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Abstract

As large language models (LLMs) grow in size,001
traditional full fine-tuning becomes increas-002
ingly impractical due to its high computational003
and storage costs. Although popular parameter-004
efficient fine-tuning methods, such as LoRA,005
have significantly reduced the number of tun-006
able parameters, further optimization is still007
possible. In this work, we propose ASLoRA, a008
cross-layer parameter-sharing strategy combin-009
ing global sharing with partial adaptive sharing.010
Specifically, we share the low-rank matrix A011
across all layers and merge matrix B adaptively012
during training. This sharing mechanism not013
only mitigates overfitting effectively but also014
captures inter-layer dependencies, significantly015
enhancing the model’s representational capa-016
bility. We conduct extensive experiments on017
various NLP tasks, showing that ASLoRA out-018
performs LoRA while using fewer than 25% of019
the parameters, highlighting its flexibility and020
superior parameter efficiency. Furthermore, in-021
depth analyses of the adaptive sharing strategy022
confirm its significant advantages in enhancing023
both model flexibility and task adaptability.024

1 Introduction025

The emergence of large language models (LLMs)026

like GPT-3.5 Turbo (OpenAI, 2023), Gemini (Anil027

et al., 2023), and LLaMA3 (Dubey et al., 2024)028

represents a significant breakthrough in NLP. How-029

ever, due to their massive parameters, fully fine-030

tuning these models for specific tasks is expensive,031

especially as model size scales up (Brown et al.,032

2020). In response, parameter-efficient fine-tuning033

(PEFT), such as adapter (Houlsby et al., 2019; Hu034

et al., 2022) and Prefix Tuning (Li and Liang, 2021),035

have gained popularity. These methods fine-tune036

only a small subset of parameters, reducing storage037

and computation demands significantly.038

As a popular method of parameter-efficient fine-039

tuning (PEFT), LoRA (Hu et al., 2022) introduces040

two low-rank matrices, A and B, whose product041

Figure 1: The pre-experiment on the MRPC and STSB
datasets. We let A be shared in all layers and make
adjacent n layers share the same B, where n = 3 means
that every 3 adjacent layers share the same B.

represents the update to the weight matrix, i.e., 042

W0 + ∆W = W0 + BA. Given that the ranks 043

of A and B are significantly lower than the orig- 044

inal model dimensions, this approach greatly re- 045

duces the number of tunable parameters. Moreover, 046

LoRA directly adds the product of the low-rank 047

matrices to the weight matrix, without introducing 048

additional inference latency. Despite its excellent 049

performance, LoRA still requires a substantial num- 050

ber of parameters. 051

To address this issue, several studies have ex- 052

plored combining parameter sharing with LoRA. 053

For instance, VeRA (Kopiczko et al., 2024) shares 054

randomly initialized matrices A and B across all 055

layers and freezes their parameters while introduc- 056

ing trainable scaling vectors between them to re- 057

duce the number of tunable parameters. However, 058

their weight-freezing strategy limits model expres- 059

siveness. Subsequently, Tied LoRA (Renduchin- 060

tala et al., 2024) alleviates these issues by allow- 061

ing trainable matrices to be shared across layers, 062

but its binding mechanism restricts applicability to 063

weights of varying shapes. ShareLoRA (Song et al., 064

2024) introduces an asymmetric sharing mecha- 065

nism where the matrix A is shared across all layers, 066

while the matrix B is not shared. This approach 067
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lacks a detailed analysis of whether B could also068

benefit from sharing and still has parameter redun-069

dancy.070

To this end, we investigate the effects of partially071

sharing matrix B while maintaining full sharing of072

matrix A across all layers. We conduct prelimi-073

nary experiments and show the results in Figure 1.074

We observe that different sharing strategies yield075

different results, and in some cases, a smaller pa-076

rameter size can lead to better performance. This077

suggests potential redundancies in B, pointing to a078

fine-grained sharing approach that reduces parame-079

ters while enhancing performance.080

Inspired by this, we propose a fine-tuning081

approach called Adaptive Sharing Low-Rank082

Adaptation Across Layers (ASLoRA). We divide083

the training process into three stages: shared train-084

ing, adaptive merging, and final optimization. In085

the shared training stage, the matrix A is shared086

across all layers to capture global information while087

reducing the number of trainable parameters by088

half. Meanwhile, the matrix B remains unshared089

to capture the unique information of each layer.090

In the adaptive merging stage, to eliminate redun-091

dancy among the B matrices of different layers092

and further reduce parameters, we merge these ma-093

trices based on their similarity. In the final opti-094

mization stage, the merged model structure is re-095

tained and further trained to ensure convergence096

and optimal performance. Compared to LoRA,097

ASLoRA combines global and local sharing, us-098

ing fewer parameters and effectively alleviating the099

overfitting problem. We conduct comprehensive100

experiments on multiple tasks and models, using101

RoBERTa-base for natural language understand-102

ing (NLU) tasks and LLaMA-2-7B for instruction103

tuning tasks. The experimental results show that104

ASLoRA achieves better performance with fewer105

parameters than LoRA, outperforming the baseline106

models across all instruction-following datasets. In107

summary, our contributions are as follows:108

• We experiment with different ways of sharing109

the matrix B while maintaining full sharing of110

the matrix A across all layers. We find that fine-111

grained strategies with fewer parameters perform112

better.113

• We propose a parameter sharing approach,114

ASLoRA, which combines global sharing with115

partial adaptive sharing to further enhance param-116

eter efficiency.117

• We compare ASLoRA with existing methods in118

multiple tasks, showing that it achieves higher119

parameter efficiency and superior performance. 120

2 Related Work 121

2.1 Parameter-Efficient Fine-Tuning 122

As transformer models scale up and down- 123

stream tasks increase, full fine-tuning poses sig- 124

nificant computational challenges. To address 125

this, parameter-efficient fine-tuning methods have 126

emerged, which update only a small portion of the 127

model’s parameters to achieve performance compa- 128

rable to full fine-tuning. Prompt Tuning (Shin et al., 129

2020; Chen et al., 2022) introduces task-specific 130

prompts to adjust the model precisely, Adapter 131

Tuning (Houlsby et al., 2019) adds lightweight 132

adapters between model layers to drastically re- 133

duce resource consumption, and Prefix-Tuning (Li 134

and Liang, 2021) prepends a continuous, task- 135

specific vector sequence to the model’s input. Al- 136

though these methods have shown remarkable ef- 137

fectiveness, fine-tuning large models still demands 138

substantial computational resources, especially in 139

resource-constrained environments. 140

2.2 Low-Rank Adaptation 141

Low-Rank Adaptation (LoRA) (Hu et al., 2022) 142

using the product of two low-rank matrices to ap- 143

proximate weight updates. It is widely adopted 144

due to its simplicity and lack of inference delay. 145

Current improvements to LoRA focus primarily 146

on improving performance and reducing parame- 147

ter count. AdaLoRA (Zhang et al., 2023b) and 148

IncreLoRA (Zhang et al., 2023a) improve LoRA 149

by introducing higher ranks for more critical mod- 150

ules, but varying ranks across layers complicate 151

multi-LoRA deployment. VeRA (Kopiczko et al., 152

2024) reduces parameter count by sharing a frozen 153

random matrix across layers and training two low- 154

parameter vectors, but it affected performance. 155

PRoLoRA (Wang et al., 2024) introduces shared 156

and rotated enhancements within LoRA, effectively 157

reducing parameters but remaining limited to in- 158

ternal LoRA interactions, thus unable to capture 159

inter-layer dependencies. In contrast, our method 160

employs a cross-layer parameter-sharing mecha- 161

nism, effectively mitigating these limitations. 162

2.3 Parameter Sharing 163

Parameter sharing is widely used to reduce model 164

memory requirements. Universal Transformer (De- 165

hghani et al., 2019) reduces parameter count by 166

sharing all layers. Takase and Kiyono introduced 167
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Figure 2: Illustration of ASLoRA, we present a six-layer model. First, all layers share matrix A and enter the shared
training phase on the left. The center shows the adaptive merging process, where the most similar B matrices are
merged each time based on their pairwise similarity. After several merges, the model moves to the final optimization
phase on the right, with partial sharing of B completed.

three cross-layer parameter sharing strategies that168

lower both parameters and computation demands.169

Subformer (Reid et al., 2021) achieves signifi-170

cant parameter reduction without performance loss171

through middle-layer sharing and embedding fac-172

torization. LightFormer (Lv et al., 2023) uses SVD-173

based weight transfer and low-rank factorization174

for model compression and acceleration, while Re-175

laxed Recursive Transformers (Bae et al., 2024) im-176

proves inference speed through cross-layer sharing177

via a recursive structure. Differently, our method178

focuses on PEFT scenarios, aiming to improve the179

parameter efficiency of LoRA models rather than180

directly optimizing transformer models.181

3 Method182

In this section, we will introduce ASLoRA, an183

adaptive method for sharing parameters across lay-184

ers. In simple terms, we let A share across all185

layers, and let B share adaptively during training,186

reducing parameters while learning the information187

associated with each layer. We show our structure188

in Figure 2.189

3.1 Preliminaries on Low-Rank Adapter190

LoRA freezes the original weight matrix W0 and191

decomposes the weight update ∆W into two low192

rank matrices B and A. The forward propagation193

process is shown in equation (1):194

h = W0x+∆Wx = W0x+BAx. (1)195

Here, W0 ∈ Rd×d is the pretrained weight matrix, 196

h is the output vector, x ∈ Rd is the input vector 197

and ∆W = BA is the increment matrix during 198

fine-tuning, where A ∈ Rd×r and r ≪ d. During 199

training, A is initialized with a Gaussian distribu- 200

tion, and B is initialized as a zero matrix to ensure 201

the initial increment BA = 0. 202

3.2 Shared Training 203

To reduce the parameters while capturing global 204

information across layers and local details for each 205

layer, we choose to share A across all layers. Then 206

we will explain why A is shared but not B. In 207

LoRA, A is randomly initialized, meaning each 208

layer has a different A, while B is initialized to 0 209

and remains the same across all layers. By sharing 210

A and not B, we ensure that the non-shared part 211

(i.e., B) has the same initialization value across all 212

layers, thus avoiding any additional perturbations, 213

which facilitates the measurement of changes in B 214

for section 3.3. The forward propagation process 215

is shown in equation (2): 216

hi = Wix+BiAx, (2) 217

where i is the layer index of the model, hi is the 218

output of layer i, Bi represents the B of the i-th 219

layer. This equation indicates that the weight vari- 220

ation ∆Wi for each layer is obtained by matrix A 221

using the corresponding Bi. Shared A is consistent 222

across all layers, reducing redundancy in training 223

and memory requirements. At the same time, the 224
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independent Bi of each layer makes specific adjust-225

ments to the output to achieve differentiated feature226

transformation.227

3.3 Adaptive Merging228

After completing the Ts steps of shared training,229

the model has learned the knowledge of different230

layers through B. In order to reduce the redun-231

dancy of B and further reduce the parameters,232

we perform an adaptive merge of different B. In233

simple terms, we calculate the pairwise similarity234

between the B matrices and merge B with the235

highest similarity in every m steps.236

237

Average Weights. If we directly use B of step t for238

the similarity calculation, we would only observe239

the value of B in the current step and fail to mea-240

sure the overall changes in B during the training241

phase. Therefore, we introduce the average weight242

to measure similarity. Specifically, the weight at243

step t is equal to the average weight of the previous244

t steps:245

Bt
i =

1

t

t∑
k=1

Bk
i . (3)246

Here, i is the model layer index, Bt
i is the average247

weight of the B for the layer i, Bk
i is the weight248

of step k of B, t is the current step. By using249

average weights, we can better capture the overall250

Bi information from the previous step, reducing251

randomness.252

253

Similarity Calculation. The L2 norm can effec-254

tively measures the overall distance between vec-255

tors and penalizes larger differences more signif-256

icantly, so we use it to measure the similarity be-257

tween the two pairs of B at each layer:258

St
i,j =

∥∥∥Bt
i −Bt

j

∥∥∥
2
=

√√√√ n∑
k=1

(bti,k − btj,k)
2, (4)259

where St
i,j is the similarity between layer i and260

layer j matrices B, bti,k represents each element of261

layer i matrix B. By using the L2 norm, we can262

effectively measure pairwise similarities between263

B-matrices and rank these similarities. From the264

equation (4), it can be seen that a smaller St
i,j265

indicates a higher similarity. Each time, the two266

B-matrices with the highest similarity are selected267

for merging.268

269

Weight Merging. Considering that the upper lay- 270

ers of the model contain more complex informa- 271

tion (Zhang et al., 2023b), we make the lower layers 272

use the B of the upper layers when merging. This 273

ensures that more useful information is preserved 274

after merging. 275

3.4 Final Optimization 276

After completing the merging of B, the model en- 277

ters the final optimization phase. A remains shared 278

across all layers, while B has undergone partial 279

merged sharing. As a result, some layers share the 280

same B, denoted as B̃(i), representing the B used 281

in the i-th layer. The forward propagation formula 282

is as follows: 283

hi = Wix+ B̃(i)Ax. (5) 284

After this stage of training, the model has success- 285

fully converged. We summarize the detailed algo- 286

rithm in Algorithm 1. 287

Algorithm 1 : ASLoRA. T is the total steps, Ts

is the number of steps that start merging, m is
the interval between merges, N is the number of
merges.
Input: Ts, m, N

1: Share A across all layers as equation (2)
2: for t = 1, . . . , T do
3: if N > 0 then
4: Update Bi by equation (3)
5: if t > Ts and (t− Ts)%m == 0 then
6: Calculate all St by equation (4)
7: Sort all St and find the minimal St

i,j

8: Merge Bi and Bj , N ← N − 1
9: end if

10: end if
11: end for

As shown in Algorithm 1, we first share A across 288

all layers and train the model according to equation 289

(2), allowing B to learn the information of each 290

layer during this phase. After completing Ts steps 291

of training, we calculate the pairwise similarity be- 292

tween adjacent layers every m steps, and merge the 293

two layers with the lowest similarity. This process 294

is repeated until N merges are completed. Then 295

we continue to train based on equation (5). 296

3.5 Advantage Analysis 297

Global sharing A has high adaptability. Be- 298

cause LoRA initializes A randomly and B with 299
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zeros, this initialization can affect the similarity300

calculations. By sharing A across all layers, we301

can effectively eliminate the interference caused302

by the initialization values. Specifically, all layers’303

B start with the same value (zero), and each B304

propagates through the same A. This approach305

removes the influence of A and the initialization306

values on B, leading to more reasonable and307

consistent similarity calculations for B.308

309

Partially sharing B has high flexibility. We share310

A across all layers to capture the shared knowledge311

across the entire model. Meanwhile, B is partially312

shared based on the unique characteristics of each313

layer. This approach allows ASLoRA to capture314

both global knowledge and more fine-grained,315

layer-specific knowledge, providing greater316

flexibility. Especially when the model has more317

layers, this adaptive sharing strategy allows for a318

more flexible distribution of parameters.319

320

ASLoRA has high parameter efficiency. We321

share A across all layers and merge B during train-322

ing. This approach can reduce the parameter size by323

at least half, and as the number of merges increases,324

the parameter size continues to decrease. As the325

number of model layers increases, the amount of326

parameters that can be reduced also increases.327

4 Experiments328

In this section, we evaluate the performance of329

ASLoRA in natural language understanding (NLU)330

and instruction tuning (Chia et al., 2024). For331

NLU, we use RoBERTa-base (Liu et al., 2019) to332

test on the GLUE (Wang et al., 2018) dataset. For333

instruction tuning, we use LLaMA-2-7B as the334

large language model (LLM) backbone, trained on335

the alpaca dataset, and evaluate multiple metrics.336

Finally, we explore the advantages of adaptive337

merging. All models are fine-tuned on NVIDIA338

A800 and 4090 GPUs.339

340

Baselines. We compare ASLoRA with popular341

parameter-efficient fine-tuning (PEFT) methods.342

To ensure a fair and comprehensive comparison,343

we replicate the experimental setups used in pre-344

vious works and use their reported results. The345

baseline methods involved are:346

• Full Fine-Tuning (FF) - The base model is ini-347

tialized with pre-trained weights and biases, and348

all parameters undergo gradient updates.349

• Adapter Tuning - AdapterH (Houlsby et al., 350

2019) inserts two layers of adapters between 351

the self-attention and feed-forward network mod- 352

ules, followed by a residual connection. We also 353

compare three variants: AdapterL (Lin et al., 354

2020), which applies adapter layers only after the 355

MLP module, AdapterP (Pfeiffer et al., 2021), 356

which applies adapters after the feed-forward 357

layer, and AdapterD (Rücklé et al., 2021), which 358

improves parameter efficiency by removing inac- 359

tive adapter layers. 360

• LoRA (Hu et al., 2022) - LoRA parameter- 361

izes the incremental weight updates using low- 362

rank matrices, making it a state-of-the-art PEFT 363

method. 364

• DyLoRA (Valipour et al., 2023) - This method 365

trains dynamic, search-free LoRA models to se- 366

lect the optimal rank. 367

• AdaLoRA (Zhang et al., 2023b) - Based on 368

singular value decomposition (SVD) and impor- 369

tance scores, AdaLoRA adaptively allocates dif- 370

ferent ranks to different modules of the model. 371

• PiSSA (Meng et al., 2024) - PiSSA retains 372

LoRA’s architecture but initializes the low-rank 373

matrices A and B with the principal components 374

of the original weight matrix W , while storing 375

the remaining components in a residual matrix. 376

• ShareLoRA (Song et al., 2024) - ShareLoRA 377

adopts an asymmetric sharing strategy where ma- 378

trix A is shared across layers, while matrix B 379

remains layer-specific. 380

4.1 Natural Language Understanding 381

Models and Datasets. We validate our approach 382

on the GLUE benchmark (Wang et al., 2018), 383

which includes a variety of natural language un- 384

derstanding (NLU) tasks, such as single-sentence 385

classification, similarity and synonymous sentence 386

tasks, and natural language reasoning tasks. We 387

select RoBERTa-base model (Liu et al., 2019) for 388

evaluation. 389

390

Implementation Details. In all experiments, we 391

fine-tune WQ and WV , with all data and models 392

downloaded from huggingface. For the GLUE 393

benchmark, we use the LoRA (Hu et al., 2022) 394

configuration, fine-tuning the RoBERTa-base 395

model across 6 datasets. We set the rank to 8, and 396

fine-tune all WQ and WV weights as well as the 397

classification heads. For ASLoRA, since the base 398

model has only 12 layers and supports a maximum 399

of 11 merges, we set the merge count to 7. The 400
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Method #Params SST-2 MRPC CoLA QNLI RTE STS-B Avg.

FF 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2

AdptD 0.3M 94.2 88.5 60.8 93.1 71.5 89.7 83.0
AdptD 0.9M 94.7 88.4 62.6 93.0 75.9 90.3 84.2
LoRA 0.3M 95.1 89.7 63.4 93.3 78.4 91.5 85.2
AdaLoRA 0.3M 94.5 88.7 62.0 93.1 81.0 90.5 85.0
DyLoRA 0.3M 94.3 89.5 61.1 92.2 78.7 91.1 84.5
PiSSA 0.3M 94.7 89.2 63.8 92.5 75.5 90.8 84.4
ShareLoRA 0.15M 94.7 88.7 63.7 92.9 76.2 91.1 84.6
ASLoRA 0.073M 94.8 90.0 63.3 93.2 79.8 91.1 85.4

Table 1: Performance of various fine-tuning methods with RoBERTa-base models on 6 datasets of the GLUE
benchmark. We report the Matthew’s correlation coefficient for CoLA, Pearson correlation coefficient for STS-B
and accuracy for other tasks. We also report the number of trainable parameters (#Params) for each method. The
best results for each dataset are shown in bold, the second-best results are underline. Higher is better for all metrics
in 6 datasets.

Method #Params MMLU BBH DROP HEval Avg.

w/o FT - 45.96 32.04 31.55 12.20 30.44
FT 7B 47.30 32.72 29.12 12.80 30.49

LoRA 33.6M 45.64 32.40 32.46 15.09 31.40
QLoRA 33.6M 45.40 32.81 28.97 15.24 30.61
AdaLoRA 33.6M 45.96 32.85 31.94 14.02 31.19
ShareLoRA 17.3M 46.08 32.69 32.43 14.63 31.46
ASLoRA 8.9M 46.21 32.96 32.47 17.68 32.33

Table 2: Results on instruction tuning: we present exact
match scores for MMLU, DROP, and BBH, and pass@1
for HumanEval (HEval). The best results are in bold,
second-best are underlined.

results are the median with 3 different random401

seeds. We provide the hyperparameters in Table 6402

in Appendix.403

404

Results. The results are summarized in Table 1.405

We report the number of all parameters except the406

classification header. For ASLoRA, we report the407

number of parameters after the merge is complete.408

In the case of 7 merges, ASLoRA only uses 24%409

(0.073M/0.3M) of the parameters, significantly re-410

ducing the size of the parameter, while surpassing411

all benchmark methods in average score. Although412

it fails to reach the leading position on a single413

data set, it ranks second on four datasets (SST-2,414

MRPC, QNLI, and RTE), demonstrating its ability415

to diversify datasets while reducing the number of416

parameters. It maintains the advantages of stable417

performance and excellent generalization ability.418

Therefore, ASLoRA can significantly reduce the419

number of parameters and reach or exceed the per-420

formance of traditional methods under the condi- 421

tion of limited resources, which fully proves its 422

feasibility and potential. 423

4.2 Instruction Tuning 424

Models and Datasets. In this section, we 425

use LLaMA-2-7B as the backbone LLM and 426

train it using the alpaca dataset (Taori et al., 427

2023), randomly selecting 2,000 samples as the 428

development set. The alpaca dataset consists of 429

51K instruction-following examples generated by 430

GPT-3.5 (Wang et al., 2023) , covering a variety 431

of tasks and question formats, and it is designed 432

to help the language model learn how to better 433

understand and respond to instructions. We follow 434

INSTRUCTEVAL (Chia et al., 2024) for evalu- 435

ation, employing the MMLU (Hendrycks et al., 436

2021), BBH (Srivastava et al., 2023), DROP (Dua 437

et al., 2019), and HumanEval (HEval) (Chen et al., 438

2021) datasets. 439

440

Implementation Details. For all methods, we 441

set the rank r to 64. For ASLoRA, the maximum 442

number of merges is set to 16. In terms of task 443

setting, the MMLU uses 5-shot direct prompting, 444

the BBH and DROP (dev) use 3-shot direct prompt- 445

ing, and the HEval uses 0-shot direct prompting, 446

which reflects the complexity of different tasks 447

and their requirements for model inference ability. 448

During the training process, we use the AdamW 449

optimizer, and train models for 3 epochs. The 450

learning rate was based on a linear scheduling 451
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strategy, with an initial value of 3 × 10−4. The452

batch size is set to 128. The above configuration453

ensures consistency in experimental conditions454

and facilitates a comprehensive evaluation of the455

model’s performance in each task. We provide the456

hyperparameters in Table 5 in Appendix.457

458

Results. The results are shown in Table 2. We459

find that ASLoRA uses only 26% of the parame-460

ters required by other efficient fine-tuning meth-461

ods and outperforms all baseline on the BBH,462

DROP and HEval datasets. While slightly under-463

performing full fine-tuning on the MMLU dataset,464

ASLoRA outperforms LoRA and its variants. Fur-465

thermore, ASLoRA achieves the highest average466

performance among the evaluated methods. These467

findings demonstrate that ASLoRA’s integration of468

global and partial sharing mechanisms efficiently469

captures shared features across layers and allocates470

knowledge flexibly based on task demands. Conse-471

quently, ASLoRA significantly enhances model472

adaptability to diverse task complexities while473

preserving parameter efficiency, underscoring its474

promise in efficient fine-tuning.475

4.3 Further Analyses476

Advantage of Adaptive Sharing. To further in-477

vestigate the advantages of adaptive sharing, we478

conduct a comparative experiment against fixed479

sharing methods. In the fixed sharing method, the480

B matrix is shared across every 2, 3, and 6 con-481

secutive layers, whereas adaptive sharing merges 6,482

8, and 10 times. These configurations are selected483

to ensure a fair comparison by maintaining the484

same parameter counts. We conduct experiments485

on the MRPC, STS-B, SST-2, and QNLI datasets to486

evaluate the performance of adaptive sharing, with487

results presented in Table 3. The results indicate488

that adaptive sharing provides significant advan-489

tages across all configurations. For the 6-merging490

case (corresponding to sharing the B matrix across491

every 2 layers), adaptive sharing yielded the largest492

performance improvement. Fewer merges enable493

adaptive sharing to allocate knowledge more flex-494

ibly, resulting in more diverse merging outcomes.495

However, when the number of merges increased to496

10 (corresponding to sharing the B matrix across497

every 6 layers), the performance advantage of adap-498

tive sharing reduced. This is expected, as increas-499

ing the number of merges limits the available op-500

tions, reducing the diversity of adaptive sharing501

and making it closer to the fixed sharing method.502

Method #Params MRPC STS-B SST-2 QNLI

ASLoRA-adp 0.086M 88.48 90.80 94.27 92.15
ASLoRA 0.086M 90.20 90.92 94.61 92.93

ASLoRA-adp 0.061M 88.73 90.79 94.50 92.75
ASLoRA 0.061M 88.97 90.73 94.84 92.84

ASLoRA-adp 0.037M 89.22 90.42 94.27 92.20
ASLoRA 0.037M 89.22 90.43 94.27 93.10

Table 3: Performance on adaptive sharing and fixed
sharing is compared. ASLoRA-adp represents the fixed
sharing approach, with results corresponding to sharing
matrix B across every 2, 3, or 6 consecutive layers from
top to bottom in the table. These results are compared
with adaptive sharing after merging 6, 8, and 10 times.

503

Shared Distribution. To investigate the impact of 504

adaptive sharing on the structure of the model, we 505

conduct experiments on the RoBERTa-base model 506

and report the results of 6 merge iterations on the 507

MRPC and QNLI datasets (as shown in Figure 3). 508

The results indicate that adaptive sharing achieves 509

a more diversified allocation strategy. In the query 510

matrix, the differences between adaptive sharing 511

and fixed sharing are minimal, especially on the 512

QNLI dataset, where the first 8 layers almost ex- 513

clusively use adjacent two-layer sharing, with only 514

slight differences appearing in the last four lay- 515

ers. This suggests that in the query matrix, inter- 516

layer feature differences are small, and the perfor- 517

mance of adaptive sharing and fixed sharing is sim- 518

ilar. However, in the value matrix, the differences 519

are more pronounced. Adaptive sharing exhibits a 520

distinctly different sharing pattern, particularly on 521

the QNLI dataset, where greater divergence is ob- 522

served, especially in the sharing of layers 6, 8, and 523

9. Comparing MRPC and QNLI datasets, we find 524

that adaptive sharing presents a more diverse alloca- 525

tion pattern on the QNLI dataset. This is likely due 526

to the greater size and complexity of QNLI com- 527

pared to MRPC, providing a richer feature space 528

for the model to learn from. 529

Impact of Merge Times. We investigate the im- 530

pact of different merge counts on the performance 531

of instruction tuning, setting the merge counts 532

N = {4, 8, 12, 16, 20, 24, 28} and comparing the 533

results with LoRA under the same rank settings, 534

as shown in Figure 4. The results show that on 535

the MMLU, BBH, and HEval datasets, perfor- 536

mance improves initially with increasing merge 537

counts but declines beyond a certain threshold. In 538

most configurations, ASLoRA outperforms LoRA. 539
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Figure 3: The allocation results of adaptive sharing on the GLUE Benchmark are presented. We set the merge times
to 6 and report the sharing configurations of the query and value matrices. The same color represents sharing the
same B matrix. More results can be found in Figure 5 in Appendix.

Figure 4: The effect of the number of merges on the
results. Across these 4 datasets, for ASLoRA, we set the
merge counts N ={4, 8, 12, 16, 20, 24, 28} and conduct
a comparative analysis with LoRA under the same rank
r setting.

Specifically, the best performance is achieved with540

N = 24 for MMLU, N = 20 for BBH, and541

N = 16 for HEval. This indicates that the optimal542

merge count varies across datasets. As the number543

of merges increases, the parameter count decreases.544

Moderate merging helps mitigate overfitting, but545

excessive merging can harm performance. Con-546

versely, fewer merges lead to an increase in the547

number of parameters, and too few merges may548

result in overfitting risks and lower parameter ef-549

ficiency. On these four datasets, we also find that550

ASLoRA performs worse on the DROP dataset551

compared to the others. This may be due to the552

complexity of the tasks in this dataset, which makes553

it difficult for the reduced parameters to effectively554

capture its intricate features.555

Efficiency Analysis. Although ASLoRA intro-556

Dataset LoRA (s) ASLoRA (s)

SST-2 7500 7530 (+0.40%)
MRPC 2407 2422 (+0.62%)
CoLA 1302 1329 (+2.07%)
RTE 406 382 (-5.91%)
STS-B 490 479 (-2.24%)

Avg. 2421.0 2428.4 (+0.3%)

Table 4: Training time comparison between LoRA and
ASLoRA. Positive percentages mean ASLoRA takes
more time.

duces similarity computation and adaptive merging 557

mechanisms, which may incur additional computa- 558

tional overhead, its cross-layer parameter sharing 559

strategy helps improve parameter reuse, resulting 560

in an overall training speed that is not necessarily 561

slower than LoRA. We measured the training time 562

of both methods on six benchmark datasets under 563

identical configurations. As shown in Table 4, the 564

training efficiency of ASLoRA and LoRA differs 565

minimally. Except for a slight increase in training 566

time on the CoLA task, ASLoRA performs better 567

on RTE and STS-B, with the average training time 568

increasing by only about 0.3%. 569

5 Conclusion 570

In this paper, we propose ASLoRA, which em- 571

ploys a cross-layer parameter-sharing mechanism 572

that combines global and partial adaptive sharing 573

strategies. This approach significantly enhances 574

parameter efficiency during fine-tuning. Extensive 575

experiments demonstrate that ASLoRA reduces pa- 576

rameter usage while improving model performance 577

across multiple datasets. 578
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6 Limitations579

This work has the following limitations:580

• We introduce two hyper-parameters: the starting581

merge step and the interval between merges, both582

of which impact performance. For the starting583

merge step, although we find that setting it to584

around an epoch yields good results, better pat-585

terns may exist. For the merge interval, we plan586

to introduce the global budget scheduler from587

AdaLoRA to design a more effective strategy for588

spacing between merges, thereby further optimiz-589

ing performance.590

• The optimal number of merges varies across591

datasets. In future work, we intend to integrate a592

dynamic search algorithm to automatically deter-593

mine the optimal number of merges, enhancing594

the model’s adaptability and overall performance.595

• Our current approach is limited to inter-layer596

parameter sharing, which could potentially be597

complemented by incorporating intra-layer pa-598

rameter sharing. Additionally, the method does599

not modify the internal structure of LoRA. In600

future work, our approach can be combined with601

other parameter-reduction methods that improve602

the LoRA structure (e.g., MELoRA (Ren et al.,603

2024)) to achieve higher parameter efficiency.604

7 Ethical Considerations605

We acknowledge the ethical risks of developing606

large language models. In this study, we focused on607

the ethical use of data and models. All pre-trained608

models and public datasets used in our experiments609

are from publicly available sources and processed610

by the publishers to ensure ethical compliance. We611

adhere to responsible practices to minimize any612

potential ethical issues.613
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A Hyper-parameters 931

The detailed hyper-parameter settings on the instruction tuning and GLUE datasets are listed in Table 5 932

and Table 6.

Hyper-Parameter Value

Learning rate η 3e-4
Batch size 128
Number of epochs 3
Max sequence length 256
Rank r 64
Start Steps Ts 400
Merge intervalW 10
LoRA dropout 0.05
LoRA alpha α 16
Trainable matrices WQ,WV

LR scheduler Linear
Warmup steps 100

Table 5: The hyper-parameter settings for instruction tuning. We use the same settings as (Chia et al., 2024).

933

Hyper-Parameter SST-2 MRPC CoLA QNLI RTE STS-B

Learning Rate η 5e-4 4e-4 4e-4 4e-4 4e-4 4e-4
Batch Size 16 16 32 32 16 16
Number of Epochs 60 30 80 25 25 40
Weight Decay β 0.1 0.1 0.1 0.1 0.1 0.1
Max Sequence Length 512 512 512 512 512 512
Start Steps Ts 3000 320 400 1000 200 700
Merge intervalW 2000 240 500 700 100 500
Update Ratio λ 0.5 0.5 0.5 0.5 0.5 0.5
Rank r 8 8 8 8 8 8
Alpha α 16 16 16 16 16 16
LR Scheduler Linear Linear Linear Linear Linear Linear
Trainable Matrices WQ,WV WQ,WV WQ,WV WQ,WV WQ,WV WQ,WV

Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06
Evaluation Metrics Accuracy Accuracy Matthews Accuracy Accuracy Pearson

Table 6: The hyper-parameter settings for GLUE.

B Details of Datasets 934

B.1 GLUE Benchmark 935

The GLUE (Wang et al., 2018) (General Language Understanding Evaluation) benchmark is a collection of 936

natural language understanding tasks designed to evaluate the performance of language models in various 937

practical applications. It provides a standardized platform for comparing how different models perform 938

in understanding and processing human language. The GLUE benchmark includes nine tasks, each 939

aiming to test different aspects of language understanding, such as text classification, sentence similarity, 940

and reasoning. These tasks are MNLI (Williams et al., 2018)(inference), SST-2 (Socher et al., 2013) 941

(sentiment analysis), MRPC (Dolan and Brockett, 2005) (paraphrase detection), CoLA (Warstadt et al., 942

2019) (linguistic acceptability), QNLI (Rajpurkar et al., 2016) (inference), QQP (question-answering), 943
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RTE (inference), and STS-B (Cer et al., 2017) (textual similarity), we summarize their statistics in Table944

7.945

Corpus Task # Train # Val # Test # Labels Metrics Domain

Single-Sentence Tasks

CoLA Acceptability 8.55k 1.04k 1.06k 2 Matthews Corr. misc.
SST-2 Sentiment 67.3k 872 1.82k 2 Accuracy Movie reviews

Similarity and Paraphrase Tasks

MRPC Paraphrase 3.67k 408 1.73k 2 Accuracy/F1 News
STS-B Sentence similarity 5.75k 1.5k 1.38k 1 Pearson/Spearman Corr. misc.
QQP Paraphrase 364k 40.4k 391k 2 Accuracy/F1 Social QA

Inference Tasks

MNLI NLI 393k 19.65k 19.65k 3 Accuracy misc.
QNLI QA/NLI 105k 5.46k 5.46k 2 Accuracy Wikipedia
RTE NLI 2.49k 277 3k 2 Accuracy News & Wikipedia

Table 7: Summary of GLUE benchmark tasks.

B.2 Instruction Tuning946

• MMLU (Hendrycks et al., 2021) evaluates models’ knowledge and problem-solving skills across947

various fields. It tests performance in zero-shot and few-shot settings, making it highly challenging948

and closely aligned with human evaluation standards. The dataset covers 57 subjects, including STEM,949

humanities, and social sciences, with difficulty levels ranging from elementary to advanced professional.950

Each sample provides four choice of answers, and the task is to select the correct one.951

• BBH (Srivastava et al., 2023) is a high-difficulty subset of the BIG-Bench benchmark, comprising 23952

tasks designed to test scenarios that are challenging for current language models. These tasks include953

complex instructions such as navigation, logical reasoning, and fallacy detection.954

• DROP (Dua et al., 2019) is a math-focused reading comprehension benchmark that requires logical955

reasoning over Wikipedia-based passages. Models need to resolve references in the questions and956

perform discrete operations such as addition, counting, and sorting.957

• HumanEval (Chen et al., 2021) is a benchmark for evaluating code generation models. It includes 164958

original programming tasks that assess language understanding, algorithms, and basic mathematical959

reasoning. Some problems resemble those found in basic coding interviews.960
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C Analysis of Shared Distribution. 961

In Figure 5, we present the results of additional adaptive allocations. For all datasets, the value matrix 962

exhibits more diverse assignment patterns, with the complexity of these assignments varying across 963

different datasets. Among them, SST-2 shows the most detailed allocation, likely due to its larger data 964

size and more complex task. 965

Figure 5: The allocation results of adaptive sharing on the GLUE Benchmark are presented. We set the merge times
to 6 and report the sharing configurations of the query and value matrices. The same color represents sharing the
same B matrix.
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