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ABSTRACT

Custom electroencephalography (EEG) encoders trained on limited, task-specific
data have restricted ability to learn generalizable, brain-like representations. We
propose a representation-first alternative, leveraging a large-scale pretrained EEG
foundation model (CBraMod) to learn brain-aligned representations. We introduce
BrainAlign, a contrastive learning framework that uses a brain-inspired projection
network to align EEG features with those from image encoders. On the challenging
200-way zero-shot visual object classification task, BrainAlign, when paired with
a CORNet-S encoder, achieves a top-1 accuracy of 14.2% and a top-5 accuracy
of 37.9% for EEG-to-image retrieval, performing competitively to prior baselines
while reducing training time by 70%. This computational efficiency is particularly
crucial for developing the subject-specific models vital for practical EEG decoding.
Additionally, the framework learns a highly symmetric alignment, achieving a
23.2% top-1 and 54.7% top-5 accuracy in the reverse image-to-EEG retrieval task.
We observe a time-averaged RSA correlation (r = 0.365) with the neuro-inspired
CORNet-S model, consistent with a moderately high degree of representational
similarity. A post-hoc CCA-INLP analysis isolates a subject-agnostic subspace and,
together with a semantic similarity evaluation, shows meaningful category structure
yet residual cross-subject variability. Collectively, these results in performance,
efficiency, and biological plausibility provide support for our representation-first
approach. The resulting robust and symmetric representations can potentially be
applicable to demanding downstream applications such as object classification,
high-fidelity image decoding directly from brain activity, and real-time object
disambiguation.

1 INTRODUCTION

Aligning neural activity with representations from computational models is a fundamental approach
to understanding the principles of brain function. This endeavor not only advances our basic scientific
knowledge but also holds immense potential for transformative applications, particularly in developing
next-generation Brain-Computer Interfaces (BCIs) for clinical and consumer use (Song et al., 2025;
Liu et al., 2025). Among non-invasive neuroimaging methods, electroencephalography (EEG) offers
high temporal resolution which captures neural dynamics at the millisecond scale, aligning with
the rapid nature of visual processing, while its portability and low cost make it ideal for practical,
real-world applications outside of laboratory settings (Song et al., 2025; Trafton, n.d.). In contrast,
modalities such as fMRI provide superior spatial resolution but different practical trade-offs (e.g.,
cost and immobility). (Sharon et al., 2007).

Historically, decoding was hindered by low signal-to-noise ratios and by potential temporal confounds
in some block-design paradigms. (Song et al., 2025; Xu et al., 2021). The field has since shifted
toward more robust methodologies, with the Rapid Serial Visual Presentation (RSVP) paradigm
and large-scale datasets like THINGS-EEG2 enabling the study of neural responses to thousands
of natural images (Gifford et al., 2022). This evolution led to self-supervised contrastive learning
emerging as the dominant approach for aligning the high-dimensional space of EEG signals with
rich visual representations (Song et al., 2025). However, a critical limitation pervades these modern
methods: they almost exclusively rely on custom EEG encoders trained from scratch on a single
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alignment task. This methodology can be constrained, as an encoder optimized solely for one task
is unlikely to learn the generalizable, brain-like neural codes that capture the full richness of brain
activity. To overcome this, we propose an alternative "representation-first" approach that leverages
the power of EEG foundation models (Berto, n.d.). These models, pre-trained on massive and diverse
neural datasets, learn universal and robust representations that serve as a superior starting point. By
fine-tuning from this rich representational base, we can learn alignments that are more data-efficient,
performant, and, importantly, more likely to be biologically plausible (Jiang et al., 2024; Wang et al.,
2024).

To rigorously evaluate the quality of the learned representations, we utilize the 200-way zero-shot
visual object classification task. This task serves as a challenging benchmark for two reasons: First,
its zero-shot nature directly tests the model’s ability to generalize to unseen semantic concepts, a key
indicator of a robustly learned representation space. Second, it is an established evaluation paradigm
within the BCI and neuro-AI communities (Du et al., 2023; Song et al., 2023; 2025), allowing for
direct comparison with prior state-of-the-art methods. Success on this task, therefore, is not an end in
itself, but a commonly-used proxy for the quality and generalizability of the underlying brain-visual
alignment.

To implement this representation-first approach, we introduce BrainAlign, a framework designed for
the symmetric and interpretable alignment of EEG and visual representations. While leveraging a
foundation model addresses the primary challenge of learning robust neural codes, our framework is
also designed to investigate several other critical gaps in existing research. First, unlike architecturally
asymmetric models, BrainAlign is designed to be bidirectional, capturing the reciprocal nature of
information processing in the brain (Zhang et al., 2025; Qiao et al., 2019). Second, we move beyond
"black box" models by incorporating methods that enhance mechanistic interpretability, allowing us
to use the model as a scientific instrument. Finally, we address the open question of which visual
feature space best aligns with EEG signals. By systematically comparing a purely hierarchical model
(ResNet (He et al., 2016)), a brain-inspired recurrent model (CORNet-S (Kubilius et al., 2019)),
and a vision-language model (CLIP (Lu & Wang, 2025)), we can probe the nature of the optimal
visual-neural alignment. Beyond the core BrainAlign results, we ask which part of the learned
EEG–image representation is subject-agnostic (stimulus-driven) versus subject-dependent (identity)
and how the representation is arranged with respect to higher-level categories. We therefore include
a simple post-hoc linear analysis: (i) align EEG and image embeddings with CCA and (ii) excise
linearly decodable subject information via iterative nullspace projection (INLP), contrasting with a
mean-subspace removal baseline. Additionally, we quantify semantic structure using retrieval-style
and representational-similarity metrics (MRR, NDCG, AUC, within-between margins).

This paper introduces a framework for visual object classification from EEG that directly addresses the
aforementioned gaps. Our contributions can be summarized as follows: (a) we introduce BrainAlign,
a framework that leverages a pretrained EEG foundation model (CBraMod (Wang et al., 2024)) for a
representation-first approach to aligning EEG and visual features; (b) we systematically compare
the alignment of EEG representations with three neuroscientifically motivated visual backbones:
ResNet-50 (He et al., 2016), CORNet-S (Kubilius et al., 2019), and CLIP (Radford et al., 2021);
(c) we demonstrate the bidirectional symmetry of the learned representation space, enabling both
decoding and encoding applications; (d) we assess interpretability by visualizing learned importance
weights corresponding to distinct brain regions; (e) we analyze the quality of the shared representation
space through its intrinsic information content and downstream task performance.

2 RELATED WORK

Aligning neural and computational models. The effort to map visual representations in the brain
has progressed from early fMRI studies, which established that object categories could be decoded
from cortical activity (Song et al., 2025), to modern electrophysiological methods like EEG. The
high temporal resolution of EEG is better suited to capture the rapid dynamics of visual perception
(Berto, n.d.). A significant methodological advance was the adoption of the Rapid Serial Visual
Presentation (RSVP) paradigm, which, combined with large-scale datasets, enabled the field to move
beyond simple classification to ambitious zero-shot decoding tasks using deep learning (Gifford
et al., 2022; Jiao et al., 2019). This research now largely falls under the broader goal of integrative
benchmarking, where computational models are quantitatively evaluated on their ability to predict
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neural and behavioral data, a practice formalized by platforms like Brain-Score (Schrimpf et al.,
2020).

Contrastive learning for EEG-vision alignment. The current state-of-the-art for aligning EEG
signals with visual features is self-supervised contrastive learning (Liu et al., 2021). The pioneering
NICE framework demonstrated that a contrastive loss could effectively map EEG and image em-
beddings (e.g., from CLIP) into a shared space for zero-shot recognition (Song et al., 2023). While
language-guided extensions like NICE++ have shown performance gains by using textual descriptions
to refine the alignment (Song et al., 2025), they do so by introducing a third modality (language).
As our work is focused on the fundamental principles of direct EEG-vision alignment, we compare
against uni-modal visual encoders. Subsequent work has introduced sophisticated refinements to
address challenges such as the “modality gap”. For instance, BraVL uses a multimodal VAE to learn
a unified latent space (Du et al., 2023), VE-SDN introduces a semantic decoupling module to align
only the shared information (Chen et al., 2024), and others leverage guidance from large language
models to refine the alignment (Song et al., 2025). A common thread, however, unites these advanced
methods: they all train their EEG encoders from scratch for a specific alignment task. This approach
is fundamentally limited, as the encoders must simultaneously learn basic neural feature extraction
and high-level semantic alignment, a challenge that our work directly addresses.

EEG foundation models. These models are pre-trained on massive and diverse EEG corpora,
such as the TUH-EEG dataset (Obeid & Picone, 2016), to learn universal, robust, and generalizable
representations of brain activity. Architectures like BENDR (Kostas et al., 2021) and LaBraM
(Jiang et al., 2024) established the viability of this approach. We employ CBraMod (Wang et al.,
2024), a state-of-the-art foundation model whose criss-cross transformer architecture is uniquely
suited to capturing the spatio-temporal dynamics of EEG. By starting with these rich, pre-trained
representations, we reframe the problem from one of end-to-end training to one of targeted fine-tuning.
This aligns with a broader movement in computational neuroscience away from purely predictive
“black box” models and toward models that are mechanistically interpretable (Krakauer et al., 2017).
The goal is to build transparent, falsifiable models of neural computation, where the internal workings
can be causally linked to behavior and brain activity. Our representation-first approach, grounded in a
powerful foundation model, is a significant step in this direction.

3 METHOD

The methodology of this study is designed to validate our central thesis: that leveraging a pre-
trained EEG foundation model provides a more robust and biologically plausible pathway to learning
brain-aligned representations than training task-specific encoders from scratch. To this end, we
introduce BrainAlign, a framework designed for the symmetric and interpretable alignment of
EEG and visual features. Our experimental design adheres to a subject-dependent paradigm. This
choice is rooted in the principle of biological plausibility; as each human brain possesses unique
functional characteristics, developing subject-specific models is essential for capturing genuine neural
representations, rather than learning a non-representative ‘average’ brain model. In this section, we
will detail the architecture of the BrainAlign framework (refer Figure 1), the rationale behind its
components, and the contrastive learning procedure used for training. We also briefly discuss the
procedures used to perform the post-hoc analyses.

3.1 BRAINALIGN ARCHITECTURE

The BrainAlign framework consists of two parallel processing streams—an EEG branch and an
image branch—that learn to project their respective outputs into a shared representation space. The
EEG branch is designed to address the fundamental limitations of conventional approaches that train
encoders from scratch. Such methods are not only computationally expensive (e.g., up to 200 epochs
(Song et al., 2023)) but also risk learning brittle, task-specific representations, as they must learn
low-level features and high-level alignment simultaneously. Our framework circumvents this by
utilizing a pre-trained EEG foundation model, CBraMod (Wang et al., 2024), as the encoder. By
starting with the rich, general-purpose representations learned from diverse datasets (Jiang et al.,
2024; Kostas et al., 2021; Obeid & Picone, 2016), our model can achieve high performance with
substantially less fine-tuning. Following this encoder, we introduce a custom projection network
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Figure 1: The BrainAlign framework for EEG foundation model-based object classification. The
framework relies on powerful pretrained EEG and image encoders, and while fine-tuning the EEG
encoder, trains the projection networks using contrastive learning to align the representation spaces
from both branches. Testing is done by matching EEG branch representations with pre-obtained
image branch templates for test images.

designed with strong neuroscientific priors. The architecture adopts a multi-stream design that
segregates channels into functionally distinct groups (occipital, parietal, temporal, and global) and
integrates them via a learnable gating mechanism, yielding a functionally grounded and interpretable
embedding. The detailed mathematical formulation of this regional aggregation process is provided
in Appendix A.

A central scientific question of this study is what kind of computational visual feature space aligns
most effectively with neural representations. To investigate this, the image branch of our framework
is designed to be modular. We systematically compare three distinct, neuroscientifically motivated
image encoders, each representing a different hypothesis about visual processing: a hierarchical
feedforward model (ResNet-50), a brain-inspired recurrent model (CORNet-S), and a multimodal
vision-language model (CLIP). This comparative experiment is therefore designed not simply to find
the best-performing model, but to use alignment performance as evidence to adjudicate between
these competing computational theories of visual representation. A detailed description of each of
these encoders is available in Appendix A. Following the selected encoder, a simple 2-layer MLP
with GeLU activation serves as a projection network to map the image features into the shared
representation space.

3.2 CONTRASTIVE LEARNING

The core of the training process is to align EEG and image features in a shared embedding space. This
is achieved using a symmetric contrastive loss function, similar to the one introduced in CLIP. The
symmetric nature of this loss is critical, as it encourages the learned latent space to be bidirectionally
informative. This ensures that an EEG representation can be used to identify its corresponding image
(decoding) and, equally, that an image representation can identify its EEG counterpart (encoding), a
property essential for building models that reflect the brain’s reciprocal processing pathways.

Given a mini-batch of N paired EEG and image samples, we first extract their respective feature
vectors, fe and fi, using the EEG and image encoders. These features are then projected into a
shared embedding space of dimension D by projection heads Peeg and Pimg .

The projected features for the k-th sample are denoted as z(k)
e = Peeg(f

(k)
e ) and z

(k)
i = Pimg(f

(k)
i ).

These features are L2-normalized:

ẑ(k)
e =

z
(k)
e∥∥∥z(k)
e

∥∥∥
2

and ẑ
(k)
i =

z
(k)
i∥∥∥z(k)
i

∥∥∥
2
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The similarity between the j-th EEG feature vector and the k-th image feature vector in the batch
is calculated as the cosine similarity (dot product of normalized vectors), scaled by a learnable
temperature parameter τ :

sjk = τ ·
〈
ẑ(j)
e , ẑ

(k)
i

〉
The objective is to maximize the similarity of corresponding pairs (where j = k) while minimizing
it for all other non-corresponding pairs within the batch. This is framed as a classification problem
using the cross-entropy loss. The loss is calculated symmetrically for both EEG-to-image and
image-to-EEG directions.

The loss for predicting the correct image pairing for a given EEG signal is:

Leeg = − 1

N

N∑
j=1

log
exp (sjj)∑N
k=1 exp (sjk)

Similarly, the loss for predicting the correct EEG pairing for a given image is:

Limg = − 1

N

N∑
j=1

log
exp (sjj)∑N
k=1 exp (skj)

The final training objective is the average of these two losses:

Ltotal =
Leeg + Limg

2

4 EXPERIMENTAL SETUP AND RESULTS

4.1 DATASET

We used the THINGS-EEG2 dataset (Gifford et al., 2022), which contains EEG responses from 10
subjects viewing natural images in a rapid serial visual presentation (RSVP) paradigm, making it
ideal for studying object recognition. Among the few high-quality EEG-image datasets relevant for
this task, this specific dataset was chosen for its scale and established validity. We followed standard
preprocessing procedures and, unlike prior work that used a subset of channels, we retained all 63
recording channels to provide a more complete representation of the distributed neural activity for
our model. A detailed description of the dataset, our full preprocessing pipeline, and a data quality
analysis that validates the use of all channels, are provided in Appendix B.

4.2 EVALUATION FRAMEWORK AND RESULTS

Our experimental investigation centered on two key questions, evaluated on a subject-dependent basis
to account for inter-subject variability (Saha & Baumert, 2020). First, to test our central hypothesis,
we compared two training strategies for the CBraMod encoder: fine-tuning the pre-trained weights
versus keeping them frozen. Second, to investigate the nature of the optimal visual feature space, we
paired each EEG strategy with the three visual backbones (ResNet-50, CORNet-S, and CLIP). This
resulted in six model configurations per subject, which were evaluated on the bidirectional 200-way
zero-shot classification task (chance-level accuracy: 0.5%). For a deeper, qualitative assessment
of the learned representations, we also designed a series of targeted representational analyses (e.g.,
representational similarity analysis (RSA), time-resolved encoding). A detailed description of each
of these representational analysis methods is provided in Appendix D.

The performance of our six model configurations was evaluated and compared against the NICE,
NICE-GA, and BraVL frameworks (Song et al., 2023; Du et al., 2023). In this work, we focus our
primary analysis on top-1 accuracy, as it serves as the most stringent metric for evaluating the quality
and "brain-alikeness" of the learned representations. Unlike top-5 accuracy, which allows for a wider
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Table 1: A comparison of different model performances (top-1 accuracies) across 10 subjects for the
EEG-to-image 200-way zero-shot classification task
Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean SD

BraVL (Du et al., 2023) 6.1 4.9 5.6 5.0 4.0 6.0 6.5 8.8 4.3 7.0 5.8 1.4
NICE (Song et al., 2023) 12.3 10.4 13.1 16.4 8.0 14.1 15.2 20.0 13.3 14.9 13.8 3.3
NICE-GA (Song et al., 2023) 15.2 13.9 14.7 17.6 9.0 16.4 14.9 20.3 14.1 19.6 15.6 3.2
CBraMod (fine-tuned) + CLIP 14.5 9.5 14.0 11.5 10.0 19.0 11.5 16.5 13.5 17.0 13.7 3.1
CBraMod (fine-tuned) + ResNet-50 12.0 12.0 12.0 9.5 9.0 21.5 12.0 16.0 10.0 18.5 13.2 4.1
CBraMod (fine-tuned) + CORNet-S 11.5 13.0 13.5 16.0 10.0 20.5 14.5 14.0 12.5 16.5 14.2 2.9
CBraMod (frozen) + CLIP 2.5 5.0 7.0 7.5 2.5 6.5 5.0 7.0 4.5 10.0 5.7 2.3
CBraMod (frozen) + ResNet-50 5.0 5.5 6.5 4.5 6.0 9.0 5.0 10.0 2.5 6.5 6.0 2.2
CBraMod (frozen) + CORNet-S 4.0 6.5 7.0 5.5 6.0 8.5 5.5 7.5 2.5 9.0 6.2 2.0

Table 2: A comparison of different model performances (top-1 accuracies) across 10 subjects for the
image-to-EEG 200-way zero-shot classification task
Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean SD

CBraMod (fine-tuned) + CLIP 23.0 17.0 16.0 20.0 17.5 23.0 19.0 26.5 18.5 30.5 21.1 4.6
CBraMod (fine-tuned) + ResNet-50 17.0 26.5 19.5 22.5 21.0 29.0 15.5 24.5 13.5 29.0 21.8 5.5
CBraMod (fine-tuned) + CORNet-S 17.0 25.5 21.5 25.0 18.0 33.5 23.0 27.0 16.0 26.0 23.2 5.3
CBraMod (frozen) + CLIP 4.5 7.5 9.5 11.5 8.5 10.5 5.5 13.5 2.5 11.0 8.4 3.4
CBraMod (frozen) + ResNet-50 6.0 10.5 6.5 12.0 10.5 12.0 5.5 13.0 5.5 8.0 8.9 3.0
CBraMod (frozen) + CORNet-S 3.5 10.0 9.5 7.0 9.0 12.0 4.5 12.5 4.0 13.0 8.5 3.6

margin of error, top-1 accuracy directly probes the model’s ability to select the single correct item
from 200 distinct choices. This provides a direct measure of the representation’s discriminative
power—its ability to distinguish between fine-grained concepts from neural data, which is a key
characteristic of the brain’s own highly specific and efficient visual processing system. The mean
top-1 accuracies across all subjects are presented in Table 1 and Table 2; for completeness, top-5
accuracies are provided in Appendix G.

Our primary finding supports the central hypothesis of this work: leveraging a pre-trained foundation
model as an inductive bias via fine-tuning is superior to using it as a static feature extractor. As shown
in Tables 1 and 2, all fine-tuned models outperformed their frozen-backbone counterparts. This
large and statistically significant improvement in top-1 accuracy (p < 0.01, Wilcoxon signed-rank
test) demonstrates that the fine-tuning process is important for adapting the foundation model’s
general-purpose features into a highly discriminative semantic space, one that is better suited for
the specific task of visual object recognition from EEG. This result supports our representation-first
approach.

Having established the importance of fine-tuning, we next investigated which visual feature space
aligns best with the adapted EEG representations. Among the fine-tuned models, the configuration
using the brain-inspired recurrent CORNet-S encoder achieved the highest average top-1 accuracy in
both EEG-to-image (14.2%) and image-to-EEG (23.2%) directions. This suggests that its representa-
tions, shaped by recurrent connections designed to mimic the primate ventral stream, provide a more
suitable target space for alignment with neural data. However, differences among visual backbones
were not statistically significant (p > 0.05), so we view this as a tentative trend rather than conclusive
evidence for any specific architecture.

Our best-performing model (CBraMod fine-tuned + CORNet-S) is highly competitive with current
state-of-the-art methods, significantly outperforming BraVL (5.8%) and the base NICE (13.8%)
frameworks, and achieving an accuracy comparable to the more complex NICE-GA model (15.6%).
Crucially, this performance is achieved with marked computational efficiency. All fine-tuned models
converged within 60 epochs, a 70% reduction in training time. This reduction could make subject-
specific training more practical. As a new model must be trained for each new subject, a significant
reduction in training time directly translates to lower computational costs and a greater capacity to
apply the framework to larger participant cohorts.

4.3 MODEL INTERPRETABILITY AND REPRESENTATIONAL PLAUSIBILITY

To assess model interpretability, we visualized the regional importance weights learned by the EEG
projection network as a topographical map (Figure 2). The visualization shows that the model
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Figure 2: Topographical map of brain region importance weights learned by the EEG projection
network.

Figure 3: Prediction accuracy of raw EEG signals from image representations using time-resolved
encoding models.

consistently assigned higher weights to occipital, parieto-occipital, and inferior temporal channels
compared to frontal channels. This learned weight distribution is consistent with the known functional
anatomy of the ventral visual pathway, providing evidence for the biological plausibility of the model.
Furthermore, the fine-tuned models learned a weight distribution that more closely resembled this
neuroscientific prior compared to the frozen-backbone models. This observation provides a potential
mechanistic explanation for the performance gap reported in Section 4.2: the fine-tuning process
not only adapts the feature space but also increases emphasis on occipito-temporal channels, thus
hinting towards enhanced biological plausibility. Although more targeted analyses would be needed
to firmly establish a causal neuroanatomically correct attention policy. The superior performance of
the fine-tuned models is therefore not just a numerical result, but a potential consequence of learning
a more biologically plausible processing strategy.

To provide deeper evidence for the quality of the learned representations beyond classification
accuracy, we conducted a series of representational analyses (see Appendix E for full details).
These analyses confirmed three key points. First, time-resolved encoding showed that our aligned
representations captured significant, dynamically evolving neural information, mirroring the known
temporal progression of the visual (Figure 3). Second, Representational Similarity Analysis (RSA)
revealed that the geometry of the space learned by the fine-tuned models had a significantly higher
correlation with the brain’s own representational geometry compared to the frozen models (Appendix
Figure 7). Third, high accuracy on cross-modal retrieval tasks confirmed that the space is robustly
bidirectional. Taken together, these results provide converging evidence that the performance gains
from our foundation model framework are rooted in its ability to learn a shared latent space that is
more structurally and dynamically aligned with the brain’s internal representations.
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Figure 4: Subject-ID, top-1 and top-5 accuracy against number of INLP steps. The subject-ID
accuracies fall while top-1 and top-5 image classification accuracies remain stable.

Table 3: CCA canonical spectrum (mean ± s.e., over 10 folds). High, tight values indicate a robust
shared latent.

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10

0.863±
0.000

0.859 ±
0.001

0.854 ±
0.001

0.852 ±
0.000

0.850 ±
0.000

0.850 ±
0.000

0.847 ±
0.001

0.844 ±
0.001

0.835 ±
0.001

0.815 ±
0.001

4.4 ADDITIONAL REPRESENTATIONAL ANALYSES

To further probe the learned representations, we performed two additional analyses using a leave-one-
subject-out (LOSO) evaluation. First, we aimed to disentangle subject-agnostic (stimulus-driven)
information from subject-dependent (identity) features. Second, we quantified the semantic structure
of the shared representation space. A full description of the methods and detailed results are in
Appendix F.

Using a CCA-INLP pipeline, we found that we can remove linearly decodable subject identity
information from the EEG features without degrading zero-shot recognition performance. As shown
in Figure 4 and Table 4, INLP reduces the subject-ID leakage to chance level while top-1 and
top-5 accuracies remain stable. The high canonical correlations (Table 3) indicate a robust shared
latent space across subjects. This suggests that subject-specific information occupies a compact
linear subspace that can be excised to isolate a predominantly subject-agnostic, stimulus-driven
representation.

Our analysis of the subject-averaged EEG-to-image similarity matrix reveals a non-trivial semantic
organization. Retrieval metrics (Table 5) show that correct and same-category items are ranked highly.
The positive within-between category margins (Appendix Table 7) and the qualitative visualizations
(Figure 5) further confirm that the shared space captures meaningful semantic relationships, with
clear categorical structure for concepts like weapons and plants, while others, such as vegetables,
show less separation. However, modest global AUC and centroid consistency suggest that some
cross-subject idiosyncrasies remain in the shared geometric space.

5 CONCLUSION AND FUTURE WORK

In this work, we find that leveraging pre-trained EEG foundation models via fine-tuning is associated
with improved efficiency and higher alignment metrics in our setting for aligning neural and artificial
visual representations. Our BrainAlign framework achieves competitive performance on the challeng-
ing 200-way zero-shot classification benchmark while drastically reducing the required training time
by 70%. Importantly, this quantitative performance is underpinned by qualitative evidence of greater

Table 4: LOSO summary for identity removal. Leakage = subject-ID accuracy (on a validation split
of the 9-subject pool). Zero-shot top-1 and top-5 = 200-way EEG-to-image identification on the
held-out subject. INLP achieves chance leakage without hurting top-1/top-5.

Method Leakage start Leakage end Top-1 start Top-1 end Top-5 start Top-5 end

CCA-INLP 0.543±0.003 0.111±0.000 0.117±0.011 0.115±0.010 0.322±0.023 0.319±0.023
Mean-subspace (r=8) 0.895±0.003 0.288±0.003 0.143±0.010 0.140±0.009 0.380±0.024 0.381±0.025
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Figure 5: Results of semantic similarity analysis. (A) Cosine similarity between EEG and image
representations averaged over all 10 subjects (10 less frequent categories were grouped together as
“other"). (B) Qualitative retrieval: Ground truth (GT) (col. 1) and top-1. . . top-5 for three queries
(rows). Subject 5 shown.

Table 5: Semantic similarity (averaged across 10 subjects). MRR and NDCG@10 capture ranking
quality beyond exact match; AUC is threshold-free category separability; within–between ∆ and
d quantify block coherence; block-energy ratio summarizes the fraction of similarity mass inside
category blocks; centroid consistency measures cross-subject alignment of category geometry.

MRR NDCG@10 AUC Within-
Between ∆

Cohen’s d Block energy Centroid
consistency

0.563 0.504 0.543 0.0197 0.187 0.480 0.375 ±
0.021

neuroscientific validity: interpretability analyses reveal that our fine-tuned model learns a biologi-
cally plausible attentional policy, while representational similarity analyses confirm that its learned
geometry is more congruent with the brain’s own. The last set of representational analyses show that
a compact linear subject-agnostic subspace supports zero-shot recognition while subject information
can be removed to chance post hoc, and that mean/second-order shifts alone cannot explain identity
leakage. The residual cross-subject variance in semantic structure motivates training-time invariance
(e.g., domain-adversarial objectives) and cross-subject alignment (e.g., hyperalignment-style map-
pings) as complementary future work. These findings collectively establish the "representation-first"
approach as a robust and scientifically informative path forward, which has the potential to enable
the development of more sophisticated BCIs and more transparent computational models of brain
function.

Limitations. All results are based on subject-dependent models, and therefore, cross-subject
generalization remains to be explored yet. The 200-way zero-shot classification task, while a
good and commonly-used proxy for measuring quality of alignment, leaves actual downstream
task performance on tasks like image reconstruction to future work. While we tried to establish
interpretability in various ways, large-scale user studies are required to demonstrate the biological
plausibility of the model, which is beyond the scope of this study.
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A ARCHITECTURAL AND MODEL DETAILS

A.1 EEG PROJECTION NETWORK FORMULATION

The process for deriving the aggregated EEG vector from the output of the EEG encoder, F =
{f1,f2, . . . ,fC}, is as follows. The channels are grouped into four disjoint sets based on their
location: occipital (CO), parietal (CP ), temporal (CT ), and other (COther). For each region R ∈
{O,P, T,Other}, the features are first averaged:

f̄R =
1

|CR|
∑
c∈CR

fc

This mean-pooled feature vector is then passed through a region-specific projection network PR:

f ′
R = PR(f̄R)

The model learns a set of importance weights, w = [wO, wP , wT , wOther], which are derived from a
learnable parameter parameter vector v via the softmax function:

w = softmax(v)

Finally, the weighted features from each region are concatenated to form the final aggregated EEG
feature vector, zagg:

zagg = [wO · f ′
O ⊕ wP · f ′

P ⊕ wT · f ′
T ⊕ wOther · f ′

Other]

where ⊕ denotes the concatenation operation.

A.2 IMAGE ENCODER DETAILS

We systematically compare three distinct image encoders, each representing a different hypothesis
about visual processing.

A.2.1 RESNET-50

This model (He et al., 2016) represents the ‘hierarchical feedforward’ hypothesis, where visual
information is processed through a series of increasingly complex, feedforward layers. Its alignment
performance serves as a baseline for a standard, highly-performant computer vision architecture.

A.2.2 CORNET-S

This model (Kubilius et al., 2019) represents the ‘brain-inspired recurrence’ hypothesis. It was
explicitly designed to model the primate ventral visual stream and incorporates recurrent connections,
which are a key feature of the visual cortex. Its performance tests whether an architecturally more
brain-like model yields better alignment.
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A.2.3 CLIP

This model (Radford et al., 2021) represents the ‘semantic embedding’ hypothesis. Pre-trained on
image-text pairs, its representations are not purely visual but are deeply structured by language and
semantics. Its performance probes whether the brain’s representation of objects is more akin to a rich,
multimodal semantic space than a purely visual one.

B DATASET DETAILS

B.1 DATASET AND PREPROCESSING

For this study, we selected the THINGS-EEG2 (Gifford et al., 2022) dataset due to its neuroscientific
validity and high temporal resolution. This dataset contains EEG responses from 10 subjects viewing
natural images presented using a rapid serial visual presentation (RSVP) paradigm. The RSVP
protocol is designed to elicit stimulus-specific neural responses while minimizing contributions from
higher-order cognitive processes, making the data suitable for training models on object recognition.
The dataset comprises 82,160 trials across 16,740 unique image conditions, which map to 1,854
object classes. We adhere to the original study’s split, using 1,654 classes for training and 200 classes
for the zero-shot evaluation task. For the test set, one image per class was selected for the 200-way
classification task. EEG data was recorded from 64 channels using an EASYCAP system, out of
which 63 were recording channels and one was stimulus channel.

We followed standard EEG preprocessing steps, consistent with those applied by Song et al.. The
raw data was epoched into 1000 ms trials post-stimulus onset and baseline-corrected using the mean
of the 200 ms pre-stimulus period. A bandpass filter was applied to retain frequencies between 0.1
and 100 Hz. For all analyses, the data was down-sampled from 1000 Hz to 250 Hz, and multivariate
noise normalization was performed to reduce correlated noise across channels. This frequency was
chosen in accordance with the Nyquist-Shannon sampling theorem. All trial repetitions for each
image condition were averaged to increase the signal-to-noise ratio. During training, the EEG data
was further down-sampled to 200 Hz to match the input requirements of the CBraMod foundation
model. For the image branch, we utilized pre-computed image representations from ResNet-50,
CORNet-S, and CLIP, as provided by the original dataset creators and Song et al., to facilitate faster
model training and evaluation.

B.2 DATASET QUALITY ANALYSIS

While prior work has sometimes restricted analysis to 17 occipital and parietal channels, we retained
all 63 channels for model training, similar to Song et al (Song et al., 2023). This decision is motivated
by the fact that the ventral visual pathway, which is critical for object recognition, extends beyond
the occipital and parietal lobes into the inferior temporal cortex (Bao et al., 2020). Including all
channels allows the model to potentially capture a more complete representation of the distributed
neural activity underlying visual processing. Our model architecture is designed to leverage these
additional channels while enabling interpretability of region-specific contributions.

To confirm the data quality across all channels, we performed a temporal and spatial analysis of the
EEG responses, as the original dataset’s analyses primarily focused on a smaller subset of channels.
Figure 6 displays topographical maps of the average EEG response over time. The activation patterns
are consistent with established neuroscientific findings: an initial increase in activity in the occipital
lobe (0-100 ms), followed by propagation to the temporal lobe, which is characteristic of feedforward
processing along the ventral visual stream which includes processing along V1, V2, V3, PIT, CIT
and AIT areas. This analysis suggests the suitability of the full 63-channel dataset for our task.

C HYPERPARAMETER CHOICES

The hyperparameters used for training all models are provided in Table 6 (Song et al., 2023).
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Figure 6: Topographical maps of EEG responses from one subject averaged over all training image
conditions across 10 time intervals.

Table 6: Hyperparameter settings used for model training.
Name Value
Batch size 1024
Learning rate 0.0002
Adam β1 0.5
Adam β2 0.999
Logit scale (τ ) log(1/0.07)
Projection dimension (EEG and Image) 800
EEG encoder embedding dimension 800
Image encoder embedding dimension (CLIP) 784
Image encoder embedding dimension (CORNet-S and ResNet-50) 3000
Dropout (all layers) 0.2
Validation split size 740 samples
Training split size 16540 samples
Test split size 200 samples

D REPRESENTATIONAL ANALYSIS METHODS

To gain deeper insight into the structure and biological plausibility of the shared latent space, we
conducted a series of targeted representational analyses, as described below.

Quality of neural information content To verify that the aligned image representations captured
meaningful neural information, we performed a time-resolved encoding analysis. Using a nested
cross-validated Ridge regression model, we predicted EEG signals at each time point from the static
image features of the aligned space. High prediction accuracy in this analysis would indicate that
the contrastive learning process successfully embedded neurally-relevant visual features into the
representations, validating the image-to-EEG mapping.

Similarity to brain’s representational geometry To assess the biological plausibility of the learned
space, we compared its internal structure to that of the brain using time-resolved Representational
Similarity Analysis (RSA) (Kriegeskorte et al., 2008). We computed Representational Dissimilarity
Matrices (RDMs) for the model and for the neural data at each time point. A high correlation between
the model and brain RDMs over time would indicate that our framework learns a representational
geometry that dynamically mirrors the brain’s own processing trajectory.

Bidirectional symmetry and alignment Finally, to evaluate the overall alignment and bidirectional
utility of the final shared space, we conducted two analyses. First, a static RSA measured the global
alignment between the final EEG and image representational geometries. Second, a cross-modal
retrieval task directly tested the framework’s symmetry by evaluating its ability to retrieve the correct
EEG vector from its image counterpart, and vice-versa. Success in these tasks is a direct measure of
how well the two modalities were fused into a coherent, symmetric representational space.
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Figure 7: Results of representational analyses. (A) RSA correlation of raw EEG signals with
image representations using time-resolved RSA analysis. (B) Mean Pearson (ρ) and Spearman (r)
coefficients for RSA between EEG and image representations for all subjects, along with top-1 and
top-5 EEG-to-image retrieval accuracies across model configurations. (C) Comparison of EEG-Image
representation alignment between fine-tuned and frozen paradigms using RSA between EEG and
Image representations averaged over all subjects (*** indicates statistical significance of p < 0.001).
(D) Heatmap of pairwise differences in RSA alignment across all model configurations.

E RESULTS OF PRIMARY REPRESENTATIONAL ANALYSES

Figure 7 shows the results of various representational analyses.
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E.1 ANALYSIS OF TEMPORAL DYNAMICS IN RAW EEG DATA

The first set of analyses evaluated the extent to which the learned image representations in the shared
space captured the temporal dynamics of the raw neural signals. Figure 3 (time-resolved encoding)
and 7A (time-resolved RSA) show that the ability to predict or correlate with the raw EEG signal
peaks between 100-250 ms and remains significant until around 600 ms post-stimulus. This temporal
profile is highly consistent with the known hierarchical progression of feedforward processing along
the human ventral visual stream (DiCarlo & Cox, 2007).

Notably, the performance between the fine-tuned and frozen model paradigms is largely comparable
in these analyses. This finding is significant: it suggests that the large-scale pre-training of the
CBraMod foundation model is sufficient to learn and preserve the core, low-level temporal dynamics
of visual neural processing. This supports the use of the foundation model as a strong starting point,
as it provides a robust neuro-temporal prior before any task-specific adaptation occurs.

E.2 ANALYSIS OF THE ALIGNED SHARED REPRESENTATION SPACE

The second set of analyses assessed a different, more central question: the quality of the final, shared
representational space created by the contrastive learning process. Instead of comparing to raw EEG,
these analyses directly measure the geometric alignment between the final EEG representations and
the image representations.

The results, shown in Figures 7B, 7C, and 7D, provide consistent evidence for our central hypothesis.
The representational alignment, as measured by RSA correlation, is significantly higher in the fine-
tuned paradigm compared to the frozen paradigm (Figure 7C, p<0.001). This suggests that while
the frozen backbone provides a strong temporal prior, it is insufficient for creating a high-fidelity
shared semantic space. The evidence suggests that the process of fine-tuning is important; it allows
the model to adapt the general-purpose neural features into representations that are specifically and
geometrically aligned with their visual counterparts. The higher correlation values and cross-modal
retrieval accuracies (Figure 7B) for the fine-tuned models further confirm the overall effectiveness of
the BrainAlign framework in learning a robust, bidirectionally useful shared space.

F DETAILS OF ADDITIONAL REPRESENTATIONAL AND SEMANTIC ANALYSES

This section provides a detailed description of the methods, experimental setup, and expanded
discussion for the additional representational analyses presented in Section 4.4.

F.1 METHODOLOGY

F.1.1 LINEAR ISOLATION OF SUBJECT-AGNOSTIC COMPONENTS (CCA-INLP)

To isolate stimulus-driven information, we first standardize train-time EEG and image embeddings
(from a 9-subject pool in a LOSO setup) and compute a q-dimensional shared latent space via
canonical correlation analysis (CCA (Hotelling, 1992); some modern multiview uses e.g., Andrew
et al. (2013)). We report the canonical correlation spectrum as a stability diagnostic. Then, within
this EEG CCA space, we use iterative nullspace projection (INLP) (Ravfogel et al., 2020). We train a
linear multinomial probe to predict subject identity, compute the probe’s row-space, and project the
features onto its orthogonal nullspace. This process is iterated until the validation subject-ID accuracy
approaches chance, thereby removing all linearly decodable subject information while preserving
directions not used by the subject classifier.

F.1.2 MEAN-SUBSPACE REMOVAL BASELINE

As a strong linear control, we compute the between-subject scatter matrix Sb from the class (subject)
means on the training EEG features. We then project out the top-r eigenvectors of this matrix (where
rank ≤ #subjects−1). This procedure removes mean or batch-like effects but leaves within-class
covariance differences intact, which is conceptually related to second-order alignment methods like
CORAL (Sun & Saenko, 2016).
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F.1.3 SEMANTIC SIMILARITY AND RELIABILITY METRICS

To quantify the geometric and semantic structure of the representation space, we compute several
metrics from the EEG-to-image cosine similarity matrices (both per-subject and averaged across sub-
jects). These include: (i) Mean Reciprocal Rank (MRR); (ii) category-level Normalized Discounted
Cumulative Gain (NDCG@K), which uses graded relevance for same-category items (Järvelin &
Kekäläinen, 2002); (iii) ROC-AUC for same vs. different category discrimination (Fawcett, 2006);
(iv) within–between category margins and Cohen’s d to measure block coherence; (v) a block-energy
ratio (the fraction of similarity mass within category blocks); (vi) per-category margins; and (vii)
category-centroid consistency across subjects (pairwise cosine similarity), which is conceptually
linked to hyperalignment and the analysis of common representational spaces (Haxby et al., 2011;
Kriegeskorte et al., 2008).

F.2 EXPERIMENTAL SETUP

The methods described above were applied in a leave-one-subject-out (LOSO) evaluation framework.
In each fold, 9 subjects form the train/validation pool, with the remaining subject held out for testing.
All EEG and image embeddings are generated by subject-specific fine-tuned contrastive models
(the CORNet-S variant). Test-time performance is measured as 200-way zero-shot identification
from EEG to images. For all categorical analyses, we used the 27 WordNet-derived categories
provided in the THINGS-EEG2 dataset, of which 16 were present in the held-out test data. We
report subject leakage (multinomial probe accuracy on the 9-subject validation pool) and zero-shot
top-1/top-5 accuracy on the held-out subject to evaluate the effectiveness of the subject-identity
removal techniques.

F.3 DISCUSSION OF RESULTS

F.3.1 SUBJECT IDENTITY REMOVAL WITHOUT TASK LOSS

The first ten canonical correlations are high and tight across folds, indicating a stable shared latent de-
spite subject-specific heads (Table 3). As summarized in Table 4, the CCA-INLP pipeline successfully
reduces subject-ID leakage to chance while keeping zero-shot recognition unchanged. In contrast,
removing only the mean subspace reduces but does not eliminate leakage, suggesting identity is
not merely a mean or second-order effect. The fact that a compact linear subspace carries subject
identity is a key finding; removing it via INLP drives leakage to chance without degrading recognition,
implying the preserved dimensions are predominantly subject-agnostic (stimulus-driven). The insuffi-
ciency of mean-subspace removal indicates the presence of residual, higher-order subject-dependent
structure.

F.3.2 SEMANTIC STRUCTURE AND CROSS-SUBJECT RELIABILITY

The subject-averaged space also exhibits non-trivial semantic organization. The retrieval metrics in
Table 5 show that correct matches and same-category items rank near the top (MRR/NDCG), and
within-category similarity exceeds between-category similarity (positive ∆ and small but non-zero d).
As seen in Table 7 and the heatmap in Figure 5A, we observe non-trivial block structures for categories
like weapon, plant, vehicle, and furniture, indicating robust shared semantic representation. The
qualitative retrieval examples in Figure 5B support this, showing that retrieved images are mostly from
semantically similar categories. However, for some under-represented categories, retrieval appears to
be based on lower-level features like color and shape patterns rather than pure semantics. Overall,
the modest global AUC and moderate centroid consistency (with high per-image rank variance)
reveal residual cross-subject idiosyncrasies, which is consistent with a shared but imperfectly aligned
semantic geometry.

G ADDITIONAL RESULTS

Tables 8 and 9 present additional top-5 accuracy results for the EEG-to-image and image-to-EEG
200-way zero shot classification tasks respectively.
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Table 7: Per-category within-between margins: µW is within mean, µB is between mean, and ∆ is
within–between delta. Positive ∆ indicates clearer category blocks in the averaged similarity.

Category µW (within) µB (between) ∆ (W-B)

animal 0.0238 0.0048 0.0191
clothing 0.0934 0.0029 0.0905
container 0.0448 0.0091 0.0357
dessert 0.0399 0.0094 0.0304
food 0.0554 0.0076 0.0478
fruit 0.0592 0.0140 0.0452
furniture 0.0907 0.0102 0.0805
musical instrument 0.0523 0.0112 0.0411
plant 0.1250 0.0060 0.1190
sports equipment 0.0959 0.0217 0.0742
tool 0.0869 0.0213 0.0657
toy 0.0914 0.0203 0.0711
vegetable 0.0092 0.0095 -0.0003
vehicle 0.0955 0.0098 0.0858
weapon 0.1520 0.0174 0.1345

Table 8: A comparison of different model performances (top-5 accuracies) across 10 subjects for the
EEG-to-image 200-way zero-shot classification task
Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean SD

BraVL(Du et al., 2023) 17.9 14.9 17.4 15.1 13.4 18.2 20.4 23.7 14.0 19.7 17.5 3.2
NICE(Song et al., 2023) 36.6 33.9 39.0 47.0 26.9 40.6 42.1 49.9 37.1 41.9 39.5 6.5
NICE-GA(Song et al., 2023) 40.1 40.1 42.7 48.9 29.7 44.4 43.1 52.1 39.7 46.7 42.8 6.1
CBraMod (fine-tuned) + CLIP 37.0 30.5 37.0 31.0 29.5 49.5 36.0 44.0 39.0 46.5 38.0 6.9
CBraMod (fine-tuned) + ResNet-50 29.0 34.0 34.0 29.0 30.5 52.0 29.0 47.0 31.5 41.0 35.7 8.2
CBraMod (fine-tuned) + CORNet-S 31.0 39.0 36.0 40.5 24.5 50.5 37.5 41.5 32.0 47.0 37.9 7.7
CBraMod (frozen) + CLIP 12.5 16.5 19.0 24.5 13.0 22.5 14.5 22.0 12.5 27.0 18.4 5.4
CBraMod (frozen) + ResNet-50 18.0 17.0 18.5 20.0 18.5 29.5 17.0 26.0 15.0 23.0 20.2 4.5
CBraMod (frozen) + CORNet-S 17.0 22.0 24.5 25.0 21.0 25.0 18.5 23.0 12.0 22.0 21.0 4.1

Table 9: A comparison of different model performances (top-5 accuracies) across 10 subjects for the
image-to-EEG 200-way zero-shot classification task
Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean SD

CBraMod (fine-tuned) + CLIP 54.0 45.5 50.5 55.5 45.0 58.0 51.0 58.5 51.5 60.5 53.0 5.3
CBraMod (fine-tuned) + ResNet-50 42.5 54.5 48.5 47.0 47.0 60.5 47.0 58.5 45.0 55.0 50.5 6.1
CBraMod (fine-tuned) + CORNet-S 49.0 57.5 47.5 53.0 43.0 67.0 52.5 64.5 49.5 63.5 54.7 8.1
CBraMod (frozen) + CLIP 15.0 25.5 25.5 33.5 24.5 28.5 17.5 31.0 18.5 30.5 25.0 6.2
CBraMod (frozen) + ResNet-50 17.5 25.0 21.0 27.5 27.5 37.5 20.5 37.5 18.5 32.0 26.4 7.4
CBraMod (frozen) + CORNet-S 20.0 30.5 27.5 32.5 27.0 28.5 24.5 34.5 15.5 36.0 27.6 6.4
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H LLM USAGE

We used large language models to polish writing. All LLM outputs were manually verified and edited
by the authors before inclusion.
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