Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node
Classification

Xixun Lin'

Shirui Pan 8

Abstract

Graph neural networks (GNNs) have advanced
the state of the art in various domains. Despite
their remarkable success, the uncertainty estima-
tion of GNN predictions remains under-explored,
which limits their practical applications especially
in risk-sensitive areas. Current works suffer from
either intractable posteriors or inflexible prior
specifications, leading to sub-optimal empirical
results. In this paper, we present graph neural
stochastic diffusion (GNSD), a novel framework
for estimating predictive uncertainty on graphs
by establishing theoretical connections between
GNNs and stochastic partial differential equation.
GNSD represents a GNN-based parameterization
of the proposed graph stochastic diffusion equa-
tion which includes a ()-Wiener process to model
the stochastic evolution of node representations.
GNSD introduces a drift network to guarantee ac-
curate prediction and a stochastic forcing network
to model the propagation of epistemic uncertainty
among nodes. Extensive experiments are con-
ducted on multiple detection tasks, demonstrating
that GNSD yields the superior performance over
existing strong approaches.

1. Introduction

Nowadays graph neural networks (GNNs) have become a
standard model architecture of learning graph-structured
data, which benefit a series of real-world applications, e.g.,
molecular prediction (Stérk et al., 2022), recommender
system (Ying et al., 2018) and traffic forecasting (Wang

nstitute of Information Engineering, Chinese Academy of Sci-
ences “Beijing Jiaotong University *Academy of Mathematics and
Systems Science, Chinese Academy of Sciences *School of Cyber
Security, University of Chinese Academy of Sciences >Wuhan Uni-
versity °City University of Hong Kong "Baidu Inc. 8Griffith Uni-
versity. Correspondence to: Yanan Cao <caoyanan@iie.ac.cn>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Wenxiao Zhang?> Fengzhao Shi' Chuan Zhou’* Lixin Zou’ Xiangyu Zhao
Yanan Cao '

% Dawei Yin’

et al., 2020b). There has been a fair amount of GNNs in
recent years, and the core operation is to design a power-
ful graph propagation mechanism where each node repre-
sentation is iteratively updated by aggregating neighbour
information (Kipf & Welling, 2017; Hamilton et al., 2017;
Velickovic et al., 2018; Balcilar et al., 2021).

Despite their superior predictive performance, GNNs
are poor at estimating uncertainty in their decision pro-
cess (Stadler et al., 2021). Uncertainty estimation (Gal
& Ghahramani, 2016b; Lakshminarayanan et al., 2017; Ma-
linin & Gales, 2018), which quantifies prediction confidence
for enabling neural networks to know what they do not
know, is an important requirement for deploying models on
safety-critical areas. According to different source types,
uncertainty is usually divided into aleatoric uncertainty and
epistemic uncertainty (Gal et al., 2016). Aleatoric uncer-
tainty represents the natural randomness inherent in the data
distribution, such as label noise and class overlap; while
epistemic uncertainty refers to the uncertainty in model pa-
rameters caused by the lack of observation data, which can
be explained away given enough data (Kendall & Gal, 2017,
Kong et al., 2020; Charpentier et al., 2020).

Most works of uncertainty estimation concentrate on i.i.d.
data (Van Amersfoort et al., 2020; Abdar et al., 2021; Gaw-
likowski et al., 2023). The problem of estimating uncer-
tainty for graphs is more complex, since interdependent
nodes may follow different input feature distributions, and
their predictive uncertainties are also significantly influ-
enced by the graph structure. Previous approaches of uncer-
tainty estimation over graphs follow the ensemble-based or
Bayesian-based learning manner (Lakshminarayanan et al.,
2017; Ng et al., 2018; Zhang et al., 2019), which are high
computationally demanding. Current focus has shifted to
deterministic uncertainty estimation for improving model
efficiency. Nonetheless, they have to pre-specify prior dis-
tributions for performing posterior updates which degrade
model flexibility and empirical performance (Zhao et al.,
2020; Stadler et al., 2021).

In this paper, we introduce graph neural stochastic diffusion
(GNSD), a novel framework of estimating uncertainty on
graphs from the perspective of stochastic dynamical system.

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Compared with the above methods of deterministic uncer-
tainty estimation, GNSD is a more flexible model without
relying on any specific form of prior distributions. It ap-
proximates the proposed graph stochastic diffusion equation
by GNNs, where the feature propagation of nodes can be
treated as discretizations of an underlying stochastic par-
tial differential equation (SPDE) (Carmona et al., 1986).
Different from existing graph diffusion equations (Cham-
berlain et al., 2021; Choi et al., 2023), the graph stochastic
diffusion equation includes a Q-Wiener process to model
the stochastic evolution of node embeddings. With such a
learnt equation, GNSD corresponds to a stochastic process
on graphs, from which we can sample the node embed-
dings from the representation distribution at the final time
to quantify aleatoric and epistemic uncertainties explicitly.

GNSD owns two core modules to approximate the graph
stochastic diffusion equation: drift network and stochastic
forcing network. Drift network is developed as a continuous-
depth GNN to parameterize the drift term in the graph
stochastic diffusion equation, which aims to guarantee the
stochastic dynamical system with good prediction ability.
Stochastic forcing network is leveraged to capture epistemic
uncertainty by describing the variance of (J-Wiener pro-
cess, which integrates the graph Laplacian with added self-
connections into the learning process for modeling the prop-
agation of epistemic uncertainty among nodes. We further
provide a theoretical analysis of the existence and unique-
ness of the mild solution to the proposed equation.

The main contributions of this paper are summarized here:
(1) We introduce a new formulation of uncertainty estima-
tion for semi-supervised node classification within SPDE
paradigms. Building upon this, we present GNSD, a GNN-
based framework to capture aleatoric uncertainty and epis-
temic uncertainty by approximating the proposed graph
stochastic diffusion equation. (2) We provide a novel defi-
nition of)-Wiener process on graph domain and prove its
validity theoretically. Moreover, we introduce an effective
approximation of the discretization sampling of ()-Wiener
process for solving the graph stochastic diffusion equation
via the explicit design of stochastic forcing network. (3) We
have conducted comprehensive experiments across multiple
benchmark datasets in three tasks: out-of-distribution detec-
tion, misclassification detection and graph structure shifts.
Empirical results and detailed analyses demonstrate the su-
perior performance of our model compared with previous
methods of uncertainty estimation on graphs.

2. Related Work
2.1. Uncertainty Estimation on Graphs

Uncertainty estimation for graph-structured data has re-
cently attracted a lot of attention. Most previous works

follow the ensemble-based or Bayesian-based learning man-
ner. The ensemble methods (Lakshminarayanan et al., 2017;
Goyal et al., 2020; Bazhenov et al., 2022) train multiple
models with different initializations and use their predic-
tions for estimating uncertainty. Bayesian graph neural net-
works (Zhang et al., 2019; Hasanzadeh et al., 2020; Pal et al.,
2020) are representative works in Bayesian-based methods.
They typically require an exact inference of model posterior
which is hard for scaling to large-scale graphs.

Deterministic uncertainty estimation is a promising branch
of uncertainty estimation on graphs, where Dirichlet-based
approaches are gradually becoming mainstream (Zhao et al.,
2020). Particularly, GPN (Stadler et al., 2021) is the state-
of-the-art (SOTA), adopting normalizing flows (Rezende &
Mohamed, 2015) to learn the probability density per class in
the latent space. But they pre-specify the fixed-form model
priors for posterior updates, which compromise model per-
formance. Notice that there are several works on confi-
dence calibration of GNNSs, such as scaling-based (Wang
et al., 2021; Hsu et al., 2022) and conformal prediction-
based methods (Zargarbashi et al., 2023; Huang et al., 2023;
Zargarbashi & Bojchevski, 2024). The key idea of them
is to design an effective post-hoc calibration function for
GNNs, which is orthogonal to our work.

2.2. Differential Equations on Graphs

Neural ODEs (Chen et al., 2018) provide a new learning
paradigm for generalizing discrete neural layers to continu-
ous transformations parameterized by differential equations,
allowing smooth feature evolution in a view of dynamical
systems. Motivated by this, recent works (Poli et al., 2019;
Thorpe et al., 2021; Choi et al., 2023) try to describe dif-
ferential equations on graphs for addressing some inherent
issues in GNNs, e.g., the over-smoothing issue (Li et al.,
2018). Graph diffusion process (Belkin & Niyogi, 2003;
Liao et al., 2019; Chamberlain et al., 2021) is a fundamental
way of graph learning, which aims to use PDEs to ana-
lyze the information diffusion on graphs. From the view of
diffusion equations, the GNN layer and graph topology cor-
respond to different discretizations of temporal and spatial
operators, and many GNN architectures can be derived (Li
et al., 2023). Different from them, we are the first work that
introduces a GNN-based parameterization of the proposed
graph stochastic diffusion equation to quantify predictive
uncertainty for semi-supervised node classification.

3. Preliminary

In this section, we introduce some basic notations and the
backgrounds of uncertainty types and of graph diffusion
equation. The explanations of differential operators on
graphs, e.g., divergence operator and involved derivations
in graph diffusion equation are provided in Appendix A.

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Notations. Let G = {V, £} be an undirected graph, and
V and & represent the sets of nodes and edges. The in-
put feature matrix of all nodes is denoted as X € RIVIxd
where |V| and d respectively denote the numbers of nodes
and of input features. A is the adjacency matrix and
each element A;; € {0,1} denotes the connectivity be-
tween nodes ¢ and j. The normalized graph Laplacian
L =1-D /2AD"Y2 = UAUT, where D is the di-
agonal degree matrix, U is the matrix of eigenvectors of
L and A is the diagonal matrix of eigenvalues. In the task
of semi-supervised node classification, V is split into the
sets of labelled nodes T and of unlabeled nodes U, i.e.,
V = T UU. The classification goal is to infer the label
vector of U, i.e.,y € {1,...,c}¥l.

Uncertainty source. Predictive uncertainty comes from
two sources: aleatoric uncertainty and epistemic uncer-
tainty (Gal et al., 2016). Concretely, given X and G, we can
estimate a classification probability as follows:

P(y|X.G) = / P(y|X.0.)P(OIG)d. (1)

Let H denote the Shannon’s entropy of a probability dis-
tribution. The total uncertainty of Eq.(1) can be quantified
as the entropy H [Ep(g‘g) [P(y|X,¥, g)]] . Assuming that 0
has a specific value, H[P(y|X, 6, G)] measures the uncer-
tainty coming from labels, thus aleatoric uncertainty can be
given as the expectation of this quantity under P(6|G), i.e.,
Ep(o1g)[H[P(y|X,6,G)]]. Epistemic uncertainty is then
defined as the difference between the total and aleatoric
uncertainties (Depeweg et al., 2018; Zhao et al., 2020):

I(y,01X,G) = H[Epg)[P(yX,0,G)]] -
Epoig) [HIP(y|X,0,G)]].

which is the mutual information between y and € and re-
ferred as the uncertainty coming from the posterior distribu-
tion of model parameters.

@

Graph diffusion equation. It is an important branch of
graph PDEs (Vol’pert, 1972), which originally describes the
diffusion motion of particles and is recently extended to the
graph (Chamberlain et al., 2021):

OX(t)
ot

where X(t) describes the evolution of X over time, div and
V are the divergence and gradient operators. G(X(¢),t) =
diag(a(x;(t),x;(t),t)) is the diffusivity factor parameter-
ized as an || x |€| diagonal matrix, where a is a similarity
function to calculate the similarity between nodes ¢ and j.
Substituting the expressions of div and V into Eq.(3), we
can get

= div(G(X(t),t)VX(1)), 3)

a’;}f” — (A(X(t) -)X (0). @)

Here A(X(t)) € RIVIXVIis regarded as the attention
matrix. When A(X(t)) is time-independent and fixed
throughout the diffusion process, i.e., a(x;(t),x;(t),t) =
d(xi,xj), this diffusion equation has a linear form with
the analytical solution; otherwise it is nonlinear with the
following solution:

T
X(T) = X(0) + /O 8)§t(t)dt. 5)

It describes the initial feature X (0) is continuously evolved
from ¢ = 0 to T to obtain the final node embeddings X (T').

4. Method

In this section, we first introduce the graph stochastic dif-
fusion equation. Based on this graph SPDE, we present
the graph neural stochastic diffusion (GNSD), a concrete
GNN-based parameterization for uncertainty estimation on
graphs. We then provide the discretization schemes of time,
space and Q-Wiener process for solving this equation. The
concrete procedure of uncertainty estimation and the model
analysis are given in the end.

4.1. Graph Stochastic Diffusion Equation

The general form of the graph stochastic diffusion equation
can be defined as'

dH(t) = f(H))dt + g(HE))AW (). (6)

We denote H(0) € RIVI*9 as the initial node embeddings
at t = 0 which is generated by an input encoder ¢ that
embeds the input feature matrix X into the representation
space. H(T) € RIVI*? represents the final node embed-
dings att = T. £(H(¢)) is the drift term that is determined
by the Laplacian operator acting on the representation space,
thereby facilitating a deterministic graph diffusion process,
ie., f(H(t)) = (A(H(t)) — I)H(t). The third part is
the stochastic forcing term including a continuous operator
g(H(¢)) defined in Hilbert space and a high-dimensional
Q-Wiener process W (¢). The introduction of stochastic
forcing term arms the original equation with stochasticity
which is mainly driven by (Q-Wiener process.

Definition 1 ((Q-Wiener process (Lord et al., 2014)). 57
is a separable Hilbert space and (92, F, F;, P) is a filtered
probability space. Let) be a trace class non negative, sym-
metric operator on .57. A -valued stochastic process
W (t) : t > 0 is called a Q-Wiener process if satisfies:(1)
W (0) = 0 almost surely; (2) W (t,w) is a continuous sam-
ple trajectory RT — %, for each w € Q; (3) W(¢) is
JFi-adapted and has independent increments W (t) — W (s)
for s < t; (4) W(t) — W(s) ~ N(0,(t — 5)Q) for all
0<s<t.

'We have omitted the spatial symbol in H(t) and W (¢) for
simplifying notation.

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

FCH(0)) Drift network
1

S(H()
1

g(H(0)) g(H(1))
Stochastic forcing network

0 b t T

Figure 1. A simple overview of the proposed GNSD.

W (t) can be extended to W(t) = [W1(¢),..., Wy ()]
used in Eq.(6) by sampling d’ i.i.d. Q-Wiener processes.

g(H(¢)) represents the variance of Q-Wiener process. Com-
pared with the graph diffusion process in Eq.(5), adding the
stochastic forcing term enables us to model epistemic uncer-
tainty on graphs from the view of SPDE dynamical system.
Specifically, for a region with the evident information, such
as a specific community structure, the embedding evolu-
tion of the nodes belonging to this region should follow a
relatively deterministic trajectory, and the variance of Q-
Wiener process is small with low epistemic uncertainty. For
a region with the ambiguous categorial or structural infor-
mation, the evolution trajectory of the nodes in this region
could be divergent, and the variance of ()-Wiener process is
increased with the higher epistemic uncertainty. So we can
capture epistemic uncertainty from H(¢) which encodes the
variance of (Q-Wiener process.

4.2. Graph Neural Stochastic Diffusion

We present graph neural stochastic diffusion (GNSD), us-
ing GNNs to model the proposed graph stochastic diffu-
sion equation. The core components of GNSD are the drift
and stochastic forcing networks for respectively modeling
f(H(t)) and g(H(t)), with the goal of achieving powerful
model expressiveness and accurate uncertainty estimation.
The whole model architecture is shown in Figure 1.

Drift network. Benefiting from the graph diffusion equa-
tion in Eq.(4), the drift network fy can be developed as
a continuous-depth GNN to learn node representations.
Concretely, the diffusivity A(H(t)) is parameterized as a
learnable multi-head self-attention matrix, i.e., A(H(t)) =
37 Al(H(t)). Each element dé,j (t) in the single-head
attention matrix A’ (H(t)) is calculated as

exp(o((a’)"[W'h (t)||[W'h; (1)]))

keZN exp (o ((a) T[W'hi ()| [W'hy(1)]))

ay ;(t) = , (1)

where a! and W are two learnable parameters, o is the
LeakyReLU activation function, N; denotes the neighbor-
hood of node 7 in the graph, (-)" and || represent the transpo-
sition and concatenation operations respectively. Through
choosing different discretization schemes, fp is a flexible
framework to alleviate some inherent GNN issues, such as
the over-smoothing issue.

Stochastic forcing network. The function of stochastic
forcing network gy is to learn the variance of QQ-Wiener
process for further capturing epistemic uncertainty. Since
performing predictions on nodes relies on the feature infor-
mation and the topological structure, gy should take these
two types of information into consideration. In light of this
objective, the output V (H(t)) is given as

V(H(t)) = H(t)W'L, (8)

where W? denotes a linear transformation of node em-
beddings and L is the graph Laplacian with added self-
connections, i.e., L = L + I. Additionally, we apply the
ReL.U activation function on V(H(¢)) to ensure that gy is
Lipschitz continuous (Kong et al., 2020; Zhang et al., 2024).

Highlights. We emphasize that the design of gy has the
following two important characteristics: (1) Transitivity.
Following the graph homophily assumption that similar
nodes tend to connect to each other more densely (McPher-
son et al., 2001), we arm gy with L to model the propagation
of epistemic uncertainty among nodes, i.e., connected nodes
have similar epistemic uncertainty. (2) Efficiency. The solu-
tion of the graph stochastic diffusion equation involves the
discretization sampling from QQ-Wiener process on graph
domain. In Appendix B.3, we show that gy can serve as
an effective approximation strategy to avoid complicated
eigendecomposition and dense matrix multiplication.

4.3. Model Training

Discretization scheme. Similar to existing graph diffu-
sion equations (Chamberlain et al., 2021; Choi et al., 2023),
we discretize the spatial derivatives using the finite differ-
ence method, leaving a system of SDEs along the temporal
axis. For graph-structured data, the spatial operator follows
the input graph structure and is already discrete. For tempo-
ral discretization, we use the Euler method and the explicit
Euler scheme for Eq.(6) is

where 7 = % is the discrete time step size, AW, :=
W, —W,is the increment of d’ i.i.d. Q-Wiener processes
at time ¢. This method has strong 0.5-order convergence and
weak 1-order convergence. It is one-step numerical method
since H,,; is directly derived from H,,.

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Besides discretizitions of time and space, the solution of
the graph stochastic diffusion equation requires a discrete
sampling from Q-Wiener process where each increment is
dependent on both time and the graph structure. To achieve
this goal, we introduce a new definition of ()-Wiener process
on graph domain.

Definition 2 (()-Wiener process on graph domain). Let
¢ denote a graph domain with a complete orthonormal basis
U = (uy, ..., upy|) which corresponds to the eigenvectors
of the graph Laplacian L. L is non-negative definite and
symmetric.)\ is the eigenvalue of the eigenvector ug. Then,
W (t) is a Q-Wiener process on graph domain if and only if

VI

W(t) =Y vV AwBe(t), (10)
k=1

where {f(t) ‘kvz‘l are i.i.d. Brownian motions and this
series converges in Ly (2, 9).

Definition 2 is derived by using graph Fourier trans-
form (Shuman et al., 2013). A more detailed description of
Definition 2 and a corresponding validity proof are provided
in Appendix B.1 and B.2 respectively.

However, Definition 2 requires the eigendecomposition of
L, and each discretization step would incur a dense matrix
multiplication with eigenvectors. From the view of spectral
graph theory (Chung, 1997), we adopt a first-order Taylor
series on v/A to derive an approximated sampling strategy
for this (Q-Wiener process:

g(H,)AW, = H,W'L(8'(t+7) - #'(t)), (1)

where AW is the increment of a single (Q-Wiener process
and (3’ (t) represents i.i.d. Brownian motions coming from
graph domain. We can see that Eq.(11) has no requirements
for eigendecomposition and eigenvector multiplications, so
the above calculation overhead is alleviated. A detailed
explanation of this part is given in Appendix B.3.

Loss function. We adopt the distributional uncertainty
loss (Bilos et al., 2019) for training GNSD:

£ = Epuyry [HIP*X,G), PyH(T))]], (12)

where P(H(T)) = P(H(T)[H(0),6,G) is the condi-
tional node representation distribution at the final time
T, P(y*|X,G) denotes the true class distribution and
P(y|H(T)) is modeled by a output decoder 1 for mak-
ing prediction. Instead of the point estimation of the class
distribution, this loss function is the expected cross-entropy
which takes predictive uncertainty into consideration.

4.4. Uncertainty Estimation

After the model training is completed, GNSD can gener-
ate multiple random samples from P(H(T')) to estimate

aleatoric uncertainty and epistemic uncertainty explicitly.
Each sampling can generate the separate node embed-
dings H(T'), which corresponds to a final solution of the
proposed graph stochastic diffusion equation. Based on
this flexible framework, aleatoric uncertainty can be given
as B p g7y [H[P(y|H(T))]], while epistemic uncertainty
can be calculated by the variance of the final solution H(T').
In our model, we integrate the input features and the graph
structural information into the learning process of both drift
network fy and stochastic forcing network gy. So GNSD
provides an accurate uncertainty estimation of interdepen-
dent nodes under the graph homophily assumption.

Notice that the above sampling-computing procedure is
similar to the ensemble methods. The key advantage of our
model lies in that the modeling of predictive uncertainty
is mainly driven by (-Wiener process so that GNSD is
a single model without the need of training multiple sub-
models simultaneously, which is more efficient in terms of
computation and storage costs.

4.5. Model Analysis

Existence and uniqueness. We analyze the existence
and uniqueness of the mild solution of the proposed graph
stochastic diffusion equation. This unique mild solution
guarantees that each node representation can evolve along a
specific trajectory with Brownian motions based on its ini-
tial representation and the graph structure, which is helpful
to alleviate the over-smoothing issue.

Theorem 1. If) is a linear operator and has a complete or-
thonormal basis set and eigenvalues My, > 0, the continuous
operator g satisfies Lipschitz condition, the initial node rep-
resentation h;(0) is square integrable and Fy-measurable,
then there exists a unique mild solution h;(t) on [0, T for
anyT > 0and i €V such that

h;(t) = e"¥h;(0) + /0 t =% g(h;(s))dW (s), (13)

where etV is the semigroup® generated by 1. Furthermore,
there exists a constant Ct > 0 such that

sup |[h;(?)[| < C7(1 + [|h;(0)]]). (14)
te[0,7)

According to (Da Prato & Zabczyk, 2014), the linear opera-
tor ¥ in Theorem 1 can be relaxed to the condition that 1)
can generate a semigroup. In Appendix C, we provide a de-
tailed analysis to show that our model satisfies the condition
of the existence and uniqueness of the mild solution.

25(t) : X — X is a semigroup if: 1) S(0) = I (the identity
operator on the vector space X) and 2) S(¢ + s) = S(t)S(s) for
s,t > 0.

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Table 1. OOD detection performance comparison on Amazon-Computers with different OOD constructions.

Model Label leave-out

Feature perturbation

AUROC AUPRin AUPRout FPR95 DETACC IDACC | AUROC AUPRin AUPRout FPR95 DETACC IDACC
GCN 82.35 56.46 93.67 56.06 74.72 87.34 80.55 78.53 78.55 80.67 75.09 86.67
GAT 80.66 53.19 93.05 5391 72.65 89.57 73.69 78.00 65.61 97.41 75.76 85.46
GRAND 80.27 52.51 92.84 54.81 71.99 89.13 84.93 81.29 87.33 54.98 65.34 87.60
GREAD 80.56 54.05 92.70 54.14 72.68 89.60 85.38 79.07 87.60 59.10 68.29 86.67
MSP 74.88 47.53 89.64 75.52 68.85 85.80 72.86 74.50 67.73 95.70 70.81 83.47
ODIN 71.78 37.70 89.83 70.54 50.21 84.54 79.13 80.09 77.09 83.09 66.75 86.68
Mahalanobis 71.87 37.76 89.87 70.24 50.18 84.54 74.47 67.54 76.28 82.48 50.04 55.44
GNNsafe 90.50 77.20 95.05 48.25 84.47 89.37 89.46 91.31 84.01 75.62 76.49 87.25
GCN-Ensemble | 79.53 52.39 91.99 69.28 73.51 85.44 77.71 79.45 72.60 94.20 77.51 79.36
BGCN 82.19 57.52 93.30 57.43 73.55 87.90 83.60 82.93 81.50 72.49 75.78 85.59
GKDE 76.46 48.18 90.64 73.36 64.35 74.68 71.69 71.40 69.04 90.83 69.70 82.79
GPN 88.76 68.23 96.45 42.08 81.02 88.87 87.92 85.99 85.98 67.10 81.24 86.95
GNSD ‘ 94.06 82.27 97.06 31.47 88.76 89.64 ‘ 95.95 94.76 94.02 15.69 91.28 87.99

Computational complexity. The computational complex-
ity of GNSD includes three main parts: node encoding, the
calculations in fy, and the calculations in gg. The complex-
ity of the first part is O(|V|dd’). The second one is domi-
nated by Eq.(7): O(|€|d’). The last part in Eq.(8) is also
implemented in the scheme of information aggregation so
that its complexity is O(|€||V|). Thus, GNSD keeps an ac-
ceptable computational complexity, i.e., O(|V|(dd’ + |£])).
In addition, both the input encoder ¢ and the output decoder
7 are implemented as the simple multilayer perceptrons
(MLPs) for model efficiency. In Section 5.7, we provide an
empirical study of runtime comparison.

5. Experiment

In this section, we conduct extensive experiments in the
scenario of semi-supervised node classification with the
following tasks: out-of-distribution (OOD) detection, mis-
classification detection and graph structure shifts. For each
task, uncertainty estimation plays a critical role. Addition-
ally, we conduct a series of model analyses including model
variants, visual study and runtime comparison for compre-
hensive evaluations.

5.1. Experimental Setup

Datasets. We evaluate our model on five benchmark graph
datasets including one co-purchase graph (McAuley et al.,
2015) (Amazon-Computers), three citation graphs (Sen
et al., 2008) (Cora, CiteSeer and Pubmed) and one aca-
demic graph (Hu et al., 2020) (OGBN-Arxiv). The detailed
descriptions of them are summarized in Appendix E.2.

Baselines. We compare GNSD with the following three
model families. The first family includes four strong GNNs:
GCN (Kipf & Welling, 2017), GAT (Velickovi¢ et al., 2018),
GRAND (Chamberlain et al., 2021) and GREAD (Choi
et al., 2023). The second family is OOD detection baselines:

MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al.,
2018), Mahalanobis (Lee et al., 2018) and GNNsafe (Wu
et al., 2023). Among them, the first three models are stan-
dard OOD detection methods, we replace their original back-
bones with a GCN encoder to handle graph-structured data.
GNNissafe is current SOTA OOD detection model for GNN-
based learning on graphs. The third family is representa-
tive uncertainty estimation methods on graphs: ensemble-
based GCN (GCN-Ensemble) (Lakshminarayanan et al.,
2017), Bayesian-based GCN (BGCN) (Zhang et al., 2019),
GKDE (Zhao et al., 2020) and GPN (Stadler et al., 2021).

For GNN baselines, we use aleatoric uncertainty for all
detection tasks. For uncertainty estimation methods, we
use epistemic uncertainty for OOD detection and aleatoric
uncertainty for misclassification detection as suggested by
previous works (Zhao et al., 2020; Stadler et al., 2021).
Further baseline details are provided in Appendix E.3.

Evaluation metrics. For an ideal uncertainty estimation
GNN, it should own the ability of detecting abnormal sam-
ples while keeping good predictive performance on nor-
mal samples. Based on this view, we use AUROC, AUPR,
FPROS5, detection accuracy (DET ACC) and in-distribution
classification accuracy (ID ACC) as evaluation metrics.
Larger values of AUROC, AUPR, DET ACC and ID ACC in-
dicate better performance while a smaller value of FPR9S is
more preferable. We show the best two results in bold (first)
and underlined (second). ‘-’ denotes the out-of-memory
issue in reported results. The more information about these
metrics is given in Appendix E.4.

5.2. OOD Detection

We evaluate our model in two OOD scenarios: (1) La-
bel leave-out: We use nodes with partial classes as in-
distribution data and leave out others as OOD data. Con-
cretely, the categories which are greater than 3 are classified
as ID classes for Cora; the categories which are greater than

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Table 2. Misclassification detection performance comparison on three datasets.

Model Amazon-Computers Cora CiteSeer
AUROC AUPR succ AUPRerr FPR9S | AUROC AUPRsucc AUPRerr FPR95 | AUROC AUPRsucc AUPRerr FPR9S
GCN 79.78 95.98 34.04 74.87 76.04 92.54 42.12 79.81 71.03 81.22 47.50 85.52
GAT 81.45 95.81 36.55 73.35 80.88 94.80 48.90 69.35 74.27 82.18 52.93 82.67
GRAND 79.62 95.57 33.25 75.02 76.13 92.70 43.29 78.54 71.52 81.63 54.24 82.70
GREAD 80.90 94.40 39.67 75.64 81.49 94.31 49.77 72.80 70.90 80.92 50.80 84.05
GCN-Ensemble 80.79 95.78 39.26 74.59 76.09 92.53 44.17 75.24 72.44 72.51 60.90 87.40
BGCN 81.63 95.71 36.92 73.48 78.08 93.13 47.45 73.56 71.55 83.19 48.80 82.57
GKDE 79.39 95.94 32.77 73.72 71.55 85.60 48.63 81.29 70.01 82.10 50.66 84.01
GPN 80.23 96.09 36.37 72.69 76.14 89.06 52.11 77.82 75.69 81.98 61.70 78.35
GNSD | 83.08 96.34 47.09 66.48 | 88.04 97.86 58.43 51.22 | 76.04 83.68 61.98 82.26
95 100
o 0550 2532 862 B 9 91.27 94.20 94.73 94.51
o5 X 0 9408
a732 92.5
858.7¢
75 80
* & (}.v*‘o & &F@Q\Zé}; & & ” & & s o ® P S & & e“"‘ﬁo = &F@v\zod‘ &F S
o(l\;k‘ & & e(,g
(a) Cora (b) CiteSeer (c) Pubmed

Figure 2. Performance (%) comparisons of the relative average aleatoric confidence on three citation graphs with structure shifts.

2 are classified as ID classes for CiteSeer; the categories
which are greater than or equal to 1 are classified as ID
classes for Pubmed; the categories which are greater than
5 are classified as ID classes for Amazon-Computers; the
categories which are greater than 20 are classified as ID
classes for OGBN-Arxiv.

(2) Feature perturbation: We use the original graph as in-
distribution data, and the linear interpolation of original
features and random features is used for creating perturbed
node features as OOD data.

The OOD detection results of Amazon-Computers are pro-
vided in Table 1 and more experimental results are provided
in Appendix E.5 (Tables 4-8). From the reported results,
we conclude that GNSD achieves the best performance for
OOD detection. Compared with previous SOTA baselines,
GNSD averagely increases AUROC by 5.6%, AUPR in by
5.2%, AUPR out by 4.1%, DET ACC by 8.7% and reduces
FPROS by 48.3% in two OOD scenarios. Meanwhile, it still
keeps competitive classification results as shown in the ID
ACC results. It demonstrates that GNSD can well recog-
nize OOD nodes by modeling predictive uncertainty and
has accurate prediction ability.

5.3. Misclassification Detection

Besides OOD detection, we also report the results for the de-
tection of misclassified samples. Misclassification detection

is also an important task of testing whether the uncertainty
estimation models could aware of prediction mistakes at test
time (Hendrycks & Gimpel, 2016). The results of Amazon-
Computers, Cora and CiteSeer are shown in Table 2, and
remaining results are provided in Appendix E.5 (Table 9).
From Table 2, we conclude that GNSD achieves the best
detection performance. In particular, compared with the
SOTA uncertainty estimation model GPN, GNSD can in-
crease AUROC by 6.5%, AUPR succ by 4.1%, AUPR err
by 14.0% and reduce FPR9S5 by 12.6% on three datasets av-
eragely. Thus, GNSD is good at using aleatoric uncertainty
to identify misclassified test samples.

5.4. Graph Structure Shifts

We test whether our model could be used for recogniz-
ing structure shifts via uncertainty estimation. Following
GPN (Stadler et al., 2021), we adopt DICE (Waniek et al.,
2018) as the perturbation strategy to generate shifted graphs.
DICE is a classic global adversarial attack, which inserts
edges between nodes from different classes and deletes
edges between nodes from the same classes. We leverage
DICE to perturb 30% edges in three citation graphs: Cora,
CiteSeer and Pubmed. The relative average aleatoric con-
fidence is used according to the consistent observations in
GPN. Figure 2 shows the concrete results. We can see that
the edge perturbation leads to more aleatoric uncertain pre-
dictions and GNSD can perceive the shift of graph structures

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Table 3. OOD detection performance comparison (AUROC) of model variants on all datasets.

Label leave-out

Feature perturbation

Model ‘ Amazon Cora CiteSeer Pubmed Arxiv | Amazon Cora CiteSeer Pubmed Arxiv
GNSD-L 92.53 94.69 83.17 75.48 77.81 94.72 93.74 88.49 95.68 99.24
GNSD-S 93.20 94.93 82.30 76.10 - 94.58 94.46 87.81 96.79 -
GNSD-E 95.11 94.87 83.02 78.44 - 96.58 94.58 88.06 96.60 -
GNSD \ 94.06 94.76 82.95 78.81 78.82 \ 95.95 94.41 86.82 97.09 99.55

(a) Ground truth classes

(b) Epistemic uncertainty at ¢t = 0

(c) Epistemic uncertainty att = T

Figure 3. Visual results of the propagation of epistemic uncertainty on Cora.

via the change of aleatoric confidence.

5.5. Variant Study

We consider three different model variants of GNSD to
verify model effectiveness: GNSD-L, GNSD-S and GNSD-
E. Following GRAND, we derive a linear version of GNSD,
i.e., GNSD-L where the attention weights in fy are fixed
throughout the integration. GNSD-S represents that we use
the Stochastic Runge-Kutta method (Kloeden et al., 1992)
as the SDE solver. GNSD-E denotes that we perform the
exact discretization sampling of (J-Wiener process instead
of using the proposed approximation strategy. We conduct
OOD detection on all datasets and report AUROC results in
Table 3. From it, we have the following three conclusions:
1) By comparing GNSD-L and GNSD, we find that GNSD
is more suitable to detection tasks; 2) Although GNSD-
S adopts a more complex discretization scheme, the gap
in outcomes is unnoticeable; 3) The approximation of the
discretization sampling is an effective strategy, since GNSD
keeps the comparable performance and without the out of
memory exception in GNSD-E for large-scale graphs.

5.6. Visual Analysis

Figure 3 shows the visual results of epistemic uncertainty
among nodes at t = 0 and £ = T on Cora. The whole
epistemic uncertainty is high as shown in (b). Because in
the beginning GNSD has learned the little graph information,
especially for the nodes located at the middle region. With

e

N N
o e

e ge® o = >

&

Figure 4. Runtime comparison of one epoch (in seconds).

the evolution of node embeddings, epistemic uncertainty
is propagated along the graph structure and is gradually
decreasing, which is reasonable since these nodes have been
observed in the training phase as shown in (c).

5.7. Runtime Comparison

We provide an empirical runtime comparison between
GNSD and seven strong baselines. The experiment is con-
ducted on Amazon-Computers for OOD detection in the
setting of label leave-out. Figure 4 demonstrates that the
runtime complexity of GNSD is acceptable. Through the
respective comparisons of GRAND and of GPN with our
model, we can conclude that GNSD arms the continuous-
depth GNNs with the ability of uncertainty estimation with-
out incurring the extra high computational complexity.

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

6. Conclusion

We present GNSD, augmenting GNN's with the ability of un-
certainty estimation through modeling the proposed graph
stochastic diffusion equation. To solve this equation, we
introduce a new Q-Wiener process on graph domain and pro-
vide an efficient approximation to support its discretization
sampling. The distinctive network design enables GNSD
to satisfy the condition of the existence and uniqueness of
the mild solution of the stochastic dynamical system. Exten-
sive experiments show that GNSD outperforms many strong
baselines. There are two interesting directions we want to
further explore: 1) studying the more advanced architectures
of drift network and stochastic forcing network which are
applicable to both homophily and heterophily settings; 2)
investigating how to deploy GNSD on large-scale graphs.

Impact Statement

We develop a new GNN framework via modeling the graph
SPDE. We hope that our study can facilitate a new method-
ology of uncertainty estimation on graphs. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.

Acknowledgements

This work is supported by the National Key Research and
Development Program of China (NO.2022YFB3102200),
the Strategic Priority Research Program of the Chi-
nese Academy of Sciences (XDB0680101), the National
Natural Science Foundation of China (No0.62302345,
No.U23A20305), the Research Impact Fund (No.R1015-23),
APRC-CityU New Research Initiatives (N0.9610565, Start-
up Grant for New Faculty of CityU), CityU-HKIDS Early
Career Research Grant (N0.9360163), Hong Kong ITC In-
novation and Technology Fund Midstream Research Pro-
gramme for Universities Project (No.ITS/034/22MS), Hong
Kong Environmental and Conservation Fund (No.88/2022),
SIRG-CityU Strategic Interdisciplinary Research Grant
(N0.7020046, No.7020074), Huawei Innovation Research
Program, CCF-Tencent Open Fund, Tencent Rhino-Bird
Focused Research Program, CCF-Ant Research Fund, Ant
Group Research Fund, CCF-BaiChuan-Ebtech Foundation
Model Fund, and Kuaishou.

References

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D.,
Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khos-
ravi, A., Acharya, U. R., et al. A review of uncertainty
quantification in deep learning: Techniques, applications
and challenges. Information fusion, 2021.

Balcilar, M., Héroux, P., Gauzere, B., Vasseur, P., Adam, S.,

and Honeine, P. Breaking the limits of message passing
graph neural networks. In International Conference on
Machine Learning, 2021.

Bazhenov, G., Kuznedelev, D., Malinin, A., Babenko, A.,
and Prokhorenkova, L. Revisiting uncertainty estimation
for node classification: New benchmark and insights.
2022.

Belkin, M. and Niyogi, P. Laplacian eigenmaps for di-
mensionality reduction and data representation. Neural
computation, 15(6):1373—-1396, 2003.

Bilos, M., Charpentier, B., and Giinnemann, S. Uncertainty
on asynchronous time event prediction. Advances in
Neural Information Processing Systems, 32, 2019.

Carmona, R., Kesten, H., Walsh, J. B., and Walsh, J. B. An
introduction to stochastic partial differential equations.
Springer, 1986.

Chamberlain, B., Rowbottom, J., Gorinova, M. 1., Bronstein,
M., Webb, S., and Rossi, E. Grand: Graph neural diffu-
sion. In International Conference on Machine Learning,
pp. 1407-1418. PMLR, 2021.

Charpentier, B., Ziigner, D., and Giinnemann, S. Posterior
network: Uncertainty estimation without ood samples
via density-based pseudo-counts. Advances in Neural
Information Processing Systems, 33:1356-1367, 2020.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Chien, Y. and Fu, K.-S. On the generalized karhunen-logve
expansion (corresp.). IEEE Transactions on Information
Theory, 13(3):518-520, 1967.

Choi, J., Hong, S., Park, N., and Cho, S.-B. Gread: Graph
neural reaction-diffusion networks. In International Con-
ference on Machine Learning, 2023.

Chung, F. R. Spectral graph theory, volume 92. American
Mathematical Soc., 1997.

Da Prato, G. and Zabczyk, J. Stochastic equations in infinite
dimensions. Cambridge university press, 2014.

Depeweg, S., Hernandez-Lobato, J.-M., Doshi-Velez, F.,
and Udluft, S. Decomposition of uncertainty in bayesian
deep learning for efficient and risk-sensitive learning. In

International Conference on Machine Learning, pp. 1184—
1193. PMLR, 2018.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In International Conference on Machine Learning,
2016a.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pp.
1050-1059. PMLR, 2016b.

Gal, Y. et al. Uncertainty in deep learning. Ph.D. thesis,
2016.

Gasteiger, J., Bojchevski, A., and Giinnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank. arXiv preprint arXiv:1810.05997, 2018.

Gau, H.-L., Wang, K.-Z., and Wu, P. Y. Numerical ranges
of row stochastic matrices. Linear Algebra and its Appli-
cations, 506:478-505, 2016.

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M.,
Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R.,
et al. A survey of uncertainty in deep neural networks.
Artificial Intelligence Review, 56(Suppl 1):1513-1589,
2023.

Goyal, P., Raja, S., Huang, D., Chhetri, S. R., Canedo, A.,
Mondal, A., Shree, J., and Jawahar, C. Graph representa-
tion ensemble learning. In 2020 IEEE/ACM International
Conference on Advances in Social Networks Analysis and
Mining (ASONAM), pp. 24-31. IEEE, 2020.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Hasanzadeh, A., Hajiramezanali, E., Boluki, S., Zhou, M.,
Duffield, N., Narayanan, K., and Qian, X. Bayesian graph
neural networks with adaptive connection sampling. In
International conference on machine learning, pp. 4094—
4104. PMLR, 2020.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. arXiv preprint arXiv:1610.02136, 2016.

Hilt, D. E. and Seegrist, D. W. Ridge, a computer program
for calculating ridge regression estimates. Department of
Agriculture, Forest Service, Northeastern Forest Experi-
ment ..., 1977.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Hsu, H. H.-H., Shen, Y., Tomani, C., and Cremers, D. What
makes graph neural networks miscalibrated? Advances

10

in Neural Information Processing Systems, 35:13775—
13786, 2022.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Advances in
neural information processing systems, 2020.

Huang, K., Jin, Y., Candes, E., and Leskovec, J. Uncertainty
quantification over graph with conformalized graph neu-
ral networks. Advances in Neural Information Processing
Systems, 2023.

Kendall, A. and Gal, Y. What uncertainties do we need in
bayesian deep learning for computer vision? Advances
in neural information processing systems, 30, 2017.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Kittaneh, F. and Manasrah, Y. Improved young and heinz in-
equalities for matrices. Journal of Mathematical Analysis
and Applications, 361(1):262-269, 2010.

Kloeden, P. E., Platen, E., Kloeden, P. E., and Platen, E.
Stochastic differential equations. Springer, 1992.

Kong, L., Sun, J., and Zhang, C. Sde-net: Equip-
ping deep neural networks with uncertainty estimates.
In International Conference on Machine Learning,
2020. URL https://api.semanticscholar.
org/CorpusID:221082095.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. Advances in neural information processing
systems, 30, 2017.

Lee, K., Lee, K., Lee, H., and Shin, J. A simple unified
framework for detecting out-of-distribution samples and
adversarial attacks. Advances in neural information pro-
cessing systems, 31, 2018.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Proceedings of the AAAI conference on artificial intelli-
gence, 2018.

Li, Y., Wang, X., Liu, H., and Shi, C. A generalized
neural diffusion framework on graphs. arXiv preprint
arXiv:2312.08616, 2023.

Liang, S., Li, Y., and Srikant, R. Enhancing the reliability of
out-of-distribution image detection in neural networks. In

International Conference on Learning Representations,
2018.

https://api.semanticscholar.org/CorpusID:221082095
https://api.semanticscholar.org/CorpusID:221082095

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Liao, R., Zhao, Z., Urtasun, R., and Zemel, R. S. Lanczos-
net: Multi-scale deep graph convolutional networks. In
International Conference on Machine Learning, 2019.

Lord, G. J., Powell, C. E., and Shardlow, T. An introduction
to computational stochastic PDEs, volume 50. Cam-
bridge University Press, 2014.

Malinin, A. and Gales, M. Predictive uncertainty estima-
tion via prior networks. Advances in neural information
processing systems, 31, 2018.

McAuley, J., Targett, C., Shi, Q., and Van Den Hengel, A.
Image-based recommendations on styles and substitutes.
In Proceedings of the 38th international ACM SIGIR
conference on research and development in information
retrieval, 2015.

McPherson, M., Smith-Lovin, L., and Cook, J. M. Birds of
a feather: Homophily in social networks. Annual review
of sociology, 2001.

Ng, Y. C., Colombo, N., and Silva, R. Bayesian semi-
supervised learning with graph gaussian processes. Ad-
vances in Neural Information Processing Systems, 31,
2018.

Pal, S., Malekmohammadi, S., Regol, F., Zhang, Y., Xu,
Y., and Coates, M. Non parametric graph learning for
bayesian graph neural networks. In Conference on uncer-
tainty in artificial intelligence, pp. 1318-1327. PMLR,
2020.

Poli, M., Massaroli, S., Park, J., Yamashita, A., Asama, H.,
and Park, J. Graph neural ordinary differential equations.
arXiv preprint arXiv:1911.07532, 2019.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, pp. 1530-1538,
2015.

Salvi, C., Lemercier, M., and Gerasimovics, A. Neural
stochastic pdes: Resolution-invariant learning of con-
tinuous spatiotemporal dynamics. Advances in Neural
Information Processing Systems, 35:1333—1344, 2022.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. Al magazine, 2008.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and
Vandergheynst, P. The emerging field of signal processing
on graphs: Extending high-dimensional data analysis
to networks and other irregular domains. /EEE signal
processing magazine, 30(3):83-98, 2013.

11

Stadler, M., Charpentier, B., Geisler, S., Ziigner, D., and
Giinnemann, S. Graph posterior network: Bayesian pre-
dictive uncertainty for node classification. Advances
in Neural Information Processing Systems, 34:18033—
18048, 2021.

Stark, H., Beaini, D., Corso, G., Tossou, P., Dallago, C.,
Giinnemann, S., and Li0, P. 3d infomax improves gnns
for molecular property prediction. In International Con-
ference on Machine Learning, pp. 20479-20502. PMLR,
2022.

Thorpe, M., Nguyen, T. M., Xia, H., Strohmer, T., Bertozzi,
A., Osher, S., and Wang, B. Grand++: Graph neural
diffusion with a source term. In International Conference
on Learning Representations, 2021.

Van Amersfoort, J., Smith, L., Teh, Y. W., and Gal, Y. Un-
certainty estimation using a single deep deterministic
neural network. In International conference on machine
learning, pp. 9690-9700. PMLR, 2020.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Vol’pert, A. 1. Differential equations on graphs. Mathemat-
ics of the USSR-Sbornik, 17(4):571, 1972.

Wang, K., Shen, Z., Huang, C., Wu, C.-H., Dong, Y., and
Kanakia, A. Microsoft academic graph: When experts are
not enough. Quantitative Science Studies, 1(1):396—413,
2020a.

Wang, X., Ma, Y., Wang, Y., Jin, W., Wang, X., Tang, J.,
Jia, C., and Yu, J. Traffic flow prediction via spatial
temporal graph neural network. In Proceedings of the
web conference 2020, pp. 1082-1092, 2020b.

Wang, X., Liu, H., Shi, C., and Yang, C. Be confident!
towards trustworthy graph neural networks via confidence
calibration. Advances in Neural Information Processing
Systems, 34:23768-23779, 2021.

Waniek, M., Michalak, T. P., Wooldridge, M. J., and Rah-
wan, T. Hiding individuals and communities in a social
network. Nature Human Behaviour, 2(2):139-147, 2018.

Wu, Q., Chen, Y., Yang, C., and Yan, J. Energy-based out-
of-distribution detection for graph neural networks. In
International Conference on Learning Representations,
2023.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International conference on machine learning, pp. 40-48.
PMLR, 2016.

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 974-983,
2018.

Zargarbashi, S. H. and Bojchevski, A. Conformal induc-
tive graph neural networks. In The Twelfth International
Conference on Learning Representations, 2024.

Zargarbashi, S. H., Antonelli, S., and Bojchevski, A. Con-
formal prediction sets for graph neural networks. In In-

ternational Conference on Machine Learning, pp. 12292—
12318. PMLR, 2023.

Zhang, S., Zhou, C., Liu, Y., Zhang, P., Lin, X., and Ma,
Z.-M. Neural jump-diffusion temporal point processes.
In International Conference on Machine Learning, 2024.

Zhang, Y., Pal, S., Coates, M., and Ustebay, D. Bayesian
graph convolutional neural networks for semi-supervised
classification. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pp. 5829-5836, 2019.

Zhao, X., Chen, F., Hu, S., and Cho, J.-H. Uncertainty
aware semi-supervised learning on graph data. Advances

in Neural Information Processing Systems, 33:12827—
12836, 2020.

12

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Appendix
A. Differential Operators on Graphs

In diffusion processes, the definition of spatial differential operators in diffusion PDEs actually reflects the underlying
domain’s structure (Lord et al., 2014). Some fundamental concepts that are well-defined on Riemannian manifolds, such as
vector inner product, scalar inner product, gradient and divergence, play a pivotal role in shaping these spatial differential
operators. When transitioning to graphs, the analogous definitions of these concepts should be established to accommodate
the specific characteristics of graphs (Chamberlain et al., 2021; Thorpe et al., 2021).

For an undirected graph with the row feature vectors of all input nodes X = (x/,..., X‘—I;}‘)T € RIVI*4 and the adjacency

matrix A, the functions defined on nodes and edges can be expressed as node fields P = (p/, ..., p|TV|)T € RIVIXk1 and

edge fields P € RIVI*IVIxk2 by analogy to scalar and vector fields on Riemannian manifolds. The edge fields are alternating,
i.e., P;; = —Pj;. For convenience, let k1 = ky = d, and we define the inner products of node fields and edge fields as

[V VI
1
<P7M> = ;IN - my, <P,M> = 5 Z Aijpij ./\/lzj (15)

ij=1

Gradient describes the changes in space of physical quantities, while divergence is used for measuring the strength of
the sources or sinks in a vector field. Since graphs usually propagate information through edges, the gradient operator of
node fields P = (p7,. .., p‘TVI)T € RIVIXd i5 defined as edge fields (VP) € RIVIXIVIXd where (VP);; = p; — p;. The
divergence operator of node i, i.e., (div(M)); is defined by edge fields M € RIVI*IVIxd 5

VI

j=1

The gradient and divergence operators are adjoint, i.e., (VP, M) = (P, div(M)).

When X (¢) = (x1(t)7,...,x)y|(£)T)T describes the evolution of X over time, the attention matrix A(X(t)) € RIVI*VI
also changes over time, where A;;(X(t)) = a(x;(t),x;(t),t) represents the similarity of the time-evolving features
between nodes ¢ and j. Following GRAND (Chamberlain et al., 2021), we assume a(x;(t), x;(t),t) = a(x;(t),x;(t)) in
G(X(t),t) for the sake of simplicity. According to the above definitions of gradient and divergence operators, the graph
diffusion equation in Eq.(3) is introduced as

s S alxa (), x5 (8)x;(8) — xu(2)
: = : (17)
e 2w @l (1), 5 (£)%; () = X0

where 3, a(xi(t),x;(t)) = Lforalli =1,...,[V|, and a(x;(t),x;(t)) = 0if (¢,j) € €. We convert this matrix into
the form of matrix product as used in Eq.(4):

Ox ~
2ul) -1 e alxa (), xp(0)\ [x

: : : : L = (AX®) - T)X(0). (18)
w &(X‘V‘(t),xl(t)) -1 X|y|

When A (X(t)) is only dependent on the initial feature matrix X, i.e., A(X(t)) = A(X), A(X) is right-stochastic and the

equation is linear with an analytical solution X (t) = e/(A(X)=DX(0). Otherwise, we get a general form of the solution in
Eq.(5).

The numerical methods of PDEs require the discretizations of space and of time respectively. It is critical to choose
appropriate numerical methods. Commonly used methods include finite difference method (FDM), finite element method
(FEM), finite volume method (FVM) and spectral method (Lord et al., 2014). For graph-structured data, employing FDM
for spatial derivative discretization and the Euler or Runge-Kutta technique for temporal derivative discretization has been
proved to be an effective approach (Chamberlain et al., 2021).

13

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

B. ()-Wiener Process on Graph Domain

-Wiener process is originally defined in a separable Hilbert space ¢, where both space and time are continuous (Lord
etal., 2014). Q) : 7 — J is an trace class non negative, symmetric operator on .. In addition, (J-Wiener process can be
expressed as a combination of spatially orthonormal basis and i.i.d. Brownian motions. Typically, the Fourier basis is the

most commonly used set of orthonormal basis e.g., wy (x) = ﬁe%“(klml/cﬁk””@) (Salvi et al., 2022).

Motivated by this observation, we first employ the theory of graph Fourier transform (Shuman et al., 2013) to derive the
definition of Q-Wiener process on graph domain, and further prove that it still keeps a valid form of (Q-Wiener process.
Afterwards, we provide an effective approximation strategy of the discretization sampling from the proposed Q-Wiener
process, which largely reduces the original computational complexity.

B.1. Derivation of ()-Wiener Process on Graph Domain

In this work, we extend (Q-Wiener process to graph domain. The concrete derivation is here: For a graph, the graph Laplacian
L is a semi-positive definite symmetric matrix with its eigenvalues being non-negative. U is an orthogonal matrix where
each column eigenvector uy, is mutually orthogonal to others. These eigenvectors constitute a set of orthonormal basis on
the graph:

A e 0
L=u|: = = |U' (19)
0 -+ Ay
where U = (uy, ..., ujy|). In analogy to the Karhunen-Log¢ve expansion (Chien & Fu, 1967), Q-Wiener process can be

represented as a linear combination of the eigenvectors. Instead of using uncorrelated random variables, we employ i.i.d.
Brownian motions [(t). Let W (t) be a Q-Wiener process on graph domain and suppose that A, > 0 for all k£ without loss
of generality. W (t) can be expressed as the sum of its projection under each orthogonal basis uy:

V) V)
W(t) = (W), up)up = >V Asui(t), 20)
k=1

k=1

where S (t) := \/%\7 (W (t),uy) and {uk}‘kvz‘1 is a set of orthonormal bases. Until now we obtain the form of Eq.(10) in
Definition 2, where S (0) = 0 a.s. 8 (t) is F;-adapted and has continuous sample paths. The increment of S (¢) — Bk (s) is
independent of F; and has the form
1
Br(t) — Br(s) = —= (W (t) — W(s),ug), 0<s<t. (1)
VA

As W (t) — W(s) ~ N(0, (t — s)L), we can get the covariance between the increments of Brownian motions of different
components:

Cov(B;(t) — Bi(s), Br(t) — Br(s)) = El(B;(t) — Bi(s))(Br(t) — Br(s)] — E[B;(t) — B ($)IE[Bk(t) — Br(s)]
1
= mEKW(f) = W(s),u;) (W(t) = W(s), up)] -

——E[(W (1) - W (s), up)[E[(W (1) — W (s), ug)]

VA

= LRI (W) = W(s) (W (t) — W(s) T

N 22)
(Y (1) = W) (T EDV (1) — W (s))
Nk
= ———aTE[(W(0) = W) (W () — W () e
Jj\k
1

14

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

So any pair of increments forms a multivariate Gaussian. Hence, §; and §, are independent for j # k, 8 (t) — Bi(s) ~
N(0,t — s) for j = k, and B (¢) is a F;-Brownian motion.

B.2. Validity Proof of QQ-Wiener Process on Graph Domain

In this section, we prove that W (¢) in eq.(20) is a valid Q-Wiener process according to Definition 1. We first consider the
convergence of this series in Lo (€2, %) for any fixed ¢ > 0. In this case, QQ-Wiener process can be viewed as the sum of a
finite number of elements. By the orthonormality of the eigenvectors and Parseval’s identity, we can get

V| V|
IW @) 12 =D 1), w) =) (afW(t)
k=1 k=1
VI VI
=D (i Y VAust)?
k=1 j=1
V) (23)
=Y (VB(t)?
k=1
VI
= MB(t)”.
k=1
As ZLV:II Ak < oo and each 3;(t) is a Brownian motion so that E[3,(¢)?] = t. We take the expectation as
VI VI
B[W) 7] = D ME[Be(8)*] = ¢ > A < oo (24)
k=1 k=1

Then the convergence of this series in Lo (£2,%) has been proved. Next we prove that the right side of Eq.(20) satisfies the
definition of (Q-Wiener process. We can obtain the covariance between the different components of the (Q-Wiener process:

Cov((W(t),u;), (W(t), ur)) = E(W(t), u;) (W(t), ur)] — E(W(2), u;)|E[(W (), ur)]
=E[(W(t),u;) (W(t), up)] — w]E[W ()] uE[W(¢)]
=E[(W(t),u;) (W(t), up)]
=u E[W ()W (t) ug)
= tuJT-Luk
= t/\jdjk.

From this formula we can conclude that W (¢) ~ A(0,tL). This observation naturally extends to the increments, i.e.,
W(t) — W(s) ~N(0,(t — s)L) for all 0 < s < ¢, and we see that W (¢) satisfies Definition 1.
B.3. Approximate Discretization Sampling

We first represent the right-hand side of Eq.(20) in a more compact matrix-vector form:

W(t) =SB(t), (26)

where S = Uv/A. B3(t) is a vector containing only i.i.d. Brownian motions:
pr(t)
B(t) = : 27
Bvi(t)

Utilizing the above formula, we can sample a ()-Wiener process by sampling from i.i.d. Brownian motions. But the
discretization sampling of this ()-Wiener process requires the eigendecomposition and dense matrix multiplication in the

15

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

high-dimensional case, which is computation unaffordable. Here we propose an approximation strategy of the discretization
sampling from this ()-Wiener process to alleviate this issue.

Note that U is the inverse graph Fourier transform, so W (t) = U+/A3(t) represents scaled Brownian motions followed by
U. From this spectral graph view, W (t) is actually from graph domain, whereas 3(t) is originated in frequency domain.
We can regard (3(t) as a Fourier transformation UT on Brownian motions 3'(#) coming from graph domain:

W(t) = UVAUT @' (1), (28)

where 3'(¢) are i.i.d. Brownian motions because i.i.d. normal distributions are still i.i.d. normal distributions after orthogonal
transformation.

Lemma 1. Eigenvalues of L € (0,2]. Eigenvalues of L — 1 € (—1,1].
Following this intuitive interpretation, we then perform a first-order Taylor series on v/A as:
2VA =T+A+O((A-1)?). (29)

Due to the following Lemma 1, we can obtain the approximation as v/A ~ I+ A which omits O((A —I)?) and the constant
factor. Integrating this approximated term into Eq.(28) and we get

W(t) = UVAUTB'(¢t)
~U(I+A)UB (1)
= (UUT +UAUT)B'(t) (30)
= (I +L)3'(t)
=Lg'(1).
Therefore, we can incorporate the graph Laplacian with added self- connections, i.e., L into the design of stochastic forcing

network for the discretization sampling of ()-Wiener process in Eq.(9) without any complicated calculations. The concrete
form is given in Eq.(11).

C. Analysis of Existence and Uniqueness

Theorem 1 is a special case of the existence and uniqueness theorem of a general stochastic differential equation in
Thm.10.26 (Lord et al., 2014), where the restriction of the linear operator 1) can be relaxed to that 1) can generate a
semigroup (Da Prato & Zabczyk, 2014). Here we prove that our model has the following two properties for satisfying the
condition of the existence and uniqueness theorem of the mild solution:

 A(H(t)) — Tis linear and can generate a semigroup.
* g satisfies Lipschitz condition in Assump.10.23 (Lord et al., 2014): For constants £ € (0,2] and C' > 0, g satisfies

1€ 2g(H(1))]| < C(1+[H@)ID),

[& D2 (gD (1)) — g(HP (1)))]] < C|HD (1) = HP (1)]], Y

where H () and H(®)(¢) are two elements from the space of H(t).

For the first property, A (H(t)) is right-stochastic, and 9» = A (H(t)) — I can generate a semigroup S(t) = e*(AH®)-D)
for the drift term £(H(¢)) and satisfies

S(t+ 5) = e(+o)AED)-D
— HA(H(®)-T) js(A(H(1)-T) (32)
= 5()S(s),
where S(0) = L.

16

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Lemma 2. For two matrices A,B € R"*", ||A + B|| < ||A]|| + ||B]|, ||AB|| < ||A]| - ||B]], [|aA]| = |]||A]l.
Lemma 3. (Gau et al., 2016) Let A € R™*"™ be a right stochastic matrix, then 1 < ||A|| < /n.

Lemma 4. (Kittaneh & Manasrah, 2010) if A,B € R™ ™ are positive semidefinite matrices and 0 < a < 1,
|A“B! || < [laA + (1 — a)Bl|.

i

For the second property, in the case £ € (1, 2] we have

IAG() - 1672 = |[(AgH(E) - D209 (3
<55 AmEE) -1+ 25 G4
< S AEE@) -1+ 2 G3)
< S UAE@)+) + 2 36)
= L IA®EM) -+) 37)
< Cy, (38)

where (71 is a constant. In the above equation, Eq.(34) is derived by Lemma 4. Eq.(35) and Eq.(36) are derived by Lemma 2.
Eq.(38) is derived by Lemma 3.

In the another case £ € (0, 1], the derivation procedure is similar to the case £ € (1, 2], but the matrix inversion has been
involved. In practical applications, if A(H(t)) — I is irreversible, we can use Tikhonov regularization (Hilt & Seegrist, 1977)
which adds an appropriately small positive value A to the diagonal of A(H(t)) — I for making it invertible and keeping its
norm within a reasonable range. Combining these two cases together, we see that ||(A (H(t)) — I)¢=D/2|| for & € (0,2] is
bounded.

In addition, due to the fact that g adopts the ReLU activation function, so we have ||g(H(?))|| < C2(1 + ||H(¢)||) and
I(ACH() — DED2g(H@)| < [|(AE(E) - DE D2 - |[g(HE)|
< CiCo(1+ [[H@)]) 39)
< CL+[H@D)),
where C, C, C are constants. According to the above equation, we can also get
I(AE() - DD (gHD (1) — gHD 1))]] < I(AHEE)) - DE V2| [lgHD (2) - g(HE (2))]]
< GG [HD() —HO 1) “40)
< CIHV () ~HP(1)]].

The proof that g satisfies Lipschitz condition in Assump.10.23 has been completed. In general, our model satisfies the
condition of the existence and uniqueness of the mild solution of the graph stochastic diffusion equation.

D. Training Algorithm

The pseudo-code of training algorithm of GNSD is provided in Algorithm 1. In each epoch, the input encoder first embeds
the input feature matrix into the representation space for generating initial node embeddings. In the discretization phase, we
use the Euler method to update node embeddings iteratively. Through /V discretizations, we obtain the final node embeddings
H(T). The output encoder takes H(T') as input and ouputs P(y|H(T")) to calculate the distributional uncertainty loss.

E. Experimental Details
E.1. Experimental Environment

The experiments are conducted on a Linux server with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz, 128G RAM and
NVIDIA Tesla V100. The operating system is Ubuntu 18.04. We implement our model and all baselines with the deep

17

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Algorithm 1 The training algorithm of GNSD.

Input: Undirected graph G with the input feature matrix X.
Output: Learned input encoder ¢, drift network fp, stochastic forcing network gy and output decoder 7).

1:
2:
3:

1

4
5
6:
7:
8.
9
0

Initialize model parameters.
for # training epochs do
Embed X into the representation space as initial node embeddings, i.e., ¢(X) = H(0) = H,.
forn=0to N —1do
H,,1 =H, +7(AH,) -I)H, + g(H,)AW,.
end for
Use 1 to model P(y|H(T")) where H(T") = Hy_;.
Calculate the distributional uncertainty loss of Eq.(12).
Update model parameters by Adam optimizer.

: end for

learning library PyTorch (version 1.11) in Python 3.8.

E.2. Dataset Descriptions

¢ Amazon-Computers (McAuley et al., 2015) is a segment an Amazon co-purchase graph, where each node represents a
product and an edge exists when these two products are frequently bought together. The feature vector of each node is
the bag-of-words representation of product reviews and the product category is the class label. This dataset has 13,752
nodes, 245,861 edges, 767 features and 10 classes.

* Cora, CiteSeer and Pubmed (Sen et al., 2008) are three citation graph datasets. Each graph is directed, where nodes
are documents and edges are citation links. When document A cites document B, there exists a directed edge from
A to B, or vice-versa. The feature vector of each node is also the bag-of-words representation. Cora contains 2,708
nodes, 5,429 edges, 1,433 features and 7 classes. CiteSeer has 3,327 nodes, 9,104 edges, 3,703 features and 6 classes.
Pubmed owns 19,717 nodes, 88,648 edges, 500 features and 3 classes. Following previous works, we treat citation
links as undirected edges and use the provided training/validation/testing splits on in-distribution data. The goal is to
predict each paper’s topic as the class label.

* OGBN-Arxiv (Hu et al., 2020) is a large-scale academic graph based on Microsoft academic (Wang et al., 2020a),
where each node is a paper with a subject area as the label to predict, and the edge represents the citation relationship.
Each node owns a 128-dimensional feature vector obtained by the skip-gram embeddings of its title and abstract. This
dataset has 169,343 nodes, 2,315,598 edges, 128 features and 40 classes.

For amazon-computers, the training/validation/testing split is 2:1:1. For three citation graphs and OGBN-Arxiv, we use the
public data split as suggested in the original papers (Yang et al., 2016; Hu et al., 2020).

E.3. Baseline Descriptions

* GCN (Kipf & Welling, 2017) is a standard GNN framework that introduces a localized first-order approximation of
spectral graph convolutions.

¢ GAT (Velickovic et al., 2018) is the first work that uses self-attention layers to learn neighbour weights in the process
of node feature aggregation.

* GRAND (Chamberlain et al., 2021) introduces the discretization of diffusion PDEs on graphs that allows the training
of very deep GNNs. We choose the nonlinear version of GRAND where the attention weights are updated at each step
of the numerical integration.

* GREAD (Choi et al., 2023) is also a GNN model based on reaction-diffusion equation. Different from GRAND,
GREAD adds a reaction term to the diffusion equation for solving the over-smoothing problem. GREAD gives multiple
forms of reaction terms. We use the proposed Blurring-sharpening term which is designed by the authors.

18

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

* MSP (Hendrycks & Gimpel, 2016) proposes a simple method that utilizes probabilities from softmax distributions for
OOD detection with the observation that OOD examples tend to be lower than the prediction probability for correct
examples.

* ODIN (Liang et al., 2018) uses the temperature scaling in the softmax function (Hinton et al., 2015) and adds small
controlled perturbations to inputs for further enlarging the gap between in-distribution and out-of-distribution data.

* Mahalanobis (Lee et al., 2018) derives a generative classifier to obtain a confidence score based on the Mahalanobis
distance w.r.t the closest class conditional distribution. Using this generative classifier can effectively detect OOD and
adversarial samples.

* GNNsafe (Wu et al., 2023) proposes an effective OOD discriminator based on an energy function directly extracted
from GNNss trained with standard classification loss. It includes a process of energy propagation to improve model
generalization ability. GNNsafe includes two model variants. Since the ideal OOD samples are not available, we
choose the first variant without the requirement of OOD samples.

¢ GCN-Ensemble (Lakshminarayanan et al., 2017) combines GCN with ensemble methods. The ensemble of models
has 10 different random initializations of model parameters.

* BGCN (Zhang et al., 2019) is a representative Bayesian-based graph learning method, which views the observed graph
as a realization from a parametric family of stochastic block models (SBMs). It performs a model inference of the joint
posterior of SBM parameters and GCN parameters. For the approximate posterior of GCN parameters, BGCN uses
Monte Carlo dropout (Gal & Ghahramani, 2016a) to finish parameter sampling.

* GKDE (Zhao et al., 2020) provides a graph-based kernel Dirichlet distribution estimation for predicting node-level
Dirichlet distributions. The Dirichlet estimation requires the shortest path between nodes for kernel computation, which
has the quadratic complexity w.r.t the number of nodes. We use GCN as the backbone in GKDE.

e GPN (Stadler et al., 2021) is the SOTA uncertainty estimation method on graphs. It extends posterior networks (Charp-
entier et al., 2020) to graph domain, which derives the posterior Dirichlet distributions of nodes by using the density
estimation model to predict class pseudo-counts. GPN belongs to deterministic uncertainty estimation for quantify-
ing predictive uncertainty and performs the personalized pagerank (Gasteiger et al., 2018) between nodes to model
uncertainty propagation on graphs.

For GCN and GAT, we use their implementations in the GNN library PyG (Fey & Lenssen, 2019). For OOD detection
baselines, we use the implementation in GNNsafe?. GCN-Ensemble is implemented by ourselves. For GRAND*, GREAD’,
BGCN®, GKDE’ and GPN3, we refer to their public implementations and adapt them to different tasks.

E.4. Evaluation Metrics

To evaluate detection and prediction results, we use the following metrics as suggested by previous works (Kong et al., 2020;
Stadler et al., 2021; Wu et al., 2023):

* AUROC refers to Area Under the Receiver Operating Characteristic curve, which summarizes the ROC curve into a
single value to demonstrate the model performance with different thresholds. It tells how much the model is capable of
distinguishing between positive (in-distribution) and negative (out-of-distribution) samples.

* AUPR refers to Area Under the Precision-Recall curve. Compared with AUROC, AUPR can adjust different pos-
itive/negative class rates to alleviate the problem of imbalanced class, which is also a commonly used metric in
OOD detection. For ood detection, AUPR is divided into AUPR in (for in-distribution samples) and AUPR out (for
out-of-distribution samples). For misclassification detection, AUPR is divided into AUPR succ (for correctly classified
samples) and AUPR err (for wrongly classified samples).

3https://github.com/qitianwu/GraphOOD-GNNSafe
*https://github.com/twitter-research/graph-neural-pde
Shttps://github.com/jeongwhanchoi/GREAD
Shttps://github.com/huawei-noah/BGCN
"https://github.com/zxj32/uncertainty-GNN
8https://github.com/stadlmax/Graph-Posterior-Network

19

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Table 4. OOD detection performance comparison on Cora with different OOD constructions.

Model Label leave-out Feature perturbation
AUROC AUPRin AUPRout FPR95S DETACC IDACC | AUROC AUPRin AUPRout FPR95 DETACC IDACC
GCN 88.67 74.52 95.87 52.40 78.80 89.25 75.40 54.22 86.69 80.98 69.94 79.20
GAT 90.81 71.97 96.50 4491 83.65 91.19 89.39 80.19 92.80 70.37 78.16 76.10
GRAND 88.58 75.72 94.28 63.59 82.34 90.19 87.04 74.81 93.42 55.35 76.43 84.40
GREAD 88.40 73.80 95.01 57.35 80.74 90.63 86.49 70.59 93.01 57.10 75.30 83.00
MSP 91.58 80.59 96.72 44.03 84.51 90.51 90.58 82.31 92.02 50.33 80.45 80.50
ODIN 49.24 24.27 75.45 100.00 49.95 88.92 49.80 26.92 72.95 100.00 49.98 74.80
Mahalanobis 66.83 36.69 85.92 82.96 59.62 86.71 60.46 40.65 74.52 99.59 58.52 75.30
GNNsafe 92.68 82.03 97.48 31.54 83.48 88.92 93.28 88.16 96.35 43.43 83.71 76.20
GCN-Ensemble 90.97 80.35 97.37 29.92 85.73 91.24 89.01 79.71 94.57 61.74 74.57 81.60
BGCN 91.16 79.41 96.60 46.30 84.40 90.51 84.82 75.40 91.20 75.20 78.09 77.50
GKDE 82.80 65.12 92.62 70.59 71.64 87.66 80.22 63.05 90.01 75.01 64.74 70.45
GPN 90.10 79.98 96.13 50.71 82.81 91.46 91.89 82.62 96.01 42.32 81.56 80.20
GNSD | 94.76 88.45 97.73 27.38 89.74 9177 | 9441 88.23 97.22 26.27 86.92 87.97
Table 5. OOD detection performance comparison on CiteSeer with different OOD constructions.
Model Label leave-out Feature perturbation
AUROC AUPRin AUPRout FPR95S DETACC IDACC | AUROC AUPRin AUPRout FPR95 DETACC ID ACC

GCN 81.28 70.51 86.30 63.23 74.64 84.36 82.84 60.78 93.61 65.70 74.55 65.81
GAT 80.31 70.00 84.72 65.44 75.07 85.37 81.03 58.68 93.20 61.74 72.72 66.60
GRAND 78.04 69.08 81.50 83.49 72.17 86.07 82.60 63.18 92.15 73.91 74.06 66.80
GREAD 79.20 69.05 83.01 76.57 73.40 87.20 82.78 59.38 93.22 62.79 74.45 66.35
MSP 76.10 68.35 75.49 74.50 75.48 83.57 83.06 61.34 93.67 61.62 75.14 64.70
ODIN 50.15 39.82 60.47 100.00 50.15 85.36 49.61 23.07 76.75 100.00 49.98 64.40
Mahalanobis 56.34 44.17 67.15 90.05 51.56 75.71 50.65 29.79 72.86 99.70 54.56 60.30
GNNsafe 82.14 70.26 84.63 62.76 68.49 85.36 84.31 68.30 92.38 65.92 73.40 66.30
GCN-Ensemble 80.70 68.74 86.47 64.51 73.82 84.79 84.82 64.23 93.92 62.12 74.00 67.90
BGCN 79.09 67.07 87.05 62.18 74.19 84.12 84.50 62.37 94.17 61.71 64.98 66.93
GKDE 64.13 56.31 69.92 92.15 60.23 72.38 77.90 51.85 91.51 71.06 71.41 66.30
GPN 76.15 67.51 80.53 78.57 70.76 84.64 82.48 57.01 93.95 61.85 74.14 62.30
GNSD ‘ 82.95 75.28 87.44 60.19 75.66 87.68 ‘ 86.82 68.58 94.46 60.26 79.80 67.10

* FPRYS is False Positive Rate at 95% true positive rate. It represents the probability that a out-of-distribution sample is
misclassified as the in-distribution one when the true positive rate is 95%, so a smaller value of FPR9S reflects better
detection performance.

* DET ACC is the ratio between the test samples that are correctly detected and all test samples at the optimal threshold.

* ID ACC is in-distribution classification accuracy which is the standard metric used in semi-supervised node classifica-
tion. We use it to evaluate the model performance on in-distribution test nodes.

Table 6. Search intervals of hyper-parameters.

Hyper-parameter Search Space
learning rate {0.001, 0.005, 0.01, 0.1}
weight decay {0.01, 0.001, 0.0005, 0.0001}

training sample times {1,3,5,7}
dropout {0.0, 0.1, 0.3, 0.5}
input dropout {0.0,0.1, 0.3, 0.5}
step size {0.01, 0.05, 0.1, 0.2}

E.5. More Empirical Results

Tables 4, 5, 7, 8 demonstrate the OOD detection performances on Cora, CiteSeer, Pubmed and OGBN-Arxiv. Each dataset
contains two OOD settings: label leave-out and feature perturbation. From these results, we can conclude that GNSD still
keeps the best OOD detection results on these datasets compared with current baselines.

20

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Table 7. OOD detection performance comparison on Pubmed with different OOD constructions.

Model Label leave-out Feature perturbation
AUROC AUPRin AUPRout FPR95 DETACC IDACC | AUROC AUPRin AUPRout FPR9S DETACC IDACC
GCN 73.58 32.39 93.33 70.12 67.20 78.70 87.71 42.89 99.07 53.44 78.37 74.90
GAT 74.42 30.71 89.50 77.70 68.73 80.14 85.42 32.98 99.00 53.13 77.62 75.60
GRAND 74.64 30.49 93.48 72.58 71.08 80.82 80.13 31.44 98.45 74.35 71.82 77.10
GREAD 75.60 31.10 93.45 70.93 69.25 80.84 85.65 31.26 99.05 54.90 80.16 76.20
MSP 70.96 30.78 92.29 75.90 65.17 78.66 87.81 45.26 99.18 53.90 79.35 75.00
ODIN 48.55 15.62 82.20 96.42 49.95 79.49 49.52 4.82 95.13 100.00 49.99 74.40
Mahalanobis 43.03 14.50 79.66 97.90 50.01 79.02 68.61 15.83 97.18 89.82 56.43 69.80
GNNsafe 76.72 39.57 94.07 69.73 69.50 80.12 94.44 71.80 99.59 30.09 85.97 75.40
GCN-Ensemble 73.79 32.71 93.28 69.97 67.72 79.27 82.94 37.59 98.66 71.77 75.58 73.40
BGCN 74.48 35.11 93.32 71.27 69.14 78.04 87.66 43.53 99.14 5222 79.30 75.20
GKDE 57.99 2091 86.41 93.54 60.73 76.87 78.05 29.63 97.84 89.28 72.97 54.30
GPN 75.18 32.67 93.50 71.12 69.32 80.23 88.62 46.90 99.08 53.82 79.39 75.10
GNSD \ 78.81 38.70 94.95 59.49 73.39 81.23 \ 97.09 73.55 99.81 12.21 92.39 75.40
Table 8. OOD detection performance comparison on OGBN-Arxiv with different OOD constructions.
Model Label leave-out Feature perturbation
AUROC AUPRin AUPRout FPR9S DETACC IDACC | AUROC AUPRin AUPRout FPR9S DETACC IDACC
GCN 66.71 39.04 83.55 84.82 50.00 81.26 91.46 78.87 96.98 41.25 64.65 66.99
GAT 73.71 46.39 88.12 73.80 68.06 79.64 97.65 90.66 99.32 8.09 66.65 62.80
GRAND 70.09 40.13 86.97 72.51 65.71 81.09 96.05 87.62 98.84 17.82 77.77 69.47
GREAD 71.10 41.60 87.93 73.91 55.69 81.30 96.70 88.90 99.02 14.57 85.90 69.33
MSP 69.19 43.72 84.62 83.17 64.11 80.93 93.62 82.55 97.87 27.61 86.68 65.13
ODIN 52.06 27.00 76.05 88.31 52.41 80.46 63.77 33.13 84.38 90.75 57.16 67.53
Mahalanobis 40.19 21.65 69.43 94.19 50.00 80.55 64.03 36.84 85.46 83.13 50.01 66.23
GNNsafe 69.73 39.54 86.91 72.43 64.52 80.46 95.86 88.09 98.70 19.22 81.80 67.42
GCN-Ensemble 76.93 53.54 89.35 70.22 68.19 80.36 96.27 90.17 98.81 18.14 78.29 68.35
BGCN - - - - - - - - - - - -
GKDE 67.65 37.08 85.93 73.21 63.89 80.11 95.42 82.56 98.72 16.88 88.60 67.99
GPN 76.46 48.86 89.73 69.00 55.57 77.74 98.42 93.62 99.57 6.22 88.97 67.99
GNSD \ 78.82 54.14 90.11 71.64 70.25 81.51 \ 99.55 98.25 99.87 1.78 97.17 69.68
Table 9. Misclassification detection performance comparison on Pubmed and OGBN-Arxiv.
Model Pubmed OGBN-Arxiv
AUROC AUPRsucc AUPRerr FPR95 | AUROC AUPRsucc AUPRerr FPR9S
GCN 67.45 86.87 43.31 88.14 75.31 86.60 55.98 80.14
GAT 71.00 87.30 38.27 84.62 76.11 86.86 57.04 79.60
GRAND 71.16 77.15 52.75 86.55 76.28 87.43 55.35 80.00
GREAD 70.55 78.66 46.90 86.17 76.15 88.03 55.95 78.62
GCN-Ensemble 67.27 83.27 40.22 88.72 76.54 88.50 54.69 79.03
BGCN 69.05 84.57 44.64 86.47 - - - -
GKDE 68.15 76.79 54.06 85.75 76.68 88.43 55.35 78.40
GPN 72.00 87.44 42.94 85.19 75.12 86.26 56.12 80.79
GNSD ‘ 75.85 87.81 54.26 84.01 ‘ 76.75 88.60 57.76 78.04

Table 9 shows the results of misclassification detection on pubmed and OGBN-Arxiv. The results align with the above
performances of misclassification detection where our model achieves better detection results compared with multiple GNN
and uncertainty estimation baselines. In addition, BGCN does not finish the experiments on OGBN-Arxiv, since BGCN
requires a posterior inference of SBM and GCN with high model complexity. As such, it cannot scale well to large-scale
graphs.

E.6. Hyper-parameter Setting

We fix the hidden dimensional size, the number of training epochs and time 7" as 64, 200 and 1.0. For other hyper-parameters,
we use grid search to find their optimal values within the hyper-parameter search space shown in Table 6. The best

21

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

hyper-parameter configurations of each datasets are list here: {0.01, 0.0005, 1, 0.0, 0.3, 0.1} for Amazon-Computers, {0.01,
0.01, 5, 0.0, 0.0, 0.1} for Cora, {0.01, 0.0005, 3, 0.0, 0.0, 0.1} for CiteSeer, {0.1, 0.0005, 3, 0.0, 0.0, 0.1} for Pubmed
and {0.01, 0.01, 1, 0.0, 0.0, 0.1} for OGBN-Arxiv. To make fair comparisons, all baselines and our model have the same
hidden dimensional size and the number of training epochs. The number of hidden layers used in all baselines are also fixed.
The number of hidden layers in GCN-based encoders is 2, the number of hidden layers in GAT-based encoders is 2 with 8
attention heads.

22

