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Abstract

Physics-Informed Neural Networks (PINNs) are revolutionizing science and engi-
neering practices by harnessing the power of deep learning for scientific computa-
tion. The neural architecture’s hyperparameters significantly impact the efficiency
and accuracy of the PINN solver. However, optimizing these hyperparameters
remains an open and challenging problem because of the large search space and
the difficulty in identifying a suitable search objective for PDEs. In this paper, we
propose Auto-PINN, the first systematic, automated hyperparameter optimization
approach for PINNs, which employs Neural Architecture Search (NAS) techniques
for PINN design. Auto-PINN avoids manually or exhaustively searching the hyper-
parameter space associated with PINNs. A comprehensive set of pre-experiments,
using standard PDE benchmarks, enables us to probe the structure-performance
relationship in PINNs. We discover that the different hyperparameters can be
decoupled and that the training loss function of PINNs serves as an effective
search objective. Comparison experiments with baseline methods demonstrate that
Auto-PINN produces neural architectures with superior stability and accuracy over
alternative baselines.

1 Introduction

Physics-informed neural networks (PINNs) [20] are promising partial differential equations (PDE)
solvers that integrate machine learning with physical laws. Benefiting from the strong expressive
power of deep neural networks, PINNs are widely adopted to solve various real-world problems, such
as fluid mechanics[6, 9, 23], material science [8, 24, 25] and biomedical engineering [22, 10, 14].
PINNs do not require the time-consuming construction of elaborate grids, and can therefore be
applied more easily to irregular and high-dimensional domains than traditional PDE solvers can.

The structures of PINNs are usually simple multilayer perceptrons (MLPs). Similar to other deep
learning tasks, the neural architecture configurations of MLP networks, such as depths/widths, and
activation functions, have a great effect on the performance of PINNs. However, there is little
research on this problem. For instance, Raissi et al. [20] found that increasing the width and depth
of PINNs can improve the predictive accuracy, but their experiments are limited to a single PDE
problem within a very small search space. While the Tanh activation function is the default option
for PINNs, some studies [2, 16] report that Sigmoid or Swish [21] functions are more effective in
some cases. However, they did not reach a conclusion about which activation function is preferred
for various PDE problems. Therefore, further investigation is required to understand the relationship
between the PINN architectures and their performances. Moreover, there are a number of important
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hyperparameters for training PINNs, such as the learning rate, the number of training epochs, and the
choices of optimizers. Manually tuning the architecture and hyperparameters is tedious and laborious.
Therefore, we are motivated to study the following research question: Can we automate the process
of architecture and hyperparameters selection to improve the performance of PINNs?

Despite the recent progress of automated hyperparameter tuning [1, 3] and neural architecture search
(NAS) [13, 19, 5], automating the neural architecture design of PINNs remains an open and challeng-
ing problem. First, the search space that includes both discrete and continuous hyperparameters is
extremely large. Existing hyperparameter optimization methods usually search the whole hyperpa-
rameter space, which can be inefficient. Second, the search objective for PINNs is unclear. Unlike
other tasks that can naturally use the performance metric (e.g., accuracy) as the search objective,
many PDEs may have no exact solutions such that the error values are not available. Therefore, we
have to identify an alternative search objective.

To this end, we first conduct a comprehensive set of benchmarking pre-experiments to understand
the search space by studying the relationship between each hyperparameter and the performance.
We make two key observations from the experiments. First, we find that some design choices play
a dominant role in the performance. For example, there is often a dominant activation function
working better for each PDE. This motivates us to reduce the search space by decoupling it in a
certain order. For instance, we can determine the best activation function with a small number of
search trials, and then fix the activation function and focus on the search of the other hyperparameters.
We observe similar phenomenons for other hyperparameters such as the changing point, depth, and
width, which enables us to decouple them step by step. Second, we discover that the loss values are
highly correlated with the errors. This makes the loss value a desirable search objective since it can
be naturally obtained during the search for all the PDEs.

Based on the above observations, we propose Auto-PINN, the first automated machine learning
framework to optimize the neural architecture and the hyperparameters of PINNs. Auto-PINN adopts
a step-by-step decoupling strategy for search. Specifically, we search one hyperparameter at each
step with the others fixed to one or a few sets of options. This strategy decreases the scale of the
search space drastically. We perform extensive experiments to evaluate Auto-PINN on seven PDE
benchmarks with different training data sampling methods. The quantitative comparison results show
that Auto-PINN outperforms the other optimization strategies on both accuracy and stability with
fewer search trials.

We summarize our main contributions as follows:

• We conduct a comprehensive set of benchmarking pre-experiments on the hyperparameter-
performance relationships of PINNs. Our observations suggest we can significantly reduce
the search space by decoupling the search of different hyperparameters. We also identify the loss
value of PINNs as a desirable search objective.

• We propose Auto-PINN, the first automated neural architecture and hyperparameter optimization
approach for PINNs. The decoupling strategy can substantially decrease the search complexity.

• We evaluate Auto-PINN on a series of PDE benchmarks and compare it with other baseline
methods. The results suggest that Auto-PINN can consistently search PINN architectures that
display good accuracy in different PDE problems, which outperforms other search algorithms,

2 Preliminaries

2.1 Benchmarking PDEs.

We select a set of standard PDE benchmarks for the experiments. We conducted pre-experiments on
four representative PDEs. They are two diffusion (heat) equations, a wave equation and a Burgers’
equation which are commonly used in PINN research [15]. We will refer to them as Heat_0, Heat_1,
Burgers, and Wave in the following sections for conciseness. These PDEs include different kinds of
differential operators and boundary/initial conditions, which are capable of illustrating regular rules
for PINNs in the pre-experiments. Moreover, we design different data sampling schemes for each
PDE to improve the credibility of the results. These PDEs are also involved in the formal comparison
experiments, along with another three PDEs, which are two advection equations (Advection_0 and
Advection_1) and a reaction equation (Reaction). The details of these PDEs and the data sampling
methods are shown in the Appendix A.

2



2.2 Search Space

In this section, we define the search space for the PINN architectures. Here we consider the following
variables.

• Width and Depth. For an MLP-structured PINN, the depth is the number of hidden layers, and the
width means the number of neurons in each hidden layer. We set the width ranging in [16, 512]
with the step of 8 (only for Heat_0) or in [8, 256] with the step of 4 (for other PDEs). The depth
ranges in [3, 10] with the step of 1.

• Activation Function. The activation functions in PINNs determine different non-linear elements
in the networks. We provide four options: Tanh, Sigmoid, ReLU, and Swish [21]. We leave the
definitions of these activation functions in Appendix B.

• Changing Point. According to [15], PINNs can reach their best performance by training with an
Adam optimizer in the first stage to get closer to the minimum and then switching to an L-BFGS
second-order optimizer [12]. We need to decide the timing of that change. Therefore, we introduce
a hyperparameter named Changing Point as a float number ranging from 0 to 1. This changing
point indicates the proportion of the epochs using Adam to the total training epochs. For example,
if the training epoch number is set to 10000 with a 0.4 Changing Point, that means the PINN will
be trained with the Adam optimizer for 10000 × 0.4 = 4000 epochs, followed by 6000-epoch
L-BFGS training. However, it makes little sense to search on a precise grid, so we only consider
five discrete options {0.1, 0.2, 0.3, 0.4, 0.5}.

Initially, we do not include learning rates and the training epochs in the search. However, we will
show results on those two training hyperparameters in Section 5.3, which indicate that they have a
small effect on the final architecture search results.

3 Pre-Experiments and Observations

As we mentioned previously, neural architecture optimization for PINNs is still an under-explored
problem. Therefore, we should first explore general rules for the hyperparameters of PINNs. Different
from other deep learning tasks, the training strategy and the physical constraints of PINNs are unique.
Therefore, we do not simply apply a hyperparameter search algorithm, but first do pre-experiments to
understand the behavior of PINNs. For all experiments in this section, the PINNs are trained with
10000 training epochs, and the learning rate is set to 1e−5.

We first study the relationship between structure and performance of the PINNs. Throughout this
paper, the main figure of merit to measure accuracy is the relative L2 error. The reported errors are
averages over three separate random initializations of the neural network weights in each case.

A set of heatmaps is shown in Figure 1 to display the L2 error results. More heatmap results are
shown in Appendix C. We obtained several observations from these heatmaps:

Observation 1 There is a dominant activation function in PINNs working better for each PDE,
which can be easily found by searching a small subset of the whole space. For example, it is easy to
see that Tanh is the best choice for Heat_0. Median error value across the subsets is a good metric to
determine the dominant activation function.

Observation 2 Under the dominant activation function, the larger changing points perform better or
comparably than smaller values, as can be seen in the average error values shown beside the y-axes.

Observation 3 The "wider and deeper PINNs are better" rule does not apply to all PDEs, e.g., the
Wave PDE.

Observation 4 The error distances (the values in parentheses in the cells) are usually very small, i.e.,
when the loss functions reach the smallest values in the training processes, so do the L2 error values.

Observations 1 and 2 suggest that it is possible to decouple the activation function and changing point
from the search space. Observation 3 indicates that further research on the MLP structure is needed
to determine widths and depths for PINNs. Observation 4 means that overfitting is not a problem
for PINNs. The error value at the minimum loss function value is close to the minimum error that a
PINN can actually reach. However, it is just a local summary for each cell. We need to compare the
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Figure 1: L2 Error heatmaps on different PDEs with different PINN configurations. Each row
corresponds to a different PDE, and each column corresponds to a different activation function. The
x-axis of each heatmap represents different width and depth settings of PINNs from small to larger
scales. For instance, "32× 4" means the width is 32 and the depth is 4. The y-axis labels are different
changing points from 0.1 to 0.5. For each cell in the heatmaps, the top number is the smallest L2 error
value that the PINN actually reached in its training process. For a direct visual representation, the
cells with deeper colors correspond to smaller error values, i.e., the PINNs have better performances.
The number in the parentheses in each cell is the absolute distance from the smallest actual error
value to the error value when the smallest loss function value is reached. On the top of each heatmap,
we report the average, median, and minimum error values across the heatmap. The numbers in the
parentheses around the x and y labels are mean error values across columns and rows, which show
the average performance when the other hyperparameters are fixed.

loss-error relationship between cells to establish that the loss function is a good search objective over
the entire space.

3.1 Structure-Error Relationship

Width and depth are key structure hyperparameters of PINNs. However, as mentioned in Observation
3, the pre-experiments above cannot give a clear relationship between the structures and error values
of PINNs because of the low sampling rate in the spaces of the two hyperparameters. For that reason,
we continue by doing more specific pre-experiments on the structure-error relationship.
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The results are shown in Figure 2. Each data point (joined by lines) is the average L2 error over
three random initializations. We fix the activation function and the changing point in each case and
then sample the space of width and depth. More results can be found in Appendix C. Clearly, there
are many width regions in which the best-performing network is not the deepest, e.g., width within
[400, 500] for the Heat_0 and around 100 for the Wave. This confirms again Observation 3 that the
"wider and deeper PINNs are better" rule does not always apply and that it is important to determine
the optimal depth for a given width.

Figure 2: Structure-error relationship.

Observation 5 Good regions in the space of width can be identified, and then one can search for the
optimal depth.

3.2 Loss-Error Relationship

We would like to investigate if the loss function is a representative search objective across the entire
configuration space. Hence, we report the loss-error relationship for different PDEs in Figure 3. The
x-axis is the lowest loss value that a PINN reached in the training process, and the y-axis is the
corresponding L2 error value. Note that Observation 4 has informed us that the smallest training error
values agree with the smallest L2 error values. Each point in the figure represents a PINN architecture
configuration shown in Figure 1. The R-square value indicates a strong linear correlation between
the logarithmic loss and error values across the whole search space. Therefore, it is appropriate
to leverage these loss values to judge the real performance of the PINNs. We have more linear
correlation evidence shown in Appendix C. Hence, we have another observation:

Observation 6 There is a strong linear correlation between the smallest log-loss values and the
corresponding log-error values for the PINNs with different hyperparameter configurations in a PDE
problem. We can take advantage of the training loss function values to assess the performance of the
PINNs.

4 Auto-PINN: Automated Architecture Optimization for PINNs

The pre-experiments have provided us with a clear guideline on how to decouple the hyperparameter
space, and we now can present our Auto-PINN approach. With the help of Observations 1–6, we are
ready to decouple the hyperparameters in the large search space and find the best architectures with
only a small number of search trials.

4.1 Methodology

Input: A PDE problem with training and testing data points. The hyperparameter search space is
mentioned in Section 2.2.

Search Objective: The smallest loss values reached by the PINNs in the training processes (Observa-
tions 3 and 6).

Step 0. Set changing points to 0.5 (Observation 2) for the following Step 1 to Step 2.2.

Step 1. Search the activation function (Observation 1). Sample on the width space exponentially
and the depth space uniformly. Use the median search objective to determine the dominant
activation function. This activation function will become the only choice in the following
steps.
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Figure 3: Loss-error relationship.

Step 2. Search the depth and width

Step 2.1. Search the good-performance regions of width (Observation 5). Split the width space
into several intervals. Sample several width settings in each interval to represent the
performance of their interval, then combine them with the uniformly sampled depth
settings. Use the median search objective to find several best width intervals as the
good-performance regions.

Step 2.2. Search the best depth settings. Collect all width settings inside the "good perfor-
mance" regions with all depth settings. Search and find the top K candidate structure
configurations.

Step 3. Search the best changing point for each candidate.

Step 4. Verify the performance of the searched PINN architectures. Retrain every selected PINN
five times with different initializations and report its median performance.

Output: K different PINN architectures with small training loss values correlating with small testing
errors (Observation 4).

Please refer to Appendix C to see the default settings of the Auto-PINN algorithm.

4.2 Complexity Analysis

The scale of the search space is greatly decreased by utilizing the proposed Auto-PINN algorithm.
The entire search space in Section 2.2 contains 10, 080 possible configurations. Auto-PINN under
the default settings only needs at most 261 trials to find the best architectures, which is only 2.59% to
the whole search space. Detailed analysis is in Appendix C.

5 Experiments

5.1 Experimental Settings

In this section, we present the results of experiments that validate the effectiveness of the proposed
method.

PDE Benchmarks. We conducted experiments using the Heat_0, Heat_1, Wave, Burgers, Advec-
tion_0, Advection_1 and Reaction PDEs, which are described in Appendix A.

Baseline Methods. Random Search and HyperOpt [3] are selected as the baseline methods for
comparison with Auto-PINN. We set 300 sampling numbers for the two baseline models, which are
higher than the Auto-PINN.

Implementation Details. We set the learning rates to 1e− 5 and the number of training epochs to
10000. We implemented Auto-PINN and the baseline methods with the PINN package DeepXDE
[15] and hyperparameter tuning package Tune [11]. DeepXDE [15] is a user-friendly open-sourced
library for physics-informed machine learning including common PINNs and different training
strategies. We use DeepXDE with some modifications in the APIs. Tune [11] is another Python
library for experiment execution and hyperparameter tuning. It supports all mainstream machine
learning frameworks and a large number of hyperparameter optimization methods. We utilized the
trial parallelism feature of Tune to make our Auto-PINN more efficient. Underlying MLP models are
built and trained with the PyTorch framework. We ran the experiments on 4 Nvidia 3090 GPUs.
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Figure 4: Comparison Results. The violin plots illustrate the range of L2 errors of the searched
architectures in the PDE problems with different data sampling settings.

5.2 Comparison Results

The results are shown in Figure 4. Compared with the two baseline methods, the results show that
Auto-PINN is more stable, as can be seen from the concentrated distributions. However, the Random
Search and HyperOpt suffer from very large performance variances frequently. Meanwhile, Auto-
PINN is capable of finding architectures with good performance. In most cases, the architectures
with the median error values found by Auto-PINN match or exceed the performances of the baseline
methods with fewer search trials. In summary, Auto-PINN outperforms the baseline methods in both
stability and accuracy with fewer search trials.

Figure 5: Searched architecture distributions by Auto-PINN with different learning rates and epoch
settings. The sizes of the markers display the relative performances of each PINN configuration.
Larger markers mean better performance, that is, the corresponding PINNs have smaller testing error
values.

5.3 Influence of Learning Rates and Training Epochs

As we mentioned, we do not consider the learning rates and training epochs in our search space.
Further experimental results indicate that Auto-PINN is not sensitive to these two training hyperpa-
rameters. As shown in Figure 5, the searched architectures with different learning rates and epochs
congregate at a specific region in the search space, which means those architectures searched by
Auto-PINN are still available within a range of proper learning rates and epochs. Therefore, there
is no need to search again with different learning rates and the numbers of epochs. On the other
hand, we can see that the PDEs show different preferences in the structures. For example, the Heat_0
PDE requires wider structures but is insensitive to the depth, whereas the Wave PDE is not sensitive
to width but prefers shallower PINNs. Auto-PINN is able to identify consistent architectures for
different PDEs, which is a very important point for future research.
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Figure 6: Searched architecture distributions by Auto-PINN with different data sampling methods.

5.4 Influence of Data Sampling

Different PDEs have distinct sensitivity to data sampling, as illustrated in Figure 6, where we
employed random and uniform sampling schemes, each using two different sampling densities, for
the collocation, boundary ,and initial points; see Appendix A for the details. The results confirm
that the structure-sampling relationship is distinct for each PDE. Therefore, it is not appropriate to
simply reuse the searched architectures when the sampling strategy changes. We remark that more
sophisticated adaptive- and residual-based data sampling methods [7, 17, 18] for PINNs have been
proposed. These sampling methods can be used as an internal setting for Auto-PINN to achieve better
search accuracy in future work.

6 Conclusion and Future Work

In this paper, we proposed Auto-PINN, the first systematic neural architecture and hyperparameter
optimization approach for PINNs, which can search for the best architectures and hyperparameters
for different PDE problems within a large search space. We conducted a comprehensive set of
pre-experiments to understand the search space of PINNs. Based on the observations, we proposed
a step-by-step decoupling strategy to reduce the search space and use the loss value as the search
objective. The comparison results demonstrate the stability and the effectiveness of Auto-PINN. In
addition, we perform experiments to analyze the influences of the learning rate, the training epochs,
and the data sampling strategies. We found that the performance is not sensitive to the learning rates
and the training epochs, while the best configuration depends on the adopted sampling strategy. We
hope the insights gleaned from our observations can motivate future exploration in PINNs and that
Auto-PINN can serve as a strong baseline in future research. In future work, we plan to incorporate
more sophisticated data sampling strategies into the search space of Auto-PINN to achieve better
performances.
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Appendix A Benchmarking PDEs and Data Samplings

In this appendix, we present the PDEs and the data sampling strategies used in our experiments.

A.1 Benchmarking PDEs

We utilize some standard PDE benchmarks in our experiments, including two heat equations, a wave
equation, a Burgers’ equation, two advection equations, and a reaction equation.

Heat_0: The heat equation describes the heat or temperature distribution in a given domain over time.
This heat equation contains Dirichlet boundary conditions.

Equation:
∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
= −e−t(sinπx− π2 sinπx), x ∈ [−1, 1], t ∈ [0, 1]

(1)
Boundary Condition: u(−1, t) = u(1, t) = 0 (2)
Initial Condition: u(x, 0) = sinπx (3)

Solution: u(x, t) = e−t sinπx (4)

Heat_1: This heat equation contains Neumann boundary conditions.

Equation:
∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
= 1 + x cos t, x ∈ [0, 1], t ∈ [0, 1] (5)

Boundary Condition:
∂u(x, t)

∂x

∣∣
x=0

=
∂u(x, t)

∂x

∣∣
x=1

= sin t (6)

Initial Condition: u(x, 0) = 1 + cos 2πx (7)

Solution: u(x, t) = 1 + t+ e−4π2t cos 2πx+ x sin t (8)

Wave: The wave equation describes the propagation of oscillations in a space, such as mechanical
and electromagnetic waves. This wave equation contains both Dirichlet and Neumann conditions.

Equation:
∂2u(x, t)

∂t2
− ∂2u(x, t)

∂x2
= x cos t, x ∈ [0, 1], t ∈ [0, 1] (9)

Boundary Condition: u(0, t) = sin t,
∂u(x, t)

∂x

∣∣
x=0

= cos t− sin t+ t (10)

Initial Condition: u(x, 0) = sinx,
∂u(x, t)

∂t

∣∣
t=0

= cosx (11)

Solution: u(x, t) = sin (x+ t) + x(t− sin t) (12)

Burgers: Burgers equation has been leveraged to model shock flows, wave propagation in combustion
chambers, vehicular traffic movement, and more. We use an accurate approximation of the solution[4].

Equation:
∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
− 0.01

π

∂2u(x, t)

∂x2
= 0, x ∈ [−1, 1], t ∈ [0,

5

π
]

(13)
Boundary Condition: u(−1, t) = u(1, t) = 0 (14)
Initial Condition: u(x, 0) = − sinπx (15)

Advection_0: The advection equation describes the motion of a scalar field as it is advected by a
known velocity vector field.

Equation:
∂u(x, t)

∂t
+

∂u(x, t)

∂x
= 0, x ∈ [0, 2], t ∈ [0, 1] (16)

Boundary Condition: u(0, t) = 2, u(2, t) = 0 (17)

Initial Condition: u(x, 0) =

{
2, 0 ≤ x < 1

0, 1 < x ≤ 2
(18)

Solution: u(x, t) =

{
2, 0 ≤ x < 1 + t

0, 1 + t < x ≤ 2
(19)
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Table 1: Data sampling methods for each PDE. "Random" means pseudo-random sampling and
"Uniform" is sampling on a uniform grid in the spatio-temporal domain. The numbers after each
sampling method name distinguish between different sampling densities.

PDEs Sampling Methods # Collocation Points # Boundary Points # Initial Points

Heat_0

Random1 105 40 20
Random2 512 200 100
Uniform1 105 40 20
Uniform2 512 200 100

Heat_1

Random1 400 100 50
Random2 2500 500 250
Uniform1 400 100 50
Uniform2 2500 500 250

Wave

Random1 2025 200 200
Random2 5041 500 500
Uniform1 2025 200 200
Uniform2 5041 500 500

Burgers Uniform1 5040 500 500
Uniform2 10057 1000 1000

Advection_0 Random1 200 40 20
Random2 800 160 80

Advection_1 Random1 200 40 20
Random2 800 160 80

Reaction Random 800 160 80
Uniform 800 160 80

Advection_1: This advection equation has different boundary conditions than Advection_0.

Equation:
∂u(x, t)

∂t
+

∂u(x, t)

∂x
= 0, x ∈ [0, 2], t ∈ [0, 1] (20)

Boundary Condition: u(0, t) = 1, u(2, t) = −1 (21)

Initial Condition: u(x, 0) =

{
1, 0 ≤ x < 1

−1, 1 < x ≤ 2
(22)

Solution: u(x, t) =

{
1, 0 ≤ x < 1 + t

−1, 1 + t < x ≤ 2
(23)

Reaction: The reaction equation describes chemical reactions.

Equation:
∂u(x, t)

∂t
= u(x, t)(1− u(x, t)), x ∈ [0, 2], t ∈ [0, 1] (24)

Boundary Condition: u(0, t) =
e−1et

e−1et + 1− e−1
(25)

Initial Condition: u(x, 0) = e−(x−1)2 (26)

Solution: u(x, t) =
e−(x−1)2et

e−(x−1)2et + 1− e−(x−1)2
(27)

A.2 Data Sampling Methods

In our experiments, we consider different sampling methods including random samplings and uniform
samplings. We provide the details of the different data sampling methods in Table 1.

12



Appendix B Activation Functions

In this appendix, we present the mathematical expressions of the four activation functions in the
search space.

Tanh:

tanh(x) =
ex − e−x

ex + e−x
(28)

Sigmoid:

sigmoid(x) =
1

1 + e−x
(29)

ReLU:

relu(x) = max (0, x) (30)

Swish[21]:

swish(x) = x · sigmoid(x) (31)
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Appendix C Additional Pre-Experiment Results and More Details about
Auto-PINN

C.1 Additional Pre-Experiment Results

In this section, we provide additional results to further support the observations in Section 3.

Additional Error Heatmap Results. We report additional error heatmap results in Figure 7, 8, 9 and
10 for different PDEs. The heatmaps in rows follows the order of the sampling methods in Table 1.
The heatmaps shown in the main paper are also included for reference.

Figure 7: Error heatmaps for Heat_0.
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Figure 8: Error heatmaps for Heat_1.
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Figure 9: Error heatmaps for Wave.
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Figure 10: Error heatmaps for Burgers.

Figure 11: Structure-error relationship.

Figure 12: Loss-error relationship.

Additional Structure-Error Relationship Results. We report additional structure-error relationship
results in Figure 11.

Additional Loss-Error Relationship Results. We report additional loss-error relationship results in
Figure 12.

C.2 More Details about Auto-PINN

In this section, we present more details about the proposed method, Auto-PINN.

Default Settings. Here we present the default setting of our proposed method.

Step 0. Set changing points to 0.5 (Observation 2) for the following Step 1 to Step 2.2.

Step 1. Search the activation function (Observation 1). Sample 3 widths exponentially and 3 depths
uniformly. Use the median search objective to determine the dominant activation function.
This activation function will become the only choice in the following steps.

Step 2. Search the depth and width.
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Step 2.1. Search the good-performance regions of width (Observation 5). Split the width space
into 8 intervals uniformly. Sample 3 width settings in each interval randomly to
represent the performance of their interval, then combine them with the uniformly
sampled 3 depth settings. Use the median search objective to find the top 2 width
intervals as the good-performance regions.

Step 2.2. Search the best depth settings. Collect all 8+ 8 = 16 or 8+ 7 = 15 width settings
inside the top 2 "good performance" regions with all 8 depth settings. Search and find
the top 5 candidate structure configurations.

Step 3. Search the best changing point for each candidate from the 5 choices.
Step 4. Verify the performance of the searched PINN architectures. Retrain every selected PINN

five times with different intializations and report its median performance.

Complexity Analysis. Here we provide a detailed complexity analysis of the number in search trials.

In the default search space, we provide 4 activation functions, 5 options of the changing points,
8 widths and 63 depths. Therefore, the entire search space contains 4× 5× 8× 63 = 10,080
configurations.

Under the default Auto-PINN settings, without considering the Step 4 for verification, the
pipeline needs 3× 3× 4 = 36 trials in Step 1, 3× 8× 3 = 72 trials in Step 2.1, at most
(8+ 8)× 8 = 128 trials in Step 2.2 and 5× 5 = 25 in Step 3. Therefore, Auto-PINN requires
at most 36+ 72+ 128+ 25 = 261 search trials in total, which is 261/10,080 = 2.59% of the
whole search space.

Best Architectures Searched by Auto-PINN. Here we give a list to show the architecture searching
results by Auto-PINN. The diversity of the searched best architectures can be shown in Table 2, which
suggests the effectiveness of Auto-PINN. All the experiment settings are the same as those in the
main paper. We set the learning rates to 1e− 5 and the number of training epochs to 10000.

Table 2: Best architectures searched by Auto-PINN for each PDE and sampling method, according to
smallest L2 Error among the top 5 results.

PDEs Sampling Methods Width Depth Activation Function Changing Point

Heat_0

Random1 80 8 Swish 0.5
Random2 512 7 Tanh 0.4
Uniform1 464 5 Tanh 0.5
Uniform2 496 5 Tanh 0.4

Heat_1

Random1 236 8 Tanh 0.5
Random2 248 9 Tanh 0.5
Uniform1 232 8 Tanh 0.5
Uniform2 252 10 Tanh 0.4

Wave

Random1 116 4 Swish 0.4
Random2 180 7 Tanh 0.4
Uniform1 136 3 Swish 0.5
Uniform2 40 7 Tanh 0.4

Burgers Uniform1 256 10 Tanh 0.5
Uniform2 212 10 Tanh 0.4

Advection_0 Random1 48 7 ReLU 0.5
Random2 16 5 Tanh 0.2

Advection_1 Random1 256 4 Tanh 0.4
Random2 84 5 Tanh 0.1

Reaction Random 32 3 Tanh 0.4
Uniform 156 4 Swish 0.2
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