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A B S T R A C T

Model-based formal verification of industry-relevant Cyber-Physical Systems (CPSs) is often a computationally
prohibitive task. In most cases, the complexity of the models precludes any prospect of symbolic analysis,
leaving numerical simulation as the only viable option. Unfortunately, exhaustive simulation of a CPS model
over the entire set of plausible operational scenarios is rarely possible in practice, and alternative strategies
such as Statistical Model Checking (SMC) must be used instead.

In this article, we show that the number of model simulations (samples) required by SMC techniques to
converge can be significantly reduced by considering multiple (an ensemble of) Adaptive Stopping Algorithms
(SAs) at once, and that the simulations themselves (by far the most expensive step of the entire workload) can
be efficiently sped up by exploiting massively parallel platforms.

With three industry-scale CPS models, we experimentally show that the use of an ensemble of two state-of-
the-art SAs (AA and EBGStop) may require dozens of millions fewer samples when compared to running a single
algorithm, with reductions in sample size of up to 78%. Furthermore, we show that our implementation, by
massively parallelizing system model simulations on a HPC infrastructure, yields speed-ups for the completion
time of the verification tasks which are practically linear with respect to the number of computational nodes,
thus achieving an efficiency of virtually 100%, even on very large platforms. This makes it possible to complete
tasks of model-based SMC verification for complex CPSs in a matter of hours or days, whereas a naïve
sequential execution would require from months to many years.
1. Introduction

The growing need for tools designed for the formal verification of
complex systems faces a fundamental problem of scalability. In partic-
ular, for Cyber-Physical Systems (CPSs) (Clarke and Zuliani, 2011), i.e.,
systems with physical components which are monitored and controlled
by integrated computer entities to execute a specific task safely and
effectively (most often in a dynamic fashion and in a nondeterministic
environment), exhaustive methods of model checking are basically
always impossible to apply. For instance, even the simplest model
of a prototype for a self-driving vehicle will have too many states
and possible paths of executions for any comprehensive algorithm
to be run within a realistic time frame. This is due to the state-
explosion problem (Clarke et al., 2016): the size of a state-based model
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scales exponentially with the number of variables used to represent the
system.

Therefore, stochastic algorithms must be used instead. Statistical
Model Checking (SMC) (Larsen and Legay, 2016) offers a wide range
of frameworks and probabilistic methods to analyze and verify large
models of complex systems. While these tools generally cannot provide
definite answers to verification problems, they can actually be applied
to real-world use-cases and generate approximations of Key Perfor-
mance Indicators (KPIs) of the system which come with user-defined
probabilistic guarantees. SMC, sometimes in conjunction with ma-
chine learning (Larsen et al., 2022), has for instance been successfully
exploited for the validation and verification or privacy- and security-
sensitive structures, such as railway signaling systems or information
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data mining, AI training, and similar technologies. 
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sharing platforms for healthcare (Basile et al., 2022; Baranov et al.,
2022).

1.1. Motivation

Designing experiments and protocols which minimize the size of a
required sample is a very old problem in statistics (Singh and Masuku,
2014). Hence, many techniques have already been developed to im-
prove the sampling strategies in the context of SMC in order to reduce
the number of required samples (see Barbot et al., 2012; Jegourel
et al., 2012; D’Argenio et al., 2015; Parmentier et al., 2024 for some
examples).

One such techniques is the use of Adaptive Stopping Algorithms (SAs),
i.e., approximation algorithms that do not fix the number of required
samples in advance, but continuously monitor their own progress and
gradually ask for new samples until enough knowledge has been ac-
cumulated to compute an approximation of the quantity of interest
with the sought statistical properties. Some SAs have been proven to
be optimal, in that they are probabilistically guaranteed to stop after
a number of samples which is always within a constant factor from
the minimum number of samples theoretically needed to compute the
requested approximation.

SAs can be applied in an extremely large range of situations since
they only modify the sampling process. For example, they have been
used to scale up machine learning algorithms (Bradley and Schapire,
2007) or to offer an efficient solution to the multi-armed bandit prob-
lem (Audibert et al., 2007a; Even-Dar et al., 2002). They have been
extensively studied for their applications for SMC as well (Domingo and
Watanabe, 2000; Domingo et al., 2002; Mnih et al., 2008; Dagum et al.,
2000).

Introducing parallelization to SMC algorithms can seem to be an
obvious solution to enhance their performance and scale of use. While
in some cases (AlTurki and Meseguer, 2011; Pappagallo et al., 2020),
this has been done with great results, the complexity of most of the
more advanced techniques of SMC makes it often very difficult to im-
plement at best, or fundamentally impossible at worst (Bulychev et al.,
2011). However, it turns out that since SAs only focus on and determine
the sampling process itself, without even having any restriction as to
how the samples are produced, SAs are not just efficient at minimizing
the sample size, but are also highly modular and well-suited to be
parallelized.

The various SAs available (some of them are described in Sec-
tion 2.2) mainly differ with respect to the statistical result exploited to
derive their stopping criterion. As a consequence, they may require a
fewer or a higher number of samples to converge, depending on various
aspects of the problem at hand.

In the case of model-based SMC-driven verification of CPSs, gener-
ating each sample is particularly expensive, as this typically requires to
numerically simulate the system model under an operational scenario
randomly chosen from some distribution, in order to compute the
value of a specific KPI. Thus, overshooting the size of the sample by
a large margin can have a critical impact on the running time of the
approximation algorithm. If the system deals with online processes, this
can even completely invalidate the verification task.

To compute approximations of a system KPI as fast and as efficiently
as possible, one needs to select the SA which would stop after the small-
est possible number of samples for the problem at hand. Unfortunately,
the number of samples needed by any given SA to converge depends
not only on the requested properties of the approximation, but also on
statistical properties of the KPI of interest, which are typically unknown

a priori.

2 
1.2. Contribution

In this article, we address the limitations of model-based verification
of CPSs via SMC in two ways:

1. We propose Ensemble of Approximation Algorithms (EAA), a
composite algorithm that concurrently runs a set (ensemble) of
different SAs, by feeding them all with the same sequence of
independent and identically distributed (iid) samples, and termi-
nating as soon as the first SA of the ensemble converges with an
approximation of the quantity of interest satisfying the requested
statistical guarantees.

2. We show a very effective architecture that exploits
High-Performance Computing (HPC) infrastructures to speed-up
the generation of samples via the use of many identical simu-
lators running in parallel, still guaranteeing that the generated
sequence of samples is identical to the sequence that would be
generated by a sequential sampler (if launched with the same
random seed). This avoids any bias in the (pseudo-)randomness
of the samples and so in the final result of the approximation.

We present our implementation combining two of the most well-
known SAs as an ensemble, EBGStop (Mnih et al., 2008) and
AA (Dagum et al., 2000), and evaluate its performance by conducting
simulation-based SMC-driven verification of Simulink/Stateflow mod-
els of three CPSs of industrial size: Automatic Transmission (AT), Fuel
Control System (FCS) and Apollo Lunar Module Autopilot (ALMA).

We emphasize that EAA can be seamlessly applied to virtually any
SMC task, beyond the verification of CPSs. However, in this article, we
explicitly focus on model-based CPS verification, since in this setting
sample size minimization is crucial, given the high cost of generating
each sample (which entails the numerical simulation of the system
model).

In this context, we show that exploiting EAA can significantly
reduce the number of necessary samples (requiring, in our case studies,
up to 31 300 400 and up to 78.73% fewer samples) when compared to
running a single SA, and that our implementation for parallel samples
generation shows an efficiency very close to 100%, even when using
large platforms. Overall, the combined effect of using EAA and of
massively parallelizing the samples generation process allows us to
carry out in a matter of hours or days SMC-based verification tasks for
our case studies that would have taken months or even many years to
complete if run sequentially.

1.3. Outline

This article is organized as follows. Section 2 presents preliminaries
and discusses state-of-the-art SAs, with a special emphasis on EBStop
and AA. Section 3 defines the formal framework used throughout the
article. Section 4 and Section 5 describe EAA and our massively parallel
implementation, respectively. Section 6 is devoted to the experimental
analysis of our algorithm and parallel tool. Finally, Section 7 draws
conclusions and perspectives.

2. Preliminaries and related work

In this section we introduce some key mathematical concepts and
discuss the notion of (𝜀, 𝛿)-approximation algorithm. We then describe
two optimal SAs available from the literature.

We denote by R, R0+, Z, N the sets of, respectively, real, non-
negative real, integer, and non-negative integer numbers. Given sets
𝐴 an 𝐵, 𝐴𝐵 denotes the set of functions from 𝐵 to 𝐴. Finally, given a

random variable 𝑋, we denote by E(𝑋) the expectation of 𝑋.
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2.1. Unbiased estimators

Given a real-valued random variable 𝑋, an estimator 𝑝̂ for one of
ts parameters 𝑝 is unbiased if E(𝑝̂) = 𝑝. An estimator is an (𝜀, 𝛿)-
stimator if for any precision 𝜀 ∈ (0, 1) and confidence margin 𝛿 ∈ (0, 1),
here exists a sample size 𝑁(𝜀,𝛿) such that the produced estimation is
ithin [𝑝(1 − 𝜀), 𝑝(1 + 𝜀)] with a probability greater than 1 − 𝛿. Such an
pproximation is called a (𝜀, 𝛿)-approximation.

In the case of the expected value of a random variable 𝑋, the classic
sample mean estimator is the go-to estimator. If sampling is performed
with respect to the distribution of 𝑋, it is an unbiased estimator. In
that case, it follows directly from the central limit theorem that it is an
(𝜀, 𝛿)-estimator as well.

2.2. Adaptive Stopping Algorithms

Classical estimation algorithms for the expected value of a random
variable, such as Monte-Carlo algorithms, fully determine their sample
size a priori, for instance by exploiting the Chernoff bound (Clarke
and Zuliani, 2011; Boyer et al., 2013; Agha and Palmskog, 2018).
This approach suffers from three key weaknesses: (a) it is completely
agnostic with respect to the random variable under study, (b) it can
overshoot the size of the required sample by a large margin, and (c) it
is not updated and improved during the execution of the algorithm.

Adaptive Stopping Algorithms (SAs) are approximation algorithms
that have none of those issues. They are designed so to require an
as small as possible sample size for the computation of the sought
approximation. They manage to do so by not only exploiting more ad-
vanced results of statistics, such as the Hoeffding’s inequality (Domingo
and Watanabe, 2000), and ideas inspired from the theory of sequential
testing, but also by continuously updating their stopping criterion with
the information that they have already accumulated at any step to
decide whether they have reached a sample size which will guarantee
a (𝜀, 𝛿)-approximation.

Algorithm 1 is an example of a generic and simplified SA which
outputs an (𝜀, 𝛿)-approximation of the expected value of random vari-
able 𝑋. The defining characteristic of an SA is its stopping criterion: the
algorithm loops and progressively acquires a larger and larger sample,
updating the estimation 𝜇̂ and the stopping criterion itself at each step,
until the test of the stopping criterion is finally satisfied, at which point
the sample size ensures that 𝜇̂ is an (𝜀, 𝛿)-approximation of E(𝑋).
Algorithm 1: Generic Adaptive Stopping Algorithm (SA)

1 input: random variable 𝑋;
2 input: 𝜀, 𝛿 ∈ (0, 1);
3 𝑡 ← 0;
4 samples ← ∅;
5 repeat
6 𝑡++;
7 samples ← samples ∪

{

𝑥𝑡
}

;
8 𝜇̂ ← mean(samples);
9 update stopping criterion;
10 until stopping criterion satisfied;
11 return 𝜇̂;

The fact that the stopping criterion of a SA depends on and takes
nto account (the realizations 𝑥𝑡 of) the random variable and that it
s continuously updated throughout the progress of the algorithm is
ecessary but is not enough in itself to guarantee that the final sample
ize will not be larger than necessary. This must be proven from the
tatistical result from which the stopping criterion has been derived,
ence the difficulty to come up with new and useful SAs.

Concentration inequalities are however a good source of theo-
ems that can lead to meaningful stopping criteria. For instance, the
AS algorithm (Domingo and Watanabe, 2000) is a SA developed

or bounded random variables with expected value 𝜇 ≠ 0. It is a
3 
traightforward SA whose stopping criterion is of the form |𝜇̂𝑡| < 𝑐𝑡,
where 𝑐𝑡 =

√

log(𝑡(𝑡+1)∕𝛿)
2𝑡 (1 + 1∕𝜀) are parameters of the algorithm.

The expressions for these parameters are derived from the Hoeffding’s
inequality (Hoeffding, 1994).

The EBStop algorithm (Mnih et al., 2008) was introduced in 2008
as an improvement of the NAS algorithm. Similarly to its predecessor,
EBStop builds a sequence of parameters 𝑐𝑡 as its stopping criterion.
However, by exploiting the (empirical) Bernstein’s inequality (Audibert
et al., 2007a) instead of the Hoeffding’s inequality, the variance of the
random variable 𝑋 takes part in the computation of such parameters.
Especially when the variance is significantly smaller than the range 𝑅 of
the random variable, these parameters decrease much faster, therefore
putting an end to the sampling process much sooner. For any fixed
sequence (𝑑𝑡)𝑡∈N such that ∑∞

𝑡=1 𝑑𝑡 ≤ 𝛿, the parameters 𝑐𝑡 can be taken
as 𝑐𝑡 = 𝜎̂𝑡

√

2 log(3∕𝑑𝑡)
𝑡 + 3𝑅 log(3∕𝑑𝑡)

𝑡 , with 𝜎̂𝑡 being the sample standard
deviation at step 𝑡. The EBStop algorithm adds another improvement to
the most basic version of the NAS algorithm. The stopping criterion is
divided into a lower stopping criterion (1+𝜀) max

{

0,max1≤𝑠≤𝑡(|𝜇̂𝑠| − 𝑐𝑠)
}

nd an upper stopping criterion (1 + 𝜀) min1≤𝑠≤𝑡(|𝜇̂𝑠| − 𝑐𝑠), so that 𝑋
ust not be supposed non-negative. The most upgraded version of the

lgorithm, called EBGStop, also adopts a geometric sampling strategy,
ccumulating samples at an exponential rate 𝛽 rather than with a linear
ate. The right choice of 𝛽 and additional countermeasures (Mnih et al.,
008; Audibert et al., 2007b) allow for a speed-up of the algorithm
ithout running the risk of taking more samples than needed.

If 𝑅 > 0 is the range of the random variable 𝑋, Mnih et al. proved
hat the EBStop algorithm will require a sample size smaller than

multiple of max
{

𝜎2

𝜀2𝜇2
, 𝑅
𝜀|𝜇|

}

×
(

log 1
𝛿 + log 𝑅

𝜀|𝜇|

)

, which guarantees
its (near-)optimality in a similar way to is main competitor: the AA
algorithm.

The AA algorithm (Dagum et al., 2000) is a SA in three steps. It was
built upon the theory of supermartingales and a generalized version of
the zero–one estimator theorem. It can only be applied to any bounded
and non-negative random variable 𝑋. AA is significantly more complex
than EBStop. Actually, AA can be seen as a relatively basic Monte-Carlo
algorithm for its second and third steps, with the size of the required
sample being computed indirectly with a SA during the first step. AA
first computes a

(

max
{

√

𝜀, 12
}

, 𝛿3
)

-approximation 𝜇̃ of 𝜇, which is only
used to compute a Monte-Carlo estimation 𝜎̃2 of 𝜎2, which is in turn
exploited to derive a value 𝑁 = max

{

𝜎̃2, 𝜀𝜇̃
} log( 1𝛿 )

𝜀2𝜇̃2
for the final sample

size which guarantees that the final Monte-Carlo estimation 𝜇̂ is an
(𝜀, 𝛿)-approximation 𝜇̂ of 𝜇.

While the hypothesis that 𝑋 is non-negative makes AA a bit more
estrictive than EBGStop, it was proven to be fully optimal for that
lass of random variables. Namely, for any bounded and non-negative
andom variable 𝑋, Dagum et al. showed that with probability 1−𝛿, AA
ill require a sample size that is at most a multiple of max

{

𝜎2, 𝜀𝜇
}

×
1

𝜀2𝜇2
log( 2𝛿 ), while also proving that any SA designed for that class of

andom variables will always require with probability 1 − 𝛿 a sample
ize of at least a multiple of that exact quantity.

Contrary to the expression of optimality of EBGStop, the expression
f optimality of AA does not involve the range of the random variable,
hich can be linked to the fact that while both algorithms exploit infor-
ation about the variance, they do not do it in the same way. This hints

t the possibility that even for non-negative bound random variables,
or which both algorithm can be applied, EBGStop can outperform AA

in practice.

3. Formal framework

CPSs are naturally modeled as dynamical systems (see, e.g., Son-
tag, 1998). Model-based verification of a CPS amounts to checking
whether some system requirements are verified. Such a task thus re-
quires three components: a model of the system, the set of possible



L. Picchiami et al.

t

w
t
(

f
m

D

D
S

e

f
t
u
s
(

c
A
o
t
h

The Journal of Systems & Software 219 (2025) 112238 
operational scenarios (i.e., input time functions), and a formalization of
he specification to be verified.

Due to their complexity and diversity, many different formal frame-
orks have been proposed to define models for CPSs. State-based

ransition models, defined explicitly or through differential equations
with discrete or continuous time) are the most prevalent.

In this article however, for the sake of generality, we abstract away
rom any specific formal framework for the definition of the system
odel and simply assume (along the lines of, e.g., Mancini et al., 2014,

2016a; Esposito and Picchiami, 2022a,b) that our System Under Verifi-
cation (SUV) S is modeled (Definition 1) as a black-box input–output
deterministic strictly causal dynamical system, which takes as input an
operational scenario, i.e., a time function of both the controllable inputs
and the other uncontrollable events S is subject to (e.g., faults in sensors
and actuators or changes in system parameters), and produces a time
function of system outputs (called output function or trajectory).

efinition 1 (System Under Verification Model). A System Under Veri-
fication (SUV) model S is a tuple (T , 𝑈 , 𝑂, 𝑆) where:

• T is the time-set (R0+ or N for continuous- and discrete-time
systems, respectively, or an interval thereof);

• Sets 𝑈 and 𝑂 are the input and output spaces;
• 𝑆 ∶ 𝑈T → 𝑂T is the I/O (or simulation) function. For any input

function u ∈ 𝑈T (operational scenario), 𝑆(u) denotes the output
function o ∈ 𝑂T of S, defining the output o(𝑡) of S for each time
point 𝑡 ∈ T , when the system is fed with u.

With a small abuse of notation, we denote by 𝑆(𝑡;u) the output of
S at time point 𝑡 when fed with u, i.e., 𝑆(u)(𝑡).

A strictly causal SUV model S is such that, for any 𝑡 ∈ T and for
any u1,u2 ∈ 𝑈T such that u1(𝑡′) = u2(𝑡′) for all 𝑡′ < 𝑡, it holds
𝑆(𝑡;u1) = 𝑆(𝑡;u2).

Models for SUVs must therefore at the very least be executable
(black box) models, with respect to discrete or continuous time, such
that they output a unique output function (trajectory) for any given
operational scenario.

The full set of operational scenarios of interest for a system (i.e.,
those considered possible or on which the verification activity needs
to focus), together with a probability measure of each scenario to
materialize is collectively called the environment of the SUV (Defini-
tion 2). For practical reasons, we focus on finitely parameterizable system
environments, i.e., environments whose scenarios can be modeled via
a finite real- or discrete-valued parameter vector. We remind that a
scenario encodes both user (controllable) inputs to the system and other
uncontrollable events.

Definition 2 (Stochastic System Environment). Let S = (T , 𝑈 , 𝑂, 𝑆) be a
SUV as in Definition 1. An environment Env = (U,P) for S is defined
by a set U ⊆ 𝑈T of scenarios and an associated probability distribution
P ∶ U → [0, 1].

An environment is finitely parameterizable if there exist a finite-
dimension parameter vector space 𝛬 and a bijection between 𝛬 and
U.

A metric KPI of the SUV is a function associating a real value to each
system trajectory. With Definition 3 we limit ourselves to normalized
KPIs, that is KPIs assuming values in interval [0, 1].

efinition 3 (Normalized Metric KPI). A normalized metric KPI for SUV
is a function 𝜅 ∶ 𝑂T → [0, 1].

In order to ensure that also (𝜀, 𝛿)-approximation algorithms re-
quiring bounded non-negative random variables, such as AA (see Sec-
tion 2.2), can be exploited by EAA, in the following we focus on model-
based SUV verification problems where the property to be assessed is

threshold-based (Definition 4): t

4 
Definition 4 (Threshold-based Verification Problem). A threshold-based
verification problem for a SUV model S = (T , 𝑈 , 𝑂, 𝑆), an environment
Env = (U,P), a threshold 𝜗 ∈ [0, 1] and a normalized metric KPI 𝜅 ∶
𝑂T → [0, 1] consists of deciding whether Eu∈U(𝜅(𝑆(u))) ≤ 𝜗, where the
expected value is computed with respect to the probability distribution
P of scenarios as defined in Env.

Any approximation algorithm which provides an unbiased (𝜀, 𝛿)-
stimator for the expected value of a [0, 1]-valued random variable can

be applied to the binary random variable 𝑋 = (𝑆(U) ≤ 𝜗) to offer a
probabilistic answer to a threshold-based verification problem. Indeed,
if an (𝜀, 𝛿)-approximation 𝜇̂ of 𝜇 = E(𝜅(𝑆(𝑋)) can be computed, then
we know that, with probability at least 1 − 𝛿:

𝜇(1 − 𝜀) ≤ 𝜇̂ ≤ 𝜇(1 + 𝜀).

Therefore:
𝜇̂

1 + 𝜀
≤ 𝜇 ≤ 𝜇̂

1 − 𝜀
.

In conclusion, since 𝜇̂
1−𝜀 ≤ 𝜗 implies that 𝜇 ≤ 𝜗, it suffices to check

whether:
𝜇̂

1 − 𝜀
− 𝜗 ≤ 0. (1)

If that inequality holds, then the requirement of the system associ-
ated with the threshold 𝜗 and the KPI 𝜅 is successfully verified with
a precision of 𝜀 and a 1 − 𝛿 level of confidence. A threshold-based
verification problem with a lower bound threshold can be defined and
solved in a very similar fashion.

4. Ensemble of Approximation Algorithms (EAA)

As explained in Section 3, any adaptive SA which computes an
(𝜀, 𝛿)-approximation of the expected value of a [0, 1]-valued random
variable provides a SMC method to solve threshold-based verification
problems. Moreover, as discussed in Section 2, the number of samples
actually needed by any given SA to converge on a given verification
task depends not only on the requested properties of the approximation,
but also on statistical properties of the KPI to be approximated, which
are typically unknown in advance. In settings, such as SMC model-
based verification of CPSs where generating samples of the system
KPI of interest is particularly expensive, because it requires numerical
simulation of the CPS model, using a single SA to perform SMC might
result in an unnecessary large number of samples to be generated. This
is true also for those SAs proved to be optimal like AA, since optimality
in the number of required samples is guaranteed only probabilistically
and up to a multiplicative factor.

In a similar fashion to AI-based techniques such as ensemble learning
methods (Sagi and Rokach, 2018; Dong et al., 2020), we propose a
general procedure, named EAA, that exploits a finite set A1,… ,A𝑘 of
different (𝜀, 𝛿)-approximation algorithms.

The EAA algorithm (see Fig. 1 for a conceptual high-level view
and pseudocode) first initializes the states of all the algorithms in the
ensemble (line 9). Then, it repeatedly generates samples of random
variable 𝑋. In our case, this means to generate a random scenario u
or the SUV (line 10), to simulate the SUV model on it, and to compute
he associated value (𝑥) of the KPI of interest. Each sample 𝑥 is then
sed to feed and advance all algorithms of the ensemble (line 12) by one
tep only (i.e., processing only 𝑥). This is done by functions 𝑎𝑑𝑣𝑎𝑛𝑐𝑒A𝑙

()
𝑙 ∈ [1, 𝑘]).

As soon as one of the algorithms (say A𝑙) reaches its termination
ondition, EAA stops and returns the approximation 𝜇𝑙 provided by
𝑙 (line 15), which is a valid (𝜀, 𝛿)-approximation of the true mean 𝜇
f the value of the KPI of interest. Value 𝜇𝑙 is then used to answer
he threshold-based verification problem, by checking whether Eq. (1)
olds.

Since the procedure terminates as soon as the first algorithm in
he ensemble, say A , reaches its own stopping criterion, the number
𝑙
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Fig. 1. Conceptual view of EAA (sequential reference architecture).
s
i
o
(

f samples required by EAA is always the minimum number of samples
hat would have been required by each algorithm in the ensemble if it
ere run alone.

The design of EAA revolves around proper subroutines that advance
ach algorithm in the ensemble by one step (i.e., processing just one
ample) at the time and manipulate the algorithm persistent state
ppropriately. Namely, each 𝑎𝑑𝑣𝑎𝑛𝑐𝑒A𝑙

() subroutine: (a) takes as input
he current state 𝑠𝑙 of algorithm A𝑙 and a new sample 𝑥; (b) processes

by advancing the algorithm state into 𝑠′𝑙; (c) returns the resulting
tate 𝑠′𝑙. Such subroutines can be easily written by refactoring any
pproximation algorithm. In our implementation (see Section 6) we
elected two of the most widely used algorithms known to be optimal
r quasi-optimal (probabilistically and up to a multiplicative factor):
BGStop and AA, already described in Section 2.2. Advancing each
lgorithm in the ensemble only requires a few algebraic operations.
hus, the computational overhead of advancing multiple algorithms

n the ensemble is expected to be negligible with respect to the (much
onger) time to perform simulations of the SUV model to produce each
ample. This expectation will be shown correct in Section 6.4.2.
Algorithm 2: EAA

1 input: S, SUV model;
2 input: Env, stochastic environment;
3 input: seed, random seed;
4 input: 𝜀, 𝛿 ∈ (0, 1);
5 input: A1,… ,A𝑘, set of (𝜀, 𝛿)-appr. algorithms;

6 initialize rnd scen. generator with Env and seed;
7 initialize simulator with S;
8 initialize A1,… ,A𝑘 with 𝜀 and 𝛿;
9 𝑠1,… , 𝑠𝑘 ← initial states of A1,… ,A𝑘;
10 while true do
11 𝑥 ← next_sample();
12 for 𝑙 from 1 to 𝑘 do
13 𝑠𝑙 ← advanceA𝑙

(𝑠𝑙 , 𝑥) ; // feed A𝑙 with 𝑥
14 if A𝑙 has reached its stopping cond. then
15 return 𝜇̂𝑙; // the estimated mean from A𝑙

16 function next_sample()
17 u ← generate next rnd scenario;
18 𝑥 ← simulate u; // obtain KPI value (sample)
19 return 𝑥;

5. Parallel scenario evaluation over high-performance computing
infrastructures

SMC-based verification often requires a huge number of samples,
that is, computer simulations of the CPS model. As discussed in Sec-
tion 1, this is particularly the case for complex systems. For example,
verifying the properties defined in Section 6.1 on our case studies
required up to more than 100 million samples.

While EAA allows us to stop the verification process as soon as
the first algorithm of the ensemble reaches its termination condition,
5 
it does not address the second major bottleneck of model-based CPS
verification via SMC: the rate at which samples are provided to the
approximation algorithm. For our case studies, generating a single
sample took, on average, from 0.1 to several seconds, depending on the
model. As a consequence, the verification activities we performed (see
Section 6) would have required up to many years for EAA to terminate
if conducted naïvely.

In this section we outline our approach to exploit HPC platforms
to effectively and efficiently speed-up the generation of samples to be
provided to EAA.

Our overall architecture is shown in Fig. 2. It is designed to run
on a possibly very large HPC infrastructure, and includes: a multi-
process or multi-threaded module devoted at advancing the SAs of
the ensemble one sample at a time (lines 8–15 of Algorithm 2); 𝑛
instances (with 𝑛 which can be very large) of a simulation module,
each one running an identical copy of a simulator of the SUV model;
one multi-process or multi-threaded module hosting a service, named
Asynchronous Parallel Sample Generator (APSG), devoted to the gen-
eration of random scenarios and the delegation of the simulation of
each of them to one of the 𝑛 available parallel simulators. Since the
latter service runs asynchronously with respect to the SAs, the overall
architecture implements an instance of the producer–consumer paradigm.

The exact operation of APSG is described in details by Algorithm 3.
First, function initialize() (line 6) initializes APSG with the given SUV
model S, its environment Env, and a random seed to generate scenarios
from Env. This function instantiates the 𝑛 simulators with identical
copies of S and initializes the random scenario generator. Note that,
since the environment is finitely parametrizable, scenario generation
reduces to generating pseudorandom numerical vectors within some
bounded finite-dimensional domain (see Definition 2). Then, func-
tion initialize() starts process (or thread) generate_samples() and returns
immediately.

Process generate_samples() (line 10) continuously generates (see bul-
let point 1 in Fig. 2) a random scenario u from the system stochastic
environment, retrieves (dequeues) a simulator sim from the queue of
idle simulators (bullet point 2), and delegates to sim the two tasks of
imulating S under scenario u and of computing the value of the KPI of
nterest. The queue of idle simulators is initially filled with identifiers
f all the available simulators (line 8). If found empty, the process waits
blocking dequeue operation) for a simulator to become idle (line 13).

Each scenario is identified by a progressive number (integer 𝑖 in the
pseudocode).

Whenever a simulator terminates its task on scenario 𝑖, having com-
puted value 𝑥 for the KPI of interest, it calls function sample_produced()
of APSG. This function (line 16 and bullet point 3 in the figure) inserts
entry 𝑖 ↦ 𝑥 in the map samples, thus storing the value of the system
KPI on scenario 𝑖 (this corresponds to the produce step in the producer–
consumer paradigm), and the simulator is added to the queue of idle
simulators, signaling that it is ready to receive new simulation requests.
To prevent memory explosion, map samples has a maximum capacity.
If the map is full, the insertion of the new sample blocks until an entry

is removed.
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Fig. 2. HPC-EAA: high-level parallel architecture.
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Algorithm 3: Asynchronous Parallel Sample Generator
(APSG)

1 global 𝑖 = 0; // id of the next sample to be produced
2 global 𝑗 = 0; // id of the next sample to be consumed by EAA
3 global avail_sims = ∅; // queue of avail. simulators
4 global samples = ∅; // map: sample id ↦ KPI value
5 param 𝑛; // number of available simulators

6 function initialize(S, Env, seed)
7 initialize random generator with Env and seed;
8 initialize the 𝑛 available simulators with S and enqueue

them all to avail_sims;
9 start process generate_samples();
10 process generate_samples()

// continuous process
11 while ¬ halt requested do
12 u ← generate rnd scenario;
13 sim ← dequeue from avail_sims; // wait if queue is empty
14 send (𝑖,u) to sim for simulation and KPI evaluation;
15 𝑖++;
16 function sample_produced(sim, 𝑖, 𝑥)

// called by simulator sim when evaluation of scenario 𝑖 is
completed (KPI value is 𝑥)

17 add (𝑖 ↦ 𝑥) to samples; // wait if map is full
18 enqueue sim to avail_sims;
19 function next_sample()

// called by EAA
20 𝑥 ← samples[𝑗]; // wait if not yet available
21 free-up samples[𝑗];
22 𝑗++;
23 return 𝑥;

The module running the SAs continuously (and asynchronously)
equests samples from APSG by calling function next_sample() (this
orresponds to the consume step in the producer–consumer paradigm).
his function (line 19 and bullet point 4 in the figure) returns the KPI
alue associated to scenario with id 𝑗 in the map samples and waits

in case such an entry does not (yet) exist (because not yet computed).
Before returning, this function frees-up memory by removing from map
samples the entry associated to scenario 𝑗 and increments 𝑗, which
ecomes the id of the next sample to be provided to the SAs.

It is worth noting that APSG provides the SAs with the very same
equence of samples that would be produced with the basic (purely
equential) architecture of Fig. 1, if run with the same random seed. In
ther words, the order of the scenarios generated is independent of the
umber 𝑛 of simulators. Thus, increasing 𝑛 will have no other effect
han increasing the rate at which the samples are made available to
 d

6 
SAs, hence reducing the total completion time. In this way, we avoid
any bias in the (pseudo-)randomness of the samples and so in the final
result of the approximation.

6. Experiments

In this section we present our three industrial case-study models
taken from the literature, outline the implementation of our HPC
software, and use our tool to perform model-based SMC verification
tasks of our three models.

Our results highlight how the conjoint effects of using an ensemble
of (𝜀, 𝛿)-approximation algorithms and a massively parallel architecture
o perform (the expensive) scenario simulations required to provide
AA with iid samples allow us to complete our verification tasks within
reasonable time frame, whereas a naïve implementation would have
een taken an inconceivably long time.

.1. Case studies

Our case studies were realized with three Simulink/Stateflow mod-
ls of industry-scale systems, namely: Automatic Transmission (AT)
Mathworks, 2024b), Fuel Control System (FCS) (Mathworks, 2024c)
nd Apollo Lunar Module Autopilot (ALMA) (Mathworks, 2024a).
hese models have already been profusely studied in the literature, see,
.g., Mancini et al. (2022, 2021, 2023), Zuliani et al. (2013), Mancini
t al. (2014, 2017, 2016b), Hoxha et al. (2014), Abbas et al. (2013),
arbot et al. (2020).

.1.1. Automatic Transmission (AT)
ystem model. The AT model defines a typical automotive drivetrain.
on-linear ordinary differential equations are used to specify the en-
ine dynamics, the four-speed automatic transmission and the vehicle
ynamics. The model has two inputs, the throttle opening (expressed in
ercentage) and the brake torque (expressed in ft-lb), and two outputs,
he engine speed (in RPM) and the vehicle speed (in mph). The throttle
pening delineates the accelerating dynamics, whereas the brake torque
epresents the braking dynamics of the vehicle.

In the literature, the AT system has been extensively used for
earch-based falsification purposes (see, e.g., Abbas et al., 2013; Hoxha
t al., 2018; Dokhanchi et al., 2015) and benchmarks (e.g., Hoxha

et al., 2014; Ernst et al., 2022), especially when the design of input
trajectories has a strong impact on the verification (see, e.g., Barbot
et al., 2020).

Environment. We modeled a stochastic environment for the system that
generates disturbances as input time functions for the SUV model. In
our setting, the brake is always set to 0, whereas the throttle presents a
fixed average value 𝜇𝑑 that is perturbed with a given variance 𝜎2𝑑 , i.e.,
he values are sampled from a normal distribution 𝑁(𝜇𝑑 , 𝜎2𝑑 ) truncated
ithin [0, 100]. We set 𝜇𝑑 = 40 and 𝜎2𝑑 = 20 for the truncated normal

istribution, thus modeling a varying accelerating dynamics.
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Property to be verified. In the context of search-based falsification, a
ypical system-level specification requires that the engine and vehicle
peeds do not exceed given safety thresholds for the whole simulation
uration. Therefore, we designed a (metric) safety property which
uantifies how much time the engine and the vehicle speeds spend
bove such thresholds.

To define our system-level requirement, we first have to define the
aximum time window during which any of the two speeds is above

ts threshold. We define the Max Time Speed (MTS) and the Max Time
Engine (MTE) at time 𝑡 as:

MTS(𝑡) =max
{

𝑡2 − 𝑡1 ∣ 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑡 ∧ (∀𝑡′ ∈ [𝑡1, 𝑡2] ∶ speed(𝑡′) > 𝑀𝑠)
}

TE(𝑡) =max
{

𝑡2 − 𝑡1 ∣ 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑡 ∧ (∀𝑡′ ∈ [𝑡1, 𝑡2] ∶ engineRPM(𝑡′) > 𝑀𝑒)
}

here speed(𝑡) and engineRPM(𝑡) are the values of the vehicle and
ngine speeds at time 𝑡, whilst 𝑀𝑠 and 𝑀𝑒 are the respective maximum
afe values. The Max Time Violation at time 𝑡 is then defined as:

TV(𝑡) = max {MTS(𝑡),MTE(𝑡)}
ℎ

here ℎ is the simulation time horizon.
The verification activity aims to establish whether E(MTV(ℎ)) ≤ 𝜗

or some threshold. We set 𝑀𝑠 = 4000 RPM and 𝑀𝑒 = 120 RPM
according to previous work, see, e.g., Fan et al., 2017; Claessen et al.,
018), ℎ = 1800 s (i.e., 30 minutes of system simulation time), and 𝜗 =
%, so to assess whether the system violates the desired specification
or any time window longer than 5% of the time.

.1.2. Fuel Control System (FCS)
ystem model. The FCS model represents a control system for a fault-
olerant gasoline engine that is expected to accept up to one sensor
ault, and has been widely used as a benchmark of various simulation-
ased verification approaches (see, e.g., Zuliani et al., 2013; Mancini
t al., 2023; Hoxha et al., 2014; Mancini et al., 2022, 2021 and citations
herein).

The system has four sensors: the Throttle Position (TP), Engine Speed
ES), Exhaust Gas Oxygen (EGO) and Manifold Air Pressure (MAP). The
P and ES sensors provide the current air throttle position and the
ngine speed to the engine controller. The EGO sensor reads the current
xygen level in the engine’s exhaust gas to adapt the fuel supply,
hereas the MAP sensor reads the suction pressure of the airflow at

he engine’s intake manifold.
The model outputs the following two quantities: the air-fuel ratio,

hat is, the ratio between the air mass flow rate computed by the intake
anifold and the fuel mass flow rate pumped by the injectors, and the

uel flow rate itself.
The system aims at keeping the air-fuel ratio close to the stoichio-

etric (ideal) value of 14.6 since it is a good compromise between
ower, fuel economy and emissions. However, this requirement be-
omes more challenging to meet in the presence of sensor faults. In
articular, when a fault on a single sensor is detected, the system
odifies its behavior by operating the engine with a higher fuel rate.

n case of two or more sensor faults, the system shuts down the engine.

nvironment. We modeled a stochastic environment for the system
here temporary faults may occur on the ES, EGO and MAP sensors.
inite state machines (with Stateflow charts) were used to simulate
ault injections and the subsequent recovery operations, similarly to,
.g., Zuliani et al. (2013), Hoxha et al. (2014). Each finite state machine
njects faults on a given sensor according to an exponential distribution
hose mean corresponds to the Mean Time Between Failures (MTBF).
imilarly, fault recovery operations occur after a time window whose
ength is randomly chosen according to an exponential distribution
aving a mean of 1 s. We set the MTBF values for the EGO, ES, and
AP to 3 s, 7 s and 8 s respectively, which is the configuration used

n Zuliani et al. (2013) for verification purposes.
 l
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roperty to be verified. We experimented with one of the key system-
evel specifications for this model (see, e.g., Mancini et al., 2021, 2022,
023), that is establishing whether the fuel flow rate is identically zero
or too long time. Therefore, we designed a KPI which outputs the (ratio
f the) length of the longest time window during which the fuel flow
ate is identically equal to zero.

We define Max Time Fuel (MTF) at time 𝑡 ≥ 5 s as follows (the first
s of each trajectory have been ignored to allow for the initial setup
f the system):

TF(𝑡) =
max

{

𝑡2 − 𝑡1 ∣ 5 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑡 ∧ (∀𝑡′ ∈ [𝑡1, 𝑡2] ∶ fuel(𝑡′) = 0)
}

ℎ − 5

The goal of the verification is to establish whether E(MTF(ℎ)) ≤ 𝜗
for some threshold. We set ℎ = 105 s and 𝜗 = 1%, so to assess whether
the fuel flow rate is identically zero for more than 1% time on average.

6.1.3. Apollo Lunar Module Autopilot (ALMA)
System model. The ALMA model defines the logic of the phase-plane
control algorithm for the autopilot program of the lunar module used
in the Apollo 11 mission. This model has been extensively used in the
literature on simulation-based verification (see, e.g., Mancini et al.,
2021, 2022 and citations therein).

The system is equipped with 3 sensors (yaw, roll, pitch) and 16
reaction jets that actuate a rotation over one or more axes. In every
space mission, i.e., in every system simulation, the controller takes as
input a request to change the module’s attitude and computes which
reaction jets need to be activated to achieve the desired rotation and
stabilize the system over the new current attitude.

Environment. We modeled a stochastic environment where temporary
faults may occur on yaw, pitch and roll sensors, similarly to what
we did for the FCS model. For this model, a fault corresponds to the
injection of white noise to one of sensor signals. Analogously to the
FCS model, the occurrences of the faults are chosen according to an
exponential distribution whose mean corresponds to a MTBF of 4 s.
Similarly, fault recovery happen after a duration once again determined
by an exponential distribution with a mean of 1 s.

Property to be verified. We designed a system-level requirement that
quantifies the outcome of a given space mission in terms of the average
module’s attitude error over the entire simulation. To define such an
error, we first have to define the attitude error indicators for each axis.
For each axis 𝑠, if 𝑎𝑠(𝑡) and 𝑅𝑠 denote the current and target attitudes
at time 𝑡 along 𝑠, respectively, we define the attitude error 𝑒𝑠 at time 𝑡
as follows:

𝑒𝑠(𝑡) = |𝑎𝑠(𝑡) − 𝑅𝑠|

that is, the absolute difference between the target and the current
attitudes of the lunar module along axis 𝑠. Since the rotation request is
over one or more axes, we define the Attitude Module Error (AME) at
time 𝑡 as follows:

AME(𝑡) = max
{

𝑒𝑦(𝑡), 𝑒𝑝(𝑡), 𝑒𝑟(𝑡)
}

where the 𝑒𝑦(𝑡), 𝑒𝑝(𝑡), and 𝑒𝑟(𝑡) are, respectively, the attitude errors
n the yaw, pitch and roll axes at time 𝑡. Our final KPI is thus the
ormalized Mean Attitude Module Error at time 𝑡, defined as:

MAME(𝑡) = 1
2𝜋𝑡 ∫

𝑡

0
AME(𝜏)d(𝜏)

here 2𝜋 is a normalization factor, since a rotation along a given axis
anges in [0, 2𝜋].

Similarly to the AT and the FCS models, the goal of our experiment
s to verify whether E(NMAME(ℎ)) ≤ 𝜗 for some threshold. We set
= 60 s and 𝜗 = 0.5%. Note that greater values for 𝜗 systematically

ead to system mission failures.
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6.2. Implementation

We implemented our production software using Python and Cython,
and exploited the Message Passing Interface (MPI) standard (Gropp
et al., 2014) to allow communication between processes.

The overall architecture has been explicitly designed to be run on a
HPC infrastructure of networked computational nodes, and reflects that
of Fig. 2 with some caveats to boost performance. The SAs and APSG
modules of Fig. 2 have been implemented as concurrent threads of a
process named HPC-EAA, while the 𝑛 simulators have been deployed
s independent processes on 𝑛 additional computational nodes. HPC-
AA runs various parallel threads: one devoted to the advancement of
ach SA, one devoted to the generation of random scenarios and their
elegation to an available simulator taken from the queue, and one
evoted to process the receiving queue of samples and to populate map
amples. The use of such a thread-based implementation for the SAs and
PSG modules limits the use of the network to the communication with

he simulators.

.3. Experimental setting

Here we describe how we conducted a thorough and statistically
ound analysis of the performance and scalability of our parallel tool.

For each case study we computed (𝜀, 𝛿)-approximations of the KPIs
of interest for 9 different values for 𝜀 (ranging from 1×10−3 to 1×10−1),
3 values of 𝛿 (1 × 10−2, 5 × 10−2, 1 × 10−1), and 7 values for 𝑛 (1, 64,
128, 256, 512, 1024, 2048). Each experiment has been repeated 10
times, using 10 sequences of samples, each one produced by a different
sequence of iid scenarios.

Conducting such an analysis using our production tool of Section 6.2
would be a practically unviable option, as it would require dozens of
years (see Fig. 5) and incur in huge costs for the full allocation of a
large-enough private HPC infrastructure. Indeed, for a proper analysis
to be carried out, the production tool would need to be run 10 times for
each case study and for each value of 𝜀, 𝛿 and 𝑛 (including 𝑛 = 1). Also,
each execution of the tool would require the full availability of 𝑛 + 4
computational nodes (CPU cores), including 𝑛 + 4 = 2048 + 4 = 2052.

This obstruction is becoming common when analyzing performance
nd scalability of modern software explicitly designed to perform inten-
ive computations on large HPC infrastructures, and is being handled
n the literature from the methodological point of view. Along these
ines, and by following recent approaches such as, e.g., Esposito et al.
2024), we operated in an indirect way as follows.

First, we avoided the use of an expensive private HPC infrastructure,
by exploiting a shared HPC cluster at Sapienza University, which is
managed by a centralized scheduler which orchestrates the launch of
the computational jobs submitted concurrently by the various research
teams. Although this was a mandatory choice, it created some issues,
as jobs requesting too many computational nodes to be allocated would
have received a very low priority and could have remained in the
waiting queue forever.

Hence, as in Esposito et al. (2024), we disassembled our tool into its
single components, instrumented each component with proper timers
within the code, and ran each of them asynchronously. More precisely:

1. We generated 10 random seeds for each case study and com-
puted 10 sequences of scenarios long enough to allow all SAs to
terminate for all values of 𝜀 and 𝛿. We saved these sequences
of scenarios into a centralized database, together with their
ids and generation times (which are all on the order of a few
microseconds).

2. We submitted to the HPC scheduler the simulation jobs for
all scenarios independently, and measured the time taken by
each of them to simulate the selected scenario and to compute
the corresponding value of the system KPI (we ignored the

simulator set-up time, which would not have had to be paid n

8 
for each sample if we had instead used the production tool).
For each scenario, the simulation time and the KPI value were
also saved in the centralized database. Note that, as expected,
simulation is by far the slowest step in the whole workload, with
average times being orders of magnitude higher than those of
the others, namely: 0.1377 s, 0.2279 s, 7.1654 s for AT, FCS and
ALMA, respectively.

3. For each case study, the average half turnaround network time
for each message type from HPC-EAA to a simulator and vice
versa was measured independently, by running the real (MPI-
based) application over 1 million scenarios. Thanks to a low-
latency high-throughput local network, these times are all on
the order of a hundred of microseconds (i.e., around 1 × 10−4 s),
hence several orders of magnitude lower than simulation times.

We asked the HPC scheduler to run all the computations on nodes of
dentical machines, each one equipped with 2 AMD EPYC 7301 CPUs
ith 32 cores and 256 GB RAM, and hyper-threading disabled. This
nsured that the measured time durations can be seamlessly combined
ogether.

With the above data, we were able to virtually exercise our tool on
0 random experiments for each case study, assessing convergence of
he SAs and overall performance on each setting (𝜀, 𝛿, and 𝑛). Indeed,
he availability of the generation and simulation times of each scenario
s well as of the average half turnaround time of network messages of
ach type allowed us to perform a reliable estimation of the execution
ime that our production tool would have shown, under each setting,
f run over fully reserved portions of the HPC infrastructure at hand.
amely, for each experiment, the SAs and APSG modules were run
ormally (as a multi-threaded process on a single node), although
roperly instrumented, while the set of simulators were replaced by
he database containing the pre-computed samples. A discrete event-
ased emulator module running on the same node (see Esposito et al.,
024) orchestrated the execution of the whole experiment in a faster-
han-real-time way, by mimicking the advancement of time via a global
ounter accumulating the time durations of all steps of Algorithms 2
nd 3 (i.e., scenario generation, blocking dequeue operations from the
ueue of available simulators, network communication to and from
he simulators, blocking look-up operations and insertion/deletion of
ntries to/from the samples map and advancement of all SAs). The time
urations of the steps performed normally were measured via the timers
nstrumenting the code, while those of the emulated steps were taken
rom the database.

We note that, although we did our best to take into account, in our
stimation, also the steps which are several orders of magnitude faster
han the dominating tasks (system model simulations), it is known that
isassembling and instrumenting the production code can introduce un-
oticed small divergences between the estimated time and the time that
ur tool would have shown if run normally. However, such potential
mall divergences would actually be unmeasurable and not repeatable
n practice. This is due to how modern large HPC infrastructures
even those fully reserved for a single job) are managed by complex
rchestrating and probing services, and by software virtualization and
ontainerization layers, which may introduce a significant amount of
oise.

In other words, the estimations below, as all estimations of the
ompletion time of complex massively parallel and computationally
ntensive software designed for large HPC infrastructures, actually
stimate what would happen if the software would run on bare metal.

.4. Results

Here we present our experimental results. Namely, in Section 6.4.1
e quantify the benefit of using EAA in terms of reduction in the

umber of samples required to convergence, whilst in Section 6.4.2
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Fig. 3. Top: number of samples (vertical log-scale axis) required by EAA to converge in each of the 10 experiments, for various values of 𝜀 and 𝛿. Bottom: savings in the number
of samples achieved by EAA in each setting wrt. the algorithm requiring most samples.
Fig. 4. (a) Rates of sample production by APSG (𝜌
APSG,𝑛

), for various numbers of available simulators (the grey curves are the straight lines passing by the two left-most points of
ach data series, and show the almost perfect linearity of the sample production rates wrt. 𝑛).
b) Comparison (log-scale Y axis) among the sample consumption rate by EAA (𝜌

EAA
) and the sample production rates by APSG from Figure (a).
e exploit the methodology outlined in Section 6.3 to conduct a
erformance scalability analysis of our parallel tool.

.4.1. Reduction of the number of required samples due to EAA
To evaluate the benefit of using an ensemble of SAs, for each case

tudy we repeated our experiment 10 times. In each of them, we fed
he SAs module with one of the 10 random sequences of iid samples
omputed in advance for that model, as described in Section 6.3, and
omputed the number of samples required by each of the two SAs of
he ensemble to converge. The number of samples required by EAA is
hen the minimum of the two.

Fig. 3 (top) shows, for each case study and for each of the 10
andom sequences of samples, the number of samples required by EAA
o converge, for each value of 𝜀 and 𝛿.

Similarly, Fig. 3 (bottom) shows the difference in the number of
samples between the two SAs, which is also the saving achieved if using
9 
EAA, when compared to using the slowest algorithm only, together
with information about which of the two SAs terminated first, and so
was responsible for producing the sought (𝜀, 𝛿)-approximation. From
the figure is clearly emerges how using EAA is a particularly effective
way to keep the number of required samples to a minimum. Indeed, our
experiments show that EAA may require up to 31 300 400 fewer samples
when compared to using a single algorithm, with relative reductions as
large as 78.73%.

Predicting which algorithm of the ensemble will terminate first is
a difficult task a priori, since it depends not only on 𝜀, 𝛿 and on sta-
tistical properties of the KPI of interest (with the latter being typically
unknown in advance), but may also be influenced by the actual random
sequence of iid samples (i.e., on the seed of the pseudorandom number
generator). The results for the ALMA case study (see Fig. 3, bottom) are
a good illustration of that phenomenon. EAA also provides a stabilizing
effect in this regard. Indeed, differently from what emerges in Fig. 3
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Fig. 5. Scalability analysis of our parallel tool: overall completion time (bottom curves, left Y log-scale axis) and efficiency (top curves, right Y axis) for each case study and
selected values for the number of simulators 𝑛.
(bottom), the curves in Fig. 3 (top) regarding the same case study and
the same value for 𝛿 (but generated using different random sequences
of samples) overlap with each other almost perfectly.

6.4.2. Increase of the sample production rate due to the Asynchronous
Parallel Sample Generator

Here, we analyze the impact of deploying APSG on a parallel HPC
infrastructure. Namely, in Fig. 4(a) we show an estimation (with the
method outlined in Section 6.3) of the maximum rate 𝜌APSG,𝑛 of sample
production when varying the number 𝑛 of available simulators. For
10 
each value of 𝑛, 𝜌APSG,𝑛 has been obtained by replacing the SAs module
with a simple loop requesting (and just throwing away) 1 million
samples from APSG governing 𝑛 parallel simulators. Hence, these values
are the highest sample production rates actually achievable by APSG on
our infrastructure when using 𝑛 simulators of the given model. Fig. 4(a)
shows that all 𝜌APSG,𝑛 are practically linear with respect to 𝑛, with a
maximum deviation between the actual and the ideal (linear) rates
< 0.1%.

In Fig. 4(b) we show again the three values for 𝜌APSG,𝑛 , this time
using a logarithmic Y axis and along with the maximum rate 𝜌
EAA
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of consumption of samples by the SAs module. Rate 𝜌EAA has been
obtained by replacing APSG and the controlled simulators by a simple
pseudorandom generator feeding the SAs module with numerical values
in [0, 1], and measuring how long it took to consume 1 million of such
samples. This value is thus the lowest rate of samples that APSG would
need to provide to the SAs module (running on our infrastructure) to
allow the latter to advance at full speed.

From Fig. 4(b) it clearly emerges that 𝜌EAA is always several orders
of magnitude higher than all 𝜌APSG,𝑛 (even when the largest number of
simulators, 𝑛 = 2048, is deployed, in which case is still more than 100
times larger). This means that the SAs module would spend almost its
entire time waiting for APSG to produce the requested samples. Hence,
an increase in the number of simulators is expected to result in an
essentially proportional reduction in the completion time of the overall
parallel tool. In order words, we expect our architecture to show an
efficiency very close to 100% even when a large number of simulators
are used. This suggests that adding more algorithms to the ensemble of
SAs would not introduce any noticeable computational overhead, but
could help in reducing the number of required samples for EAA if those
additional algorithms happen to benefit from the statistical properties
of the system KPI.

6.4.3. Overall performance scalability analysis
To confirm the above, here we describe a performance scalability

analysis of our parallel implementation, estimating (again with the
method outlined in Section 6.3) its completion time if deployed on
fully-reserved HPC infrastructures of various sizes.

Fig. 5 shows the time that our tool would require to terminate on
each of the 10 experiments for each case study, as a function of 𝜀,
𝛿, and the number 𝑛 of parallel simulators (notice the left log-scale Y
axes). Each figure shows, for each value of 𝛿, the average completion
time of the parallelization, with error bars indicating the minimum
and the maximum values among the 10 experiments (error bars are
often very tiny and barely visible, and this shows again the stability
of the algorithm performance with respect to the random sequence
of samples). As expected, all the curves are qualitatively very similar,
modulo the time reductions essentially proportional to 𝑛.

Each plot in Fig. 5 also shows (see the curves at the top, to be read
against the linear-scaled right Y axes) the average estimated efficiency
of the parallelization (with error bars indicating the minimum and the
maximum values among the 10 experiments). The efficiency of the
parallel computation involving 𝑛 simulators is computed, as usual, as
𝑡1

𝑛×𝑡𝑛
, where, in our case, 𝑡𝑛 is the (estimated) time of the computation

when using 𝑛 simulators and 𝑡1 is the time of same computation (i.e.,
same values for 𝜀, 𝛿 and same random sequence of samples) when using
a single simulator.

As expected, the estimated efficiency always sticks to ∼ 100%,
except when the number of simulators (hence, the size of the envisioned
HPC infrastructure) is too large for the problem at hand, in which case
a significant number of samples is produced (in parallel) by APSG, but
never used by EAA. Although such circumstances are a clear symptom
of an over-dimensioning of the hardware infrastructure, they do not
pose a usability problem for the tool, since in this case the overall
completion time is in the range of a few seconds or minutes.

7. Conclusions and perspectives

In this article, we focused on the simulation-based verification of
complex systems with Statistical Model Checking (SMC), by highlight-
ing how Adaptive Stopping Algorithms (SAs) form a class of approxi-
mation algorithms well-suited for parallelization. Not only their design
makes the parallelization of the generation of the system simulations
(samples) possible, but it also allows them to be combined without any
interference or complication.

We proposed Ensemble of Approximation Algorithms (EAA), a com-
posite algorithm combining the respective strengths of multiple SAs.
11 
We successfully implemented and tested EAA exploiting two (quasi)
optimal algorithms: EBGStop and AA, together with a massively parallel
architecture deployable over large High-Performance Computing (HPC)
infrastructures.

We exercised our tool on three industry-scale case studies, verifying
specifications of non-trivial properties, and showed that parallelization
can indeed make SMC a viable approach for the verification of complex
systems, even when the number of required simulations can appear
prohibitive from a sequential perspective. We exposed an in-depth
experimental analysis of our tool, detailing the benefits of combin-
ing multiple SAs, quantifying the effective reductions in sample sizes
and execution times, and discussing the efficiency of the paralleliza-
tion and the impact of the number of parallel simulators. All in all,
our work makes it clear that parallelization should be considered as
systematically as possible to increase and widen the applicability of
SMC.

A direct extension of EAA would obviously be one which integrates
other SAs, potentially making it even more versatile and applicable to
a larger class of KPIs.

To go further, our tool could be expanded to allow for the veri-
fication of formula-based properties, expressed for instance in linear
temporal logic. In its simplest form, this would be effortless, since
the probability than a chosen property holds for a random possible
execution of a system can be seen as a KPI of that system. A more
ambitious plan would be to explore whether a strategy such as the
one behind the elaboration of EAA could help for the verification of
hyper-properties (Arora et al., 2022; Dobe et al., 2023).

Repeating the analysis of the impact of parallelization on the ef-
fectiveness and applicability of SMC with a composite algorithm com-
bining multiple optimization algorithms rather than simple estimation
algorithms would be interesting. Identifying a class of optimization
algorithms for SMC which share some of the key properties of stopping
algorithms that make their parallelization relatively straightforward
would be a first step.

Our tool could then also be enhanced even further by improving the
sampling process itself, similarly to what has been done in Parmentier
et al. (2024), especially when taking into account geometric sampling.
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