level Distillation
Currently, most GNN-to-MLP KD frameworks build upon response-
based knowledge relying on the output of the last layer, i.e., soft
logits. However, this approach fails to address the intermediate-
level supervision from the teacher model, which turns out to be

important for representation learning using deep neural networks,
as deep neural networks are good at learning multiple levels of
feature representation with increasing abstraction [2]. Hence we
resort to intermediate layers, i.e., feature maps as additional super-
vision signals, which serve as a good extension for soft logits-based
KD approach. In MuGSI, we employ graph-level representation ℎ𝑇

𝐺
as a direct supervision signal from the teacher model for the student
to emulate. This is because ℎ𝑇

𝐺
may encapsulate latent information

that is concealed in soft logits. The whole-graph distillation loss can
be formulated as follows:

LG = E𝐺𝑖∼D𝐿
 ℎ𝑇

𝐺𝑖

∥ℎ𝑇
𝐺𝑖
∥2
−

ℎ𝑆
𝐺𝑖

∥ℎ𝑆
𝐺𝑖
∥2

2
2, (6)

where ℎ𝑇
𝐺𝑖

denotes the graph-level representation in the teacher
model, and ℎ𝑆

𝐺𝑖
refers to the corresponding representation in the

student model. The L2 norm, denoted by ∥ · ∥2, measures the dis-
similarity between these representations, thus driving the student
to align with the teacher’s graph-level representation.

4.2 Subgraph-Level Distillation
While whole-graph level representations provide meaningful learn-
ing signals for MuGSI, a more nuanced understanding of the struc-
tural information can be attained through subgraph-level distilla-
tion. Previous work in Computer Vision has found that the attention
maps of hidden activations across image patches tend to have spa-
tial correlations with predicted objects on the image level, and
these correlations also tend to be higher in networks with higher
accuracy [57].

In the context of graph-structured data, the concept of an image
"patch" can be naturally analogized to a subgraph. This raises an
important question: What type of subgraph should be selected as
the underlying structure for a given graph? In this work, we elect
to use clusters as the defining subgraphs, recognizing their essen-
tial role in understanding complex graph structures. For example,
clusters in IMDB-BINARY [54] may correspond to groups of actors
who frequently co-star in the same films. In REDDIT-BINARY [54],
clustering nodes (users) can reveal community structures or groups
of users that interact more frequently with each other. This could
reflect shared opinions, interests, or other social dynamics within
that specific thread. Although for some other scenarios, such as
bioinformatics, clusters do not necessarily have a straightforward
interpretation as they might be in social networks, they could be
used to identify structural motifs or common substructures within
a molecule, depending on the features used. This suggests that clus-
ters as graph "patches" can provide valuable information for graph
classification.

In MuGSI, we maximize the inter-cluster similarity by leveraging
the kernel matrix K, which embodies pairwise interactions among
clusters and allows for describing the geometry of the correspond-
ing feature spaces [23]. Specifically, given two clusters 𝑖 and 𝑗 , let
C𝑖 and C𝑗 denotes the node sets belonging to cluster 𝑖 and 𝑗 respec-
tively, then we can calculate a subgraph-level representation hC𝑖
and hC𝑗 similarly in Eq. 3, i.e., hC𝑖 = READOUT

({
h(𝐿)𝑣 : 𝑣 ∈ C𝑖

})
.

A kernel matrix K ∈ 𝑅𝑁C×𝑁C is obtained where 𝑁C denotes the
number of clusters in the given graph 𝐺 , and each element 𝑘𝑖 𝑗 =

3
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Figure 1: The figure illustrates the KD process with multi-granularity distillation loss. First a teacher GNN model is pre-trained,
then an MLP-type student model is trained using the distilled multi-granularity structural knowledge from the teacher model:
(a) whole-graph distillation loss LG ; (b) inter-cluster distillation loss LC ; (c) path-consistency loss LP . Note that the soft logits
distillation loss L𝑆𝐿 and the ground-truth cross-entropy loss L𝐺𝑇 are not shown in the figure. 𝑓𝐺

𝑝𝑜𝑜𝑙
(·) and 𝑓𝐶

𝑝𝑜𝑜𝑙
(·) denote the

graph pooling and cluster pooling function for teacher GNNs and student MLPs. In MuGSI, the graph pooling function and
cluster pooling function share the same function form, e.g., summation or attention. If attention-based pooling is utilized,
graph pooling and cluster pooling share the same parameters to improve generalizability.

𝑘
(
hC𝑖 , hC𝑗

)
. 𝑘 (·, ·) is a kernel function that projects the sample vec-

tors into a higher or infinite dimensional feature space. We use
Cosine Similarity as the kernel function, i.e.,

𝑘𝑖 𝑗 = 𝑘
(
hC𝑖 , hC𝑗

)
=

〈
h𝐶𝑖 , h𝐶 𝑗

〉h𝐶𝑖 2 ·
h𝐶 𝑗 2

. (7)

We then define the inter-cluster distillation loss LC as following:
LC = ∥K𝑆 − K𝑇 ∥2𝐹 . (8)

Here K𝑆 and K𝑇 are the obtained kernel matrix from the student
and teacher model respectively, i.e., K𝑆 [𝑖, 𝑗] = 𝑘

(
h𝑆C𝑖 , h

𝑆
C𝑗

)
, and

K𝑇 [𝑖, 𝑗] = 𝑘

(
h𝑇C𝑖 , h

𝑇
C𝑗

)
. Here h𝑆C𝑖 and h𝑇C𝑖 are the cluster-level

representation obtained for cluster 𝑖 from the teacher model and
student model respectively.

4.3 Node-Level Distillation
Graph neural network’s success in graph classification is closely
related to the Weisfeiler-Lehman (1-WL) algorithm. By iteratively
aggregating neighboring node features to a center node, both 1-WL
andGNN obtain a node representation that encodes a rooted subtree
around the center node. These rooted subtree representations are
then pooled into a single representation to represent the whole
graph [60].

Hence, to obtain a discriminative representation for the whole
graph, it is necessary to learn a "good" representation for each
node 𝑣 that captures its local substructure. Let H𝑇 = 𝑓𝑇 (X,A)
and H𝑆 = 𝑓𝑆 (X, (A)) denote the node representations for a given
graph 𝐺 obtained from teacher model and student model respec-
tively ((A) means A is optional depending on the choice of 𝑓𝑆 ), h𝑇𝑣
and h𝑆𝑣 denote the representation for node 𝑣 from the teacher and
student model. If we assume 𝑓𝑇 (·) is more expressive than 𝑓𝑆 (·),
then h𝑇𝑣 should more accurately reflect the local substructure of

node 𝑣 compared to h𝑆𝑣 . As the local substructure of every node
𝑣 ∈ V is essential for graph classification, we propose a novel
node-level component in MuGSI to transfer the local structural
knowledge from the teacher to the student model. This is done by
maximizing the agreement between the teacher and student model
on their opinions regarding the similarity of local neighborhood
nodes. Specifically, for each node 𝑣 , let P𝐾𝑣 be a collection of 𝐾-step
random-walk paths starting from node 𝑣 , a single path drawn from
P𝐾𝑣 is denoted as 𝑝𝑣 :=

(
𝑝1
𝑣, · · · , 𝑝𝐾𝑣

)
. To measure the similarity

between node 𝑣 and its neighboring nodes along the random-walk
path 𝑝𝑣 , we define the following conditional probability 𝑝 (𝑢 | 𝑣)
for the teacher model:

𝑝 (𝑢 | 𝑣) = 𝑒ℎ
𝑇
𝑢ℎ𝑣∑

𝑤∈𝑝𝑣
𝑒ℎ
𝑇
𝑤ℎ𝑣

, 𝑢 ∈ 𝑝𝑣, (9)

and 𝑞(𝑢 | 𝑣) is similarly defined for the student model. The path
consistency distillation loss is defined as follows:

LP = E𝑣∼V E𝑝𝑣∼P𝐾𝑣 D𝐾𝐿 (𝑝 (𝑢 | 𝑣), 𝑞(𝑢 | 𝑣)) (10)

Node feature augmentation. In addition to the node-level dis-
tillation of local substructures, the bottleneck of expressiveness
of student models still needs to be addressed. As discussed in Sec-
tion 1, the input feature space is typically very small for graph
classification datasets, which severely limits the expressive power
of the student model, and its learning capability, hence in MuGSI
we enhance the node features by incorporating structure-aware
features. Specifically, we utilize Laplacian eigenvectors [1] as node
positional encoding which is shown to be effective across various
message-passing GNNs [10]. To further address this issue, we pro-
pose using a 1-hop GA-MLP as a more expressive student model.
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Notably, an MLP is essentially a 0-hop GA-MLP. Although the ex-
pressive power of a GA-MLP is still exponentially lower than a
GNN model in terms of the number of equivalence classes [7], the
student model can achieve comparable or superior results to the
teacher GNN when combined with MuGSI for knowledge transfer.

Overall Framework. The final objective L of the proposed
framework MuGSI is defined as a weighted combination of ground-
truth cross-entropy loss L𝐺𝑇 , soft logits distillation loss L𝑆𝐿 , and
the multi-granularity distillation loss LG , LC and LP respectively.

L = L𝐺𝑇 + L𝑆𝐿 + 𝜆LG + 𝜇LC + 𝜂LP , (11)

where 𝜆, 𝜇 and 𝜂 are trade-off weights for balancing LG,LC and
LP , respectively. For L𝑆𝐿 , the weight is set to 1.0 without any
hyper-parameter tuning for MuGSI.

5 NUMERICAL EXPERIMENTS
In this section, we extensively evaluate the effectiveness, efficiency,
and robustness of the proposed framework MuGSI by investigating
the following research questions.

RQ1: We start with a vanilla MLP (with LaPE) as the student
model to evaluate MuGSI’s performance, and ask: How does MuGSI
perform for student MLPs? RQ2: We further adopt a GA-MLP (with
LaPE) as the student model, to verify whether the KD process will be
more effectivewith amore capable learner, and ask:How doesMuGSI
perform for more expressive student architecture? RQ3: As MuGSI is
model-agnostic, and can be combined with different teacher model
architectures, we then evaluate MuGSI’s performance with two
different GNN architectures with varied representative power. We
ask: How does MuGSI perform for different teachers? RQ4: Given the
dynamic nature of many real-world graphs, we evaluate MuGSI’s
robustness and efficiency in such environments, and ask:How robust
and efficient is MuGSI in dynamic environments? RQ5: As multi-
granularity loss consists of three key components, we study how
each independent component contributes to the KD process, and
ask: How does each component perform in MuGSI? RQ6: Finally, we
study the impact of hyper-parameters in MuGSI, and ask: How do
different hyper-parameters affect the performance of MuGSI?

5.1 Experiment Settings
Datasets. We use 6 small real-world datasets and 2 large real-world
datasets to evaluate our proposed framework. For the 6 small real-
world datasets from TUDataset [36], PROTEINS [9],NCI1 [47], BZR
[43] and DD [9, 42] are bioinformatics datasets; REDDIT-BINARY
and IMDB-BINARY are social network datasets. As no node fea-
tures are provided for the social network datasets, we use one-hot
encoding of node degrees as their node features. For the 2 large
real-world datasets, we use CIFAR10 from Benchmarking GNNs
[10], and MolHIV from Open Graph Benchmark [24]. See Appendix
A.5 for the dataset statistics.

Model Architectures. As a model-agnostic framework, MuGSI
can be combined with any teacher GNN architecture. In this work,
we adopt three GNN teacher model architectures: GIN [52], GCN
[29] and KPGNN [13]. For student model architectures, MLP and
GA-MLP are both adopted to thoroughly evaluate MuGSI’s perfor-
mance with students of different expressiveness levels. For GA-MLP,

a simplified version is utilized with 1-hop neighborhood aggrega-
tion, i.e., Ω =

{
I,AD−1} and 𝜙 being the identity function, us-

ing the notation from Section 2.3. This simplified version allows
pre-computation, leading to the time complexity of this GA-MLP
architecture becoming close to that of a standard MLP.

Baselines. We consider several baseline methods to facilitate a
comprehensive evaluation of our proposed framework.MLP: We
use MLP as the basis for comparison with more advanced methods.
GLNN𝑀𝐿𝑃 : This method distills student MLPs using soft labels,
which is similar to GLNN [61], except that a graph pooling function
is utilized to obtain a graph-level representation.MLP+LaPE: Here,
we extend the MLP by augmenting it with node features encoded
through Laplacian eigenvector positional encodings (LaPE). This
enhancement aims to increase the expressiveness of the student
MLPmodel.GLNN𝑀𝐿𝑃+𝐿𝑎𝑃𝐸 : This method combines the MLP with
both Laplacian eigenvector positional encodings (LaPE) and soft
logits-based KD, serving as a more advanced variant of GLNN. We
extend the same experiment setting for GA-MLP, specifically, the
baseline methods are GA-MLP, GLNN𝐺𝐴−𝑀𝐿𝑃 , GA-MLP+LaPE,
and GLNN𝐺𝐴−𝑀𝐿𝑃+𝐿𝑎𝑃𝐸 . NOSMOG: We also adopt NOSMOG
[45] as another strong baseline method for comparison. As Deep-
Walk [39] generates node embeddings in a transductive manner,
which is not suitable for graph classification, we use LaPE to re-
place this component in NOSMOG. We use NOSMOG𝑀𝐿𝑃 and
NOSMOG𝐺𝐴−𝑀𝐿𝑃 to denote NOSMOG applied to student MLP
and GA-MLP respectively, also note that LaPE is an inherent com-
ponent in NOSMOG, which injects structural features to student
models. Finally, we denote MLP∗ as the best performing model
between MLP and MLP+LaPE, similarly for GA-MLP∗.

Evaluation Protocol. For the 6 real-world datasets from TU-
Dataset, we use the standard stratified splits [52], and perform
10-fold cross-validation with 90% training and 10% testing, we re-
port the mean best test results. The teacher GNN model for each
fold is saved based on the best test result and, hence is consistent
with the reported test results from student models. For CIFAR10,
we use standard split that consists of 45,000 train, 5,000 validation,
and 10,000 test graphs, we report the test classification accuracy
according to the best validation accuracy. For MolHIV, we follow
the scaffold split[25, 40], the split for train/validation/test sets is
80%:10%:10%. We report the ROC-AUC value on the test set accord-
ing to the best ROC-AUC on the validation set.

5.2 How Does MuGSI Perform for Student
MLPs? (RQ1)

We first evaluate MuGSI where the student models are MLPs, and
compare with MLP-related baseline methods. The experimental
results are illustrated in Table 2, from which we can make sev-
eral observations: (1) Incorporating Laplacian eigenvectors into the
vanilla MLP models is able to enhance their classification perfor-
mance across various datasets. Notable improvements include an
increase of 4.06% in PROTEINS, 7.96% in DD, and 4.81% in REDDIT-
BINARY. (2) While the use of soft logits[22] has shown significant
benefits for node classification, as evidenced by [61], its impact
on graph classification is negligible for most datasets. This finding
aligns with our analysis. (3) Our proposed MuGSI𝑀𝐿𝑃∗ framework
consistently outperforms other variations such as GLNN𝑀𝐿𝑃 and
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PROTEINS BZR DD NCI1 IMDB-B REDDIT-B CIFAR10 MolHIV

GIN 79.25±3.22 93.09±1.89 77.67±2.86 82.43±1.12 79.60±3.02 91.35±1.58 55.57 76.43

MLP 72.61±2.98 79.26±1.50 73.59±2.90 59.56±1.46 77.11±2.76 80.81±2.36 51.57±0.19 65.31±1.49
MLP+LaPE 75.92±2.63 81.73±2.21 79.45±2.79 66.05±2.01 76.60±2.61 84.70±2.44 48.34±0.08 64.72±1.07
GLNN𝑀𝐿𝑃 72.96±2.54 79.51±1.94 74.49±2.94 59.95±2.33 77.58±3.27 80.21±2.60 51.61±0.26 68.38±1.01

GLNN𝑀𝐿𝑃+𝐿𝑎𝑃𝐸 76.74±4.50 82.47±2.38 79.36±3.03 66.93±1.32 77.59±3.27 84.86±3.97 49.34±0.34 67.56±0.52
NOSMOG𝑀𝐿𝑃 76.71±3.79 84.41±4.46 79.96±3.04 68.29±2.07 77.02±4.43 84.61±2.78 48.49±0.31 64.56±1.76

MuGSI𝑀𝐿𝑃∗ (ours) 77.1±3.59 85.68±2.26 80.33±2.76 67.71±2.43 78.06±3.02 87.91±1.37 51.89±0.21 71.92±0.71
Δ𝑀𝐿𝑃 4.49(6.18%) 6.42(8.10%) 6.74(9.16%) 8.15(13.68%) 0.95(1.23%) 7.10(8.79%) 0.32(0.62%) 6.61(10.12%)

Δ𝐺𝐿𝑁𝑁𝑀𝐿𝑃∗ 0.36(0.47%) 3.21(3.89%) 0.97(1.22%) 0.78(1.17%) 0.58(0.75%) 3.05(3.59%) 0.28(0.54%) 3.54(5.18%)
Δ𝑁𝑂𝑆𝑀𝑂𝐺𝑀𝐿𝑃 0.39(0.50%) 1.27(1.48%) 0.37(0.46%) -0.58(-0.85%) 1.04(1.33%) 3.30(3.75%) 3.39(6.55%) 7.36(10.23%)

Δ𝐺𝐼𝑁 -2.15(-2.71%) -7.41(-7.96%) 2.66(3.42%) -14.72(-17.86%) -1.54(-1.93%) -3.44(-3.77%) -3.68(-6.62%) -4.51(-5.90%)

GA-MLP 75.74±2.68 90.62±3.81 75.71±1.73 75.93±1.98 79.95±3.02 88.45±2.36 54.81±0.19 71.55±1.08
GA-MLP+LaPE 75.47±2.58 87.42±3.67 78.85±2.49 71.61±2.02 78.45±3.26 89.62±2.86 51.91±0.18 71.78±1.48
GLNN𝐺𝐴−𝑀𝐿𝑃 75.76±3.41 91.97±3.92 76.73±2.52 75.45±2.28 80.20±3.19 88.07±1.83 54.88±0.26 73.74±0.92

GLNN𝐺𝐴−𝑀𝐿𝑃+𝐿𝑎𝑃𝐸 76.28±2.61 87.39±2.79 79.86±2.31 71.94±2.14 79.40±3.92 89.55±2.21 52.85±0.27 72.91±0.86
NOSMOG𝐺𝐴−𝑀𝐿𝑃 78.35±2.74 88.78±2.32 80.41±3.57 74.84±2.92 79.10±3.72 89.09±1.64 51.36±0.46 73.67±1.31

MuGSI𝐺𝐴−𝑀𝐿𝑃∗ (ours) 78.26±4.78 93.1±2.81 81.57±2.24 76.86±2.33 80.31±3.36 90.91±2.05 55.63±0.31 76.38±0.95
Δ𝐺𝐴−𝑀𝐿𝑃 2.52 (3.33%) 2.48 (2.74%) 5.86 (7.74%) 0.93 (1.22%) 0.36 (0.45%) 2.46 (2.78%) 0.82 (1.50%) 4.83 (6.75%)

Δ𝐺𝐿𝑁𝑁𝐺𝐴−𝑀𝐿𝑃∗ 1.98(2.60%) 1.13(1.23%) 1.71(2.14%) 1.41(1.87%) 0.11(0.14%) 1.36(1.52%) 0.75(1.37%) 2.64(3.58%)
Δ𝑁𝑂𝑆𝑀𝑂𝐺𝐺𝐴−𝑀𝐿𝑃 -0.08(-0.11%) 4.32(4.64%) 1.16(1.42%) 2.02(2.63%) 1.21(1.50%) 1.82(2.01%) 4.27(7.68%) 2.71(3.68%)

Δ𝐺𝐼𝑁 -0.99 (-1.25%) 0.01 (0.01%) 3.90 (5.02%) -5.57 (-6.76%) 0.71 (0.89%) -0.43 (-0.48%) 0.06 (0.11%) -0.05 (-0.07%)

Table 2: Experiment results where the teacher model is GIN, and the student models are MLP, MLP+LaPE and GA-MLP, GA-
MLP+LaPE. The absolute improvement and relative improvement are both illustrated in the table. As illustrated in the figure,
MuGSI outperforms other competitive baseline methods on almost all the datasets, with different student MLP-type model
architectures. Using GA-MLP as the student model, MuGSI exhibits comparable performance with the teacher GIN model in 7/8
datasets.

Teacher Student PROTEINS IMDB-BINARY DD BZR

- GA-MLP 75.74±2.68 79.95±3.02 75.71±1.73 90.62±3.81
- GA-MLP+LaPE 75.47±2.58 78.45±3.26 78.85±2.49 89.62±2.86

- 76.28±2.71 79.27±4.16 76.31±1.44 89.88±3.38
GLNN𝐺𝐴−𝑀𝐿𝑃 75.57±2.73 80.01±4.05 75.40±3.09 92.08±2.52

GLNN𝐺𝐴−𝑀𝐿𝑃+𝐿𝑎𝑃𝐸 77.09±2.83 79.60±3.13 79.62±2.12 88.68±3.66
MuGSI𝐺𝐴−𝑀𝐿𝑃∗ 77.69±2.67 81.09±3.91 80.52±2.29 91.94±3.07

Δ𝐺𝐴−𝑀𝐿𝑃 1.95(2.57%) 1.14(1.43%) 4.81(6.35%) 1.32(1.46%)
Δ𝐺𝐿𝑁𝑁𝐺𝐴−𝑀𝐿𝑃∗ 0.59(0.77%) 1.07(1.35%) 0.89(1.13%) -0.14(-0.15%)

GCN

Δ𝐺𝐶𝑁 1.41(1.85%) 1.82(2.30%) 4.21(5.52%) 2.06(2.29%)

- 78.56±3.17 80.30±4.37 81.07±2.83 93.11±2.51
GLNN𝐺𝐴−𝑀𝐿𝑃 76.01±2.56 80.50±4.01 76.14±3.29 91.72±2.31

GLNN𝐺𝐴−𝑀𝐿𝑃+𝐿𝑎𝑃𝐸 76.37±3.84 79.80±2.84 81.23±3.57 89.17±3.99
MuGSI𝐺𝐴−𝑀𝐿𝑃∗ 77.13±2.53 81.04±3.82 82.64±3.31 92.89±3.54

Δ𝐺𝐴−𝑀𝐿𝑃 1.39(1.84%) 1.09(1.36%) 6.93(9.15%) 2.27(2.50%)
Δ𝐺𝐿𝑁𝑁𝐺𝐴−𝑀𝐿𝑃∗ 0.75(1.00%) 0.54(0.67%) 1.40(1.74%) 1.17(1.28%)

KPGIN

Δ𝐾𝑃𝐺𝐼𝑁 -1.43(-1.82%) 0.74(0.92%) 1.57(1.94%) -0.22(-0.24%)

Table 3: Experiment results with different teacher GNN
model architectures, the student model is GA-MLP∗. Notably,
even with a 3-WL equivalent model architecture KPGIN as
the teacher model, MuGSI is able to achieve comparable or
superior performance using 1-hop GA-MLP as the student
model. This demonstrates the effectiveness of MuGSI.

GLNN𝑀𝐿𝑃+𝐿𝑎𝑃𝐸 across different datasets. Notably, MuGSI outper-
forms GLNN𝑀𝐿𝑃∗ by 3.89% in BZR, 3.59% in REDDIT-BINARY, and
6.45% in MolHIV, highlighting the effectiveness of our framework
for graph classification tasks. (4) NOSMOG also excels across sev-
eral datasets, thanks to its representational similarity distillation
component, which aligns the distribution over local substructures
between the teacher GNNs and the student MLPs, since it shares the
same function form with inter-cluster distillation loss LC , however
this component works at the node level, and incurs a high space
complexity of O(|V|2). In contrast, the path-consistency distilla-
tion lossLP is more memory efficient (O(1) space complexity since

the random-walk path length is a fixed constant). Furthermore, the
multi-granularity structural distillation introduced in MuGSI gen-
erally outperforms NOSMOG, which solely relies on node-level
structural distillation. (5) However, we also notice that the improve-
ments are slight in several datasets. We hypothesize that this could
be attributed to the limited expressive power of the student model
architecture and the constraints imposed by the small size of the
input feature space. These results lead us to consider an intriguing
question: what might be achieved with a more expressive student
model?

5.3 How Does MuGSI Perform for More
Expressive Student Architecture? (RQ2)

We adopt a 1-hop GA-MLP as the student model in this experiment.
The experiment results are illustrated in Table 2, from which we
can make several observations: (1) MuGSI𝐺𝐴−𝑀𝐿𝑃∗ achieves the
best performance across 7/8 datasets, demonstrating its effective-
ness. (2) For several datasets, the enhanced expressiveness of the
student model yields a larger performance gain over GLNN𝑀𝐿𝑃∗ ,
e.g., 0.47% versus 2.59% in PROTEINS and 1.22% versus 2.15% in
DD, suggesting that a more expressive learner can sometimes be a
"smarter" learner. (3) For several datasets such as DD and IMDB-
BINARY, using GA-MLP on its own without the aid of knowledge
distillation already achieves comparable or even superior perfor-
mance compared with the teacher GIN model. Nevertheless, utiliz-
ing MuGSI further enhances the student model’s performance. (4)
When adopting GA-MLP∗ as the student model, MuGSI𝐺𝐴−𝑀𝐿𝑃∗
exhibits performance on par with the teacher model in 7/8 datasets
and surpasses the teacher model in 4/8 datasets. This shows the
effectiveness of our proposed knowledge distillation framework.
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Datasets MLP* w/ GraphKD w/ ClusterKD w/ NodeKD MuGSI𝑀𝐿𝑃∗ Δ𝐺𝑟𝑎𝑝ℎ𝐾𝐷 Δ𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐾𝐷 Δ𝑁𝑜𝑑𝑒𝐾𝐷 Δ𝑀𝑢𝐺𝑆𝐼

PROTEINS 75.92±2.63 76.28±4.31 76.73±3.71 76.49±3.33 77.10±3.59 0.36(0.47%) 0.81(1.07%) 0.57(0.75%) 1.18(1.55%)
BZR 81.73±2.21 84.20±3.48 84.68±3.24 83.71±3.46 85.68±2.26 2.47(3.02%) 2.95(3.61%) 1.98(2.42%) 3.95(4.83%)
DD 79.45±2.79 79.87±2.95 80.13±3.25 79.96±2.53 80.33±2.76 0.42(0.53%) 0.68(0.86%) 0.51(0.64%) 0.88(1.11%)

REDDIT-BINARY 84.70±2.44 85.85±2.31 86.73±2.28 86.11±1.97 87.91±1.37 1.15(1.36%) 2.03(2.4%) 1.41(1.66%) 3.21(3.79%)

Table 4: Ablation study for independent components in MuGSI𝑀𝐿𝑃∗ , in which the teacher model is GIN. As shown in the table,
each independent component in MuGSI makes a positive contribution to the KD process.
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Figure 2: Average prediction error and entropy resulted
by GIN and MuGSI𝐺𝐴−𝑀𝐿𝑃∗ when sequentially inserting 10
nodes back to the graphs. As demonstrated, MuGSI𝐺𝐴−𝑀𝐿𝑃∗
is more robust and less susceptible to topological changes.

5.4 How Does MuGSI Perform for Different
Teachers? (RQ3)

As the expressive power of GIN is upper bounded by 1-WL[37, 52],
recently there is a collection of literature proposed to enhance the
expressivity of message-passing GNNs. To explore how different
teacher model architectures with different levels of expressiveness
affect the knowledge distillation process, we adopt another two
teacher model architectures: GCN [29] and KPGIN [13]. The ex-
pressive power of GCN is also upper bounded by 1-WL, and KPGIN
is a 𝐾-hop message-passing GNN model with peripheral subgraph
information, which is strictly more powerful than 1-WL and is up-
per bounded by 3-WL. We adopt GA-MLP and GA-MLP+LaPE as
the student models.

As illustrated in Table 3, we can see that (1) For both GCN and KP-
GIN as teachermodels,MuGSI𝐺𝐴−𝑀𝐿𝑃∗ outperformGLNN𝐺𝐴−𝑀𝐿𝑃∗
in most datasets, which demonstrates that MuGSI as a model-
agnostic KD framework is effective. (2) The performance of vanilla
GA-MLP∗ is on par with GCN or even superior to GCN, e.g., in
DD and IMDB-BINARY. However, distilling knowledge from GCN
into GA-MLP∗ using MuGSI can still benefit student GA-MLP∗
significantly. For instance, the accuracy for GA-MLP∗ improves
from 78.85% to 80.52% using MuGSI in the DD dataset although
GCN merely achieves 76.31% accuracy, similarly in IMDB-BINARY,
the classification accuracy of GA-MLP∗ improves from 79.95% to
81.09% using MuGSI, while GCN achieves 79.27%. Furthermore,
MuGSI𝐺𝐴−𝑀𝐿𝑃∗ outperforms GCN in all 4 datasets with a largemar-
gin. (3) For a more powerful teacher model KPGIN, MuGSI𝐺𝐴−𝑀𝐿𝑃∗
also consistently outperforms GLNN𝐺𝐴−𝑀𝐿𝑃∗ . Notably, even if KP-
GIN is 3-WL equivalent, a 1-hop student GA-MLP∗ using MuGSI
achieves comparable or superior performance.

5.5 How Robust and Efficient is MuGSI in
Dynamic Environments? (RQ4)

In practical production environments, graphs are often dynamic,
with nodes being inserted or removed over time. Taking REDDIT-
BINARY as an example, each node in a graph corresponds to a user
engaged in a discussion thread, and edges represent interactions
between these users. As nodes can be added or removed, this may
lead to distributional shift issues. In this section, we verify how
does teacher GIN model and student GA-MLP∗ perform under this
scenario. We utilize the first fold of the REDDIT-BINARY dataset
for our experiments. For each graph 𝐺 in the test set, we first
randomly remove 10 nodes from the graph, then we insert them
back sequentially to get the same graph𝐺 . This process is repeated
20 times for each graph in the test set. As we only remove a small
fraction of nodes (2%-3% at most) in each graph, it is reasonable to
assume that the graph’s label remains unchanged. We calculate two
metrics: (1) Average prediction error. For each perturbed graph with
𝑘 inserted nodes where 𝑘 ∈ [0, 10], we assess whether its predicted
label matches that of the original graph. The error is binary: 0 for a
match and 1 otherwise, and we calculate the average error across all
perturbations for each 𝑘 . (2) Average entropy. Instead of recording a
binary variable, we compute the Shannon entropy of the predicted
label distribution for each perturbed graph with 𝑘 insertions. For
incorrect predictions, we set the entropy to its maximum value
(i.e., 1.0 for binary classification). This metric helps to quantify the
confidence of the model predictions.

The average prediction error for MuGSI𝐺𝐴−𝑀𝐿𝑃∗ is significantly
lower than that for GIN, as depicted in Figure 2, despite comparable
accuracies on unperturbed test graphs (90.1% for MuGSI𝐺𝐴−𝑀𝐿𝑃∗
vs. 89.86% for GIN). Specifically, GIN’s accuracy drops by 7.76%
upon the removal of 10 nodes, while MuGSI𝐺𝐴−𝑀𝐿𝑃∗ ’s accuracy
decreases only by 2.77%, this demonstrates the robustness of the stu-
dent model. We hypothesize that the robustness of MuGSI𝐺𝐴−𝑀𝐿𝑃∗
arises from the structural information retained in the model pa-
rameters during the knowledge distillation process, which is or-
thogonal to topological changes. Additionally, the receptive field
of GIN (5 hops in this case) is much larger than a 1-hop GA-MLP,
hence is more susceptible to the topological changes. Despite its
higher average prediction error, GIN’s model predictions exhibit
greater confidence (i.e., lower entropy) compared to those from
MuGSI𝐺𝐴−𝑀𝐿𝑃∗ .

Regarding efficiency, as illustrated in Figure 3, GA-MLP∗ is sub-
stantially faster than GIN. This is due to that it takes the entire
input A and X to re-calculate the model prediction for GIN; whereas
for GA-MLP∗, with 𝑠𝑢𝑚 pooling as readout function, we can obtain
a static representation first given the graph with 10 nodes removed,
then for each node inserted back, we only need to incrementally
calculate its representation and sum it with the static representa-
tion, followed by a linear transformation. The static representation
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Figure 3: Average inference time from GIN and
MuGSI𝐺𝐴−𝑀𝐿𝑃∗ when sequentially inserting 10 nodes
back to the graphs. MuGSI𝐺𝐴−𝑀𝐿𝑃∗ is 17.18x faster than GIN
during the inference stage using a CPU machine.
can also be updated with one additional operation. This procedure
significantly reduces computational overhead, allowing GA-MLP∗
to achieve an average incremental inference time of 0.59ms on
a CPU machine, which is 17.18x faster than GIN using a CPU
machine and 4.98x faster than GIN using a CUDAmachine. The effi-
ciency makes the student model deployable in resource-constrained
environments.

5.6 How Does Each Component Perform in
MuGSI? (RQ5)

As MuGSI consists of three components for multi-scaled structural
knowledge distillation, we explore how each independent compo-
nent affects the KD process for several datasets. To ensure a fair
comparison, MLP∗ is adopted as the baseline method, since we
use MLP∗ as the student model for knowledge distillation. The
three components are named GraphKD, ClusterKD, and NodeKD
as illustrated in Table 4. We can see that: (1) Each independent com-
ponent makes a positive contribution to the KD process; (2) For the
4 datasets, ClusterKD consistently brings the largest performance
gain; (3) MuGSI leverages joint structural knowledge distillation,
outperforms the individual components, showcasing the effective-
ness of distilling multi-granularity structural information.

5.7 How Do Different Hyper-parameters Affect
the Performance of MuGSI? (RQ6)

We first provide sensitivity analysis for 𝜆, 𝜇, and 𝜂, which control
the strength of each distillation component in MuGSI. We perform
grid search on 𝜆 ∈ (1.0, 1𝑒 − 1, 1𝑒 − 2), 𝜇 ∈ (1.0, 1𝑒 − 1, 1𝑒 − 2), 𝜂 ∈
(1𝑒−4, 1𝑒−5), leading to 18 models with different hyper-parameter
combinations. We index these models from 0 to 17, as illustrated
in Figure 4. As we can see, the correlation for MuGSI𝑀𝐿𝑃∗ and
MuGSI𝐺𝐴−𝑀𝐿𝑃∗ in REDDIT-BINARY is much higher than that in
the BZR dataset, possibly because REDDIT-BINARY is amuch larger
dataset than BZR (2000 samples vs. 405 samples); Furthermore,
MLP∗ and GA-MLP∗ both utilize Laplacian eigenvectors in REDDIT-
BINARY, whereas in BZR, MLP∗ is MLP+LaPE, and GA-MLP∗ is
GA-MLP. Thismay lead to different inductive biases forMuGSI𝑀𝐿𝑃∗
and MuGSI𝐺𝐴−𝑀𝐿𝑃∗ in BZR, leading to lower correlation between
two different student models with different hyper-parameters.

0 5 10 15
Hyperparameter Index

0.84

0.86

0.88

0.90

0.92

M
ea

n 
B

es
t A

cc
ur

ac
y

REDDIT-BINARY

0 5 10 15
Hyperparameter Index

0.80

0.85

0.90

0.95

M
ea

n 
B

es
t A

cc
ur

ac
y

BZR

MuGSIGA MLP * MuGSIMLP *

Figure 4: Mean best accuracy for different hyper-parameter
combinations for MuGSI𝑀𝐿𝑃∗ and MuGSI𝐺𝐴−𝑀𝐿𝑃∗ .

PROTEINS DD BZR IMDB-BINARY

L4 77.54±2.92 81.15±1.93 92.63±3.68 81.03±3.26
L8 78.26±4.78 81.57±2.24 93.10±2.81 80.31±3.36
L12 77.89±3.45 80.98±2.08 92.80±3.64 80.81±3.25
L16 78.05±3.84 80.31±2.33 92.66±2.46 80.20±3.96

Table 5: Analysis of the effect of random walk path lengths
on MuGSI𝐺𝐴−𝑀𝐿𝑃∗ with GIN as the teacher model. Here, L𝑖
denotes a random walk path of length 𝑖.

The random-walk path length is another key hyper-parameter
in the path consistency loss LP . We do an ablation study and inves-
tigate the impact of various random-walk path lengths, from which
several observations can be made: (1) The choice of an optimal
random walk path length appears to be influenced by the inherent
topological structure of graphs within specific datasets. This sug-
gests that the most effective path length is not universally constant,
but rather is subject to the unique characteristics of each dataset.
(2) Extended random walk path lengths generally yield sub-optimal
results. One possible explanation for this trend is that longer paths
could introduce additional noise during the knowledge distillation
process in capturing local substructures.

6 CONCLUSION
In this paper, we identified an under-explored problem: the GNN-to-
MLP distillation for graph classification, then we offer an analysis
of why existing GNN-to-MLP KD frameworks are suboptimal for
graph classification. We then introduce MuGSI, the first GNN-to-
MLP Knowledge Distillation framework for graph classification.
This framework incorporates a node feature augmentation com-
ponent to enhance the expressiveness of student MLPs and make
them more capable learners; MuGSI also proposes a novel multi-
granularity distillation loss to generate dense learning feedback
and facilitate comprehensive knowledge transfer from the teacher
model to the student model. MuGSI is model-agnostic, demonstrat-
ing comparable performance across a variety of teacher model
architectures including KPGNN, a 3-WL equivalent model architec-
ture using 1-hop GA-MLP as the student model. Moreover, MuGSI
is robust and efficient in dynamic environments, which serves as a
potent technique to tackle test-time distribution shift issues, and
enables fast inference in environments with limited computational
resources.
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A APPENDIX
A.1 More Experiment Setting and

Implementation Details
Teacher GNN Models. The hyper-parameter search spaces for
GCN and GIN include: the number of layers 𝐿 = {2, 3, 5}, dropout
rate 𝑝 = {0, 0.5}. The hidden size𝐻 = {32, 64}. The search space for
KPGIN is: number of layers 𝐿 = {2, 3, 4}, dropout rate 𝑝 = {0, 0.5},
number of hops𝐾 = {3, 4}, combine function 𝐹 = {𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛, 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐}.
The kernel is the shortest path kernel and the hidden size is 64 for
all the datasets. For TUDataset, the GNN model is selected based on
the mean best validation accuracy. For CIFAR10 the teacher model
is obtained according to the best accuracy on the test dataset, and
for MolHIV, the teacher GNN model is obtained according to the
best ROCAUC value on the test dataset.

Student MLP Models. The hyper-parameter search space for
MLP and GA-MLP is: number of layers 𝐿 = {3, 4}, dropout is not
used for TUDataset and CIFAR10; for MolHIV, dropout is set to 0.5.
The hidden size of student models is set to 64 uniformly.

Model Training. For TUDataset, all models are trained for 350
epochs, initial learning rate is 8𝑒 − 3, with a decaying factor of 0.6
with patience to be 30 epochs. For CIFAR10, all models are trained
for 120 epochs. The initial learning rate is 8𝑒 − 3, with a decaying
factor of 0.6 with patience to be 15 epochs. For MolHIV, all models
are trained for 100 epochs, The initial learning rate is 1𝑒 − 3, with a
decaying factor of 0.75 with patience to be 15 epochs. The batch size
for TUDataset and MolHIV is 32, and 128 for CIFAR10. All student
models are trained 3 times and we report the average results with
1 standard deviation. We use Adam optimizer [28] across all the
experiments.

KD Framework. For GLNN, the strength for L𝑆𝐿 is searched
over {1.0, 1𝑒 − 1, 1𝑒 − 2, 1𝑒 − 3}; For NOSMOG, the strength for
L𝑆𝐿 is fixed to 1.0, and the strength for representational similar-
ity loss is searched over {1.0, 1𝑒 − 1, 1𝑒 − 2, 1𝑒 − 3}, the adversar-
ial feature augmentation is not utilized as in graph classification
dataset, node features are typically represented as one-hot vec-
tors with limited dimensions; For MuGSI, the strength for L𝑆𝐿 is
fixed to 1.0. 𝜆, 𝜇, 𝜂 in Eq. 11 are searched over {1.0, 1𝑒 − 1, 1𝑒 − 2},
{1.0, 1𝑒 − 1, 1𝑒 − 2} and {1𝑒 − 4, 1𝑒 − 5} respectively.

Other Implementations. To sample a random walk path for
path consistency loss LP , we use generate_random_paths from
networkx. The path length is fixed to 8 uniformly. The clustering
algorithm for LC is Louvain method [4]. We use python-louvain
package for our implementation. The graph pooling function (read-
out function) is attention-based aggregation [32] or summation.
Moreover, the graph pooling and cluster pooling share the same
pooling function (if attention-based aggregation is utilized) to im-
prove generalizability.

A.2 Time Complexity Analysis
Although the time complexity during the inference stage for student
MLP and GA-MLP models is identical to the vanilla student models
without using knowledge distillation. The preprocessing and train-
ing stage will incur some extra computational costs. Specifically, in
preprocessing stage, to compute AD−1X for 1-hop neighborhood
aggregation for GA-MLP, it take O

(
|𝑉 |𝑑𝐷

)
when A is a sparse

matrix. Here 𝐷 is the number of feature dimensions and 𝑑 is the av-
erage node degree. To compute the clustering assignment, as we use
the Louvain method for our implementation, the time complexity
is O (|𝑉 |𝑙𝑜𝑔 |𝑉 |). The preprocessing is only performed once, hence
the cost is affordable. During the training stage, in addition to the
training cost of the teacher GNN model and student MLP model,
the extra computational cost comes from random walk path sam-
pling for node-level distillation. As generate_random_paths from
networkx follows the implementation of [59], the time complexity is
O(𝑅𝑇 log𝑑), which can be simplified as O(𝑐𝑅𝑇 ), where 𝑐 is a small
constant,𝑇 is the number of steps for each path, 𝑅 is the number of
random walk paths to sample, 𝑑 is the average node degree. Since
𝑇 and 𝑅 are typically small integers, the extra computational cost
during the training stage is also affordable.

A.3 Pseudo-code for MuGSI
The pseudo-code of the proposed framework MuGSI is summarized
in Algorithm 1.

Algorithm 1 Algorithm for the MuGSI Knowledge Distillation
Framework
Input: Graph datasetsD = D𝐿∪D𝑈 , #epochs 𝐸, # paths to sample
𝑅, student model typeM𝑆

Output: Predicted labels Y𝑈 and optimized network parameters
of student model Θ∗

𝑆
Randomly initialize parameters of teacher model Θ𝑇 and student
model Θ𝑆 .
Train multiple teacher GNN models with different hyper-
parameters using D, select the best GNN model Θ∗

𝑇
for each graph 𝐺 = {V, E,X} in D do ⊲ Preprocessing stage

Compute the clustering assignment for each node 𝑣 ∈ 𝐺
using Louvain method

Compute the top-𝑘 non-trivial Laplacian eigenvector XLaPE
Set X← CONCAT(X,XLaPE) ⊲ Optional
ifM𝑆 is GA-MLP then

Compute 1-hop neighborhood aggregation feature X̃ =

AD−1X ⊲ For GA-MLP, the student model input is X and X̃; for
MLP, the model input is X

end if
end for
for epoch ∈ {1, 2, . . . , 𝐸} do

Obtain ℎ𝑇
𝐺
and ℎ𝑆

𝐺
, and calculate whole-graph distillation loss

LG using Eq. 6
Obtain K𝑆 and K𝑇 according to Eq. 7, and calculate inter-

cluster distillation loss LC using Eq. 8
Randomly sample 𝑅 random walk paths, compute 𝑝 (𝑢 |𝑣)

and 𝑞(𝑢 |𝑣) according to Eq. 9, and calculate path consistency
distillation loss LP using Eq. 10

Obtain ground-truth label Y𝐿 from D𝐿 and soft logits Ŷ𝐿
from teacher model output, calculate final loss L using Eq. 11
end for
Predict Y𝑈 from D𝑈 using optimized student model Θ∗

𝑆
Return Predicted labels Y𝑈 and student model Θ∗

𝑆
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A.4 Discussion
In this section, we first establish connections between the subgraph-
level distillation loss LC and Maximum Mean Discrepancy, then
we offer an explanation to explain why MuGSI is effective for graph
classification.

A.4.1 Relation To MaximumMean Discrepancy. Maximum
Mean Discrepancy (MMD) is a widely used criterion in Domain
Adaptation [17, 19, 26], which compares distributions in the Repro-
ducing Kernel Hilbert Space (RKHS) [18]. Assume we have two sets
of samples, X =

{
𝒙𝑖
}𝑁
𝑖=1 and Y =

{
𝒚 𝑗

}𝑀
𝑗=1, drawn from distribu-

tions 𝑝 and 𝑞, respectively. The squared MMD distance between 𝑝
and 𝑞 can be expressed as follows:

LMMD2 (X,Y) = ∥ 1
𝑁

𝑁∑︁
𝑖=1

𝜙

(
𝒙𝑖

)
− 1
𝑀

𝑀∑︁
𝑗=1
𝜙

(
𝒚 𝑗

)
∥22

=
1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑖′=1

𝑘

(
𝒙𝑖 , 𝒙𝑖

′ )
+ 1
𝑀2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑗 ′=1

𝑘

(
𝒚𝑖 ,𝒚𝑖

′ )
− 2
𝑀𝑁

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑘

(
𝒙𝑖 ,𝒚 𝑗

)
,

(12)
where 𝜙 (·) is an explicit mapping function, and 𝑘 (·, ·) is a kernel

function that projects the sample vectors into a higher or infinite di-
mensional feature space. MMD loss is 0 if and only if 𝑝 = 𝑞 when the
feature space corresponds to a universal RKHS. Minimizing MMD
loss is equivalently minimizing the distance between distribution
𝑝 and 𝑞. There are many valid kernels for MMD, in the specific
case of employing a polynomial kernel 𝑘 (𝒙,𝒚) =

(
𝒙⊤𝒚 + 𝑐

)𝑑 with
parameters 𝑑 = 2 and 𝑐 = 0, the resulting MMD is represented as
follows:

LMMD2
𝑃

(
H𝑇C,H

𝑆
C

)
= ∥G𝑆 − G𝑇 ∥2𝐹 , (13)

here H𝑇C ∈ R
𝑁𝐶×𝐹 and H𝑆C ∈ R

𝑁𝐶×𝐹 are the cluster-level repre-
sentations for a given graph 𝐺 obtained from teacher and student
model respectively, 𝐹 denotes the hidden dimension size. G𝑆 ,G𝑇 ∈
R𝑁𝐶×𝑁𝐶 is the Gram matrix with each entry 𝑔𝑖 𝑗 =

〈
hC𝑖 , hC𝑗

〉
(the

subscript S and T are omitted here). As illustrated in Eq. 7 and Eq. 8,
the inter-cluster distillation loss LC is a slightly modified version
of LMMD2

𝑃
, which aims to minimize the distance of the distribution

over subgraphs (clusters) for teacher model and student model.

A.4.2 Why MuGSI is Effective for Graph Classification. The
core of MuGSI is the multi-granularity distillation loss, which is
composed of graph-level distillation loss, cluster-level distillation
loss, and node-level distillation loss. For cluster-level distillation
loss LC , we have shown in the previous subsection that it forces
the student model to approximate the teacher GNN model in distri-
butional space over clusters. For graph-level distillation loss LG , if
we assume the graph representations 𝑧𝑇

𝐺
and 𝑧𝑆

𝐺
for a given graph

𝐺 , as generated by the teacher and student models respectively,
follows Gaussian distribution with mean ℎ𝑇

𝐺
, ℎ𝑆
𝐺
and the same co-

variance Σ, i.e., 𝑧𝑇
𝐺
∼ N

(
ℎ𝑇
𝐺
, Σ

)
and 𝑧𝑆

𝐺
∼ N

(
ℎ𝑆
𝐺
, Σ

)
, then the KL

divergence between 𝑧𝑇
𝐺
and 𝑧𝑆

𝐺
is given by:

D𝐾𝐿
(
𝑧𝑇𝐺 , 𝑧

𝑆
𝐺

)
=

1
2

(
ℎ𝑇𝐺 − ℎ

𝑆
𝐺

)𝑇
Σ−1

(
ℎ𝑇𝐺 − ℎ

𝑆
𝐺

)
. (14)

Consequently, the graph-level distillation loss LG serves to min-
imize this KL divergence, thereby ensuring that the distribution of
𝑧𝑆
𝐺
closely approximates that of 𝑧𝑇

𝐺
. Finally, prior research has estab-

lished that multi-step random walks are capable of extracting local
substructures for any node 𝑣 ∈ 𝐺 [55]. In light of this, we employ
random walks to calculate 𝑝 (𝑢 |𝑣) and 𝑞(𝑢 |𝑣) as a surrogate loss in
Eq. 10, thereby aligning the distribution over local substructures
between the student and teacher models.

The proposed multi-granularity distillation loss addresses the
challenges discussed in Section 1 by generating dense learning
signals across multiple scales of graph structure, and ensures a com-
prehensive transfer of structural knowledge by aligning multiple
distributions between the student and teacher models, which is
proven to be efficient and effective in extensive experiments.

A.5 Datasets Statistics

Dataset # Tasks # Graphs Ave. # Nodes Ave. # Edges

PROTEINS 2 1113 39.06 72.82
NCI1 2 4110 29.87 32.3
BZR 2 405 35.75 38.36
DD 2 1178 284.32 715.66

REDDIT-BINARY 2 2000 429.63 497.75
IMDB-BINARY 2 1000 19.77 96.53

CIFAR10 10 60000 117.63 941.07
MolHIV 2 41127 25.5 27.5

Table 6: Dataset statistics
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