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Abstract

This work presents several expected generalization error bounds based on the
Wasserstein distance. More specifically, it introduces full-dataset, single-letter,
and random-subset bounds, and their analogues in the randomized subsample
setting from Steinke and Zakynthinou [1]. Moreover, when the loss function is
bounded and the geometry of the space is ignored by the choice of the metric in
the Wasserstein distance, these bounds recover from below (and thus, are tighter
than) current bounds based on the relative entropy. In particular, they generate new,
non-vacuous bounds based on the relative entropy. Therefore, these results can be
seen as a bridge between works that account for the geometry of the hypothesis
space and those based on the relative entropy, which is agnostic to such geometry.
Furthermore, it is shown how to produce various new bounds based on different
information measures (e.g., the lautum information or several f -divergences) based
on these bounds and how to derive similar bounds with respect to the backward
channel using the presented proof techniques.

1 Introduction

A learning algorithm is a mechanism that takes a dataset s = (z1, . . . , zn) of n samples zi ∈ Z
taken i.i.d. from a distribution PZ as an input, and produces a hypothesis w ∈ W by means of the
conditional probability distribution PW |S .

The ability of a hypothesis w to characterize a sample z is described by the loss function `(w, z) ∈ R.
More precisely, a hypothesis w describes well the samples from a population PZ when its population
risk, i.e., LPZ (w) , E[`(w,Z)], is low. However, the distribution PZ is often not available and the
empirical risk on the dataset s, i.e., Ls(w) , 1

n

∑n
i=1 `(w, zi), is considered as a proxy. Therefore,

it is of interest to study the discrepancy between the population and empirical risks, which is defined
as the generalization error:

gen(w, s) , LPZ (w)−Ls(w).

Classical approaches bound the generalization error in expectation and in probability (PAC Bayes)
either by studying the complexity and the geometry of the hypothesis’ space W or by exploring
properties of the learning algorithm itself; see, e.g., [2, 3] for an overview.

More recently, the relationship (or amount of information) between the generated hypothesis and the
training dataset has been used as an indicator of the generalization performance. In [4], based on
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[5], it is shown that the expected generalization error, i.e., gen(W,S) , E[gen(W,S)], is bounded
from above by a function that depends on the mutual information between the hypothesis W and
the dataset S with which it is trained, i.e., I(W ;S). However, this bound becomes vacuous when
I(W ;S) → ∞, which occurs for example when W and S are separately continuous and W is a
deterministic function of S. To address this issue, it is shown in [6] that the generalization error
is also bounded by a function on the dependency between the hypothesis and individual samples,
I(W ;Zi), which is usually finite due to the smoothing effect of marginalization. Following this line
of work, in [7], the authors present data-dependent bounds based on the relationship between the
hypothesis and random subsets of the data, i.e., DKL(PW |s ‖ PW |sjc ) where j ⊆ [n].

After that, a more structured setting is introduced in [1], studying instead the relationship between the
hypothesis and the identity of the samples. The authors consider a super-sample of 2n i.i.d. instances
z̃i from PZ , i.e., s̃ = (z̃1, . . . , z̃2n). This super sample is used to construct the dataset s by choosing
between the samples z̃i and z̃i+n using a Bernoulli random variable Ui with probability 1

2 , i.e.,
zi = z̃i+uin. In this paper, the two settings are referred to as the standard and randomized-subsample
settings.1 In the randomized-subsample setting, the empirical generalization error is defined as the
difference between the empirical risk on the samples from s̃ not used to obtain the hypothesis, i.e.,
s̄ = s̃ \ s, and the empirical risk on the dataset s, i.e.,

ĝen(w, s̃, u) , L̄s(w)−Ls(w) =
1

n

∑n

i=1

(
`(w, z̃i+(1−ui)n)− `(w, z̃i+uin)

)
,

where u is the sequence of n i.i.d. Bernoulli trial outcomes ui. The expected value of the empirical and
the (standard) generalization errors coincide, i.e., E[ĝen(W, S̃, U)] = gen(W,S). Also, the expected
generalization error is controlled by the conditional mutual information between the hypothesis W
and the Bernoulli trials U , given the super sample S̃ [1], i.e., I(W ;U |S̃), by the individual conditional
mutual information [9], i.e., I(W ;Ui|Z̃i, Z̃i+n), and by the “disintegrated” mutual information with a
subset UJ of the Bernoulli trials [10], i.e.,DKL(PW |S̃,U ‖PW |S̃,UJc ). A highlight of this setting is that
these conditional notions of information are always finite [1] and smaller than their “unconditional”
counterparts [10], e.g., I(W ;U |S̃) ≤ I(W ;S) and I(W ;U |S̃) ≤ n log(2).

Some steps towards unifying these results are taken in [8], where the authors develop a framework
that makes it possible to recover the expected generalization error bounds based on the mutual
information I(W ;S) and the conditional mutual information I(W ;U |S̃). Then, the aforementioned
framework is further exploited in [9] to recover the single-sample and the random-subsets bounds,
which are based on I(W ;Zi), DKL(PW |S ‖PW |SJc ), andDKL(PW |S̃,U ‖PW |S̃,UJc ), and to generate
new individual conditional mutual information bounds, i.e., I(W ;Ui|Z̃i, Z̃i+n). Finally, in [11, 12],
other systematic ways to recover some of the said bounds and obtain similar new ones are studied.

In parallel, there were some attempts to bridge the gap between employing the geometry and
complexity of the hypothesis space and the relationship between the hypothesis and the training
samples. In [13], the authors bound gen(W,S) with a function of weighted dependencies between the
dataset and increasingly finer quantizations of the hypothesis, i.e., {2−k/2I([W ]k;S)}k, which can
be finite even if I(W ;S)→∞. This result stems from a clever usage of the chaining technique [14,
Theorem 5.24], and a comparison with this kind of approaches is given in Appendix A. Later, in [15]
and [16], it is shown that the expected generalization error is bounded from above by a function of
the Wasserstein distance between the hypothesis distribution after observing the dataset PW |S and its
prior PW , i.e., Wp(PW |S , PW ), and by a function of the Wasserstein distance between the hypothesis
distribution after observing a single sample PW |Zi and its prior PW , i.e., Wp(PW |Zi , PW ), which
are finite when a suitable metric is chosen but are difficult to evaluate. Concurrently, in [17] it is
shown that a similar result holds, if the metric is the Minkowski distance, for the distribution of the
data PS and the backward channel PS|W , i.e., Wp

p,‖·‖(PS|W , PS).

The main contributions of this paper are the following:

• It introduces new, tighter single letter and random-subset Wasserstein distance bounds for
the standard and randomized-subsample settings (Theorems 1, 2, 3, and 4).

• It shows that when the loss is bounded and the geometry of the space is ignored, these
bounds recover from below (and thus are tighter than) the current relative entropy and mutual

1In [8] the latter is called the random-subset setting. However, this may cause confusion with the random-
subset bounds in the present work.
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information bounds on both the standard and randomized-subsample settings. In fact, they
are also tighter when the loss is additionally subgaussian or under certain milder conditions
on the geometry. However, these results are deferred to Appendix B to expose the main
ideas more clearly. Moreover, Corollaries 1 and 2 overcome the issue of potentially vacuous
relative entropy bounds on the standard setting.

• It introduces new bounds based on the backward channel, which are analogous to those
based on the forward channel and more general than previous results in [17].

• It shows how to generate new bounds based on a variety of information measures, e.g., the
lautum information or several f -divergences like the Hellinger distance or the χ2-divergence,
thus making the characterization of the generalization more flexible.

2 Preliminaries

2.1 Notation

Random variables X are written in capital letters, their realizations x in lower-case letters, their set of
outcomes X in calligraphic letters, and their Borel σ-algebras X in script-style letters. Moreover, the
probability distribution of a random variable X is written as PX : X→ [0, 1]. Hence, the random
variable X or the probability distribution PX induce the probability space (X ,X, PX). When more
than one random variable is considered, e.g.,X and Y , their joint distribution is written as PX,Y : X⊗
Y→ [0, 1] and their product distribution as PX ⊗ PY : X⊗ Y→ [0, 1]. Moreover, the conditional
probability distribution of Y given X is written as PY |X : Y⊗X → [0, 1] and defines a probability
distribution PY |X=x (or PY |x for brevity) over Y for each element x ∈ X . Finally, there is an abuse
of notation writing PX,Y = PY |X × PX since PX,Y (B) =

∫ ( ∫
χB
(
(x, y)

)
dPY |X=x(y)

)
dPX(x)

for all B ∈ X⊗Y, where χB is the characteristic function of the set B. The natural logarithm is log.

2.2 Necessary definitions, remarks, claims, and lemmas

Definition 1. Let ρ : X × X → R+ be a metric. A space (X , ρ) is Polish if it is complete and
separable. Throughout it is assumed that all Polish spaces (X , ρ) are equipped with the Borel
σ-algebra X generated by ρ. When there is no ambiguity, both the metric space (X , ρ) and the
generated measurable space (X ,X) are written as X .
Definition 2. Let (X , ρ) be a Polish metric space and let p ∈ [1,∞). Then, the Wasserstein distance
of order p between two probability distributions P and Q on X is

Wp(P,Q) ,
(

inf
R∈Π(P,Q)

∫

X×X
ρ(x, y)pdR(x, y)

)1/p

,

where Π(P,Q) is the set of all couplings R of P and Q, i.e., all joint distributions on X × X with
marginals P and Q, that is, P (B) = R(B,X ) and Q(B) = R(X , B) for all B ∈ X.
Remark 1. Hölder’s inequality implies that Wp ≤Wq for all p ≤ q [18, Remark 6.6]. Hence, since
this work is centered on upper bounds the focus is on W , W1.
Definition 3. A function f : X → R is said to be L-Lipschitz under the metric ρ, or simply
f ∈ L-Lip(ρ), if |f(x)− f(y)| ≤ Lρ(x, y) for all x, y ∈ X .
Lemma 1 (Kantorovich-Rubinstein duality [18, Remark 6.5]). Let P1(X ) be the space of probability
distributions on X with a finite first moment. Then, for any two distributions P and Q in P1(X )

W(P,Q) = sup
f∈1-Lip(ρ)

{∫

X
f(x)dP (x)−

∫

X
f(x)dQ(x)

}
. (KR duality)

Definition 4. The total variation between two probability distributions P and Q on X is

TV(P,Q) , supA∈X
{
P (A)−Q(A)}.

Definition 5. The discrete metric is ρH(x, y) , 1[x 6= y], where 1 is the indicator function.
Remark 2. A bounded function f : X → [a, b] is (b− a)-Lipschitz under the discrete metric ρH.
Remark 3. The Wasserstein distance of order 1 is dominated by the total variation. For instance, if
P and Q are two distributions on X then W(P,Q) ≤ dρ(X )TV(P,Q), where dρ(X ) is the diameter
of X . In particular, when the discrete metric is considered W(P,Q) = TV(P,Q) [18, Theorem 6.15].
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Lemma 2 (Pinsker’s and Bretagnolle–Huber’s (BH) inequalities). Let P and Q be two probability
distributions on X and define Ψ(x) ,

√
min{x/2, 1− exp(−x)}, then [19, Theorem 6.5] and [20,

Proof of Lemma 2.1] state that
TV(P,Q) ≤ Ψ(DKL(P ‖Q)).

3 Expected Generalization Error Bounds

This section presents our main results. First, in §3.1 and §3.2, single-letter and random-subset bounds
based on the Wasserstein distance are introduced for the studied settings. These subsections also show
how these bounds are tighter than current bounds based on the Wasserstein distance and the relative
entropy. Moreover, an example where these bounds outperform current bounds is provided. Then, in
§3.3 it is shown how to obtain analogous bounds to those in §3.1 and §3.2 for the backward channel.
Finally, §3.4 shows how the presented results lead to a rich set of new bounds based on different
information measures. All complete proofs and technical details are deferred to the appendix.

3.1 Standard setting

In [15, Theorem 2], the authors show that the expected generalization error is bounded from above by
the Wasserstein distance between the forward channel distribution PW |S and the marginal distribution
of the hypothesis PW . More specifically, when the loss function ` is L-Lipschitz under a metric ρ for
all z ∈ Z and the hypothesis spaceW is Polish, then∣∣gen(W,S)

∣∣ ≤ LE
[
W(PW |S , PW )

]
= L

∫

Zn
W(PW |S=s, PW )dP⊗nZ (s). (1)

This bound considers both the geometry of the hypothesis space by means of the metric ρ and the
dependence between the hypothesis and the dataset via the discrepancy between the forward channel
PW |S and the marginal PW . Nonetheless, it is not clear how it relates with other results agnostic to
the geometry of the space. For instance, when the loss function ` is bounded in [a, b], if the geometry
is ignored (i.e., the discrete metric is considered), then∣∣gen(W,S)

∣∣ ≤ (b− a)E
[
TV(PW |S , PW )

]
≤ (b− a)Ψ(I(W ;S)),

where the inequalities follow from Remark 2, Lemma 2, and Jensen’s inequality (note Ψ(x), defined
in Lemma 2, is concave on x). This result compares negatively with other results employing the
mutual information, e.g., [4, Theorem 1], where the bound has a decaying factor of 1/

√
n.

Nonetheless, it is possible to find a single-letter version of [15, Theorem 2] using a similar strategy
to [6, Proposition 1] and [9, Propositions 1 and 3], which generalizes [16, Theorem 1] to algorithms
that may consider the ordering of the samples. More concretely, the expected generalization error is
controlled by a function of the Wasserstein distance of the hypothesis’ distribution before and after
observing a single sample Zi, i.e., W(PW |Zi , PW ).
Theorem 1. Suppose that the loss function ` is L-Lipschitz for all z ∈ Z and that the hypothesis
spaceW is Polish. Then,

∣∣gen(W,S)
∣∣ ≤ L

n

n∑

i=1

E
[
W(PW |Zi , PW )

]
.

Moreover, when the loss function is bounded and the geometry of the space is ignored by considering
the discrete metric, this single-letter result can improve upon current relative entropy and mutual
information bounds.
Corollary 1. Under the conditions of Theorem 1, if the loss ` is bounded in [a, b], then
∣∣gen(W,S)

∣∣ ≤ b− a
n

∑n

i=1
E
[
TV(PW |Zi , PW )

]
≤ b− a

n

∑n

i=1
E
[
Ψ
(
DKL(PW |Zi ‖ PW )

)]

Corollary 1 improves upon [6, Proposition 1] in two different ways. First, it pulls the expectation
with respect to the samples PZi outside of the concave square root, thus strengthening that result via
Jensen’s inequality. Second, the addition of the BH inequality ensures that heavily influential samples
(high I(W ;Zi)) do not contribute too negatively to the bound, which is ensured to be non-vacuous.
Moreover, contrarily to (1), a further application of Jensen’s inequality and [6, Proposition 2] indicates
that Corollary 1 compares positively to [4, Theorem 1], exhibiting the decaying factor of 1/

√
n,

∣∣gen(W,S)
∣∣ ≤ b− a

n

n∑

i=1

E
[
W(PW |Zi , PW )

]
≤ (b− a)Ψ

(I(W ;S)

n

)
≤
√

(b− a)2I(W ;S)

2n
.

(2)
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It is also possible to obtain a random-subset version of [15, Theorem 2] using a similar strategy to [9,
Propositions 2 and 4]. This kind of bounds, rather than looking at how knowing a single sample
Zi modifies the hypothesis distribution, i.e., W(PW |Zi , PW ), look at how the knowledge of a set of
samples SJ alters the hypothesis distribution when all the other samples, SJc , used to obtain the
hypothesis are known too, i.e., W (PW |S , PW |SJc ).
Theorem 2. Suppose that the loss function ` is L-Lipschitz for all z ∈ Z and that the hypothesis
space W is Polish. Let J be a uniformly random subset of [n] such that |J | = m, and that is
independent of W and S. Let also R be a random variable independent of S and J . Then,

∣∣gen(W,S)
∣∣ ≤ LE

[
W(PW |S,R, PW |SJc ,R)

]
and

∣∣gen(W,S)
∣∣ ≤ L

m
E
[∑

i∈J
E
[
W(PW |SJc∪Zi,R, PW |SJc ,R) | J

]]
.

In particular, when m = 1, the two equations from Theorem 2 reduce to [21, Lemma 3]∣∣gen(W,S)
∣∣ ≤ LE

[
W(PW |S,R, PW |S−J ,R)

]
,

where S−J = S \ ZJ , i.e., the whole dataset except sample ZJ . Moreover, if the loss is bounded
and the geometry is ignored, Theorem 2 improves upon the tightest bounds in terms of the relative
entropy of random subsets, cf. [7, Theorem 2.5].
Corollary 2. In the conditions of Theorem 2, if the loss is bounded in [a, b], then
∣∣gen(W,S)

∣∣ ≤ (b− a)E
[
TV(PW |S,R, PW |S−J ,R)

]
≤ b− a

n

n∑

j=1

E
[
Ψ
(
DKL(PW |S,R ‖ PW |S−j ,R)

)]
.

These data-dependent bounds characterize well the expected generalization error of the Langevin
dynamics (LD) and stochastic gradient Langevin dynamics (SGLD) algorithms [7, Theorems 3.1
and 3.3], where R is an artificial random variable used to encode some knowledge necessary to
characterize the hypothesis distribution, such as the batch indices of SGLD. In particular, Corollary 2
improves upon [7, Theorem 2.5] tightening the elements of the expectation with respect to J for
which the divergence is large (' 1.6).

It is possible to prove that Theorem 1 is tighter than [15, Theorem 1]. This results by studying the KR
dual representation of the Wasserstein distance and noting that the conditional distribution PW |Zi is a
smoothed version of the forward channel, i.e., PW |Zi = E[PW |S |Zi]. Comparisons with Theorem 2
are also possible using similar arguments and the triangle inequality. These results are informally
summarized below and presented with more details and the proofs in Appendix D.1.
Proposition 1. Consider the standard setting. Then, for all j ⊆ [n] and all i ∈ j:
E
[
W(PW |Zi , PW )

]
≤ E

[
W(PW |S , PW )

]
,where j = [n], (=⇒ Theorem 1 ≤ [15, Theorem 1])

E
[
W(PW |Zi , PW )

]
≤ E

[
W(PW |S , PW |Sjc )

]
, and (=⇒ Theorem 1 ≤ Theorem 2)

E
[
W(PW |S , PW |Sjc )

]
≤ 2E

[
W(PW |S , PW )

]
. (=⇒ Theorem 2 ≤ 2·[15, Theorem 1])

The following example showcases a situation where the presented bounds outperform the current
known bounds based on the Wasserstein distance and the mutual information.
Example 1 (Gaussian location model). Consider the problem of estimating the mean µ of a d-
dimensional Gaussian distribution with known covariance matrix σ2Id. Further consider that
there are n samples S = (Z1, . . . , Zn) available, the loss is measured with the Euclidean distance
`(w, z) = ‖w − z‖2, and the estimation is their empirical mean W = 1

n

∑n
i=1 Zi.

In this example, the expected generalization error can be calculated exactly (see Appendix E):

gen(W,S) =

√
2σ2

n

(√
n+ 1−

√
n− 1

)Γ
(
d+1

2

)

Γ
(
d
2 )
∈ O

(√
σ2d

n

)
.

As discussed in [6], the bound from [4] is not applicable in this setting since I(W ;S) → ∞ and
since `(w,Z) is not subgaussian given that Var[`(w,Z)] → ∞ as ‖w‖2 → ∞. When d = 1, the
loss `(W,Z) is 1-subgaussian and the individual sample mutual information (ISMI) bound from [6]
produces a bound in O

(√
σ2/n

)
, which decreases slower than the true generalization error, see

Figure 1. This happens since the bound grows as the square root of I(W ;Zi), which is in O(1/n).
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Figure 1: Expected generalization error and generalization error bounds for the Gaussian location
model with N (µ, 1) (left) and N (µ, I250) (right). See Appendix E for the details.

In this scenario, the loss is 1-Lipschitz under ρ(w,w′) = ‖w − w′‖2, and thus the bounds based on the
Wasserstein distance are applicable. Applying the bound from [15] yields a bound in O

(√
σ2d/n

)
,

which decreases at the same sub-optimal rate as the ISMI bound. However, both the individual and
random-subset Wasserstein distance bounds from Theorems 1 and 2 produce bounds in O

(√
σ2d/n

)
,

which decrease at the same rate as the true generalization error (see Figure 1).

3.1.1 Outline of the proofs

Similarly to [15, 16], the proofs of the theorems in this section are based on operating with gen(W,S)
until an expression of the type E[f(X ′, Y )− f(X,Y )] is reached, where X ′ is an independent copy
of X such that PX′,Y = PX ⊗ PY , and then applying the KR duality. For example, in Theorem 1
such an expression is achieved with X = W , Y = Zi, and f = `. To arrive at these expressions, the
proofs of Theorem 3 and 4 operate with gen(W,S) in different forms. More precisely,

(Th. 1) Since the samples Zi are independent and the expectation is a linear operator, the proof
follows working with the quantity gen(W,S) = 1

n

∑n
i=1 E[`(W ′, Zi)− `(W,Zi)].

(Th. 2) Note that E[LsJ (w)] = Ls(w), where J is a uniformly random subset of [n] of size m and
sJ is the subset of s indexed by J . This equality follows since there are

(
n
m

)
subsets of size

m and each sample zi belongs to only
(
n−1
m−1

)
of them. Hence,

E[LsJ (w)] =
1(
n
m

)
∑

j∈J
1

m

∑

i∈j
`(w, zi) =

1

n

n∑

i=1

`(w, zi) = Ls(w).

Then, the proof follows working with the quantity gen(W,S) = E[LSJ (W ′)−LSJ (W )].

3.2 Randomized-subsample setting

In the randomized-subsample setting the focus shifts from studying the impact of the samples on the
hypothesis distribution to the impact of the samples’ identities on the hypothesis distribution. For
example, the analogous result to (1) is

∣∣gen(W,S)
∣∣ ≤ 2LE

[
W(PW |S̃,U , PW |S̃)

]
. (3)

Similarly to the standard setting, considering the discrete metric and applying Pinsker’s and Jensen’s
inequalities leads to a less favorable bound than current bounds based on the mutual information [1,
Theorem 5.1] since it does not explicitly decrease as 1/

√
n. However, the bound still admits a tighter

(see Appendix D.1) single-letter version.
Theorem 3. Suppose that the loss function ` is L-Lipschitz for all z ∈ Z and that the hypothesis
spaceW is Polish and let S̃i , (Z̃i, Z̃i+n). Then,

∣∣gen(W,S)
∣∣ ≤ 2L

n

n∑

i=1

E
[
W(PW |S̃i,Ui , PW |S̃i)

]
.

As in the standard setting, when the loss function is bounded and the geometry of the space is ignored,
this result improves upon current single-letter bounds based on the mutual information [9, 12] by
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pulling the expectation with respect to the samples PS̃i out of the square root. Here, the BH inequality
is not considered since DKL(PW |S̃i,Ui ‖ PW |S̃i) ≤ log(2); see Appendix F for the details.
Corollary 3. Under the conditions of Theorem 3, if the loss ` is bounded in [a, b], then

∣∣gen(W,S)
∣∣ ≤ 2(b− a)

n

n∑

i=1

E
[
TV(PW |S̃i,Ui , PW |S̃i)

]

≤ b− a
n

n∑

i=1

E
[√

2DKL(PW |S̃i,Ui ‖ PW |S̃i)
]
.

In this setting, Corollary 3 also decreases at a 1/
√
n rate and is tighter than [1, Theorem 5.1].

∣∣gen(W,S)
∣∣ ≤ 2(b− a)

n

n∑

i=1

E
[
W(PW |Z̃i,Z̃i+n,Ui , PW |Z̃i,Z̃i+n)

]
≤

√
2(b− a)2I(W ;U |S̃)

n
.

Finally, the randomized-subsample setting also accepts random-subset bounds. These bounds study
how the knowledge of the identities of a set of samples that where used for training, UJ , alters the
hypothesis distribution when all the other identities, UJc , and all the samples, S̃, are known.
Theorem 4. Suppose that the loss function ` is L-Lipschitz for all z ∈ Z and that the hypothesis
space W is Polish. Let J be a uniformly random subset of [n] such that |J | = m, and that is
independent of W , S̃, and ULet also R be a random variable independent of S̃,U , and J . Then,

∣∣gen(W,S)
∣∣ ≤ 2LE

[
W(PW |S̃,U,R, PW |S̃,UJc ,R)

]
and

∣∣gen(W,S)
∣∣ ≤ 2L

m
E
[∑

i∈J
E
[
W(PW |S̃,UJc∪Ui,R, PW |S̃,UJc ,R) | J

]]
.

Although these bounds are weaker than Theorem 3 (see Appendix D.1), their data-dependent nature
may lead to more tractable and sharper bounds in practice. For example, when the discrete metric
is considered, Theorem 4 recovers from below current random-subset bounds based on the relative
entropy, which are used to obtain some of the tightest bounds for LD and SGLD [9, 10].
Corollary 4. In the conditions of Theorem 4, for m = 1, if the loss is bounded in [a, b], then

∣∣gen(W,S)
∣∣ ≤ 2(b− a)E

[
TV(PW |S̃,U,R, PW |S̃,U−J ,R)

]

≤ b− a
n

n∑

j=1

E
[√

2DKL(PW |S̃,U,R ‖ PW |S̃,U−j ,R)
]
.

3.2.1 Outline of the proofs

The proofs of the results in this section are similar to those of the standard setting, hence their similar
expressions. However, instead of operating with the expected generalization error in the form of
E[gen(W,S)] they operate with E[ĝen(W, S̃, U)].

There are two issues that complicate the application of the KR duality as in the previous proofs. For
instance, consider ĝen(W, S̃, U), then:

• Both LS̄(W ) and LS(W ) depend on PU . Hence, considering a copy W ′ of W such that
PW ′,S̃,U = PW,S̃ ⊗ PU does not help since E[ĝen(W, S̃, U)] 6= E[LS̄(W ′)−LS(W )].

• Even if E[ĝen(W, S̃, U)] = E[LS̄(W ′)−LS(W )] were true, for some fixed s̃ and u, the
functions L̄s(w) and Ls(w) on w are different, and thus the KR duality cannot be invoked.

Nonetheless, these two issues are resolved considering instead
ĝen(W, S̃, U) = LS̄(W )−LS(W )− E[LS̄(W ′)−LS(W ′)],

where W ′ is an independent copy of W such that PW ′,S̃,U = PW,S̃ ⊗ PU . Hence, the inequalities
E[LS̄(W ′)−LS(W ′)] = 0 and |x+ y| ≤ |x|+ |y| lead to the upper bound∣∣E[ĝen(W, S̃, U)]

∣∣ ≤
∣∣E[LS̄(W ′)−LS̄(W )]

∣∣+
∣∣E[LS(W ′)−LS(W )]

∣∣,
where the KR duality can be applied to each of the terms, albeit at the expense of an extra factor of 2.
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3.3 Backward channel

In [17], the authors study the characterization of the expected generalization error in terms of the
discrepancy between the data distribution PS and the backward channel distribution PS|W motivated
by its connection to rate–distortion theory, see e.g., [19, Chapters 25–57] or [22, Chapter 10]. An
approach formalizing this intuitive connection is given in Appendix G and different angles, based on
chaining mutual information [13] and compression, are found in [11, Section 5] and [23].

More concretely, they proved that the generalization error is bounded from above by the discrepancy
of these distributions, where the discrepancy is measured by the Wasserstein distance of order p with
the Minkowski distance of order p as a metric, i.e., ρ(x, y) = ‖x− y‖p. Namely,

∣∣gen(W,S)
∣∣ ≤ L

n1/p
E[Wp

p,|·|(PS , PS|W )]1/p.

Similarly, the results from §3.1 and §3.2 can be replicated considering the backward channel instead
of the forward channel, e.g., PS|W instead of PW |S in (1), PZi|W instead of PW |Zi in Theorem 1.
However, in this case, the loss ` would be required to be Lipschitz with respect to the samples space
Z and not the hypothesis spaceW , i.e., Lipschitz for all fixed w ∈ W , thus exploiting the geometry
of the samples’ space and not the hypotheses’ one.

As an example, noting that gen(W,S) = E[LS′(W )−LS(W )], where S′ is an independent copy
of S such that PW,S′ = PW ⊗ PS produces the bound∣∣gen(W,S)

∣∣ ≤ LE[W(PS , PS|W )].

Compared to [17], these results (i) are valid for any metric ρ as long as the loss ` is Lipschitz under ρ,
and (ii) have single-letter and random-subset versions, and (iii) have variants in both the standard and
randomized-subsample settings.

3.4 Other information measures

The bounds obtained in §3.1 and §3.2 may be manipulated to produce a variety of new bounds based
on common information measures. For example, once the discrete metric is assumed and since the
total variation is symmetric, applying Pinsker’s inequality with the distributions in the opposite order
to Corollaries 1, 2, 3, and 4 and further applying Jensen’s inequality yields bounds based on the
lautum information L [24]. For instance, a corollary of Theorem 3 is

∣∣gen(W,S)
∣∣ ≤ b− a

n

∑n

i=1
Ψ
(
L(W ;Zi)

)
.

Similarly, several new bounds based on different f -divergences [19, Chapter 7] may be obtained
employing the joint range strategy once the discrete metric is assumed. As an example, some
corollaries of Theorem 1 based on the Hellinger distance H and the χ2-divergence (see Appendix H
for a tighter and more general version of (6)) are

∣∣gen(W,S)
∣∣ ≤ L

2n

∑n

i=1
E
[
H(PW |Zi , PW )

√
4− H2(PW |Zi , PW )

]
, (4)

∣∣gen(W,S)
∣∣ ≤ L√

2n

∑n

i=1
E
[√

log
(
1 + χ2(PW |Zi , PW )

)]
, and (5)

∣∣gen(W,S)
∣∣ ≤ L

2n

∑n

i=1
E
[√

χ2(PW |Zi , PW )

]
. (6)

3.5 Final remarks on the generality of the results

Due to Bobkov–Götze’s theorem [14, Theorem 4.8], the relative entropy results still hold when the
loss is both Lipschitz and subgaussian. Hence, the presented Wasserstein distance bounds are tighter
than [4, 6, 7, 9, 10] in a more general setting. Moreover, the total variation results also hold for any
metric with the added factor of dρ(W) as per Remark 3. These results were omitted in the main text
for clarity of exposition, but are included in Appendix B.

Therefore, only when the loss is not Lipschitz but is subgaussian or has a bounded cumulant
function, or W is not Polish, the bounds from [6, 7, 10, 12] are preferred. As an example, some
common loss functions such as the cross-entropy, the Hinge loss, the Huber loss, or any Lp norm are
Lipschitz [25, 26] under an appropriate metric ρ, see Appendix A for a discussion of the role of the
metric and the space geometry in the presented bounds.
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4 Discussion

This paper introduced several expected generalization error bounds based on the Wasserstein distance.
In particular, these are full-dataset, single-letter, and random-subset bounds on both the standard
and the randomized-subsample settings. When the Wasserstein distance ignores the geometry of the
hypothesis space and the loss is bounded, the presented bounds are tighter and recover from below
the current bounds based on the relative entropy and the mutual information [4, 6, 7, 9, 10], see also
Appendix B for stronger, more general statements. Furthermore, the obtained total variation and
relative-entropy bounds on the standard setting are ensured to be non-vacuous, i.e., smaller or equal
than the trivial bound, thus resolving the issue of potentially vacuous relative-entropy and mutual-
information bounds on the standard setting. Interestingly, the results for the randomized-subsample
setting are tighter than their analogous in the standard setting only if their Wasserstein distance (or
total variation) is twice as small.

Moreover, the techniques employed to obtain these bounds can also be used to obtain analogous
bounds considering the backward channel and the samples’ space geometry, aiming to facilitate
connections between the generalization error characterization and rate–distortion theory, as suggested
by Lopez and Jog [17]. Nonetheless, when the backward channel can be characterized, these bounds
are interesting in their own right. Finally, the presented bounds may be used to generate a variety of
new bounds in terms of, e.g., the lautum information or f -divergences like the total variation, the
relative entropy, the Hellinger distance, or the χ2-divergence.

4.1 Limitations and future work

PAC-Bayes bounds PAC-Bayes bounds ensure that E[gen(W,S) | S] ≥ α(β−1) with probability
no greater than β ∈ (0, 1). Similarly, single-draw PAC-Bayes bounds ensure that gen(W,S) ≥
α(β−1) with probability no greater than β ∈ (0, 1). These concentration bounds are of high
probability when the dependency on β−1 is logarithmic, i.e., log(1/β). See, [27, 2] for an overview.

The bounds from this work may be used to obtain single-draw PAC-Bayes bounds applying Markov’s
inequality [22, Problem 3.1] directly. For instance, employing it in Theorem 1 implies that

PW,S

(
gen(W,S) ≥ L

βn

∑n

i=1
E[W(PW |Zi , PW )]

)
≤ β,

for all β ∈ (0, 1). However, this is not a high-probability bound since the dependency on β−1 is
linear. Hence, high-probability concentration bounds based on the Wasserstein distance and the
total variation are a path of future research. As an example, [28–31] provide high-probability single-
draw PAC-Bayes bounds based on, respectively, max-information, differential privacy, α-mutual
information, and uniform stability. Similarly, high-probability PAC-Bayes bounds based on the
relative entropy and the hypothesis’ space geometry are given in [8] and [32, 33], respectively.

New bounds to specific algorithms The Wasserstein distance is difficult to characterize and/or
estimate. Nonetheless, some of the bounds that can be obtained from it, e.g., mutual-information
and relative-entropy bounds, have been used to obtain analytical bounds on specific algorithms, e.g.,
Langevin dynamics and stochastic gradient Langevin dynamics [6, 7, 9, 10]. Some of these results
can be readily tightened with Corollaries 1, 2, and 4. Thence, deriving new analytical bounds for
specific algorithms based on the presented results is also a topic for further research.

Connections to stability and privacy measures A learning algorithm is said to be stable if a small
change on the input dataset produces a small variation in the output hypothesis. There are various
attempts at quantifying this notion such as uniform stability [34], where the variation in the output
hypothesis is seen in terms of the loss, and differential privacy (DP) [28], where this variation is seen
in terms of the hypothesis distribution. These notions are tied to the generalization capability of an
algorithm, i.e., the less a hypothesis depends on the specifics of the data samples, the better it will
generalize, and hence there are works obtaining generalization bounds based on stability, see e.g.,
[29, 31]. In particular, there are some works that, assuming some stability notion such as DP, bound
from above the relative entropy and the mutual information appearing in some of the bounds that
can be derived from the results presented in this work, hence also tying stability and generalization,
c.f. [1, 35, 36]. Therefore, a future line of research is to investigate how different notions of stability
can be combined with the measures of similarity between distributions employed in this work to
characterize the generalization error.
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