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ABSTRACT

We introduce Bias-Variance Weighted Actor Critic (BiVWAC), a modification
scheme for actor-critic algorithms allowing control over the bias-variance weighting in
the critic. In actor-critic algorithms, the critic loss is the Mean Squared Error (MSE).
The MSE may be decomposed in terms of bias and variance. Based on this decompo-
sition, BiVWAC constructs a new critic loss, through a hyperparameter α, to weigh
bias vs variance. MSE and Actor with Variance Estimated Critic (AVEC, which only
considers the variance in the MSE decomposition) are special cases of this weighting
for α = 0.5 and α = 0 respectively. We demonstrate the theoretical consistency
of our new critic loss and measure its performance on a set of tasks. We also study
value estimation and gradient estimation capabilities of BiVWAC to understand the
means by which BiVWAC impacts performance. We show experimentally that the
MSE is suboptimal as a critic loss when compared to other α values. We equip SAC
and PPO with the BiVWAC loss to obtain BiVWAC-SAC and BiVWAC-PPO and we
propose a safe α value, α∗, for which BiVWAC-SAC is better than or equal to SAC
in all studied tasks but one in terms of policy performance. We also point out that
BiVWAC introduces minimal changes to the algorithms and virtually no additional
computational cost. In addition we also present a method to compare the impact of
critic modifications between algorithms in a sound manner.

1 INTRODUCTION

Most of current learning algorithms are based on the concept of empirical risk minimization (ERM).
Introduced by Vapnik (1998) the empirical risk minimizer is defined in a supervised learning prob-
lem as a function that minimizes the empirical risk. In our case this will be the mean squared error
(MSE):

f̂ ∈ argmin
f∈F

1

n

n∑
i=1

(f(Xi)− Yi)
2

where (X1, Y1), . . . , (Xn, Yn) ∈ Rd × R are the data, Y is the target we want to learn, X the
features, andF is some class of functions (e.g. a neural network). This is meant as an approximation
of solving the problem:

f∗ ∈ argmin
f∈F

E[(f(X)− Y )2]

because we only have access to a sample of data and we do not know the distribution of X and Y .

ERM for Deep RL value prediction Deep reinforcement learning (Deep RL) is no exception to
this rule. However the setting varies slightly, which leads to important considerations. In Deep RL
one wishes to learn the value function V (or Q the state-action value function). We use supervised
learning to do so through the learning of a parameterized function fϕ (most likely a neural network
with weights ϕ). However, the targets Y (V or Q) are unknown in RL. Instead a proxy Ŷ (V̂ or Q̂)
of those values is used. This proxy is often an estimation of the “true” values, built using the reward
received at the current step rt and some combination of the estimations of the value of the next states
using fϕ. This differs from the classical supervised setting as, adding to the unknown targets, the
proxy targets are functions of the estimator they are used to train, which leads to a non-stationary

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

learning problem. One may argue that this setting is not a proper supervised learning one where the
“targets” (the proxy targets) are already known before prediction. However, the implicit assumption
made in Deep RL is that these proxy targets Ŷ are good enough representations of the true targets
in order for fϕ to still learn about Y . Thus it is considered safe to assume that, through the use of
a proxy, we are still learning information about the true targets. However this entails an additional
error which encapsulates how good of an approximation of Y , Ŷ is. This composition of error can be
understood as trying to learn fϕ to reduce MSE(fϕ, Ŷ ) while also reducing the difference between
MSE(fϕ, Ŷ ) and MSE(fϕ, Y ) :

MSE(fϕ, Y ) = MSE(fϕ, Ŷ ) + (MSE(fϕ, Y )−MSE(fϕ, Ŷ ))

The validity of the proximity between Ŷ and Y is a common belief, and the experimental validation
of this assumption is nonetheless rarely studied as pointed out by Ilyas et al. (2020).

The common way to solve this supervised learning problem in RL is to minimize MSE(fϕ, Ŷ )
to hopefully also reduce MSE(fϕ, Y ). Then, we can apply the bias-variance decomposition of
the MSE (James et al., 2023, Section 2.2.2) to MSE(fϕ, Ŷ ) (although strictly speaking we are not
dealing with bias and variance but bias (or variance) of an estimation of the target). This allows us
to study bias-variance weightings in our prediction problem.

Bias-variance weighting in Deep-RL value prediction In this work we will study how bias-
variance weightings in the critic loss impacts both the critic’s performance (in terms of value es-
timation) and the agent’s performance (in terms of policy returns). Our intuition comes from the
fact that the traditional critic loss (the MSE) weighs equally bias and variance, and that brings two
issues: first, this 50-50 weighting is arbitrary; second, Tucker et al. (2018), Ilyas et al. (2020) and
Flet-Berliac et al. (2021) argue that the core problem in value estimation is the variance and not
the bias. As a consequence, we want to study how changing this weighting impacts performances,
and try to understand through which aspect of the actor-critic framework the modifications happens.
Understanding more about how this weighting impacts learning will allow to more efficiently select
the weighting to get better results across multiple tasks, as well as giving a better understanding on
how the critic impacts the learning of actor-critic algorithms.

Related works Other works have studied core concepts of actor-critics algorihms and challenging
the common beliefs around them. Notably, CrossQ (Bhatt et al., 2024) challenges the need for a
critic in the first place, Ilyas et al. (2020) measure experimentally the validity of the assumption that
the critic fits the true values. The same is also true for common building blocks of RL algorithms
such as n-steps returns (Daley et al., 2024). There is also an important amount of work regarding
improving bias and variance in RL such as Averaged-DQN (Anschel et al., 2017) or studying their
properties (Zhang et al., 2021). Our work lies ate the intersections of these questions.

Contributions

1. We introduce Bias-Variance Weighted Actor Critic(BiVWAC), a new actor-critic algorithms
modification allowing to control the bias-variance weighting of the critic loss through a new
hyperparameter: α ∈ [0, 1) and prove that the BiVWAC objective still leads to an unbiased
estimation of the policy gradient∇J , ∀α ∈ [0, 1)

2. We empirically show that BiVWAC-SAC is strictly better than SAC on all the tasks we stud-
ied using the same value for α.

3. We empirically study BiVWAC-PPO and show that the modification can lead to better or
worse results depending on the α value, pointing to a possible performance increase if α is
tuned correctly.

4. We provide intuitions about the underlying mechanisms that lead to variations in perfor-
mances due to BiVWAC and we provide experimental results to study those claims.
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2 PRELIMINARIES

2.1 BACKGROUND AND NOTATIONS

Reinforcement Learning (RL) is solving a Markov Decision Problem (MDP). In this work we con-
sider infinite-horizon MDPs with continuous states s ∈ S and continuous-actions a ∈ A, with
S ⊆ R∥S∥ the state space and A ⊆ R∥A∥ the action space, a transition function P (st+1|st, at) :
S2 × A → [0, 1] (with a slight abuse of notation as we denote probabilities as a function, as in
Sutton & Barto (2020)) and a reward function R(st, at, st+1) : S × A × S → R, with R ⊂ R the
finite set of possible rewards. πθ(a|s) : S × R∥θ∥ → A denotes a stochastic policy parameterized
by θ (πθ(a|s) = π(a|s, θ)). In this work we limit our scope to policies which can be represented
by Gaussian distributions (where we learn the mean and standard deviation of Gaussian distribu-
tions which are then used to sample continuous actions). The agent repeatedly interacts with the
environment by sampling actions at ∼ πθ(.|st), and observing rewards rt = R(st, at, st+1) and
new states st+1 ∼ P (.|st, at). The objective is to find a policy πθ that maximizes the expected
sum of discounted rewards: J(πθ) ≜ Eτ∼πθ

[
∑∞

t=0 γ
trt+1], where γ ∈ [0, 1) is the discount fac-

tor. Throughout this paper Eτ∼π[X] denotes the expectation of X under samples from trajectory
τ generated by π in the current task (which is considered implicit, hence the lack of inclusion
of P , R or s0), this means that at, st, and rt are taken from τ = (s0, a0, r0, s1, a1, r1, ...), a
trajectory sampled from the environment using πθ through repeated sampling of at ∼ πθ(.|st),
st+1 ∼ P (.|at, st) and rt = R(st, at, st+1), ∀t ∈ N+. We denote the value of a state s under policy
π as V π(s) ≜ Eτ∼π

[∑∞
k=0 γ

krt+k+1|st = s
]

and the value of an action a in state s under policy π

as Qπ(s, a) ≜ Eτ∼π [
∑∞

k=0 γ
trt+k+1|st = s, at = a].

In this work we consider deep reinforcement learning where the policy and the value function are
learned using parameterized function estimators (usually a neural network, hence the name). We
denote θ ∈ Rn the policy parameters and ϕ ∈ Rm the value parameters.

2.2 BIAS AND VARIANCE

Bias-variance decomposition is a classical property of the MSE in statistics. Let us first express a
general version of the decomposition of the MSE between an estimator ŷ and its (possibly random)
target y. The proof of this lemma is given in Section A.1.
Lemma 2.1 (Bias variance decomposition). Let y, ŷ two random real variables. Then,

MSE(ŷ, y) = Var(ŷ) + Bias(ŷ, y)− 2Covar(ŷ, y) + Var(y).

In particular, if ŷ and y are independent, we recover the usual bias-variance decomposition

MSE(ŷ, y) = Var(ŷ) + Bias(ŷ, y).

Bias and variance are often discussed in RL, the common consensus being that it is preferable to
decrease variance at the expense of more bias, as the former is much more frequently greater than
the latter, thus giving an overall improvement by decreasing the total error. However, it is rarely
explicitly defined what bias and variance are referring to in this context: to which ŷ and y should
we apply Lemma 2.1? There are three main possibilities for bias and variance in deep actor-critic
algorithms, coming from three different estimations (the others are beyond the scope of this paper):

1. Estimation of the empirical surrogate “true” value Q̂π (or V̂ π) using fϕ. This is the classical
bias and variance of a regression model.

2. Estimation of the true value Qπ (or V π) using the empirical surrogate “true” value Q̂π (or
V̂ π). This is the bias and variance of the proxy target we use compared to the true target as
we do not have practical access to the true target.

3. Estimation of the true gradient∇θJ(πθ) using the policy gradient w.r.t. the policy parameters
∇̂θJ(πθ). As we only estimate the gradients from a limited number of samples, it is only an
approximation of what the gradient would be with the knowledge about the whole J (which
would give the direction towards the global optimum).

We argue that the more meaningful estimation to consider is the one that is the closest to the objective
we are trying to solve. As the policy gradient ∇θJ directly reflects our objective of maximizing J ,
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it is the best candidate. The value estimation (or in other words, the critic) is only here to provide
a baseline to help the actor achieve its goal. It is an auxiliary objective. There is no guarantee
that reducing the variance or bias of the critic will improve the agent performance, and also that a
variance and bias increase cannot lead to an improvement in agent performance. The common belief
is however that the better the critic (lower prediction error), the better the performance of the agent.

To clarify notations, we are going to define the relevant bias and variances for this paper. We
first recall the definition of the MSE, Bias and Variance in Statistical Learning: MSE(f̂) =

ED,X [(f̂D(X) − y(X))2], where D is the dataset used to train f , X is a set of examples with
y(X) their labels. In our scenario, D is obtained by way of a trajectory τ sampled using π. X
would be τ ′, a different trajectory sampled from π, and y(X) would be some oracle predicting the
desired value (e.g. ∇θJ(πθ)). However, in practice, during the training of actor-critic algorithms,
the test set X is the same as the training set D: the sampled states and actions are first used as a
test set (the agent predicts actions and values), and then the agent learns from this same set (we
compute the losses based and train the network). It is possible, during or after training to consider a
proper different test set to evaluate the agent. However, for this work we will only consider a shared
train-test-set : D = X = τ ∼ π. Using these definitions we derive the bias and variance for the
critic value estimation we get the following bias and variance (Q can be exchanged with V without
loss of generality):

Biascritic ≜ Eτ∼πθ
[fϕ −Qπθ ] , V arcritic ≜ Eτ∼πθ

[
(fϕ − Eτ∼πθ

[fϕ])
2
]

(1)

We use B̂iascritic in place of Biascritic in our algorithms as we do not have access to Q. However,
in the analysis part of our work we estimate both B̂iascritic and Biascritic to measure how much
we are influencing both metrics with our algorithm modifications. Note that V ariancecritic is
independent of the targets so V arcritic = V̂ arcritic. Also note that strictly speaking, B̂iascritic is
not a bias, as fϕ is an estimator of Q, not Q̂ which is only a proxy.

B̂iascritic ≜ Eτ∼πθ

[
fϕ − Q̂πθ

]
, V̂ arcritic = V arcritic (2)

3 METHOD: BIAS-VARIANCE-WEIGHTED ACTOR-CRITIC

In this section, Q̂π(s, a) and fϕ(s, a) can be exchanged with V̂ π(s) and fϕ(s) without loss of
generality.

3.1 MOTIVATION: IMPROVING ON AVEC AND MSE AS CRITIC LOSSES

This work extends AVEC (Flet-Berliac et al., 2021) which considers the variance of the residual
errors between critic output and empirical surrogate “true” values (see equation 3) as a critic loss
in place of the MSE (Mean Squared Error) (see equation 4) between the critic output and empirical
surrogate “true” values:

LAVEC ≜ Eπ

[(
fϕ(s, a)− Q̂π(s, a)− Eπ

[
fϕ(s, a) + Q̂π(s, a)

])2
]

(3)

Lcritic = Eπ

[(
fϕ(st, at)− Q̂π(st, at)

)2
]

(4)

with fϕ(s, a) the critic output for state-action pair (s, a) and parameter ϕ, Q̂π(s, a) the empirical
“surrogate” estimation of the true value of state-action pair (s, a). The empirical estimations of the
true values depend on the algorithm being modified (i.e. Generalized Advantage Estimation (GAE
(Schulman et al., 2018)) for PPO (Schulman et al., 2017), Q̂π(st, at) = rt + γEst+1∼P

[
Vϕ̄(st+1)

]
for SAC (Haarnoja et al., 2018)).

Tucker et al. (2018), Ilyas et al. (2020) and Flet-Berliac et al. (2021) assert that the core problem in
true value estimation is the approximation error (fϕ −Qπ) and not the estimation error (fϕ − Q̂π).
In other words, they argue that the estimator (fϕ) is appropriately fitting the empirical surrogate true
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values (Q̂π), however these values are bad estimates of the true values (Qπ). In order to solve this
issue, Flet-Berliac et al. (2021) propose to consider the relative values: the value of states relative
to their mean value rather than their absolute values in the loss to better approximate the value
function. This can be seen as a similar idea of using advantages Aπ(s, a) = Qπ(s, a) − V π(s)
instead of action-values Qπ(s, a). Flet-Berliac et al. (2021) argue that since the variance of the
critic is the main problem, it should be reduced in priority at the expense of slightly increasing the
bias. Their intuition is that the critic bias is already large enough so that increasing it while greatly
decreasing variance will still reduce the total MSE. This leads to consider only the variance of the
residual errors in their loss instead of the MSE.

We apply Lemma 2.1 to our problem, with y = Q̂π(st, at) and ŷ = fϕ(st, at). Remark that y =

Q̂π(st, at) is a function of ŷ = fϕ(st, at) (usually Temporal-Difference-λ (TD(λ)) approximation
or a Generalized Advantage Estimation (Schulman et al., 2018)) and is not independent of y, so we
have to keep the covariance term:

MSE(y, ŷ) = Bias(ŷ, y)2 + V ar(ŷ)− 2Covar(ŷ, y) + V ar(y).

The method we propose aims at improving the capability of the critic to better fit the true value
function (as opposed to the empirical surrogate one) and, as a consequence, allow for better actor
performances. We share the same intuitions as Flet-Berliac et al. (2021) on how to improve the critic.
We think that the relative differences between value estimations are more important than the absolute
differences between them, in order to learn a good critic (one that leads to better actor performances).
We also think that, as opposed to classical supervised learning, the critic should learn to quickly
adapt to outliers (instead of avoiding them) as they represent valuable new pieces of information
(may it be positive or negative). This may be less desirable if P , the transition function, is stochastic
and has a large variance as this would lead to capturing variance in the transition function instead of
the variance due to new behavior from the policy (e.g. reaching new and rewarding states) . How
large the variance has to be to be problematic is beyond the scope of this work, we will assume that
the variance due to stochastic state transitions is small compared to the variance of the Q-values
(the variance of the imapct of actions should be higher than the one due to the stochasticity of the
environment). Finally, we want to go beyond AVEC and study the intermediate weightings of bias
and variance.

We introduce a new hyperparameter α ∈ [0, 1) to weigh the variance w.r.t. the bias in the critic MSE:

MSEα(y, ŷ) ≜ αBias(ŷ, y)2 + (1− α) (V ar(ŷ)− 2Covar(ŷ, y) + V ar(y)) (5)
It is important to note that while we call it MSEα, when α ̸= 0.5, MSEα is not equivalent to the
MSE. We are just using the MSE bias-variance decomposition as a basis for a new loss. This flex-
ibility allows adapting this hyperparameter to the environment and to improve the critic capability
of quickly and accurately fitting the true value function. Our intuition is that in some tasks, the vari-
ance is indeed the true problem and thus should be focused on. However in other tasks a trade-off
between the variance and the bias may be more adequate. In other words, each task has a different
bias-variance weighting to consider in order to attain optimal performance.

3.2 BiVWAC

We propose the BiVWAC loss, a parameterized weighting of B̂ias and V̂ ar of the MSE of the
critic’s residual errors. Setting ŷ = fϕ(s, a) − Q̂π(s, a) and y = 0 (which are indepedent) in
equation 5 we get:

LBiVWAC(α) ≜αEπ

[
fϕ(s, a)− Q̂π(s, a)

]2
+ (1− α)Eπ

[(
fϕ(s, a)− Q̂π(s, a)− Eπ

[
fϕ(s, a)− Q̂π(s, a)

])2
]
, (6)

with α ∈ [0, 1) the bias-variance weighting parameter, fϕ the output of the critic network, and
Q̂π(s, a) the empirical Q-function target. Setting α = 0 is equivalent to AVEC as we only consider
the variance of the residual errors. α = 0.5 returns the MSE (scaled by 1

2 , which is not relevant for
scale-insensitive optimizers like ADAM (Kingma & Ba, 2015)). Setting α = 1.0 is theoretically
possible but prevents us from doing meaningful bias-correction as presented in eq. 8 below. More-
over we argue that it is a not a desirable objective as it removes the connection between the loss and
∇J altogether (see Appendix B).
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As we choose to consider relative errors through the use of residual errors, one may ask if the
same weighting of bias-variance would also work on the “classical” MSE (Setting ŷ = fϕ(s, a) and
y = Q̂π(s, a) in equation 5). However we show (in Appendix A.2) the following lemma linking this
formulation to the residual error one (Setting ŷ = fϕ(s, a)− Q̂π(s, a) and y = 0)
Lemma 3.1. For any α ∈ [0, 1], we have

MSEα(y, ŷ) = MSEα(y − ŷ, 0). (7)

Since the two formulations are equivalent, we can use either one. The residual error formulation
MSEα(y − ŷ, 0) allows for more compact equations and for easier computations as we remove the
need to compute covariance. This also removes the need to consider different weightings for the
different variance terms by combining Var(y), Var(ŷ) and Covar(ŷ, y). We keep for future works
the study of all the possible weightings in the bias-variance decomposition (Lemma 2.1).

We will then use the residual errors formulation for the rest of this work. This also means that using
the residual errors instead of the “classical” MSE formulation has no impact if using a single weight
for all the variances terms, and therefore is not a method defining trait (the traditional MSE is already
considering relative errors).

From fϕ, learnt through the minimization of LBiVWAC we derive our bias-corrected estimator (see
Appendix B for the identification of the correction term):

gϕ : S → R = fϕ +
1− 2α

1− α
Eπ

[
(fϕ(s, a)− Q̂π(s, a)

]
(8)

with α ∈ [0, 1), and Q̂π(s, a) the empirical estimation of Qπ(s, a)

This bias-corrected estimator, gϕ satisfies the policy gradient theorem (Sutton & Barto, 2020).
Theorem 3.2. If gϕ is constructed using equation 8 and satisfies the parameterization assumption
(Sutton & Barto, 2020), then for any policy π parameterized by parameter θ we have ∇θJ =
Eπ [∇θ log(πθ)Q

π(s, a)] = Eπ [∇θ log(πθ)gϕ(s, a)].

See Appendix B for a proof of Theorem 3.2. In other words, gϕ can be used in place of Qπ to
estimate ∇θJ = Eπθ

[∇θ log πθQ
πθ ]. We can think of gϕ as a sort of “unbiased” estimator of Qπ

(although strictly speaking we cannot say it is).
Corollary 3.2.1. If fϕ is a function parameterized by ϕ and trained through minimization of equa-
tion 6, then for any policy π parameterized by parameter θ, Eπ [∇θlog(πθ)fϕ(s, a)] is a biased

estimate of∇θJ and its bias is equal to 1−2α
1−α Eπ

[
(fϕ(s, a)− Q̂π(s, a)

]
.

While fϕ leads to a biased estimator of the policy gradient, its bias can still be relatively low as the
critic fϕ tends to fit the empirical targets Q̂π closely leading to a low E(s,a)∼π [∇θlog(πθ)fϕ(s, a)].
As a consequence, fϕ can be used for a biased estimation of the policy gradient. However, in
practice, as we will need to estimate the expected value of the residual error using the empirical
mean of the residual errors, using fϕ instead of gϕ could allow to reduce the variance of the policy
gradient estimate at the expense of the bias fϕ − gϕ. We will study this bias-variance variation in
Section 4.3. We have shown that using the BiVWAC loss to train the critic, and using its bias-
corrected output satisfies the policy gradient theorem. Therefore we can safely integrate it in an
algorithm without loosing the policy gradient properties.

We derive the following algorithm modification scheme:

1. We change the critic loss to LBiVWAC

2. We compute the correction δBiVWAC

3. We replace the use of fϕ, the critic output (also used in Q̂π , or V̂ π), with gϕ derived from fϕ and
δBiVWAC.

These modifications are minimal and easy to introduce into any actor-critic algorithm. To evalu-
ate the impact of our modification scheme, we will apply these modifications to two popular deep
reinforcement learning algorithms, one on-policy algorithm PPO (Schulman et al., 2017), and one

6
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off-policy algorithm SAC (Haarnoja et al., 2018). Both are actor-critic algorithms however PPO
leans more on the policy gradient side while SAC leans more on the value-based side. Since our
modifications will impact the critic, we expect to see a difference in the variation of performance of
PPO and SAC due to their different use of the critic.

Algorithm 1 BiVWAC-SAC

1: Input parameters : β ∈ [0, 1], λV ≥ 0, λQ ≥ 0, λπ ≥ 0, α ∈ [0, 1) ▷ new
hyperparameter α

2: Initialize policy parameters θ, value function parameters ψ and ψ̄, and Q-
functions parameters ϕ1 and ϕ2

3: batch D ← ∅
4: for each iteration do
5: for each environment step do
6: at ∼ πθ(st)
7: st+1 ∼ P(st, at)
8: D ← D ∪ {(st, at, rt, st+1)}
9: end for

10: for each gradient step do
11: sample batch B from D
12: δBiVWAC ← 1−2α

1−α .
1
|B| .

∑|B|
t=0(Rt − fϕ(at, st)) ▷ Correction

13: for (at, st) ∈ B do
14: ψ ← ψ − λV ∇̂ψJV (ψ)
15: θi ← θi − λQ∇̂θiL

2
BiVWAC(θi) for i ∈ {1, 2}

16: gθ(at, st) = fθ(at, st) + δBiVWAC ▷ Corrected value
17: ϕ← ϕ− λπ∇̂ϕJπ(ϕ, gθ) ▷ Use gϕ instead of fϕ
18: ψ̄ ← βψ + (1− β)ψ
19: end for
20: end for
21: end for

Since we want to
compute 1−2α

1−α Eτ∼π[
fϕ(s, a)− Q̂π(s, a)

]
but we do not have ac-
cess to the distribution
of τ . We will resort to
estimating it empirically
by computing its mean
over samples from the
current batch. We re-
mind the reader that the
same method is applied
in order to compute the
MSE in the first place,
but nevertheless, adding
another empirical mean
in the loss increases
the dependency of
batch of experiences
on the result. Ap-
plying the BiVWAC
modification scheme
to SAC and PPO we
define BiVWAC-SAC
(Algorithm 1) and BiVWAC-PPO (Appendix C).

4 EXPERIMENTAL STUDY

To evaluate the performance of the BiVWAC-algorithms we will use the MuJoCo (Todorov et al.,
2012) tasks. These tasks revolve around locomotion in complex environments with various state
and action space sizes. The goal of the selected tasks is to control the articulations of a robot in
order to move forward as quickly as possible. These tasks constitute a popular benchmark as they
are complex enough to differentiate between powerful algorithms like PPO or SAC. All algorithms
performance were evaluated over 20 seeds while values and gradients were evaluated over 10 seeds.
Unless otherwise specified the results are shown for the biased version of BiVWAC (using fϕ in-
stead of gϕ), this will be justified in section 4.2. For more details about the experimental setup see
the reproducibility section and Appendix F.

4.1 CONTINUOUS CONTROL ON MUJOCO

In order to compare the performances of the different α values we follow the methodology from
Agarwal et al. (2021) who promote the use of mean, median and inter-quartile mean.

Table 1: Mean (±σ) performance comparison between SAC, AVEC-SAC and BiVWAC-SAC.

Environment SAC AVEC-SAC BiVWAC-SAC
Ant-V4 3722 ± 902 4918 ± 1027 (32%) 5411 ± 577 (45%)
HalfCheetah-V4 9980 ± 836 10788 ± 667 (8%) 10401 ± 860 (4%)
Hopper-V4 2673 ± 529 5 ± 11 (-100%) 2412 ± 696 (-10%)
Humanoid-V4 5137 ± 447 7513 ± 1369 (46%) 6593 ± 720 (28%)
Walker2d-v4 4134 ± 811 119 ± 488 (-97%) 4107 ± 1040 (-1%)
Mean improvement (%) -22.09% 13.50%
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Figure 1: Average performance over the last 105 training timesteps for BiVWAC-SAC (left) and
BiVWAC-PPO (right) with different α values. Y-axis: Average episodic returns. Black lines rep-
resent the metric specified at the top of the column over 20 seeds. Bars represent 95% bootstrap
confidence intervals. Pink is the best performing α, dark blue are the baselines.
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(a) Episodic mean cumulative rewards of BiVWAC-SAC for dif-
ferent α values on MuJoCo tasks. Y-axis: episodic cumulative
reward. X-axis: number of collected samples.
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BiVWAC-SAC for different α
values on MuJoCo tasks.Y-axis:
episodic length. X-axis: number
of collected samples.

Figure 2: Episodic mean cumulative rewards (left) and episodic mean length (right)

In Figure 2 we can observe that, for BiVWAC-SAC using the standard critic loss (α = 0.5, equiva-
lent to eq. 4) leads to suboptimal results in these tasks. Lower values of α outperform the MSE. The
optimal α value varies depending on the environment. It is interesting to note that using only the
variance for the critic loss (α = 0) in BiVWAC-SAC can lead to not learning at all for(in Hopper
and Walker2d) or for optimal results (HalfCheetah and Humanoid). This indicates an important as-
pect of not using the bias at all in the critic loss since the same cannot be said for values of α close to
0. As for α > 0.5, in BiVWAC-SAC they lead to results similar worse than the MSE. We note that
α = 0.0001 leads to results better than or similar to the MSE (α = 0.5) for all environments except
Hopper, and better results than AVEC (α = 0.0) in every environment but two (Half-Cheetah and
Humanoid) (see Table 1). For BiVWAC-PPO, the improvements are less visible but that there are
still α values performing better than the MSE. Studying the impact of α throughought training, we
note that for BiVWAC-SAC in HalfCheetah the order of curves is almost always preserved and that
in Humanoid, the best perfoming values (α = 0 and α = 0.0001) start with lesser performance but
end up exceeding the other values after some time (See Figure 2a for BiVWAC-SAC on Humanoid
and HalfCheetah, and Figure 6 and Figure 5 for the others).

Some MuJoCo environments allow for early termination of episodes if the agent is deemed un-
healthy and unable to continue. This is the case for Hopper, Walker2d, Ant and Humanoid. Ob-
serving the average episodic length allows us to tell apart between policies than learnt to advance
faster but failing earlier in average, with policies that advance at a slower pace but are less prone
to falling. For Hopper and Walker2d the differences are marginal. However for Humanoid, while
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Figure 3: Average performance over the last 105 training timesteps for BiVWAC-SAC with cor-
rection (left) and BiVWAC-PPO with correction (right) with different α values. Y-axis: Average
episodic returns. Black lines represent the metric specified at the top of the column over 10 seeds.
Bars represent 95% confidence intervals. Pink is the best performing α, dark blue are the baselines.

α = 0 leads to the best performance (see Figure 2b), it also leads to the shortest average episodic
length. This means that using the AVEC loss seems to favor policies that advance quickly at the
expense of robustness with regard to falling. The other episodic lengths can be seen in Appendix E.

4.2 CORRECTION IMPACT

As shown in corollary 3.2.1, gϕ leads to an unbiased estimation of the policy gradient, while fϕ leads
to a biased estimation of the same gradient. However we pointed out that this bias may be small in
practice as it is proportional to the estimation error. Meanwhile, considering the correction (gϕ) may
lead to more variance in the policy gradient estimation due to the estimation of the expectation of
said estimation errors. To evaluate which solution is better, we study BiVWAC’s performance with
correction in order to conclude on whether or not it is actually helpful. In Figure 3 we can observe
that the correction leads to a degradation in performance from the un-corrected version. We hypoth-
esize that this comes from the variance introduced by the additional dependence to the trajectory
samples of the estimation correction. We will thus only consider BiVWAC without correction.

4.3 ANALYSIS OF THE VARIANCE AND BIAS OF BiVWAC CRITIC

We study how well the critic estimates the true targets V πθ orQπθ . To do so, we measure
MSE(fϕ, y) (with y = V πθ or Qπθ ) through its bias and variance: Biascritic(πθ, fϕ), and
V arcritic(πθ, fϕ) (see equation 1). We compare BiVWAC for different α values to the tradi-
tional MSE critic loss. In order to provide meaningful comparison we make sure that the critics
we compare share the same initial weights, are trained on the same data, and are evaluated on the
same test samples. The methodology we use is detailed in appendix ??. To compare BiVWAC-α
and BiVWAC-MSE we will compute the difference between metric X for MSE and metric X for
BiVWAC (e.g. ∆Bias = BiasMSE −Biasα). As we only care on which of them is larger than the
others and not the actual range we will scale these values to [0,1]: ∆Scaled

X = BiasMSE−Biasα
|BiasMSE |+|Biasα|

In Figure 4 we can see that for BiVWAC-SAC, the reduction in MSE, variance and bias seem to
correlate with the variation in performance of the agent: the lower metric Xα is compared to XMSE ,
the better BiVWAC-α seems to perform. We also note that for Hopper, where AVEC (α = 0) does
not learn, the bias of AVEC is one to two orders of magnitude larger than SAC bias while the MSE
and variance are still reduced from SAC.
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Figure 4: Scaled relative MSE difference, scaled relative bias difference and scaled relative variance
difference over the last 100.00 training timesteps for Ant-v4 and over the 100.000 first timesteps
for Hopper-v4 for BiVWAC-SAC (left) and BiVWAC-PPO (right) with different α values. Y-axis:
Relative Metric Differences. X-axis: α values. Envelope represent one one standard deviation
around the mean.

5 CONCLUSION

We introduced BiVWAC to control the bias-variance weighting in the critic objective through a
hyperparamter α. From this objective we can derive the MSE (α= 0.5, weighting bias and variance
equally) and AVEC (α = 0, that only considers the variance). We demonstrated that BiVWAC is
theoretically sound as it still leads to an unbiased estimation of the policy gradient. We motivated
the need to extend beyond, or rather between, the MSE and AVEC and to study in-between values
of α to find better weightings of bias and variance. We experimentally evaluated BiVWAC applied
to two popular actor-critic algorithms SAC and PPO and have shown that the MSE is indeed a
suboptimal weighting of bias and variance for critics. For BiVWAC-SAC, we found that α values
close to 0 tend to provide better results than the MSE or AVEC. While it is possible to tune α, we
propose α∗ = 10−4 as a safe value for which BiVWAC-SAC outperforms the MSE in all tasks and
AVEC in almost all tasks (however AVEC fails to learn at all on other tasks). For BiVWAC-PPO
we found that, while the pattern for the optimal value of α is harder to identify, there always exists
values of α that perform better than the MSE, and in all tasks but one, values of α also performed
better than AVEC. We measured the estimation and approximation error of the modified algorithms
as well as the actor gradient estimation error in order to better understand the means through which
BiVWAC impacts learning. As we intuited, we showed that BiVWAC, with the correct α values,
leads to a better approximation of the true values through a reduction in variance, and that translates
into a better estimation of the actor’s gradient.

More work would be interesting to conduct regarding the relationship between α and the hyperpa-
rameters of the underlying algorithm, most importantly the one with a direct link to the estimations
we impact: the batch size, the size of the neural network, the discount factor. Another interesting
follow-up would be experimenting with schedules for α, as the optimal-variance weighting may not
be constant. Additionally, studying separate weightings for the two variances and the covariance in
the MSE decomposition would allow for more flexibility at the expense of a larger hyperparameter
space.

We conclude that, while BiVWAC-PPO still requires deeper analysis to propose heuristics regarding
the choice of optimal α for a specific task, BiVWAC-SAC is a promising algorithm that should be
extended to other tasks and algorithms to confirm the improvements shown in this work, and when
used with α∗ = 0.0001 is an improvement over SAC in all studied tasks but one (13.5‰ average
improvement) at virtually no additional cost and with minimal modifications.

REPRODUCIBILITY

The Mujoco tasks were accessed through the Gymnasium (Towers et al., 2024) library. We use the
stable-baselines3 (Raffin et al., 2021) implementations of SAC and PPO for ease of comparison with
other works. We modify these implementations following the BiVWAC scheme as well as adding
logging for metrics to analyze the behavior of the agents. Using a popular implementation we aim
to show that the performance variation originate from BiVWAC and not from other differences in
implementation. Hyperparameters used were taken from rl-zoo (Raffin, 2020) and are optimized for
each environment. For more details see Appendix F).
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The seeds used are the sequence of the first n non-negative integers starting with 0, with n the
number of required seeds.

We want to put emphasis on the number of experiments needed to reproduce the results of this
work. The number of experiments allows for more statistically robust results and more tasks to
test our method on for more hyperparameter values, which should enhance the ease of reproducing
our results. However this also makes the results harder to replicate without access to the proper
computing power.

The code to reproduce the experiments and regenerate the plots is available at https://
anonymous.4open.science/r/AVEC-D11A/.
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A APPENDIX: MSE BIAS VARIANCE DECOMPOSITION

A.1 PROOF OF LEMMA 2.1

We have:

MSE(ŷ, y) = E
[
(ŷ − y)

2
]

= E
[
(ŷ − y − E[ŷ − y] + E[ŷ − y])

2
]

(a)
= E

[
(ŷ − y − E[ŷ − y])

2
]
+ E[ŷ − y]2 + 2E[ŷ − y]E [ŷ − y − E[ŷ − y]]

(b)
= E

[
(ŷ − y − E[ŷ − y])

2
]
+ E[ŷ − y]2

= Var [ŷ − y] + E[ŷ − y]2

Where (a) follows from expansion of the square and (b) by linearity of expectation showing that the
last term is zero. Then, because the covariance is bilinear,

MSE(ŷ, y) = Var [ŷ] + Var [y]− 2Covar(y, ŷ) + Bias(ŷ, y)2.

A.2 WEIGHTED MSE EQUALITY, PROOF OF LEMMA 3.1

Let us show that
MSEα(z − ẑ, 0) = MSEα(z, ẑ). (9)

We have from equation 5 applied to ŷ = z − ẑ and y = 0,

MSEα(z − ẑ, 0) = αBias(z − ẑ, 0)2 + (1− α) (Var(z − ẑ)− 2Covar(z − ẑ, 0) + Var(0))

= (1− α)Var(z − ẑ) + αBias(z − ẑ, 0)2

using that Covar(z − ẑ, 0) = E[(z − ẑ − E[z − ẑ])0] = 0 and Var(0) = 0. Then, having

Bias(z − ẑ, 0) = E [E [z − ẑ]− 0] = E [z − ẑ] = Bias(z, ẑ),

we get

MSEα(z − ẑ, 0) = (1− α)Var(z − ẑ) + αBias(z, ẑ)2

(a)
= (1− α) (Var(z) + Var(ẑ)− 2Covar(z, ẑ)) + αBias(z, ẑ)2

= MSEα(z − ẑ, 0),

where the last equality follows from the definition of MSEα (equation 5) and (a) follows by bilin-
earity of the covariance.

B APPENDIX: UNBIASED BIAS-VARIANCE-WEIGHTED ACTOR-CRITIC:
PROOF OF THEOREM 3.2

We want to show that there exists gϕ a function from S ×A to R that depends only on ϕ such that

∇θJ = E(s,a)∼π [∇θ log(πθ)gϕ(s, a)] .

We will do the proof for the Q(st, at) version, but it also holds for the V (st).
First we compute the gradient of the BiVWAC-loss, let’s start by recalling its expression (see equa-
tion 6)

LBiVWAC = (1− α)Var(fϕ(s, a)− Q̂π(s, a)) + α.Bias2(fϕ(s, a), Q̂
π(s, a)) with α ∈ [0, 1).

(10)

We decompose the computation of the gradient of the loss in two terms: ∇ϕ Var and∇ϕBias2.
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Step 1: Computation of∇ϕ Var. We have,

Var(fϕ(s, a)− Q̂π(s, a)) = E(s,a)∼π[(fϕ(s, a)− Q̂π(s, a))2]− E(s,a)∼π[(fϕ(s, a)− Q̂π(s, a))]2

Then, taking the gradient, because Q̂π(s, a) does not depend on ϕ,

∇ϕ Var(fϕ(s, a)−Q̂π(s, a)) = 2E(s,a)∼π

[
(fϕ(s, a)−Q̂π(s, a)−E(s,a)∼π[fϕ(s, a)−Q̂π(s, a)])

(
∇ϕfϕ(s, a)− E(s,a)∼π [∇ϕfϕ(s, a)]

) ]
then, because the left term in brackets is centered we have:

∇ϕ Var = 2(E(s,a)∼π

[
(fϕ(s, a)− Q̂π(s, a)− E(s,a)∼π[fϕ(s, a)− Q̂π(s, a)])∇ϕfϕ(s, a)

]
− E(s,a)∼π

[
fϕ(s, a)− Q̂π(s, a)− E(s,a)∼π

[
fϕ − Q̂π(s, a)

]]
︸ ︷︷ ︸

0

E(s,a)∼π[∇ϕfϕ(s, a)]

= 2E(s,a)∼π

[
(fϕ(s, a)− Q̂π(s, a)− E(s,a)∼π[fϕ(s, a)− Q̂π(s, a)])∇ϕfϕ(s, a)

]
. (11)

Step 2: Computation of∇ϕ Bias
2. Taking the gradient in the bias, we get,

Bias2 = E(s,a)∼π[fϕ(s, a)− Q̂π(s, a)]2

∇ϕ Bias
2 = 2E(s,a)∼π

[
∇ϕfϕ(s, a)E(s,a)∼π[fϕ(s, a)− Q̂π(s, a)]

]
. (12)

Step 3: Computation of ∇ϕLBiVWAC. We can now inject derivatives of ∇ϕ Var and ∇ϕ Bias
2

from equation 11 and equation 12 into the loss equation 10, we get

∇ϕLBiVWAC =2(1− α)E(s,a)∼π

[
(fϕ(s, a)− Q̂π(s, a)− E(s,a)∼π[fϕ(s, a)− Q̂π(s, a)])∇ϕfϕ

]
+ 2αE(s,a)∼π

[
∇ϕfϕE(s,a)∼π[fϕ(s, a)− Q̂π(s, a)]

]
=2(1− α)E(s,a)∼π

[
(fϕ(s, a)− Q̂π(s, a))∇ϕfϕ(s, a)

]
+ 2(2α− 1)E(s,a)∼π

[
E(s,a)∼π

[
fϕ(s, a)− Q̂π(s, a)

]
∇ϕfϕ(s, a)

]
.

Step 4: re-expression of ∇ϕLBiVWAC using the policy parameterization assumption and
expression for gϕ. Under the policy parameterization assumption ((Sutton & Barto, 2020,
parametrization assumption: 13.1, Policy gradient theorem : Section 13.2)) we have ∇ϕfϕ =
∇θ log(πθ) and ∇θJ = E[Q∇θ log πθ], hence,

∇ϕLBiVWAC

2
= (1− α)(∇θJ − E(s,a)∼π [fϕ(s, a)∇θ log(πθ)]

+ (2α− 1)E(s,a)∼π

[
E(s,a)∼π

[
fϕ(s, a)− Q̂π(s, a)

]
∇θ log(πθ)

]
.

When a local optimum is reached, the gradient of the loss is zero, thus we have:

0 = (1− α)(∇θJ − E(s,a)∼π [fϕ(s, a)∇θ log(πθ)] + (2α− 1)E(s,a)∼π

[
E(s,a)∼π

[
fϕ(s, a)− Q̂π(s, a)

]
∇θ log(πθ)

]
.

Hence, if we isolate the expression of∇θJ and using that∇θ log(πθ) does not depend on the action
stats (s, a), we get

∇θJ = E(s,a)∼π [fϕ(s, a)∇θ log(πθ)]−
2α− 1

1− α
E(s,a)∼π

[
fϕ(s, a)− Q̂π(s, a)

]
∇θ log(πθ)

= E(s,a)∼π

[
∇θ log(πθ)

(
fϕ(s, a) +

1− 2α

1− α
E(s,a)∼π

[
fϕ(s, a)− Q̂π(s, a)

])]
.
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We can finally identify the form of gϕ and prove the intended result

∇θJ = E(s,a)∼π [∇θ log(πθ)gϕ(s, a)] , with gϕ(s, a) = fϕ(s, a) +
1− 2α

1− α
E(s,a)∼π

[
fϕ(s, a)− Q̂π(s, a)

]
.
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C BiVWAC-PPO

Algorithm 2 BiVWAC-PPO

Input parameters : λπ ≥ 0, λV ≥ 0, 0 ≤ α < 1
Initialize policy parameters θ and value-function parameters ϕ
for each update step do

batch B ← ∅
for each environment step do

at ∼ πθ(st)
st+1 ∼ P(st, at)
B ← B ∪ {(st, at, rt, st+1)}

end for
A← 0|B| ∈ R|B|

λgae ← 0

δBiVWAC ← 1−2α
1−α . 1

|B| .
∑|B|

t=0(Rt − fϕ(st)) ▷ Estimate the correction term

for each transition in B in reverse do ▷ GAE using gϕ instead of V̂ π

gϕ ← fϕ + δBiVWAC

∆← rt + γgϕ(st+1)− gϕ(st) ▷ Use gϕ instead of fϕ
λgae ← ∆+ γλgae

At ← λgae

end for
for each gradient step do

JPPO = function(A) ▷ Replace advantages with corrected advantages in loss
θ ← θ − λπ∇̂θJ

PPO

ϕ← ϕ− λV ∇̂ϕLBiVWAC

end for
end for

Differences between BiVWAC-PPO and PPO are highlighted on the right side.

16
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D MEANINGFUL CRITIC COMPARISONS

We begin by stating that had we trained two separate instances of the same algorithm with only the
critic loss changing we could not have compared their critic’s performance as it would have been
trained using different data. This would lead to problems such as:

• The states encountered depend on the policy collecting them. As a consequence, the critic’s
performance depends on how hard the values of states encountered are to estimate. One
critic leading to lesser actor performance may stagnate collecting low rewards leading to a
seemingly easier task than another critic leading to good actor performance but encountering
new and harder to estimate states. This leads to the impossibility of comparing the critics with
each observing data collected from a different policy, they need to use the same data.

• As the states encountered differ, one would have to decide which states would be used to
evaluate algorithms, so that they do not favor one or the other critic. Finding such balance
seems like a difficult task as regression models tend to perform unpredictably on data too
different from what the one they were trained on and thus adding data seen by one critic
would lead to possibly non-informative results for the other critic, and using data not seen by
both would lead to even less informative results. If the two algorithms had collected data from
states suffienctly similar, this approach would work. However that would seriously limit the
range of algorithms this method can compare.

To tackle these issues, we propose the following methodology to compare the same algorithm with
two different critics:

1. We initialize two critics C1 and C2 sharing the same parameters at initialization.
2. C1 is trained using LBiVWAC, our critic loss. It is then used to compute the actor loss. The

actor is then used to select actions.
3. Meanwhile, C2 is also trained on the same data as C1, however it has no impact on the actor,

and thus data collection.
4. During training, as often as needed, we measure the value estimations fC1

ϕ andfC2

ϕ by using
C1 and C2 on the same states Seval sampled from states recently seen by the agent. We also
collect their corresponding surrogate targets Q̂πθ

C1
andQ̂πθ

C2
(the same is valid for V πθ ).

5. After training we estimate the true values of Seval using Monte-Carlo (MC) rollouts.
6. We compare the variance, Estimation error and Approximation error of C1 and C2 using the

collected values.

For every 10% of the total number of timesteps collected during training, we experimentally ap-
proximate the true value of the policy. We approximate it on 50 states randomly sampled from the
current agent’s buffer (50 states from the rollout buffer for PPO and 50 states from the states of the
Replay buffer added since the last evaluation for SAC, e.g. from the last 1000 states added in the
buffer if the number of timesteps was 10,000). The true values are then estimated by collecting 51̇05

samples from these states (and a given action for SAC as we estimate Qπ(s, a)) using the current
policy and computing the average discounted-return through Monte-Carlo estimation.
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E ADDITIONAL FIGURES
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Figure 5: Episodic mean cumulative rewards of BiVWAC-SAC for different α values on MuJoCo
tasks. X-axis: number of collected samples. Y-axis: episodic cumulative reward.
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Figure 6: Episodic mean cumulative rewards of BiVWAC-PPO for different α values on MuJoCo
tasks. X-axis: number of collected samples. Y-axis: episodic cumulative reward.

0.0 0.2 0.4 0.6 0.8 1.0
Samples collected 1e6

0

200

400

600

800

1000

M
ea

n 
ep

is
od

ic
 le

ng
th

Antv4

0.0 0.2 0.4 0.6 0.8 1.0
Samples collected 1e6

960

980

1000

1020

1040

HalfCheetahv4

0.0 0.2 0.4 0.6 0.8 1.0
Samples collected 1e6

0

200

400

600

800

1000

Hopperv4

0.0 0.5 1.0 1.5 2.0
Samples collected 1e6

0

200

400

600

800

1000

Humanoidv4

0.0 0.2 0.4 0.6 0.8 1.0
Samples collected 1e6

0

250

500

750

1000

Walker2dv4

 = 0.0 (AVECSAC)
 = 0.0001

 = 0.001
 = 0.01

 = 0.1
 = 0.2

 = 0.3
 = 0.4

 = 0.5 (SAC)
 = 0.6

 = 0.7
 = 0.8

 = 0.9 = 0.0 (AVECSAC)
 = 0.0001

 = 0.001
 = 0.01

 = 0.1
 = 0.2

 = 0.3
 = 0.4

 = 0.5 (SAC)
 = 0.6

 = 0.7
 = 0.8

 = 0.9 = 0.0 (AVECSAC)
 = 0.0001

 = 0.001
 = 0.01

 = 0.1
 = 0.2

 = 0.3
 = 0.4

 = 0.5 (SAC)
 = 0.6

 = 0.7
 = 0.8

 = 0.9 = 0.0 (AVECSAC)
 = 0.0001

 = 0.001
 = 0.01

 = 0.1
 = 0.2

 = 0.3
 = 0.4

 = 0.5 (SAC)
 = 0.6

 = 0.7
 = 0.8

 = 0.9 = 0.0 (AVECSAC)
 = 0.0001

 = 0.001
 = 0.01

 = 0.1
 = 0.2

 = 0.3
 = 0.4

 = 0.5 (SAC)
 = 0.6

 = 0.7
 = 0.8

 = 0.9

Figure 7: Episodic mean length of BiVWAC-SAC for different α values on MuJoCo tasks. X-axis:
number of collected samples. Y-axis: episodic length.
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Figure 8: Episodic mean length of BiVWAC-PPO for different α values on MuJoCo tasks. X-axis:
number of collected samples. Y-axis: episodic length.
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F EXPERIMENTAL DETAILS

Experiments were made using stable-baselines3’s implementations of SAC and PPO and applying
modifications for the BiVWAC loss and the logging of the metrics reported in the paper.

F.1 IMPLEMENTATION DETAILS

Because we only use ADAM for optimizing, and because it is scale invariant, we do not need to
scale the loss to its original size when using α = 0.5 to get back the original MSE loss for the critic.

For true value estimation, we collect 51̇05 samples starting from the given state and using the current
policy. To speed up the process we collect it from multiple environments at the same time (32
environments). As we use Monte-Carlo estimation of Returns, we can only consider full episodes.
As a consequence, we discard the last, unfinished episode, for each parallel environment. Below are
represented the actual number of complete episodes and timesteps considered for each experiment:
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Figure 9: Mean over 32 envs of Episodic mean length of episodes collected during MC rollouts.
Envelope represents a standard deviation from the mean). X-axis: number of collected samples.
Y-axis: episodic length.
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Figure 10: Mean number of episodes collected per parallel environment during MC rollouts. Enve-
lope represents a standard deviation from the mean). X-axis: number of collected samples. Y-axis:
episodic length.

F.2 HYPERPARAMETERS

In Tables 2 and 4 we report the list of hyperparameters common to all continuous control exper-
iments. All environments use the default hyperparameters unless specified otherwise in Table 3,
5, and 6. Hyperparameters are taken from stable-baselines3 (Raffin et al., 2021) default parame-
ters, and rl-zoo3 (Raffin, 2020) when they differ from the default stable-baselines3 value. rl-zoo3
provides optimized hyperparemeters for different agents and environments. Note that the parame-
ters were optimized for the original algorithms (PPO and SAC) and not for they modified versions
(BiVWAC-PPO and BiVWAC-SAC). Hence they should favor the original algorithms.
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Table 2: Default hyperparameters for both SAC and BiVWAC-SAC.

Parameter Value
Number of training steps 106

Adam stepsize 3 · 10−4

Discount (γ) 0.99
Replay buffer size 106

Batch size 256
Nb. hidden layers 2
Nb. hidden units per layer 256
Nonlinearity ReLU
Target smoothing coefficient (τ ) 0.005
Target update interval 1
Gradient steps 1
Learning starts 104

Table 3: Environment specific hyperparameters for SAC and BiVWAC-SAC.

Environment Parameter Value
Humanoid-v4 Number of training steps 2 · 106

Table 4: Default hyperparameters for both PPO and BiVWAC-PPO.

Parameter Value
Number of training steps 106

Horizon (T ) 2048
Adam stepsize 3 · 10−4

Batch size 64
Nb. epochs 10
Nb. hidden layers 2
Nb. hidden units per layer 64
Nonlinearity tanh
Discount (γ) 0.99
GAE parameter (λ) 0.95
Clipping parameter (ϵ) 0.2
Maximum gradient norm 0.5
State and reward normalization True
Nb. environments 1
Value function loss coefficient 0.5
Initialization log standard deviation 0.0
Orthogonal initialization True
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Table 5: Environment specific hyperparameters for PPO and BiVWAC-PPO.

Environment Parameter Value
HalfCheetah-v4 Discount (γ) 0.98

Horizon (T ) 512
Adam stepsize 2.0633 · 10−5

Entropy coefficent 0.000401762
Clipping parameter (ϵ) 0.1
Nb. epochs 20
GAE parameter (λ) 0.92
Maximum gradient norm 0.8
Value function loss coefficient 0.58096
Initialization log standard deviation -2.0
Orthogonal initialization False
Nb. hidden units per layer 256
Nonlinearity ReLU

Hopper-v4 Discount (γ) 0.999
Horizon (T ) 512
Adam stepsize 9.80828 · 10−5

Batch size 32
Entropy coefficent 0.00229519
Nb. epochs 5
GAE parameter (λ) 0.99
Maximum gradient norm 0.7
Value function loss coefficient 0.835671
Initialization log standard deviation -2.0
Orthogonal initialization False
Nb. hidden units per layer 256
Nonlinearity ReLU

Humanoid-v4 Number of training steps 107

Discount (γ) 0.95
Horizon (T ) 512
Adam stepsize 3.56987 · 10−5

Batch size 256
Entropy coefficent 0.00229519
Clipping parameter (ϵ) 0.3
Nb. epochs 5
GAE parameter (λ) 0.9
Maximum gradient norm 2.0
Value function loss coefficient 0.431892
Initialization log standard deviation -2.0
Orthogonal initialization False
Nb. hidden units per layer 256
Nonlinearity ReLU
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Table 6: Environment specific hyperparameters for PPO and BiVWAC-PPO.

Environment Parameter Value
Walker2d-v4 Discount (γ) 0.99

Horizon (T ) 512
Adam stepsize 5.05041 · 10−5

Batch size 32
Entropy coefficent 0.00229519
Clipping parameter (ϵ) 0.1
Nb. epochs 20
GAE parameter (λ) 0.95
Maximum gradient norm 1
Value function loss coefficient 0.871923
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