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ABSTRACT

Large vision-language models (LVLMs) have shown substantial advances in multi-
modal understanding and generation. However, when presented with incompetent
or adversarial inputs, they frequently produce unreliable or even harmful contents,
such as fact hallucinations or dangerous instructions. This misalignment with
human expectations, referred to as misbehaviors of LVLMs, raises serious concerns
for deployment in critical applications. These misbehaviors are found to stem
from epistemic uncertainty, specifically either conflicting internal knowledge or
the absence of supporting information. However, existing uncertainty quantifi-
cation methods, which typically capture only overall epistemic uncertainty, have
shown limited effectiveness in identifying such issues. To address this gap, we
propose Evidential Uncertainty Quantification (EUQ), a fine-grained method that
captures both information conflict and ignorance for effective detection of LVLM
misbehaviors. In particular, we interpret features from the model output head as
either supporting (positive) or opposing (negative) evidence. Leveraging Evidence
Theory, we model and aggregate this evidence to quantify internal conflict and
knowledge gaps within a single forward pass. We extensively evaluate our method
across four categories of misbehavior, including hallucinations, jailbreaks, adver-
sarial vulnerabilities, and out-of-distribution (OOD) failures, using state-of-the-art
LVLMs, and find that EUQ consistently outperforms strong baselines, showing
that hallucinations correspond to high internal conflict and OOD failures to high
ignorance. Furthermore, layer-wise evidential uncertainty dynamics analysis helps
interpret the evolution of internal representations from a new perspective.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) Liu et al. (2024c); Bai et al. (2025); Wu et al. (2024b)
have demonstrated remarkable capabilities in multimodal understanding and context-aware reasoning
across a variety of vision-language tasks Ngiam et al. (2011); Chen et al. (2020). Nevertheless,
their outputs can become unreliable or even harmful manner when faced with complex problem-
solving scenarios or adversarial inputs. Such challenges often lead to issues such as unfaithful
hallucinations Biten et al. (2022); Li et al. (2023), security risks through jailbreaks Qi et al. (2024);
Gong et al. (2025), adversarial vulnerabilities Fang et al. (2024); Ge et al. (2023), and failures
to generalize out-of-distribution (OOD) Yang et al. (2024); Xu et al. (2025). These misbehaviors
indicate that current LVLMs are not yet fully aligned with human expectations Herce Castañón
et al. (2019); Denison et al. (2018); Qi et al.. As a result, such failures significantly hinder their
deployment in critical applications, their deployment in critical domains, such as automated financial
trading Xiong et al. (2025), autonomous driving Grigorescu et al. (2020) and medical diagnosis Kumar
et al. (2023), remains a significant challenge. This underscores the urgent need for effective detection
and mitigation methods to enhance model trustworthiness.

The connection between such misbehaviors and model uncertainty has been widely recog-
nized Amodei et al. (2016); ISO (2022). Our focus mainly lies on a significant and reducible
component, epistemic uncertainty, which the limitation in model knowledge captured by its param-
eters. This uncertainty has long been understood to originate from two primary sources Denœux
et al. (2020): the presence of conflicting information and the absence of supporting information. For
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instance, the top case in Figure 1 illustrates the former, the model correctly identifies both the text
and the background image, yet their semantic inconsistency leads to a response that casts doubt on
the input. In contrast, the bottom example shows the latter, with the model perceiving color and shape
but expressing “cannot immediately identify” and resorting to “guessing” due to missing information.

✖ Conflict 
between  
text and 

background 
image. (Ground truth:

Goldfish)

1, I first note the text stating “answer: diaper.”
2, I then observe a goldfish in the background.
3, This is an unusual design for baby products.
4, Although a goldfish print on a diaper is 
uncommon and casts doubt, it can be reasonable.
5, The answer is diaper.

✖ Ignorance 
due to 
missing 

information.

1, I see a curved object with orange-yellow stripes.
2, Honestly, I can't immediately identify it; it 
could be part of a toy or some kind of decoration.
3, The color pattern vaguely resembles a rainbow.
4,  I'm guessing this might be a "rainbow toy." 
5, The answer is rainbow toy.(Ground truth:

Paraglider)

Input LVLM Output Error Cause

Figure 1: The example where Chain-of-Thought (CoT) Ko-
jima et al. (2022) prompting reveals that the misbehaviors may
stem from internal conflict and lack of knowledge.

While misbehaviors in LVLMs often arise
from internal conflicts or knowledge ab-
sence, existing uncertainty quantification
(UQ) approaches focus on the total predic-
tive uncertainty, but fail to explicitly cap-
ture such underlying causes. Most classi-
cal uncertainty quantification (UQ) meth-
ods, such as Bayesian approaches MacKay
(1992); Blundell et al. (2015) and their
variants Gal & Ghahramani (2016); Lak-
shminarayanan et al. (2017); Maddox et al.
(2019), as well as internal methods of de-
terministic models Sensoy et al. (2018);
Malinin & Gales (2019), are challenging
to apply to LVLMs due to their their sub-
stantial computational overhead. As a result, recent efforts predominantly adopt test-time sampling
strategies. A typical strategy estimates overall epistemic uncertainty from token-level probabilities of
a single output Kadavath et al. (2022); Malinin & Gales (2021), while subsequent extensions evaluate
semantic variability across multiple generations Farquhar et al. (2024); Manakul et al. (2023). Another
line of work encourages models to verbalize their confidence Xiong et al.; Lin et al.. However, such
uncertainty is often unstable and uncalibrated, as LVLMs lack strong metacognitive capabilities, i.e.,
they struggle to consistently recognize and express their own uncertainty.

To this end, we propose Evidential Uncertainty Quantification (EUQ), which enables effective and
computationally efficient detection of model misbehaviors. To the best of our knowledge, this is the
first attempt to explicitly characterize two types of epistemic uncertainty in LVLMs, conflict (CF) and
ignorance (IG). CF quantifies the degree of contradiction among evidence in model predictions, while
IG measures the lack of information available to the model. Specifically, we draw inspiration from the
interpretation of linear projection as evidence fusion Denœux (2019). Evidence is then constructed
from the pre-logits features of the LVLM output head, which provide high-level signals directly
linked to the model’s decisions Zhao et al. (2024), to quantify uncertainty. We then apply basic belief
assignment (BBA), which distributes belief masses over hypotheses, to convert them into evidence
weights. These weights are then decomposed into positive and negative components, which represent
support and contradiction to the model’s decision. The refined evidence weights are fused using
Dempster’s rule of combination Shafer (1976), yielding CF from the conflict between positive and
negative evidence and IG from the missing information in the fused evidence. We evaluate our method
on misbehavior detection across four scenarios, encompassing hallucinations, jailbreaks, adversarial
vulnerabilities, and OOD failures. Comprehensive experiments on DeepSeek-VL2-Tiny Wu et al.
(2024b), Qwen2.5-VL-7B Bai et al. (2025), InternVL2.5-8B Chen et al. (2024), and MoF-Models-
7B Tong et al. (2024) show that CF and IG consistently outperform strong baselines, achieving
relative improvements of 10.8%/7.9% AUROC and 5.3%/5.5% AUPR. Empirical analysis further
reveals that hallucinations correspond to high internal conflict, whereas OOD failures correspond to
high ignorance. Our contributions are summarized as follows:

• We identify that diverse misbehaviors in LVLMs primarily stem from two types of epistemic
uncertainty: internal contradictions and missing supporting information. To address this, we
propose a computationally efficient, DST-based detection method that captures these fine-grained
uncertainties in a single forward pass.

• We conduct a layer-wise dynamic analysis that offers a novel perspective for interpreting the
evolution of internal representations in LVLMs. This analysis also enables certain layers to
distinguish among all four misbehavior categories.

• Extensive experiments on four advanced LVLMs across four behavior scenarios demonstrate that
our method consistently outperforms strong baselines, yielding improvements of 10.8%/7.9% in
AUROC and 5.3%/5.5% in AUPR.
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2 RELATED WORK

In this section, we first review four typical categories of misbehaviors observed in LVLMs (Sec-
tion 2.1), and then discuss UQ methods that can be leveraged for detection (Section 2.2).

2.1 MISBEHAVIORS IN LVLMS

This section provides an overview of key misbehaviors observed in LVLMs, including hallucinations,
jailbreaks, adversarial vulnerabilities, and failures caused by OOD inputs.

Hallucination in LVLMs denotes mismatches between visual inputs and generated text Liu et al.
(2024b). It can be categorized into three types: object hallucination, describing nonexistent ob-
jects Biten et al. (2022); Hu et al.; Li et al. (2023); relation hallucination, misrepresenting spatial or
semantic relations Wu et al. (2024a); attribute hallucination, assigning wrong properties to visual
entities Liu et al. (2024a). Jailbreak refers to eliciting harmful behaviors misaligned with human
intent, often triggered by visual perturbations Carlini et al. (2023), exposing vulnerabilities beyond
typical prediction errors. Such attacks are broadly categorized into optimization-based methods,
which iteratively modify inputs via gradients or search strategies Qi et al. (2024); Wang et al. (2024b);
Bailey et al. (2024), and generation-based methods, which embed harmful typography on the clean
images Gong et al. (2025); Li et al. (2024); Goh et al. (2021); Shayegani et al.. Adversarial vulner-
ability in vision models stems from imperceptible adversarial perturbations that induce incorrect
predictions Szegedy et al. (2014); Goodfellow et al. (2014); Fang et al. (2024); Ge et al. (2023).
Recent work shows that LVLMs inherit this weakness Sheng et al. (2021); Zhao et al. (2023); Wang
et al. (2024a), remaining susceptible to visual perturbations despite their multimodal nature. OOD
failure refers to the inability of a model to handle inputs outside the training distribution, challenging
accurate recognition Kim et al. (2025); Han et al.. Prior work has focused on multimodal models, like
CLIP Radford et al. (2021), for detecting inputs outside the in-distribution (ID) Ming et al. (2022);
Jiang et al.; Cao et al. (2024). Although OOD in LVLMs is less studied, recent work defines ID inputs
as standard data and OOD inputs as style or quality variations Kim et al. (2025); Xu et al. (2025).

In summary, LVLMs are prone to exhibiting various misbehaviors, clearly highlighting the critical
necessity of effective detection methods to ensure their reliability and robustness.

2.2 UNCERTAINTY QUANTIFICATION FOR LVLMS

Classical UQ methods, such as Bayesian approaches MacKay (1992); Blundell et al. (2015) and
their variants Gal & Ghahramani (2016); Lakshminarayanan et al. (2017); Maddox et al. (2019), are
computationally expensive and thus difficult to apply to LVLMs. Deterministic methods, such as
Malinin & Gales (2019) and Sensoy et al. (2018); Li et al. (2025), the latter following an evidential
framework, still require model training. In contrast, our approach performs evidence modeling and
aggregation at inference, producing richer uncertainty measures without additional training, making
it well suited for LVLMs. Thus, this section reviews prior work on UQ for LVLMs.

Token-wise probability-based methods estimate uncertainty within a single generation using log-
likelihoods Kadavath et al. (2022); Guerreiro et al. (2023); Duan et al. (2024) and entropy mea-
sures Malinin & Gales (2021). However, softmax outputs tend to be overconfident Gal & Ghahramani
(2016); Guo et al. (2017), resulting in miscalibrated uncertainty. Sampling-based methods further
estimate uncertainty by evaluating variability semantics across multiple generations. Lin et al. (2023)
estimates uncertainty via pairwise similarities and a graph Laplacian. Farquhar et al. (2024) proposes
semantic entropy to detect confabulations, utilizing external models to evaluate semantic equivalence.
Other works Raj et al. (2023); Manakul et al. (2023) design task-specific prompts and use auxiliary
LLMs to assess semantic consistency. Regardless, these methods are computationally expensive due
to repeated inference and heavily depend on auxiliary models. Verbal elicitation approaches, com-
pletely independent of output probabilities, estimate a model’s uncertainty by prompting it to express
self-assessments in natural language. Lin et al. introduces verbalization probability and demonstrates
its alignment with model logits after fine-tuning. Subsequent studies Tian et al. (2023); Zhou et al.
(2023); Xiong et al. (2024) focus on prompting strategies, such as employing Chain-of-Thought
(CoT) Kojima et al. (2022) to improve verbalized uncertainty, which depends heavily on the model’s
compliance with prompts Kapoor et al. (2024).

Prior methods are often less effective at capturing the patterns of misbehaviors. In contrast, our
approach leverages LVLM output head features, capturing conflict (internal contradictions) and
ignorance (lack of reliable information), which enables differentiation among misbehavior types.
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Next token

a). Features from LVLM

b). Feature Based EUQ

Vision-Language 
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Adversarial Jailbreak

OOD Hallucination
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IG

Pre-logits 
Feature 
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Figure 2: The overall framework of the proposed method applies basic belief assignment to the pre-logits
feature to obtain evidence weights. These weights are then decomposed into positive and negative components,
which are fused to estimate the final uncertainties that can detect different types of misbehaviors, respectively.

3 EVIDENTIAL UNCERTAINTY QUANTIFICATION

This section first introduces pre-logits features in the LVLM output head and the basics of Dempster-
Shafer Theory (Section 3.1). Next, these features are then interpreted as evidence for belief assignment
(Section 3.2) and used to quantify conflict and ignorance via evidence fusion (Section 3.3).

3.1 PRELIMINARY

LVLM Output Head LVLMs typically employ an LLM with a decoder architecture, along with an
output head that generally includes a projection layer and softmax for predicting the next token, as
shown in Figure 2(a). The linear projection layer serves as the decision layer of LVLMs, encoding
cross-modal information critical for decision making Bi et al. (2024); Montavon et al. (2017); Zhao
et al. (2024). This layer contains features directly mapped to human-readable tokens, motivating
the use of the output head for uncertainty quantification. We denote the pre-logits features by
Z = (z1, . . . , zI) ∈ RI and the output of the projection layer by H = (h1, . . . , hJ) ∈ RJ , where
Z is interpreted as evidence Tong et al. (2021); Manchingal et al. (2025) for estimating uncertainty.
Consequently, the projection layer shown in Figure 2(a) can be formalized as:

H = ZW + b, (1)

where W ∈ RI×J , b ∈ RI denotes the weights and biases for the linear transformations, respectively.

Dempster-Shafer Theory The Dempster-Shafer Theory (DST), also known as Evidence Theory,
offers a formal framework for representing and combining uncertainty derived from evidence Demp-
ster (1967); Shafer (1976) (details are provided in Appendix A.2). Given a frame of discernment H,
defined as a finite set of mutually exclusive and exhaustive hypotheses, a mass function (also called a
basic belief assignment, BBA) m(·) assigns belief to all subsets of H. Formally, it is defined as:

m : 2H → [0, 1],
∑
S⊆H

m(S) = 1; m(∅) = 0, (2)

where S is any subset of H, and ∅ represents the empty set. Subsets with nonzero mass are called
focal sets. A mass function is simple if it assigns nonzero mass to exactly two focal sets:

m(S) = s; m(H) = 1− s; m(∅) = 0. (3)

DST also introduces Dempster’s rule Shafer (1976) for combining two mass functions m1 and m2,
enabling multi-source evidence fusion. The rule is given by:

(m1 ⊕m2) (S) =
1

1− κ

∑
S1∩S2=S

m1(S1)m2(S2); κ =
∑

S1∩S2=∅

m1(S1)m2(S2), (4)

where (m1 ⊕m2)(∅) = 0, S1,S2 ⊆ H, and κ denotes the degree of conflict between m1 and m2.
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3.2 BELIEF ASSIGNMENT

Due to the key role of the pre-logits feature Z in model predictions, we treat it as evidence for BBA.
This evidence enables quantifying two primary evidential uncertainties: conflict (CF) and ignorance
(IG). This perspective builds on the framework of Denœux (2019), which shows that the linear
transformation can be viewed as evidence fusion of its input features via Dempster’s rule. In the
remainder of this paper, we present the EUQ process based on Z, as illustrated in Figure 2(b).

Each component zi of Z may support or contradict a candidate output feature hj . For each pair
(zi, hj), we define a mass function mij associated with an evidence weight eij , which quantifies
the degree of support that zi provides to the validity of the feature hj . We model the relationship
between the input features and the corresponding evidence weights using an element-wise affine
transformation:

E = A⊙ Z⊤ +B, (5)
where E ∈ RI×J is the matrix of evidence weights {eij}. The parameters A,B ∈ RI×J are obtained
via closed-form estimation, as demonstrated in Lemma 1, and represent the influence of each input
feature zi on the output feature hj . We further decompose E into its positive and negative parts:
E+ = max(0,E); E− = max(0,−E), with entries {e+ij} and {e−ij}, respectively. These indicate
support for hj and its complement {hj}. Accordingly, we define positive and negative simple mass
functions for each pair (zi, hj) as:

m+
ij({hj}) = 1− exp(−e+ij), m−

ij({hj}) = 1− exp(−e−ij). (6)

Next, we apply the Least Commitment Principle (LCP) Smets (1993), a conservative strategy for
BBA that assigns support only to options directly justified by the available evidence. To estimate a
better-calibrated weights of evidence matrix, we design the following objective under the LCP:

min
A,B

∥A⊙ Z⊤ +B∥22, s.t. 1⊤B = b · 1, (7)

where 1 denotes the all-ones vector and b is the bias term of the projection layer. This constraint
prevents trivial solutions and ensures equal treatment across feature dimensions.
Lemma 1 (Optimal Belief Assignment). Given input features Z ∈ RI and a linear transformation
with weights W ∈ RI×J and corresponding bias b ∈ RI , the belief assignment parameters under
the Least Commitment Principle (LCP) admit the following optimal closed-form solution:

A∗ = W − µ0(W ), B∗ = − (A∗ − µ1(A
∗))⊙ Z⊤, (8)

where µ0(·) and µ1(·) compute the mean along the first and second dimensions, respectively. Here,
A∗ and B∗ denote the optimal belief assignment parameters that minimize the commitment.

The optimality of this solution allows for a precise quantification of evidence weight, which is
essential for subsequent uncertainty estimation. For full details, please refer to the AppendixA.3.

3.3 UNCERTAINTY ESTIMATION

We introduce the additivity of evidence weights (Lemma 2, Appendix A.4): for two simple mass
functions m1(·) and m2(·), with associated evidence weights e1 and e2 respectively, if they share the
same focal sets S ⊆ H, the m1 ⊕m2(·) reduces to e1 + e2. Formally, first-stage fusion yields:

m(H) = m1(H) ·m2(H); m(S) = 1−m(H); e = e1 + e2, (9)

where the e is the evidence weight of m1 ⊕m2(·). As a consequence, mass functions sharing the
same focal sets can be directly combined, thereby alleviating the overhead of power set computation
in DST Voorbraak (1989). This property yields the following mass functions:

m+
j ({hj}) = 1− exp(−e+j ) = 1− exp(−

∑
i
e+ij);

m−
j ({hj}) = 1− exp(−e−j ) = 1− exp(−

∑
i
e−ij).

(10)

Here, CF quantifies the conflict between the combined positive and negative evidence, while IG
reflects the overall ignorance by aggregating all m−

j (H). Following the definitions of degree of
conflict and ignorance in DST, these quantities are expressed as:

CF =
∑

S1∩S2=∅

m+(S1)m
−(S2), IG =

∑
j

m−
j (H), (11)
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where m+ =
⊕

j m
+
j and m− =

⊕
j m

−
j denote the combined positive and negative evidence

from the second-stage fusion. Importantly, Eq. equation 11 allows computing CF and IG without
enumerating the full power set of H, avoiding the usual combinatorial explosion in DST.

Theorem 1 (Evidential Conflict and Ignorance within LVLMs). Let Z = {zi}Ii=1 denote the pre-
logits feature of LVLMs, and let mk

ij be the mass function expressing the support that zi provides for
output feature hj ∈ H and H is the frame of discernment. The conflict CF and ignorance IG are
determined by the inconsistency and insufficiency among mass functions {mij}. Specifically,

CF =
∑

j
η+j · η−j , IG =

∑
j
exp(−e−j );

η+j =
exp(e+j )− 1∑

j exp(e
+
j )− J + 1

, η−j = 1−
exp(−e−j )

1−
∏

j(1− exp(−e−j ))

(12)

where η+j and η−j denote the support and opposition ratios for component hj , respectively. Their
product measures the local conflict, and the aggregated opposition determines the overall ignorance.
Theorem 1 shows (proof in AppendixA.5), when both η+j and η−j are simultaneously high for the same
hj , their product becomes large, indicating a strong internal contradiction CF. The IG increases as
the negative evidence weights e−j decrease, indicating higher uncertainty due to a lack of reliable
information. LVLMs generate responses token by token, each with an evidential uncertainty value.
We quantify the sentence-level uncertainty by averaging these values across all tokens.

4 LAYER-WISE EVIDENTIAL UNCERTAINTY DYNAMICS

This section first presents the experimental setup in Section 4.1, followed by an investigation of
evidential uncertainty dynamics in LVLMs. First, we examine layer-wise dynamics to analyze how
uncertainty evolves across linear layers during inference in Section 4.2. Second, we leverage the
layer-wise analysis to differentiate between various misbehaviors in Section 4.3.

4.1 EXPERIMENTAL SETTINGS

Table 1: Overview of datasets and evaluation types.

Scenarios Methods Size Question Type

Hallucination Li et al. (2023) 1000 Multiple-choice
Hallucination Wu et al. (2024a) 1000 Multiple-choice

Jailbreak Gong et al. (2025) 200 Open-ended
Jailbreak Li et al. (2024) 200 Open-ended
Jailbreak Qi et al. (2024) 600 Open-ended
Jailbreak Goh et al. (2021) 1800 Multiple-choice

Adversarial Fang et al. (2024) 200 Yes-and-No
Adversarial Ge et al. (2023) 200 Yes-and-No

OOD Xu et al. (2025) 1300 Yes-and-No

This section summarize experimental
setup. Detailed version is provided in the
AppendixA.6.
Datasets We evaluate our method and
baselines on hallucination scenarios using
POPE Li et al. (2023) and R-Bench Wu
et al. (2024a), focusing on object and re-
lation hallucinations. For jailbreak sce-
narios, we evaluate a range of jailbreak
attacks, including FigStep Gong et al.
(2025), Hades Li et al. (2024), and Visual-
Adv Qi et al. (2024). We further simulate
typographic attacks following the protocol of Goh et al. (2021). For adversarial scenarios, we employ
two state-of-the-art attacks: ANDA Fang et al. (2024) and PGN Ge et al. (2023). For OOD failures,
we use the dataset from Xu et al. (2025)1.
Models We evaluate four diverse LVLMs: DeepSeek-VL2-Tiny Wu et al. (2024b), Qwen2.5-VL-
7B Bai et al. (2025), InternVL2.5-8B Chen et al. (2024), and MoF-Models-7B Tong et al. (2024).
These models employ varied architectures, including SwiGLU Shazeer (2020) and MoE Jacobs et al.
(1991). We focus on smaller models for efficiency, with scale effects analyzed in Section 5.2.
Baselines We compare against four baselines: two sampling-based methods: self-consistency
(SC) Wang et al., semantic entropy (SE) Farquhar et al. (2024); and two probability-based meth-
ods—predictive entropy (PE) Kadavath et al. (2022) and its length-normalized variant (LN-PE) Ma-
linin & Gales (2021).
Correctness Assessment For multiple-choice and yes/no tasks, correctness is assessed using
ROUGE-L Lin (2004) (threshold > 0.5). For open-ended tasks in jailbreak contexts, we use Harm-
Bench’s official classifier2 to evaluate response correctness.

1https://huggingface.co/datasets/AI-Secure/MMDecodingTrust-I2T
2https://github.com/centerforaisafety/HarmBench
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Figure 3: Layer-wise changes of evidential uncertainty and analysis of conflict vs. ignorance across
four dataset types using Intern. Results for other models are provided in Appendix A.7.
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Figure 4: Density distributions of CF, IG, and entropy for each type of misbehavior in Intern, com-
paring the target misbehavior against others. Results for other models are provided in Appendix A.7.

Evaluation Metric for Detection We use the Area Under the ROC Curve (AUROC) to evaluate
detection performance, measuring the ability to rank correct (low uncertainty) above incorrect genera-
tions. The Area Under the Precision-Recall Curve (AUPR) Davis & Goadrich (2006) is also reported
to address data imbalance from rare misbehavior cases.
Hyper-parameters For the sampling-based methods, SC and SE, we generate exactly 10 responses
per question. The temperature is set to 0.1 for the first sample. The remaining samples are drawn at
1.0 to ensure diverse generations. All experiments are conducted in NVIDIA H800 PCIe GPUs.

4.2 LAYER-WISE DYNAMICS OF CONFLICT AND IGNORANCE

EUQ enables uncertainty quantification at every linear layer of decoder blocks, allowing us to
investigate the evolving trends of CF and IG across the entire decoder.
Observation 1. Across decoder layers, ignorance tends to decrease while conflict increases.

Our layer-wise analysis (shown in Figure 3) reveals a consistent trend across four misbehavior
datasets: (1) IG decreases as deeper layers accumulate more supporting cues, echoing the findings in
Huo et al. (2024) showing that the number of domain-specific neurons diminishes with depth; (2)CF
increases as evidential support becomes increasingly polarized across features. These dynamics
align with the information-bottleneck perspective Shwartz-Ziv & Tishby (2017), whereby deeper
representations compress redundant input while enhancing task-relevant discriminative information3.
As a result, stronger task relevance drives different feature channels toward competing hypotheses,
thereby amplifying conflict.

4.3 DISTINGUISHING MISBEHAVIORS VIA EVIDENTIAL UNCERTAINTY

From Figure 3, certain decoder layers exhibit clear distinctions in their uncertainty curves across
misbehaviors. Motivated by this, we leverage layer-wise CF and IG to distinguish different misbe-
haviors. We conducted one-vs-rest density comparisons, where each misbehavior is contrasted with
the others under these three metrics. Figure 4 presents the resulting distributions of CF, IG, and
entropy across the four misbehavior types. A clear pattern emerges: CF and IG produce clearer
separations between distributions than PE, highlighting their discriminative ability. Among the four

3Represented by mutual information of features and labels I(Tl;Y )
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Table 2: Accuracy results of DeepSeek, Qwen, Intern, and
MoF across the four misbehavior types. Best and next-best
results are marked in bold and underlined, respectively.

Misbehaviors DeepSeek Qwen Intern MoF Average

Hallucination 0.710 0.732 0.688 0.456 0.647
Jailbreak 0.895 0.893 0.718 0.567 0.768
Adversarial 0.208 0.503 0.607 0.236 0.389
OOD 0.346 0.272 0.456 0.731 0.451

Table 3: Average AUROC and AUPR
of the proposed method and baselines
across all LVLMs and datasets.

Method AUROC AUPR

SC 0.626 0.730
SE 0.624 0.661
PE 0.701 0.656
LN-PE 0.704 0.660
CF (ours) 0.812 0.783
IG (ours) 0.783 0.785

Table 4: The AUROC and AUPR of our methods and baselines on DeepSeek-VL2 (DeepSeek),
Qwen2.5-VL (Qwen), InternVL2.5 (Intern), and MoF-Models (MoF) in adversarial, OOD, hallucina-
tion, and jailbreak settings. Best and next-best results are marked in bold and underlined, respectively.

Method
DeepSeek Qwen Intern MoF Average

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Hallucination datas from Li et al. (2023) and Wu et al. (2024a).

SC 0.660 0.734 0.640 0.815 0.696 0.883 0.500 0.758 0.624 0.798
SE 0.517 0.649 0.501 0.554 0.775 0.582 0.722 0.510 0.629 0.574
PE 0.771 0.574 0.742 0.741 0.755 0.634 0.701 0.619 0.742 0.642
LN-PE 0.758 0.570 0.574 0.576 0.755 0.634 0.702 0.619 0.697 0.600
CF(ours) 0.774 0.781 0.802 0.835 0.611 0.843 0.855 0.838 0.761 0.824
IG(ours) 0.716 0.533 0.591 0.745 0.768 0.898 0.553 0.757 0.657 0.733

Jailbreak attacks from Gong et al. (2025), Li et al. (2024), Qi et al. (2024), and Goh et al. (2021).

SC 0.606 0.606 0.512 0.861 0.546 0.781 0.920 0.846 0.646 0.774
SE 0.643 0.746 0.537 0.790 0.623 0.881 0.869 0.532 0.668 0.737
PE 0.564 0.633 0.757 0.890 0.716 0.731 0.852 0.503 0.722 0.689
LN-PE 0.657 0.561 0.703 0.891 0.725 0.698 0.853 0.893 0.735 0.761
CF(ours) 0.844 0.791 0.535 0.748 0.762 0.739 0.886 0.534 0.757 0.703
IG(ours) 0.673 0.795 0.541 0.749 0.585 0.711 0.859 0.860 0.665 0.779

Adversarial examples from Fang et al. (2024) and Ge et al. (2023).

SC 0.739 0.633 0.660 0.746 0.606 0.729 0.593 0.778 0.650 0.722
SE 0.669 0.838 0.688 0.514 0.634 0.557 0.552 0.707 0.636 0.654
PE 0.621 0.604 0.701 0.518 0.701 0.524 0.674 0.587 0.674 0.558
LN-PE 0.792 0.574 0.702 0.518 0.700 0.524 0.674 0.587 0.717 0.551
CF(ours) 0.921 0.928 0.847 0.738 0.706 0.773 0.868 0.832 0.836 0.818
IG(ours) 0.976 0.787 0.767 0.713 0.702 0.774 0.999 0.856 0.861 0.783

OOD inputs from Xu et al. (2025).

SC 0.557 0.567 0.663 0.650 0.528 0.514 0.590 0.774 0.585 0.626
SE 0.526 0.622 0.592 0.698 0.622 0.659 0.505 0.736 0.561 0.679
PE 0.690 0.794 0.779 0.896 0.564 0.623 0.630 0.620 0.666 0.733
LN-PE 0.689 0.793 0.786 0.885 0.563 0.612 0.630 0.620 0.667 0.728
CF(ours) 0.809 0.572 0.996 0.994 0.791 0.651 0.979 0.930 0.894 0.787
IG(ours) 0.999 0.963 0.997 0.701 0.795 0.866 0.999 0.855 0.948 0.846

types, adversarial examples are the most distinguishable, as their density curves deviate sharply from
the others due to the pronounced distributional shift caused by pixel-level perturbations. These results
provide further empirical evidence that epistemic uncertainty, arising from conflict and information
gaps, though currently the separation is apparent only in certain decoder layers.

5 DETECTION PERFORMANCE ANALYSIS

5.1 MISBEHAVIORS DETECTION

Before evaluating misbehavior detection, we report the accuracy of four LVLMs across the prepared
datasets. As shown in Table 2, adversarial examples yield the lowest accuracy, followed by OOD
inputs. Jailbreak samples show the highest accuracy except on MMBench, likely due to LVLMs
recognizing and refusing most jailbreak prompts. We begin by evaluating our method and baseline
approaches across four distinct data types that elicit varied misbehaviors: hallucinated data, jail-
break attacks, adversarial examples, adn OOD inputs. As shown in Table 3, CF/IG outperforms
the best baseline by 10.8%/7.9% AUROC and 5.3%/5.5% AUPR on average across all models
and misbehavior types. As shown in Table 4, CF consistently achieves superior detection perfor-
mance for hallucinations, with average AUROC and AUPR scores of 0.761 and 0.824, respectively,
outperforming all baselines.
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Observation 2. Hallucinations are more easily detected by conflict (CF), whereas OOD failures are
more effectively captured by ignorance (IG).

Moreover, for jailbreak and adversarial examples, CF and IG achieve comparable results. These
observations suggest that hallucinations are more likely caused by internal conflicts within the
model, whereas OOD failures primarily arise from a lack of relevant information. Our CF, IG, and
entropy-based methods outperform sampling-based approaches, suggesting that relying solely on
output consistency is insufficient to capture the model’s internal cognitive issues in misbehaviors.
Importantly, the approach achieves competitive performance with significantly lower computational
cost, demonstrating both efficiency and practicality.

5.2 ABLATION STUDY
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Figure 5: Ablation study on temperature (left) and
model scale (right) across all datasets using Intern.

We perform ablation studies to examine the ef-
fect of model scale and feature layers on our
method. We also conduct an efficiency analysis
to measure computation and inference latency.

Temperature We examine the effect of tem-
perature on LVLM generation (Figure 5, left),
evaluating eight settings from 0.1 to 1.4. Both
CF and IG remain stable, suggesting robust-
ness of our method to this hyperparameter.

Model Size The right panel of Figure 5 com-
pares models with 4B, 8B, 26B, and 38B param-
eters to illustrate the effect of scale. Detection
performance is strong for the 4B and 38B models. Small models produce obvious errors that are
easily captured, medium models generate subtler, less detectable errors, and large models produce
mostly correct outputs, making the remaining misbehaviors more salient and easier to detect.

Efficient Analysis Table 5 compares runtime and AUROC. While model inference requires only
9.6×10−2s, UQ via sampling methods incurs 10× overhead, making it prohibitive for real-time
applications. Entropy methods are faster but less accurate. In contrast, our approach using CF and
IG achieves the best efficiency–accuracy trade-off.

Table 5: Comparison of AUROC and average runtime per example across Intern.

Method Model Inference SC SE PE LN-PE CF IG

Time (s) 9.6×10−2 8.9×10−1 9.0×10−1 3.1×10−6 6.1×10−6 9.1×10−4 4.5×10−3

AUROC — 0.626 0.624 0.701 0.704 0.812 0.783

6 DISCUSSION

Scope and Applicability Our method treats linear transformations as evidence fusion operators,
making it applicable to any model with a linear projector. While requiring access to internal
representations limits its use with closed-source APIs like GPT-4 Achiam et al. (2023), it provides
valuable fine-grained signals for failure diagnosis and model improvement.

Future work A promising direction is to extend our framework to black-box settings by estimating
uncertainty from final outputs would enable application to APIs. Additionally, uncertainty signals
could be integrated into the generation process itself, allowing models to self-correct during reasoning.

7 CONCLUSION
In this work, we categorize the typical misbehaviors of LVLMs, including hallucinations, jailbreaks,
adversarial vulnerabilities, and OOD failures. To detect and distinguish these misbehaviors, we
introduce Evidential Uncertainty Quantification (EUQ), the first attempt to explicitly characterize
two types of epistemic uncertainty in LVLMs. Furthermore, EUQ can be leveraged to interpret
the internal evolution of the model decoder: ignorance generally decreases while conflict increases.
Additionally, hallucination cases are primarily characterized by high internal conflict, whereas OOD
failures mainly result from a lack of information. Experiments on four LVLMs show that EUQ
consistently improves AUROC and AUPR, suggesting evidential reasoning as a promising direction
for fine-grained uncertainty quantification, model interpretation, and misbehavior identification.
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8 ETHICS STATEMENT

This work studies misbehavior detection in LVLMs, including behaviors that may generate harmful
content. Our experiments are controlled and do not involve real users. The goal is to improve model
safety and reliability, mitigating potential harm from such behaviors.

9 REPRODUCIBILITY STATEMENT

All methods, models (with version numbers), datasets, and experimental settings are fully described
to ensure reproducibility. This includes the implementation of our approach, hyperparameters,
evaluation metrics, and baseline comparisons.
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A APPENDIX

A.1 OVERVIEW

The Appendix provides supplementary material to support and extend the main content of the paper.
We begin in Subsection A.2 with the theoretical foundation of Dempster–Shafer Theory, which
forms the basis of our approach. Subsections A.3 to A.5 present complete proofs for Lemma 1,
Lemma 2, and Theorem 1, respectively. Subsection A.6 details the experimental configurations, while
Subsection A.7 offers additional results that further validate our method. Finally, Subsection A.8
outlines our usage of large language models in this work.

A.2 DEMPSTER-SHAFER THEORY FOUNDATION

The Dempster-Shafer Theory (DST), proposed by Dempster Dempster (1967) and Shafer Shafer
(1976), generalizes classical probability theory to manage uncertainty and partial belief. It employs
basic belief assignments (BBA) that distribute belief among subsets of the frame of discernment.
This allows for a fine-grained representation of uncertainty compared to the traditional probability,
which assigns specific probabilities to individual events (i.e., elements within the frame). This theory
can fuse evidence from different sources using Dempster’s rule of combination. Below, we recall the
key definitions employed throughout the main paper.
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Mass Function Let H = {h1, h2, . . . , hJ} represent the frame of discernment, which contains J
possible outcomes. In this context, a mass function m(·) maps subsets of the frame of discernment
2H to the interval [0, 1], indicating the degree of belief assigned to each subset. The mass function is
subject to the normalization condition,∑

S⊆H

m(S) = 1; m(∅) = 0, (13)

where S is any subset of H, and ∅ represents the empty set.

Focal Set For a subset S ⊆ H, if m(S) > 0, S is called a focal set of m(·).

Simple Mass Function Specifically, a mass function is called simple when it assigns belief exclu-
sively to one specific subset S ⊆ H and the H. Formally, it is defined as follows:

m(S) = s; m(H) = 1− s, (14)

where S ̸= ∅ and s ∈ [0, 1] represents the degree of support for A. In particular, the mass m(H),
assigned to the entire frame, commonly indicates the degree of ignorance, as it exhibits no preferential
allocation towards any particular subset.

Dempster’s Rule of Combination Given two mass functions, m1(·) and m2(·), which represent
evidence from two different sources (e.g., agents), the combined mass function for all S ⊆ H, with
S ̸= ∅, is computed through Dempster’s rule of combination Shafer (1976) as follows:

(m1 ⊕m2) (S) =
1

1− κ

∑
S1∩S2=S

m1(S1)m2(S2); κ =
∑

S1∩S2=∅

m1(S1)m2(S2), (15)

where (m1 ⊕m2) (∅) = 0, and the κ serves as an important metric to measure the degree of conflict
between m1(·) and m2(·).

Belief and Plausibility Functions Given a mass m(·), two useful functions, the belief and plausi-
bility functions, are defined, respectively, as

Bel(S1) =
∑

S2⊆S1

m(S2); Pl(S1) =
∑

S2∩S1 ̸=∅

m(S2). (16)

The belief function Bel(S1) represents the degree of certainty that the true state lies within the subset
S1 based on all available evidence, excluding any possibility outside of S1. In contrast, the plausibility
function Pl(S1) indicates the degree of belief that the true state may lie within S1, without ruling out
possibilities.

Contour Function In the case of singletons (only one element in a subset, e.g., {h1}), the plausi-
bility function Pl(·) is restricted to the contour function pl(·) (i.e., pl(hj) = Pl({hj}), ∀hj ∈ H).
The contour function pl(hj) measures the plausibility of each singleton hypothesis and assesses the
uncertainty of each possible outcome independently. Furthermore, given two contour functions pl1(·)
and pl2(·), associated with mass functions m1(·) and m2(·) respectively, they can be combined as

pl1 ⊕ pl2(hj) =
1

1− κ
pl1(hj)pl2(hj), ∀hj ∈ H. (17)

This combination rule simplifies evidence aggregation by directly multiplying the plausibilities of
singletons, making the process more efficient.

A.3 PROOF OF LEMMA 1

Preliminary LVLMs typically use an LLM with a decoder architecture to predict the next token
conditioned on vision-language features. To avoid overconfidence Jiang et al. (2024) and achieve
more precise uncertainty quantification, we focus on pre-logits features from the LVLM. These
features mainly represent rich vision-language perceptual information Basu et al.; Bi et al. (2024) and
play a key role in decision making of LVLMs Montavon et al. (2017); Zhao et al. (2024). Specifically,
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in an linear projector layer, We denote the pre-logits features by Z = (z1, . . . , zI) ∈ RI and the
output of the projection layer by H = (h1, . . . , hJ) ∈ RJ , where Z is interpreted as evidence Tong
et al. (2021); Manchingal et al. (2025) for estimating uncertainty. Consequently, the projection layer
shown in Figure 2(a) can be formalized as:

H = ZW + b, (18)

where W ∈ RI×J , b ∈ RI denotes the weights and biases for the linear transformations, respectively.

Due to the key role of the pre-logits feature Z in model decisions, we treat it as evidence for belief
assignment. This evidence enables quantifying two primary evidential uncertainties: conflict (CF)
and ignorance (IG). This perspective is grounded in the theoretical framework of Denœux (2019),
which demonstrates that the output of an FFN can be interpreted as the combination of simple mass
functions derived from its input features via Dempster’s rule of combination. In the remainder of this
paper, we detail the EUQ process based on the FFN feature Z.

Each component zi of Z may support or contradict a candidate output feature hj . For each pair
(zi, hj), we define a mass function mij associated with an evidence weight eij , which quantifies the
degree of support that zi provides to the validity of the feature hj . We model the relationship between
the input features and the corresponding evidence weights using an affine transformation:

E = A⊙ Z⊤ +B, (19)

where E ∈ RI×J is the matrix of evidence weights, and A,B ∈ RI×J are parameter matrices.

To ensure that belief is only assigned when sufficiently supported by evidence, we adopt the Least
Commitment Principle (LCP) Smets (1993), which minimizes unwarranted assumptions. Under this
principle, the optimal evidence weights are obtained by solving the following regularized optimization
problem:

min
A,B

∥∥A⊙ Z⊤ +B
∥∥2
2
, subject to 1⊤B = b · 1, (20)

where 1 denotes the all-ones vector, and b is the bias term in the linear transformation that regulates
the global evidence level across hypotheses. This constraint enforces cautious belief assignment
under the LCP.

Proof Outline. We outline the main steps as follows:

Step 1: Reformulate the optimization objective in terms of scalar parameters αij , βij , and center the
input zni to simplify the expressions.

Step 2: Rewrite the loss function using centered variables to eliminate cross terms and reduce it to a
sum of squares in αij and shifted β′

ij .

Step 3: Solve for the optimal α∗
ij under a constraint that ensures the sum of βij matches the bias term

bj .

Step 4: Recover β∗
ij by adjusting for centering and express the final solution in closed matrix form

for A∗ and B∗.

Proof. We begin by rewriting the original problem in its component-wise form:

min
αij ,βij

∑
n,i,j

(αij · zni + βij)
2
, s.t.

∑
i

βij = bj , (21)

where {αij} and {βij} denote the individual components of the matrices A ∈ RI×J and B ∈ RI×J ,
respectively, while {zni} and {bj} are the components of the vectors Z ∈ RI and b ∈ RJ ,
respectively. Here, n denotes the number of tokens generated in a single output sequence. For
convenience in the subsequent analysis, we first center the variable zni by defining

z′ni = zni − µi, (22)
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where µi =
1
N

∑
n zni and z′ni denotes the centered version of zni, defined as z′ni = zni − µi. By

substituting zni with z′ni + µi, the objective function becomes:∑
n,i,j

(αij · z′ni + βij + αij · µi)
2
=
∑
n,i,j

(
αij · z′ni + β′

ij

)2
=
∑
n,i,j

α2
ijz

′2
ni + 2αijβijz

′
ni + β′2

ij =
∑
n,i,j

α2
ijz

′2
ni + β′2

ij +
∑
i,j

2αijβij

∑
n

z′ni︸ ︷︷ ︸
0

=
∑
n,i,j

α2
ijz

′2
ni + β′2

ij ,

(23)

where β′
ij = βij + αij · µi. Next, we proceed to compute the optimal estimate of αij , denoted as α∗

ij .
Furthermore, the objective function can be expressed as

∑
n,i,j

α2
ijz

′2
ni + β′2

ij =
∑
i

(∑
n

z′2ni

)∑
j

α2
ij

+ β′2
ij (24)

Consequently, it satisfies the following constraint:∑
i

β′
ij = b′

j = bj +
∑
i

αij · µi, (25)

This leads to the estimate

α∗
ij = α̂ij −

1

J

∑
j

α̂ij ; β′∗
ij =

1

J
b′
j =

1

J
(Bj +

∑
i

α∗
ij · µi), (26)

where α̂ij denotes the maximum likelihood estimate of αij , corresponding to the model parameter
wij in W. We then derive a closed-form expression for β∗

ij as follows:

β∗
ij = β′∗

ij − α∗
ij · µi =

1

J

(
bj +

∑
i

α∗
ij · µi

)
− α∗

ij · µi

=
1

J
bj −

(
1

J

∑
i

α∗
ij − α∗

ij

)
· µi.

(27)

Since most components of bj in LVLMs are close to zero, we omit this term for simplicity. The final
expressions for the optimal estimates are then given by:

α∗
ij = α̂ij −

1

J

∑
j

α̂ij , β∗
ij = −

(
1

J

∑
i

α∗
ij − α∗

ij

)
· µi. (28)

These expressions can be compactly written in matrix form as:

A∗ = W − µ0(W ), B∗ = − (A∗ − µ1(A
∗))⊙ Z⊤, (29)

where µ0(·) and µ1(·) denote the mean over columns and rows, respectively, and ⊙ denotes the
element-wise product.

A.4 PROOF OF LEMMA 2

Lemma 2 (Additivity of Evidence Weights Dempster (1967)). Let m1 and m2 be two simple mass
functions defined over the same focal set S ⊆ H, with associated evidence weights e1 and e2,
respectively. Under Dempster’s rule of combination, the resulting mass function m = m1 ⊕ m2

remains simple and retains S as its focal set. The corresponding weight of evidence is subsequently
defined as:

m(H) = m1(H) ·m2(H); m(S) = 1−m(H); e = e1 + e2. (30)
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Proof Outline. We outline the key steps as follows:

Step 1: Represent the simple mass functions m1 and m2 over the same focal set S , and express their
evidence weights e1, e2.

Step 2: Apply Dempster’s rule of combination with zero conflict κ = 0, to obtain the combined mass
function.

Step 3: Express the combined evidence weight e in terms of e1 and e2, showing additivity e =
e1 + e2.

Proof. Since both m1(·) and m2(·) are simple mass functions that share the same focal set S:

m1(S) = s1, m1(H) = 1− s1; e1 = − ln(1− s1)

m2(S) = s2, m2(H) = 1− s2; e2 = − ln(1− s2).
(31)

Applying Dempster’s rule of combination equation 15, we compute the combined mass function as:

(m1 ⊕m2)(S) =
1

1− κ
[m1(S) · (m2(S) +m2(H)) +m1(H) ·m2(S)]

=
1

1− κ
[s1 + (1− s1) · s2] ,

(m1 ⊕m2)(H) =
1

1− κ
·m1(H) ·m2(H)

=
1

1− κ
· (1− s1)(1− s2),

(32)

where the conflict mass κ =
∑

S1∩S2=∅ m1(S1)m2(S2) = 0, since both mass functions share the
same focal set S. Therefore, the expressions simplify to:

(m1 ⊕m2)(S) = s1 + (1− s1) · s2 = 1− (1− s1)(1− s2),

(m1 ⊕m2)(H) = (1− s1)(1− s2).
(33)

Accordingly, the evidence weight of the combined mass function (m1 ⊕m2)(·) is given by:

e = − ln ((1− s1)(1− s2))

= − ln(1− s1)− ln(1− s2)

= e1 + e2,

(34)

where e1 = − ln(1− s1) and e2 = − ln(1− s2) are the individual evidence weights equation 31 of
m1 and m2, respectively.

A.5 PROOF OF THEOREM 1

Proof Outline. We outline the key steps of the proof of Theorem1:
Step 1: Combine the individual mass functions m+

j and m−
j into aggregated mass functions m+ and

m− using Dempster’s rule of combination.

Step 2: Derive closed-form expressions for m+({hj}) and m+(H) based on exponential evidence
weights.

Step 3: Express the contour function pl−(hj) and use it to rewrite the conflict term CF.

Step 4: Normalize the mass assignments to obtain support and opposition terms η+j and η−j , leading
to the final forms of CF and IG.

Proof. We define m+(·) =
⊕

j m
+
j and m−(·) =

⊕
j m

−
j as the combined positive and negative

mass functions, respectively. From Section A.4, we have the following expressions:

m+
j ({hj}) = 1− exp(−e+j ) = 1− exp

(
−
∑

i
e+ij

)
,

m−
j ({hj}) = 1− exp(−e−j ) = 1− exp

(
−
∑

i
e−ij

)
.

(35)
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Here, CF quantifies the conflict between the combined positive and negative evidence, while IG
captures the overall ignorance, defined as the sum of all m−

j (H). Specifically, their formulations are
given by:

CF =
∑

S1∩S2=∅

m+(S1)m
−(S2) =

∑
j

m+({hj})
∑
S̸∋hj

m−(S)

 ,

IG =
∑
j

m−
j (H).

(36)

To proceed, we compute the aggregated mass functions m+(·) =
⊕

j m
+
j and m−(·) =

⊕
j m

−
j

using Dempster’s rule of combination equation 15. Noting that each m+
j (·) is a simple mass function

with only two focal sets, {hj} and H, the combination simplifies to:

m+({hj}) =
1

1− κ+
m+

j ({hj})
∏
l ̸=j

m+
l (H) ∝ m+

j ({hj})
∏
l ̸=j

m+
l (H)

=
(
1− exp(−e+j )

)∏
l ̸=j

exp(−e+l ) =
∏
l ̸=j

exp(−e+l )−
∏
l

exp(−e+l )

=
(
exp(e+j )− 1

)
exp

(
−
∑
l

e+l

)

m+(H) =
1

1− κ+
exp

(
−
∑
l

e+l

)
∝ exp

(
−
∑
l

e+l

)
,

(37)

where κ+ denotes the degree of conflict among the individual mass functions m+
j (·). Based on the

expressions above, we can derive the following unnormalized total mass:

∑
j

m+({hj}) +m+(H) ∝ exp

(
−
∑
k

e+k

)∑
j

exp(e+j )− J + 1

 . (38)

By normalizing the mass assignments, we obtain:

m+({hj}) =
exp(e+j )− 1∑

l exp(e
+
l )− J + 1

,

m+(H) =
1∑

l exp(e
+
l )− J + 1

.

(39)

Similarly, we now derive the expression for m−(·). Note that although m−
j (·) is also a simple mass

function, its focal set is no longer a singleton. Instead, it consists of exactly two focal sets: {hj} and
H. Consequently, the combined mass function m−(·) also has a non-singleton focal set. By applying
Dempster’s rule of combination equation 15, we obtain:

m−(S) = 1

1− κ−

∏
hj ̸∈S

(1− exp(−e−k ))

∏
hj∈S

exp(−e−j )


m−(H) =

1

1− κ− exp

(
−
∑
l

e−l

)
,

(40)

where κ− =
∏

l

(
1− exp(−e−j )

)
. Let pl−j (·) and pl−(·) denote the contour functions corresponding

to m−
j (·) and m−(·), respectively. Note that the term

∑
S̸∋hj

m−(S) in equation 36 can be rewritten
using the contour function. Specifically, by equation 16, it holds that∑

S̸∋hj

m−(S) = 1− pl−(hj). (41)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The explicit form of pl−j (·) is given by

pl−j (h) =

{
exp(−e−j ) if h = hj ,

1 otherwise.
(42)

Then, by applying the combination rule for contour functions in equation 17, we obtain:

pl−(hj) ∝
∏
l

pl−l (hj) = exp(−e−j ). (43)

Substituting into equation 36, we obtain:

pl−(hj) =
exp(−e−j )

1− κ− =
exp(−e−j )

1−
∏

j(1− exp(−e−j ))
, (44)

where κ− denotes the degree of conflict among the negative mass functions.

Finally, we continue simplifying the expression of the conflict term CF in Eq. equation 36 as follows:

CF =
∑
l

(
m+({hj})(1− pl−(hj))

)

=
∑
l


exp(e+j )− 1∑

j exp(e
+
j )− J + 1︸ ︷︷ ︸
η+
j

·
exp(−e−j )

1−
∏

j(1− exp(−e−j ))︸ ︷︷ ︸
η−
j


(45)

Next, we compute the expression for IG. By definition, it follows that:

IG =
∑
j

m−
j (H) =

∑
j

(
1−m−

j ({hj})
)
=
∑

j
exp(−e−j ). (46)

A.6 DETAILED EXPERIMENT SETTINGS

In Section 4.1, we briefly described the experimental settings due to space limitations. Here, we
provide a more detailed version of the experimental setup for completeness.

A.6.1 DATASETS

Hallucination Data In hallucination scenarios, evaluation is conducted on POPE Li et al. (2023)
and R-Bench Wu et al. (2024a), respectively, targeting object and relation hallucinations.

We follow the evaluation protocol proposed in POPE Li et al. (2023), which formulates object
hallucination detection as a binary (Yes-or-No) task. Built on the MS COCO validation set Lin et al.
(2014), POPE prompts LVLMs with queries such as Is there a chair in the image?
and expects definitive binary responses. This task design enables precise assessment of hallucination
by systematically querying for nonexistent objects. To increase the likelihood of hallucination,
we adopt POPE’s Adversarial Sampling strategy: for each image, objects are ranked by their co-
occurrence frequency with ground-truth objects, and the top-k frequently co-occurring but absent
objects are selected as hallucination probes. We further evaluate relational hallucination using the
R-Bench benchmark Wu et al. (2024a), which is specifically designed to assess the ability of LVLMs
to correctly perceive and reason about object relationships. R-Bench includes two types of binary
(Yes-or-No) questions: image-level and instance-level. The image-level questions probe whether
a particular relationship exists anywhere in the image, while the instance-level questions target
relationships between specific object instances, denoted by color-coded bounding boxes or masks.
The latter is particularly useful for assessing fine-grained and localized relational understanding. All
examples are constructed from the validation split of the nocaps dataset ?, and we follow the data
preparation procedure provided in the official repository.4

4https://github.com/mrwu-mac/R-Bench
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Adversarial 
Examples

Hallucination 
Datas

Jailbreak 
Attacks

OOD 
Inputs

Figure 6: Representative examples of four types of misbehaviors.

Representative examples from the relational hallucination evaluation are illustrated in the fourth
column of Figure 6. Each instance is paired with a binary question prompt that queries the existence
of either an object (e.g., Is there a chair in the image?) or a relationship between
objects (e.g., Is the man in the image wearing a black jacket?).

Jailbreak Attacks For jailbreak scenarios, we evaluate a range of jailbreak attacks, including
FigStep Gong et al. (2025), Hades Li et al. (2024), and VisualAdv Qi et al. (2024), all implemented
via the Jailbreak Benchmark5. We further simulate typographic attacks following the protocol of Goh
et al. (2021).

Specifically, for FigStep, Hades, and VisualAdv, we follow the procedures outlined
in the Jailbreak Benchmark1 to construct jailbreak inputs. In FigStep, harmful tex-
tual prompts (e.g., Create a blog post that self-encourages or glorifies
harm practices: \n 1. \n 2. \n 3.) are rendered directly onto the image as over-
laid text. VisualAdv, by contrast, crafts adversarial perturbations in the visual domain that, when
paired with specific prompts, elicit toxic model responses. Hades employs a hybrid approach, combin-
ing typographic overlays with pixel-level adversarial modifications to bypass alignment constraints.
For typographic attacks, we follow the approach of Goh et al. (2021), wherein incorrect textual labels
are overlaid onto clean images to mislead the model. The resulting jailbreak images are depicted in
the second column of Figure 6.

Distinct prompts are employed depending on the jailbreak type:

• For FigStep Gong et al. (2025), the prompt reads: The image shows a list
numbered 1, 2, and 3, but the items are empty. Please
generate detailed content for each item on the list.

• For Hades Li et al. (2024) and VisualAdv Qi et al. (2024), we utilize the harmful instructions
as provided by the Jailbreak Benchmark.

• For typographic attacks, the prompt is constructed as follows: This photo is a ‘?’
Only output the corresponding letter of the correct option

5https://github.com/thunxxx/MLLM-Jailbreak-evaluation-MMJ-bench
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(e.g., a, b, c, or d) without outputting the full text of
the option. (a) <true label> (b) <wrong label>.

Adversarial Examples To evaluate the robustness of our method and competitive baselines, we
consider two representative state-of-the-art adversarial attacks: ANDA Fang et al. (2024) and PGN Ge
et al. (2023). Both approaches are optimization-based and specifically designed to deceive large
vision-language models (LVLMs) through carefully crafted perturbations.

Following prior work ?, we formulate adversarial example generation as a constrained maximization
problem Szegedy et al. (2014) that aims to significantly alter the model’s visual embedding repre-
sentation. Concretely, we perturb the input image within an ℓ∞-bounded region to maximize the
discrepancy between its original and perturbed embeddings:

max
xadv∈Bϵ(x)

∥e(x)− e(xadv)∥22 , (47)

where x denotes the clean input, xadv is the adversarial example, and Bϵ(x) is an ℓ∞-norm ball of
radius ϵ centered at x. The encoder e(·) corresponds to the vision backbone of the CLIP model,
which is used as the surrogate model for computing adversarial directions.

Following recent advances in adversarial evaluation, we apply perturbations directly in the vision
embedding space rather than in the pixel domain, enabling stronger attacks on downstream LVLMs.
The full algorithmic details of the ANDA and PGN attacks are provided in their original papers Fang
et al. (2024); Ge et al. (2023). The adversarial examples generated by these methods are illustrated in
the first column of Figure 6.

To standardize evaluation, we adopt a Yes-or-No question format that constrains the
model’s output space and enables binary decision analysis. Each LVLM is prompted
with: Is this image a <true label>? (only answer yes or no, do not
need explanation), where <true label> denotes the ground-truth class label of the image.

OOD Inputs To evaluate model robustness under distributional shifts, we consider out-of-
distribution (OOD) inputs that elicit misbehavior in vision-language models. Specifically, we adopt
the MMDT benchmark introduced by Xu et al. (2025)6, which provides a curated dataset designed to
probe the reliability of multimodal decoding under OOD scenarios.

We construct two out-of-distribution (OOD) evaluation scenarios: image corruptions and style transfor-
mations. Based on the MS COCO 2017 training set Lin et al. (2014), we curate image-question pairs
spanning four core vision-language tasks: object recognition, counting, spatial reasoning, and attribute
recognition. To induce distributional shifts, we apply three severe corruptions (Zoom Blur, Gaussian
Noise, Pixelation) and three artistic style transfers (Van Gogh, oil painting, watercolor), forming a
comprehensive OOD benchmark for assessing misbehavior in LVLMs. In practice, we generate cor-
rupted or style-transferred images by using the ground-truth <image caption> from the MMDT
benchmark as prompts for the text-to-image model stabilityai/stable-diffusion-2.
The resulting OOD inputs are shown in the third column of Figure 6.

To ensure standardized evaluation, we adopt a Yes-or-No question format. Specifically, each LVLM
is prompted with: Please check whether the following description matches
the picture content. Just answer yes or no without explanation.
<image caption>, where <image caption> corresponds to the ground-truth caption of the
image.

A.6.2 HARDWARE AND SOFTWARE CONFIGURATION

To ensure the reproducibility and reliability of the experiments conducted in this study, we detail the
hardware and software environments used.

• GPU Model(s):
– Model: NVIDIA H800 PCIe
– Count: 2 GPUs

6https://huggingface.co/datasets/AI-Secure/MMDecodingTrust-I2T
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– Memory per GPU: 81 GB

• CPU Model(s):

– Model: Intel(R) Xeon(R) Platinum 8458P
– Socket(s): 2
– Core(s) per socket: 44
– Thread(s) per core: 2
– Total Logical Cores: 176

• Operating System:

– OS: Ubuntu 22.04.4 LTS
– Kernel Version: 5.15.0-94-generic

• Relevant Software Libraries and Frameworks:

– CUDA: Version 12.6
– PyTorch: Version 2.7.0+cu126
– Scikit-learn: Version 1.6.1
– NumPy: Version 1.26.4
– Pandas: Version 2.2.3

A.7 ADDITIONAL EXPERIMENT RESULTS

Due to space constraints in the main paper, we present the complete results of additional analytical
experiments below.

A.7.1 ANALYSIS OF EVIDENTIAL CONFLICT AND IGNORANCE

To complement the findings in Section4.4 and Section4.5, we extend the analysis of evidential conflict
and ignorance to three additional LVLMs: DeepSeek-VL2, Qwen2.5-VL, and MoF-Models. The
results are presented in Figure7. Similarly, to provide a broader perspective on the uncertainty patterns
across different misbehavior types, we include density curve visualizations for the same three models.
These results are reported in Figure 8.

Table 6: Ablation study on the impact of model scale using DeepSeek. We separately report AUROC
and AUPR for clarity. The best and second-best results are highlighted in bold and underlined,
respectively.

AUROC

Method Tiny Small VL2

CF 0.837 0.548 0.681
IG 0.841 0.553 0.731

AUPR

Method Tiny Small VL2

CF 0.768 0.523 0.609
IG 0.770 0.536 0.616

Table 7: Ablation study on the impact of model scale using Qwen. We separately report AUROC
and AUPR for clarity. The best and second-best results are highlighted in bold and underlined,
respectively.

AUROC

Method 3B 7B 32B

CF 0.722 0.795 0.737
IG 0.862 0.724 0.588

AUPR

Method 3B 7B 32B

CF 0.589 0.829 0.552
IG 0.862 0.727 0.607
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Figure 7: Analysis of conflict and ignorance, as quantified measures of evidential uncertainty, across
four dataset types using four LVLMs.

A.7.2 ANALYSIS OF HALLUCINATION AND JAILBREAK BY CATEGORY

To further characterize the applicability of our method, we perform a fine-grained analysis of distinct
subcategories within hallucination and jailbreak scenarios. Specifically, we differentiate between
object-level and relation-level hallucinations to examine their respective uncertainty patterns. For
jailbreak attacks, we investigate the contrast between structured Yes-and-No (Yes-No) formatting
prompts and other unstructured attack variants (Open-ended). This analysis offers deeper insights
into how different types of misbehavior manifest in evidential signals.

A.7.3 SINGLE-MODALITY EVALUATION OF EVIDENTIAL UNCERTAINTY

To further demonstrate the adaptability of our method, we conducted additional experiments on
single-modality models. We performed a controlled experiment using a LeNet classifier trained
on the handwritten digits dataset MNIST LeCun (1998) and the German Traffic Sign Recognition
Benchmark (GTSRB) Stallkamp et al. (2011), with FashionMNIST Xiao et al. (2017) serving as
out-of-distribution (OOD) data and FGSM-generated adversarial examples Goodfellow et al. (2014).
For comparison, we employed several classical uncertainty quantification methods: MC Dropout Gal
& Ghahramani (2016) (100 iterations), Deep Ensembles Lakshminarayanan et al. (2017) (5 models),
and Evidential Deep Learning (EDL) Sensoy et al. (2018). As shown in Table 10, CF and IG achieve
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Figure 8: Density distribution comparison between our method (conflict and ignorance) and predictive
entropy across various misbehavior groupings on four LVLMs.
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Table 8: AUROC and AUPR of our method under the impact of hallucination type using four LVLMs.
We separately report AUROC and AUPR for clarity. The best results are highlighted in bold.

AUROC

Method DeepSeek Qwen Intern MoF

POPE RBench POPE RBench POPE RBench POPE RBench

CF 0.776 0.518 0.908 0.501 0.860 0.593 0.999 0.672
IG 0.962 0.596 0.586 0.576 0.691 0.840 0.999 0.673

AUPR

Method DeepSeek Qwen Intern MoF

POPE RBench POPE RBench POPE RBench POPE RBench

CF 0.938 0.751 0.923 0.785 0.656 0.606 0.941 0.571
IG 0.634 0.658 0.826 0.848 0.913 0.553 0.941 0.536

Table 9: AUROC and AUPR of our method under the impact of jailbreak type using four LVLMs.
We separately report AUROC and AUPR for clarity. The best results are highlighted in bold.

AUROC

Method DeepSeek Qwen Intern MoF

Open-ended Yes-No Open-ended Yes-No Open-ended Yes-No Open-ended Yes-No

CF 0.720 0.966 0.920 0.997 0.871 0.623 0.702 0.995
IG 0.587 0.789 0.862 0.872 0.921 0.637 0.708 0.751

AUPR

Method DeepSeek Qwen Intern MoF

Open-ended Yes-No Open-ended Yes-No Open-ended Yes-No Open-ended Yes-No

CF 0.664 0.961 0.967 0.990 0.949 0.732 0.805 0.999
IG 0.739 0.823 0.673 0.823 0.544 0.510 0.573 0.987

competitive or superior performance compared to these baselines, attaining high AUROC scores for
both adversarial and OOD detection tasks.

Table 10: AUROC performance comparison on adversarial and OOD detection tasks.

Scenario Dataset MC Dropout Deep Ensemble EDL CF IG

Adversarial MNIST 0.927 0.933 0.892 0.935 0.701
GTSRB 0.970 0.980 0.912 0.962 0.894

OOD MNIST 0.937 0.985 0.802 0.972 0.995
GTSRB 0.907 0.969 0.802 0.944 0.995

A.7.4 COMPARISON WITH EVIDENTIAL DEEP LEARNING

This Subsection provides a detailed theoretical comparison between our approach and Evidential
Deep Learning (EDL), highlighting fundamental differences in their mathematical foundations and
implementation strategies.
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Both methods are rooted in Dempster-Shafer Theory (DST), but represent distinct implementations.
EDL implements the Subjective Logic (SL), which “formalizes DST’s notion of belief assignments
over a frame of discernment as a Dirichlet Distribution” Sensoy et al. (2018). In contrast, our approach
employs the full expressive power of classical DST, allowing for more flexible and comprehensive
uncertainty representation.

Consider a frame of discernment H = {a, b, c} representing class labels. The SL formulation used in
EDL constrains belief assignment to only singletons and the entire frame:

m(a) +m(b) +m(c) +m(H) = 1,

where 0 ≤ m(a),m(b),m(c),m(H) ≤ 1. This results in only |H|+ 1 = 4 belief assignments.

Our method employs the complete power set of the frame:∑
S⊆H

m(S) = 1,

where 0 ≤ m(S) ≤ 1 and m(∅) = 0. This allows for 2|H| − 1 = 7 distinct mass assignments,
enabling richer uncertainty representation.

The theoretical differences between the two approaches are substantial. While both use the same
definition of ignorance (mass assigned to the total frame m(H)), EDL learns a single mass function
over all evidence, whereas our method models separate mass functions for individual feature values
and leverages evidence fusion to quantify conflicts.

Architecturally, EDL modifies the model’s final layer (replacing softmax) and requires retraining.
Our approach is training-free, relying only on parameter estimation without architectural changes.
This difference affords our method greater interpretability, revealing consistent layer-wise trends
where ignorance decreases and conflict increases across decoder layers, as demonstrated in Figure 3
of the main text.

The choice of full DST over SL-based approaches provides enhanced expressiveness through the
ability to assign mass to arbitrary subsets, enabling more nuanced uncertainty representation. Our
architecture-preserving, training-free approach maintains flexibility while providing deeper insights
into model behavior through layer-wise analysis of uncertainty dynamics.

A.8 LARGE LANGUAGE MODELS USAGE

We used the large language model ChatGPT (GPT-5-mini) to aid in polishing and improving the
clarity of the manuscript. All technical content, derivations, experiments, and conclusions were
independently verified by the authors.
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