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ABSTRACT

With the evolution of large language models (LLMs), widely used common-
sense reasoning and natural language understanding benchmarks have become
saturated. At the same time, the number of languages supported by LLMs has
been growing rapidly, while existing benchmarks cover only a limited set of lan-
guages, leaving many unsupported. Moreover, some multilingual benchmarks
rely on translating English benchmarks, which introduces evaluation bias. To ad-
dress these issues, we propose HellaSwagUltra, a commonsense reasoning and
natural language understanding benchmark covering 60+ languages. It includes
a large amount of local cultural knowledge for each language. We design an
automated data construction pipeline, making it easy to continuously expand.
Unlike existing work that explicitly tests reasoning skills, HellaSwagUltra em-
beds two commonsense or local knowledge facts implicitly in the context of each
question. Each answer choice reveals subtle clues indicating whether the knowl-
edge is violated. Models must sensitively detect these differences between op-
tions to select the most plausible continuation. In addition, we recruited experts
for each language to fully review and correct all test items, and we continue
to update them. Experiments show that even the strongest proprietary models
(e.g., Gemini-2.5-Pro) achieve only 62.5% accuracy, while GPT-4o and leading
open-source models remain near 40–50%. Our results highlight that multilingual
commonsense reasoning remains a major open challenge, and we release both
dataset and pipeline to support future research. Our data is anonymously open at
https://anonymous.4open.science/r/xjQkRbtWnhsu-2F86.

1 INTRODUCTION

The trajectory of large language model (LLM) development shows a decisive move toward mul-
tilinguality. Contemporary academic and commercial models increasingly advertise competence
in dozens or even hundreds of languages, moving past the era where English dominated genera-
tive model deployment. For instance, Gemma3 (Team et al., 2025) claims coverage of more than
140 languages, while Qwen3 (Yang et al., 2025) reports support across 119 languages and dialects.
Similarly, closed-source systems such as ChatGPT (OpenAI et al., 2024), Claude 1, and Gemini
(Team et al., 2024a) promote their strong multilingual performance, though the exact scope of their
linguistic coverage is not publicly detailed.

However, multilingual evaluation has not kept pace with the rapid progress of large language mod-
els. In particular, multilingual commonsense reasoning evaluation remains underexplored. A major
challenge lies in the scarcity of data: for languages other than English, both the quality and quantity
of available data lag far behind. Although many efforts have expanded multilingual evaluation sets
by translating existing English benchmarks (Lai et al., 2023; Huang et al., 2025; Singh et al., 2025),
this approach suffers from translation quality issues and cultural bias. To address these limitations,
several natively multilingual test suites have been proposed, such as CMMLU (Li et al., 2024), IN-
CLUDE (Romanou et al., 2024) and MultiLoKo (Hupkes & Bogoychev, 2025). Nevertheless, these
datasets are primarily drawn from native wiki documents or exam questions in each language, they
tend to focus on factual knowledge assessment and overlook the most crucial aspect of multilingual
evaluation — natural language understanding and commonsense reasoning.

1https://www.anthropic.com/news/claude-4
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A second challenge is that commonsense reasoning benchmarks are harder to construct than
knowledge-based test sets. Unlike knowledge benchmarks, there are no large pools of ready-made
questions, so they often require scenario creation, plausible distractors, and nuanced human anno-
tations. Moreover, commonsense questions rarely have a single definitive answer, making careful
human judgment essential. Widely used commonsense reasoning benchmarks such as Hellaswag
(Zellers et al., 2019), StoryCloze (Mostafazadeh et al., 2016), CommonsenseQA (Talmor et al.,
2019) have become saturated, with strong large language models already achieving near-perfect
scores (> 90%) on them. Continuing to expand them through human annotation is costly and makes
it difficult to achieve higher levels of challenge. Figure 1 shows the example from HellaSwag that
is facing the saturation issue. In multilingual settings, the challenge is amplified because common-
sense knowledge is contextual and culturally dependent, requiring additional effort to ensure that
questions remain valid and fair across languages. Although several multilingual benchmarks have
been introduced (Li et al., 2025; Sakai et al., 2024b; Ismayilzada et al., 2023), they cover only a
limited set of languages and pay insufficient attention to local culture and social context.

A third challenge arises in difficulty design, especially in multilingual settings. In terms of diffi-
culty design, existing work often focuses on the task format (Li et al., 2025; Xiong et al., 2025;
Ismayilzada et al., 2023) — such as causal reasoning, multi-hop reasoning, abduction (reasoning
from effect to cause), and ordering tasks. To some extent, these measure a model’s ability to fol-
low instructions. As a result, base models or smaller models tend to collapse in performance under
such complex formats, making it difficult to accurately reflect their fundamental language under-
standing ability. Consequently, current commonsense reasoning benchmarks often show low scores
for small models but near-saturation for strong models. This limits their usefulness for guiding
LLM pre-training or fine-tuning, as performance tends to exhibit sudden jumps rather than gradual
improvement.

To address these challenges, we introduce HellaSwagUltra, a benchmark for multilingual common-
sense reasoning that spans over 60 languages and is grounded in each language’s native culture,
social context, and commonsense knowledge. This broad and culturally diverse coverage directly
tackles the lack of suitable multilingual benchmarks. To overcome the inherent difficulty of con-
structing commonsense datasets, we adopt the natural language inference format of HellaSwag,
which aligns closely with the training objective of causal LLMs and enables stable evaluation even
for smaller models. We further design a fully automated pipeline: starting from culturally rele-
vant Wikipedia pages, we prompt LLMs to extract commonsense, generate structured consequences
and subtle violations, and then roll these into narrative contexts. This automation makes it possi-
ble to scale data construction while maintaining consistency. Finally, to address the difficulty of
designing fair and informative evaluation in multilingual settings, we embed two commonsense in-
tents implicitly in each story and construct distractors that subtly contradict them. This ensures that
the benchmark requires careful reasoning about plausibility, while avoiding the saturation of strong
models and the collapse of smaller ones. Table 1 summarizes the comparison with existing work,
and the full list of supported languages is provided in Appendix A.

Table 1: Comparison of commonsense benchmarks. NLI refers to task types where the subsequent
content is inferred from the preceding text; these tasks generally preserve the fluency of natural
language corpora. QA refers to simple question-and-answer formats. Constructed refers to tasks
composed of more complex, human-defined setups, typically including an instruction. Task diffi-
culty is determined by GPT-4 accuracy: * ≥ 80%, ** ≥ 50%, *** < 50%

Benchmark Supported Languages Total Samples Local Commonsense Task Format Difficulty
HellaSwag En 10k ✗ NLI *
StoryCloze En 1.8k ✗ NLI *
CommonsenseQA En 1.1k ✗ QA *
mCSQA 8 11k ✗ QA *
CRoW 5 16k ✗ Constructed *
Comˆ2 En 3.7k ✗ Constructed **
HellaSwag-Pro 2 12k (Zh) ✓ Constructed *
HellaSwagUltra (ours) 61 60k+ ✓ NLI ***

To summarize, our contributions are as follows:
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Context: Then, the man writes over the snow covering the
window of a car, and a woman wearing winter clothes smiles.
then …

HellaSwag

Continuations:

A. the man adds wax to the windshield and cuts it.

B. a person board a ski lift, while two men supporting the head of
the person wearing winter clothes snow as the we girls sled. 

C. the man puts on a christmas coat, knitted with netting.

D. the man continues removing the snow on his car. ✅

Com^2

Question: What interventions can help prevent negative outcomes in the scenarios
described?

Emma, a aspiring actress, joins a local community theater troupe ... Emma’s casual
drinking escalates into unhealthy habits, harming her relationships and well-being.

Options:

A. Encourage regular group discussions about sobriety and setting limits on alcohol
consumption. ✅

B. Organize recreational activities that do not include alcohol, such as game nights or
hiking trips. ✅

C. Increase the number of rehearsals to ensure every actor knows their lines perfectly.

D. Focus on promotional materials that emphasize the glamorous lifestyle of acting to
attract more talent.

HellaSwagUltra

Context: In the dim light of the kitchen, Leo pulled a ceramic plate of cold leftovers from the refrigerator. He placed a metal fork on the food, slid the plate
into the microwave, and set the timer for one minute before immediately cancelling it. From the doorway, Chloe watched him wordlessly take a single egg
from the carton on the counter. He placed the whole egg inside the now-empty microwave, shut the door, and set it to cook for two minutes as the pile of dirty
dishes sat by the sink.

Continuations:

A. A loud pop erupted from inside the microwave, and Leo stood motionless, staring at the humming appliance. Chloe flinched at the sound, her hands
tightening into fists at her sides as she took a sharp breath. ✅

B. Bright flashes arced from the fork for a moment before he hit cancel. When the timer beeped, he removed the egg and peeled the shell away over the sink,
revealing a firm, solid white.

C. A loud pop sounded from the microwave; Leo opened the door, placed the plate with the fork into the splattered interior, and set the timer. When the cycle
finished, he opened the door to a cloud of steam rising from the food.

D. When the microwave beeped, Leo peeled the shell away from the egg’s firm, solid white. He then put the plate with the fork on it back into the appliance,
and a minute later opened the door to a cloud of steam rising from the food.

Overly simplistic assessment intent. ☹️

Excessively pronounced option disparities. ☹️
Reliance on instruction following. ☹️

Explicit commonsense expression. ☹️

Advanced commonsense evaluation. 😊 Multi-commonsense integration. 😊 Implicit commonsense embedding. 😊

Embedded Commonsense: 

- Metal in a microwave will generate sparks. 

- Heating a whole egg in a microwave will cause it to explode.

Context: 林悦紧锁眉头，指尖在手机屏幕上划过，对身旁几次欲言又止的陈默置若罔闻。他脚边的礼品袋随着车厢的轻微震动而摇晃。陈默拿出手机，点开那
两张电子车票，再次确认了“预定到站时间：上午10点30分”的字样。他收起手机，目光无意识地落在了车厢前方的电子显示屏上，上面滚动的实时时速数字刚
刚跳过300。Lin Yue’s brows were tightly furrowed, her fingertips sliding across the screen of her phone, ignoring Chen Mo’s several attempts to speak. The gift bag at
his feet swayed slightly with the faint vibration of the carriage. Chen Mo took out his phone, opened their two e-tickets, and once again confirmed the words “Scheduled
arrival time: 10:30 a.m.” He put his phone away, his gaze drifting unconsciously to the electronic display at the front of the carriage, where the scrolling real-time speed
had just passed 300.
Continuations:

A. 车厢广播开始播报到站信息，电子显示屏上的时间变为上午10点30分。列车平稳地滑入站台，停稳的瞬间，他身旁小桌板上半瓶水的水面才泛起一丝涟漪。
The carriage broadcast began announcing the arrival information, and the time on the electronic display changed to 10:30 a.m. The train glided smoothly into the station,
and only at the moment it came to a complete stop did the surface of the half-full bottle of water on the tray table beside him ripple slightly.  ✅ 

B. 列车开始减速，林悦手机旁那杯满水的纸杯，水面依旧平稳。列车滑进站台时，陈默的视线扫过对面站台的电子屏，上面显示一趟预定10点40分出发的列车
状态为“已发车”。The train began to slow down, but the surface of the full paper cup of water next to Lin Yue’s phone remained perfectly still. As the train glided into the
platform, Chen Mo’s gaze swept across the electronic display on the opposite platform, which showed that a train scheduled to depart at 10:40 had already “Departed.”

C. 车厢里响起一阵规律的“哐当、哐当”声。前方显示屏上的时间变为上午10点30分，列车广播开始播报，车身同时滑入站台。A rhythmic “clack-clack” sound
echoed through the carriage. The time on the display screen at the front changed to 10:30 a.m., the train’s announcement began to play, and the train glided into the
platform at the same time.

D. 车厢里周期性地响起“哐当、哐当”的声响。列车减速滑入站台，他们走出车门时，对面轨道空无一物，一块显示着“10:40”字样的电子牌刚刚熄灭。 A periodic
“clack-clack” sound echoed through the carriage. As the train slowed and glided into the platform, they stepped out of the door to find the opposite track completely empty,
and an electronic sign displaying “10:40” had just gone dark.

Embedded Commonsense: 

- China’s high-speed railway tracks are continuously welded, so there is almost no jolting inside the carriage even at high speeds.

- In China, high-speed trains are generally very punctual.

Story scenarios aligned with the linguistic and cultural background. 😊 Local commonsense knowledge. 😊

Figure 1: Existing commonsense benchmarks are reaching saturation and cover only a limited set of
languages, with insufficient focus on language-specific local commonsense. HellaSwagUltra spans
60+ languages, incorporates a wide range of local, culturally grounded commonsense scenarios,
embeds commonsense knowledge implicitly in the context, and offers highly challenging distractor
options.
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• We introduce HellaSwagUltra, the first large-scale multilingual commonsense reasoning
benchmark covering over 60 languages and 62k instances, explicitly grounded in local
cultural knowledge.

• We design a fully automated construction pipeline that scales across languages while ad-
dressing the intrinsic difficulty of generating realistic scenarios, subtle distractors, and con-
sistent annotations.

• We propose a difficulty scheme that embeds multiple implicit commonsense facts in each
context, ensuring stable evaluation across both small and strong models and mitigating the
saturation observed in prior benchmarks.

• We release HellaSwagUltra-Gold, a human-verified subset for high-stakes evaluation, and
provide extensive experimental results showing that even state-of-the-art LLMs remain far
below human performance.

2 RELATED WORK

Multilingual Benchmarks Existing multilingual benchmarks can be roughly divided into two
categories. The first category relies on translating and extending English benchmarks. BenchMax
(Huang et al., 2025) expands a diverse set of benchmark tasks from English into 17 languages,
covering multiple language families, but its coverage of commonsense reasoning remains limited.
MuBench (Han et al., 2025) focuses on widely used English benchmarks for pretraining evaluation
— including some commonsense reasoning and natural language understanding benchmarks like
HellaSwag (Zellers et al., 2019), StoryCloze (Mostafazadeh et al., 2016), SNLI (Bowman et al.,
2015), and MultiNLI (Williams et al., 2018) — extending them to 61 languages and offering flex-
ible evaluation formats. However, these commonsense reasoning benchmarks are already close to
saturation, suffer from significant data contamination issues, and carry risks of cultural bias. Beyond
English-based extensions, a second line of work collects native-language corpora. INCLUDE (Ro-
manou et al., 2024) gathers exam questions from 44 languages, emphasizing assessment of local,
language-specific knowledge. MultiLoKo (Hupkes & Bogoychev, 2025) extracts fact-based ques-
tion–answer pairs from Wikipedia articles in multiple languages, posing a high level of difficulty.
Nevertheless, these benchmarks focus primarily on factual knowledge evaluation rather than broader
commonsense reasoning.

Commonsense Reasoning Benchmarks In addition to classic benchmarks such as HellaSwag
(Zellers et al., 2019), StoryCloze (Mostafazadeh et al., 2016), and CommonsenseQA (Talmor et al.,
2019), several recent efforts have sought to increase task complexity in order to mitigate performance
saturation on commonsense reasoning evaluations. Comˆ2 raises the difficulty by constructing com-
plex causal graphs and defining multiple task types. HellaSwag-Pro (Li et al., 2025) similarly de-
composes causal relations to create challenging tasks such as backward reasoning and ordering.
However, these approaches often disrupt the natural coherence of the original text, which can lead to
unstable evaluation results. Moreover, complex task formats mainly test instruction-following rather
than genuine understanding of language and commonsense. On the multilingual side, there has also
been work supporting commonsense reasoning across languages. HellaSwag-Pro (Li et al., 2025)
introduced a new Chinese dataset constructed through self-bootstrapping, while mCSQA (Sakai
et al., 2024a) extracts aligned concepts across languages from ConceptNet. They covers only a
small number of languages and lacks high-quality, in-depth local commonsense knowledge.

3 HELLASWAGULTRA

HellaSwagUltra adopts the simplest task format — selecting the most plausible continuation given
the provided context. This task format preserves the semantic coherence of the text and aligns with
the training objective of causal LLMs, allowing it to accurately and reliably reflect a model’s natural
language understanding capability. The construction process of HellaSwagUltra consists of several
key stages: Knowledge Extraction, Structured Commonsense Generation, Test Rollout. Figure
2 depicts the data collection pipeline.
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Wiki Filter

WikiData
Photosynthesis 墨汁

红包風鈴の音 Mülltrennungالقهوة

共享单车

Commonsense Generation

Wiki

Commonsense A

Microwave Oven

... Cookware must be
transparent to microwaves.
Conductive cookware, such
as metal pots, reflects
microwaves, and prevents
the microwaves from
reaching the food ...

...Closed containers, such
as eggs, can explode when
heated in a microwave oven
due to the increased
pressure...

Description:  Placing metal, especially with sharp edges like a fork,
inside an operating microwave oven can cause electrical sparks and
damage the appliance.

Premise: A person places a metal fork on a plate of leftovers and puts it
inside a microwave, setting it to cook for one minute.

Consequence: Bright flashes of light and a loud crackling or buzzing
sound will emanate from the fork inside the microwave.

Confliction: The timer beeps, and the person opens the door to a cloud
of steam rising from the plate.

Description:  Microwaving a whole egg in its shell causes steam and
pressure to build up inside, leading to an explosion.

Premise: A person places a whole, uncooked egg in its shell into a
microwave and sets it to cook for two minutes.

Consequence: A loud pop will sound from inside the microwave as the
egg bursts, splattering its contents all over the interior.

Confliction: The timer beeps. The person removes the egg and peels
the shell away from a firm, solid white.

Schema Design

Scene Characters Objects

Situation Goal Conflict

Context

In the dim light of the kitchen, Leo pulled a ceramic
plate of cold leftovers from the refrigerator. He placed
a metal fork on the food, slid the plate into the
microwave, ... He placed the whole egg inside the
now-empty microwave...

Continuations

Commonsense A ✅B.

Commonsense A ❌C.

Commonsense A ❌D.

✅

Commonsense B

Commonsense A ✅A. Commonsense B ✅

Commonsense B ❌

Commonsense B ✅

Commonsense B ❌

Microwave Owen

抹茶の泡立ち

Figure 2: The automatic data construction process consists of three main stages: Knowledge Ex-
traction, Structured Commonsense Generation, and Test Rollout. The Test Rollout stage itself is
composed of Schema Design and Context and Continuation Generation.

3.1 KNOWLEDGE EXTRACTION

To obtain local commonsense knowledge for each language, we filter entities from Wikidata 2 that
are relevant to the local cultural and social background of each language. The filtering process
consists of two steps:

Heuristic Filtering We first filter entities based on their QIDs. A predefined type pool is used to
exclude broad categories of entities that are not useful for commonsense extraction, such as persons,
organizations, geographic locations, and dates. All entities that have an instance of or subclass of
relationship with these categories are removed.

LLM-Based Filtering For the remaining candidate QIDs, we feed the corresponding wiki titles
and pages to an LLM 3, asking it to determine whether the article is niche, whether it contains
potential commonsense knowledge, and whether it carries a risk of bias. If the article passes these
checks, we collect its pages in all available languages and prompt the LLM once again to identify
which pages represent entities and articles tied to the local background of that specific language.

For each language, we select approximately 1,000 Wiki entities and articles to guide and control the
LLM in generating targeted commonsense knowledge.

3.2 STRUCTURED COMMONSENSE GENERATION

This is the core stage of our entire pipeline, where we must extract deep, culturally grounded com-
monsense knowledge for each language to embed into the stories generated later. We design care-
fully crafted prompts to accomplish this, incorporating multiple iterations and validity checks. The
Wiki pages collected in the previous step are provided to the LLM, which is tasked with generating
structured commonsense that includes a Description, Premise, Consequence, and Conflict.

2https://www.wikidata.org/wiki/Wikidata:Main_Page
3We used Gemini-2.5-Pro throughout the entire data construction process.
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Description The LLM is instructed to produce a concise one-sentence description of each com-
monsense instance. This field serves two purposes: facilitating later human review and enabling
automatic deduplication. We compute semantic embeddings of the descriptions using an embedding
model and calculate the inner product between each newly generated commonsense description and
all previously collected ones. Commonsense instances with excessively high similarity scores are
discarded.

Premise This field instructs the LLM to create a premise that establishes the condition under which
the generated commonsense applies, based on the commonsense description. The generation follows
two principles: Sufficiency and Necessity: The occurrence of the premise should deterministically
lead to a consequence, and the consequence’s occurrence must imply that the premise has taken
place. No Outcome Leakage: The premise must not contain or reveal the consequence itself.

Consequence Based on the commonsense description and the specified premise, LLM generates
a correct consequence.

Conflict The LLM is required to generate a detail that subtly implies a violation of the common-
sense, without making it too obvious, in order to increase the difficulty of the question. The design
principles are as follows:No Direct Negation: The conflict must not be a direct negation of the
people, objects, or events mentioned in the premise or consequence. Objective Description: The
conflict should describe the scene or event objectively, avoiding ambiguous statements or specula-
tion, and must not include characters’ subjective thoughts or feelings. Intrinsic Plausibility: the
conflict itself must be reasonable and cannot involve surreal or impossible events.

As shown in Figure 2, the generation of a single question requires two distinct commonsense in-
stances. After Commonsense A is successfully produced, it is added as a reference to the demon-
strations. The LLM is then tasked with generating Commonsense B. In addition to following all the
previously defined principles, Commonsense B must satisfy an additional independence principle:
Logical Independence — that is, whether B is violated should not affect the judgment of whether
A is violated. This prevents the LLM from producing two similar commonsense statements, which
would otherwise reduce the challenge and discriminative power of the answer options.

To further ensure the quality of the generated commonsense, we employ an LLM-based validator to
check compliance with each requirement. The principles defined above are compiled into a ten-item
checklist. For every newly generated commonsense instance, the validator is prompted to answer
each question: it must respond “Yes” if the requirement is satisfied, and “No” with an explanation if
it is not. The explanations are logged and incorporated into the next generation prompt, instructing
the LLM to revise its output. This process is repeated iteratively until the commonsense passes all
items on the checklist.

3.3 TEST ROLLOUT

Story Schema Design After obtaining the commonsense pairs, we do not use them directly to
generate the story context. This is because giving the commonsense pairs to the LLM as-is would
cause the model to overemphasize them in the story, making the commonsense too obvious. This
not only reduces the diversity and naturalness of the stories but also lowers the overall difficulty of
the questions. We first provide the LLM with only the premises of the two commonsense instances
and ask it to design a structured story schema based on the information they contain. The design
follows these principles: Subtle Integration: The details given in the premises must not become the
central focus of the story. Instead, they should be subtly woven into the main storyline with minimal
exposition. Completeness: All details and information from the premises must be fully preserved
and incorporated into the schema. No Outcome Leakage: The schema must not reveal or hint at
any consequences or outcomes.

Context and Continuation Generation We then provide the schema and premises to the LLM to
generate the final context, following the same three principles outlined above. After producing the
context, we combine the consequences and conflicts of Commonsense A and B in various ways and
prompt the LLM to generate the corresponding continuations. The continuation that contains both

6
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consequences is designated as the correct option, while any continuation containing a conflict from
either commonsense serves as a distractor option.

Quality Control and Annotation Beyond using a validator during commonsense generation to
guarantee correctness and difficulty, we perform additional quality control on the final test items.
To further reduce the probability of random guessing, each distractor option is resampled twice, re-
sulting in a total of ten candidate options per question. We then conduct an automatic sanity check
by supplying the full question — together with its associated commonsense pairs — to an LLM. If
the model fails to select the correct answer with explicit hints, the item is discarded. For each ques-
tion, we also use the LLM to annotate local relevance, assigning two labels: Local Background:
Indicates that the story contains clear elements specific to the culture or environment of the given
language. Local Commonsense: Indicates that answering the question correctly requires knowl-
edge unique to that language’s local culture or context. The prompts used are presented in Appendix
B.

3.4 HUMAN EVALUATION

We recruited human annotators for each language to evaluate the test questions, with at least three
annotators per language. For English, Chinese, Arabic, German, French, Portuguese, and Indone-
sian, we randomly sampled 100 questions per language. Among them, in 50 questions where the
underlying commonsense was provided, human annotators achieved an average accuracy of 92%.
In the remaining 50 questions where the commonsense was not given, the average human accuracy
dropped to 73%.

We go beyond mere evaluation by performing full human verification and correction of HellaSwag-
Ultra to ensure the correctness of all test items. So far, we have completed the verification of 100+
questions each for English, Arabic, German, and French, and released them as a separate dataset
called HellaSwagUltra-Gold. Given the large number of languages and questions covered by Hel-
laSwagUltra, we plan to maintain and update this project over the long term. More details of human
annotaion and cost are presented in Appendix C.

3.5 STATISTICS

Table 2: Statistics of HellaSwagUltra and Verified subset.
Language Total Verified Local Background Local Commonsense

ALL 62,411 766 31,237 11,984

Verified
EN 958 122 31 8
DE 1,022 231 45 40
AR 891 168 121 68
FR 1,240 245 32 24

Table 2 reports statistics for the samples included in HellaSwagUltra. Approximately half of all
samples are set against story contexts that exhibit clear language-specific or culturally grounded
features, and roughly one-third are annotated as requiring local commonsense knowledge for correct
resolution. The table also provides detailed statistics for all languages with human verification.
Within the subset of human-verified and annotated samples, English exhibits the lowest proportion
of both local backgrounds and local-commonsense requirements. This observation is consistent with
the widespread use of English across diverse regions, which makes its content more likely to be
perceived as general rather than culturally anchored. German and French similarly show relatively
low proportions of items requiring local commonsense, reflecting a closer cultural affinity with
English and shared background knowledge. In contrast, Arabic samples display a markedly higher
proportion of items that necessitate local commonsense, highlighting the distinct cultural specificity
captured in this subset. The agreement between LLM-based annotations and human judgments for
both local background and local commonsense exceeds 80%.
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Table 3: Model performance on HellaSwagUltra. ALL reports the average accuracy across all lan-
guages. HIGH, MID, and LOW are averages over high-, mid-, and low-resource languages, respec-
tively. LB (Local Background) includes examples whose story context contains target-language-
specific cultural elements. LC (Local Commonsense) covers examples requiring culture-specific
commonsense knowledge, while GC (General Commonsense) tests language-agnostic common-
sense. VERIFIED reports results on HellaSwagUltra-Gold. Base models are evaluated under the
Cloze format.

Model ALL HIGH MID LOW LB LC GC VERIFIED

Base Models
Qwen3-14B-Base 43.86 48.45 45.41 40.47 42.94 43.08 44.15 47.68
Qwen2.5-14B 41.12 48.17 42.69 36.69 40.65 40.17 41.61 47.69
Qwen2.5-32B 42.25 50.53 43.58 37.52 41.58 41.52 42.55 49.34
Qwen2.5-72B 44.84 52.53 47.34 39.28 43.92 43.71 45.22 48.85
gemma-3-12b-pt 47.77 48.09 49.92 45.67 47.08 46.61 48.27 47.51
gemma-3-27b-pt 50.88 51.06 53.12 48.73 50.42 50.09 51.28 49.26
gemma-2-9b 43.94 46.44 45.98 41.00 43.00 43.04 44.16 47.20
gemma-2-27b 47.15 49.25 50.24 43.41 46.13 45.76 47.63 48.56

Instruct Models
Qwen2.5-14B-Instruct 37.54 46.13 38.94 32.61 38.21 38.52 37.25 50.22
Qwen2.5-32B-Instruct 39.59 47.61 41.41 34.52 40.29 41.13 39.19 50.22
Qwen2.5-72B-Instruct 40.18 47.76 41.42 35.82 40.29 40.45 40.00 49.47
gemma-3-12b-it 34.57 36.27 35.18 33.29 35.34 34.68 34.30 40.84
gemma-3-27b-it 42.02 43.55 41.66 41.70 42.19 42.28 41.94 48.32
gemma-2-9b-it 31.51 33.45 31.21 30.98 32.27 32.77 30.89 37.31
gemma-2-27b-it 37.26 40.28 37.75 35.54 37.50 37.64 36.98 45.01

Proprietary Model
GPT-4o 40.34 47.17 41.87 36.02 40.29 40.11 40.40 50.64
Claude Sonnet 4 63.12 65.58 64.46 60.86 62.78 62.11 63.52 60.14
Claude Opus 4 64.53 66.28 65.31 63.07 63.75 63.06 65.11 59.57
Gemini-2.5-Pro 72.13 70.31 73.11 72.00 71.71 71.30 72.60 62.53
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Figure 3: Model Performance with and without thinking.

4 EVALUATION

4.1 SETUP

Task Format HellaSwagUltra retains the core task format of HellaSwag: selecting the most plau-
sible continuation given a context. This design preserves the natural fluency of the text and aligns
closely with the causal LLM training objective, ensuring stable evaluation. For base models, we
adopt a Cloze-style setup (Clark et al., 2018), computing the perplexity (PPL) for each candidate
continuation and selecting the one with the lowest PPL as the model’s choice. For instruction-tuned
models, we aim to measure their answering ability directly. We present the question as a standard
multiple-choice problem with a simple instruction — “Which option is the most plausible contin-
uation?” — provided in two variants: English and a localized version in the target language. In
this paper, we use the localized instruction to more accurately reflect performance in multilingual
settings.

Metric We use simple evaluation metrics to ensure that HellaSwagUltra can be easily integrated
into any LLM evaluation framework. For base models tested in the Cloze format, we report accuracy
based on the model’s selection of the option with the lowest perplexity. For instruction-tuned mod-
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els, we report Exact Match (EM), indicating whether the model’s generated answer exactly matches
the correct option.

Models We evaluate open-source base models known for their strong multilingual performance,
including the Qwen (Qwen et al., 2025; Yang et al., 2025) and Gemma families (Team et al., 2024b;
2025). Likewise, the instruction-tuned variants of these model families are also included in our
evaluation. It is important to note, however, that the evaluation protocols for base models and
instruction-tuned models differ, as described above. In addition to open-source models, we also
benchmark several of the most capable closed-source models currently available, including GPT-4o
(OpenAI et al., 2024), Claude Opus 4 and Claude Sonnet 4.

4.2 RESULTS

Gemini eval Opus eval

Gemini data

Opus data

ALL

72.1

HIGH

70.3

MID

73.1

LOW

72.0

ALL

64.5

HIGH

66.3

MID

65.3

LOW

63.1

ALL

55.2

HIGH

58.0

MID

57.5

LOW

52.0

ALL

47.0

HIGH

54.6

MID

51.7

LOW

39.4

Figure 4: Cross-evaluation of datasets
generated by different models.

Table 3 presents the evaluation results. We observe
that all evaluated models perform suboptimally on Hel-
laSwagUltra, indicating that our dataset presents a suffi-
cient level of challenge and effectively mitigates the sat-
uration observed in many existing commonsense bench-
marks. Importantly, this increased difficulty arises from
more demanding commonsense reasoning requirements
rather than from the use of overly complex instructions or
evaluation metrics. Within each model family, we ob-
serve a clear scaling trend: larger models consistently
achieve better performance. Across languages, all mod-
els exhibit a noticeable performance drop on low-resource
languages. Among the open-source families, the Gemma series demonstrates relatively balanced
performance across languages, whereas the Qwen series shows a more pronounced gap between
high- and low-resource languages. As expected, closed-source models generally outperform their
open-source counterparts. Notably, GPT-4o, which is not a reasoning model, shows a substantial
performance gap compared to Claude models.

4.3 EFFECT OF THINKING

We evaluate the impact of enabling thinking mode on model performance on HellaSwag. For Opus
and Sonnet, we compare their performance with thinking mode enabled and disabled. For GPT-4o,
which is not a reasoning model by default, we apply a Chain-of-Thought (CoT) prompt to encourage
reasoning before generating an answer and compare this to its direct output. Figure 3 illustrates the
result. All three models show substantial performance gains on the full dataset when thinking mode
is enabled, while the improvement is smaller on the Verified subset, with Opus showing a slight
decline. On the local-commonsense subset, Sonnet and GPT-4o exhibit larger gains compared to
their performance on the non-local-commonsense subset.

4.4 POTENTIAL MODEL BIAS STUDY

To investigate whether the LLM used for data generation would gain an advantage when evaluated
on that data, we additionally used Claude Opus 4 to generate 300 samples per language with the
same pipeline, and evaluated both Gemini-2.5-Pro and Claude Opus 4 on this data. Figure 4 depicts
the cross-evaluation results. It can be observed that Opus does not exhibit an advantage on the
data generated by itself. Therefore, the bias introduced by the model is not significant, and any
potential risk will be further mitigated through human correction. Gemini shows a clear performance
advantage over Opus, so we chose Gemini-2.5-Pro to generate HellaSwagUltra.

5 CONCLUSION

Faced with the saturation of commonsense reasoning benchmarks and the scarcity of multilingual re-
sources, this paper introduces HellaSwagUltra, a new dataset supporting over 60 languages, focused
on challenging commonsense reasoning and language local knowledge.
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Jian Su (eds.), Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pp. 632–642, Lisbon, Portugal, September 2015. Association for Computational Lin-
guistics. doi: 10.18653/v1/D15-1075.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
Challenge, March 2018.

Wenhan Han, Yifan Zhang, Zhixun Chen, Binbin Liu, Haobin Lin, Bingni Zhang, Taifeng Wang,
Mykola Pechenizkiy, Meng Fang, and Yin Zheng. MuBench: Assessment of Multilingual Capa-
bilities of Large Language Models Across 61 Languages, June 2025.

Xu Huang, Wenhao Zhu, Hanxu Hu, Conghui He, Lei Li, Shujian Huang, and Fei Yuan. Bench-
MAX: A Comprehensive Multilingual Evaluation Suite for Large Language Models, February
2025.

Dieuwke Hupkes and Nikolay Bogoychev. MultiLoKo: A multilingual local knowledge benchmark
for LLMs spanning 31 languages, April 2025.

Mete Ismayilzada, Debjit Paul, Syrielle Montariol, Mor Geva, and Antoine Bosselut. CRoW: Bench-
marking Commonsense Reasoning in Real-World Tasks. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 9785–9821, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.607.

Viet Lai, Chien Nguyen, Nghia Ngo, Thuat Nguyen, Franck Dernoncourt, Ryan Rossi, and Thien
Nguyen. Okapi: Instruction-tuned Large Language Models in Multiple Languages with Rein-
forcement Learning from Human Feedback. In Yansong Feng and Els Lefever (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, pp. 318–327, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.emnlp-demo.28.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
Baldwin. CMMLU: Measuring massive multitask language understanding in Chinese, January
2024.

Xiaoyuan Li, Moxin Li, Rui Men, Yichang Zhang, Keqin Bao, Wenjie Wang, Fuli Feng, Dayiheng
Liu, and Junyang Lin. HellaSwag-Pro: A Large-Scale Bilingual Benchmark for Evaluating the
Robustness of LLMs in Commonsense Reasoning, May 2025.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
derwende, Pushmeet Kohli, and James Allen. A Corpus and Evaluation Framework for Deeper
Understanding of Commonsense Stories, April 2016.

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, A. J. Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex
Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex
Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis,
Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin
Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew
Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tul-
loch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford,
Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz
Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth
Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap,
Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman,
Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson,
Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Kho-
rasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit,
Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming
Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun,
Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won
Chung, Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim
Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Ja-
cob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James
Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei,
Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Ji-
ahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beut-
ler, Joe Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan
McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos
Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang
Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik,
Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button,
Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren
Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou,
Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier,
Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak,
Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray,
Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max John-
son, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao
Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael
Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo
de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavar-
ian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Stau-
dacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick
Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick,
Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins,
Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng
Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil
Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim,
Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar
Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith,
Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen,
Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam
Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean
Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jo-
moto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey,
Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya
Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas
Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov,
Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko,
Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba,
Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang,
Yujia Jin, Yunxing Dai, and Yury Malkov. GPT-4o System Card, October 2024.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report,
January 2025.

Angelika Romanou, Negar Foroutan, Anna Sotnikova, Zeming Chen, Sree Harsha Nelaturu, Shiv-
alika Singh, Rishabh Maheshwary, Micol Altomare, Mohamed A. Haggag, Snegha A, Alfonso
Amayuelas, Azril Hafizi Amirudin, Viraat Aryabumi, Danylo Boiko, Michael Chang, Jenny
Chim, Gal Cohen, Aditya Kumar Dalmia, Abraham Diress, Sharad Duwal, Daniil Dzenhaliou,
Daniel Fernando Erazo Florez, Fabian Farestam, Joseph Marvin Imperial, Shayekh Bin Islam,
Perttu Isotalo, Maral Jabbarishiviari, Börje F. Karlsson, Eldar Khalilov, Christopher Klamm, Fa-
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A LANGUAGE COVERAGE

Table 4 presents the language covered by HellaSwagUltra. Considering only native speakers, these
languages cover over 60% of the global population. When including second-language speakers, the
coverage exceeds 99% worldwide.

Table 4: Languages sorted by native speakers and ratios in Common Crawl (HIGH at left, MID
center, LOW right)

Code Name Speakers Tokens Code Name Speakers Tokens Code Name Speakers Tokens

zh Chinese 1390M 6.34% vi Vietnamese 86M 1.35% hi Hindi 345M 0.31%
es Spanish 484M 4.14% tr Turkish 85M 0.98% bn Bengali 242M 0.18%
ar Arabic 411M 0.78% ms Malay 82M 0.03% mr Marathi 83M 0.04%
en English 390M 42.62% ur Urdu 78M 0.04% te Telugu 83M 0.03%
pt Portuguese 250M 1.51% id Indonesian 75M 1.05% ta Tamil 79M 0.09%
ru Russian 145M 9.16% fa Persian 65M 0.79% jv Javanese 69M 0.00%
ja Japanese 124M 4.72% pl Polish 38M 1.69% gu Gujarati 58M 0.03%
ko Korean 81M 0.84% th Thai 38M 0.64% my Burmese 33M 0.03%
de German 76M 5.21% uk Ukrainian 32M 0.60% pa Punjabi 32M 0.01%
fr French 74M 4.10% ro Romanian 24M 0.64% tl Tagalog 28M 0.02%
it Italian 63M 2.33% nl Dutch 23M 1.57% uz Uzbek 27M 0.01%

el Greek 12M 0.69% az Azerbaijani 24M 0.10%
bg Bulgarian 8M 0.32% ceb Cebuano 21M 0.00%
hr Croatian 5.1M 0.24% sw Swahili 16M 0.01%
sk Slovak 5M 0.35% km Khmer 16M 0.02%
he Hebrew 5M 0.27% sq Albanian 7.5M 0.05%
lt Lithuanian 2.8M 0.18% af Afrikaans 7M 0.01%
lv Latvian 1.75M 0.10% no Norwegian 5.3M 0.37%
et Estonian 1.1M 0.14% da Danish 5M 0.36%

fi Finnish 5M 0.41%
is Icelandic 0.314M 0.04%
ga Irish — 0.01%

B PROMPTS

The prompts used in data collection are as follows.
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Commonsense Generation

We are designing a local commonsense knowledge in {LANGUAGE} that will be subtly
implied in a story. The conflict detail is a subtle narrative detail that may hint that
the commonsense has been violated. Later, this will be used to generate an incorrect story
continuation.
[Reference WiKi]
{WIKITEXT}
[TASK]
Invent a new piece of local commonsense knowledge in {LANGUAGE}.
Return a single JSON object using this exact schema with the content in {LANGUAGE}:
concept : short noun phrase (1–3 words)
description : one sentence explaining the concept
premise : a brief and typical sign or condition under which the consequence usually holds
(no need for full coverage)
- The premise is a specific condition or context.
- The premise should not include or imply the consequence itself — it must be a distinct
and self-contained condition, not a restatement or soft prediction of the result.
- The premise must be both necessary and sufficient for the consequence.
consequence : what is expected under the premise
conflict detail : a subtle, objective event or scene implying the consequence may have been
violated (do NOT state the violation or directly revise the property)
- conflict detail should hint at a breach indirectly and be subtle.
- Describe only observable facts, actions, or physical details.
- Do NOT mention the items or properties that appear in the consequence.
- Do NOT overemphasize or elaborate on the conflicting detail.
- Do NOT emphasize or mention what did not happened.
- Do NOT justify, rationalize, or explain the detail that contradicts commonsense.
- Do NOT use negation words (e.g., “not”, “no”, “never”, “didn’t”, “hasn’t”, “without”,
“failed to”).
- Do NOT use speculative or ambiguous expressions (e.g., “seems”, “appears”, “perhaps”,
“maybe”, “apparently”, “as if”).
- Do NOT use contrastive words like “but”, “however”.
- Do NOT include thoughts, feelings.
Quality requirements:
The commonsense must be strong and widely accepted: in ordinary contexts it should hold
with certainty; violating it should make the scenario feel blatantly unrealistic or jarringly
wrong to a knowledgeable reader.
Given the premise, the conflict details should be virtually impossible to happen
in reality.
Ensure diversity from the reference examples, the topic MUST BE DIFFERENT from any
of the reference examples.
Consider diverse types and maintain a numerical balance between traditional and modern,
cultural and scientific, local and worldwide commonsenses.
Both the premise and the consequence should have a moderate level of abstraction:
avoid overly specific names, locations, or one-time events. The statements should apply to
many plausible real-world situations.
Reference examples:
{examples}
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Commonsense Revision

We are designing a local commonsense knowledge in {LANGUAGE} that will be subtly
implied in a story. The conflict detail is a subtle narrative detail that may hint that
the commonsense has been violated. Later, this will be used to generate an incorrect story
continuation.
[REFERENCE EXAMPLES]
{examples}
[PREVIOUS VERSION]
{previous json pretty}
[VALIDATOR COMMENTS]
{feedback rules block}
[TASK]
Please revise the above commonsense item to better follow the rules and address the validator
feedback.
Return a single JSON object using this exact schema with the content in {LANGUAGE}:
concept : short noun phrase (1–3 words)
description : one sentence explaining the concept
premise : a brief and typical sign or condition under which the consequence usually holds
(no need for full coverage)
- The premise is a specific condition or context.
- The premise should not include or imply the consequence itself — it must be a distinct
and self-contained condition, not a restatement or soft prediction of the result.
- The premise must be both necessary and sufficient for the consequence.
consequence : what is expected under the premise
conflict detail : a subtle, objective event or scene implying the consequence may have been
violated (do NOT state the violation or directly revise the property)
- conflict detail should hint at a breach indirectly and be subtle.
- Describe only observable facts, actions, or physical details.
- Do NOT mention the items or properties that appear in the consequence.
- Do NOT overemphasize or elaborate on the conflicting detail.
- Do NOT emphasize or mention what did not happend.
- Do NOT justify, rationalize, or explain the detail that contradicts commonsense.
- Do NOT use negation words (e.g., ’not’, ’no’, ’never’, ’didn’t’, ’hasn’t’, ’without’, ’failed
to’).
- Do NOT use speculative or ambiguous expressions (e.g., ’seems’, ’appears’, ’perhaps’,
’maybe’, ’apparently’, ’as if’).
- Do NOT use contrastive words like ’but’, ’however’.
- Do NOT include thoughts, feelings.
Quality requirements:
The commonsense must be strong and widely accepted: in ordinary contexts it should hold
with certainty; violating it should make the scenario feel blatantly unrealistic or jarringly
wrong to a knowledgeable reader.
Given the premise, the conflict details should be virtually impossible to happen
in reality.
Ensure diversity from the reference examples, the topic MUST BE DIFFERENT from any
of the reference examples.
Consider diverse types and maintain a numerical balance between traditional and modern,
cultural and scientific, local and worldwide commonsenses.
Both the premise and the consequence should have a moderate level of abstraction:
avoid overly specific names, locations, or one-time events. The statements should apply to
many plausible real-world situations.
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Commonsense Validator

We are designing a {LANGUAGE} commonsense knowledge item that will be subtly
implied in a story. ’description’ explains the piece of commonsense knowledge.
’premise’ and ’consequence’ denote, respectively, the preconditions under which
this commonsense holds and its expected result. ’conflict detail’ is a subtle detail
that hints at a violation of that result. Your job is to evaluate whether the defined common-
sense knowledge and the ’conflict detail’ are valid and well-formed for this purpose
based on the following rule.
[RULE]
{RULE TEXT}
[GUIDELINE]
{GUIDELINE TEXT}
[COMMONSENSE UNDER REVIEW]
{COMMONSENSE}
Respond in JSON with:
{

"comment": string,
"decision": "pass" | "fail"

}
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Story Schema Builder

We are designing a beginning of a short realistic story in {LANGUAGE} that integrates
both a visible storyline and a hidden layer.
You are given some subtle details.
Your task is to design the schema.
Important constraints:

• The subtle details must NOT be the focus and mainstream of the story, nor the
characters’ main activity.

• Subtly weave the subtle details into the main storyline with minimal exposition.
• Ensure the information in the provided details is accurately and completely in-

cluded.
• Do not reveal or speculate about the continuation of the subtle details.

Please provide the following fields:
1. Scene: Where does the story take place? Describe the physical and social setting

briefly.
2. Characters: List 2–3 people involved in the scene, with their names, roles, moti-

vations, features, characteristics, relationship, etc.
3. Objects: Any key items or tools present in the scene.
4. Situation description: A short paragraph (3–4 sentences) describing what’s hap-

pening, without stating the commonsense.
5. Goal or activity: What is the apparent goal of the characters in the scene?
6. Visible tension or obstacle: Is there any small conflict or uncertainty that drives

the scene forward?
You can add more fields.
Return all fields in plain text in {LANGUAGE}.
Example

Subtle details: Two people are sitting in a café and talking.
Output in English:
Scene: A quiet café in the afternoon.
Characters: Lisa, a journalist; Mark, her childhood friend.
Objects: Coffee cups, a notepad, a scarf hanging behind Lisa’s chair.
Situation description: Lisa leans across the table, her voice low as she asks Mark about the
article. He listens, occasionally glancing at the entrance. The café hums softly around them.
Goal or activity: They are catching up and discussing a sensitive interview.
Visible tension or obstacle: Lisa is worried someone may overhear them.

Now you generate:
Subtle details:
{premise}

Output in {LANGUAGE}:
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Story Context Generator

Given a designed schema, write a beginning of a short, realistic story in {LANGUAGE}.
Constraints:

• The story must include natural and appropriate mentions of all people, objects,
or situations referenced in the provided schema, but they should appear organically
and with narrative motivation — not feel forced or inserted just to match the fact.

• The tone should be grounded, realistic, and coherent.
• The story should reflect the described scene, characters, objects, activity, and

visible tension through concrete actions, sensory details, or dialogue.
• No explaining or summarizing; let the details emerge naturally.
• Subtly weave the provided subtle details into the main storyline with minimal ex-

position. Ensure all the key information is accurately and completely included.
• The embedded subtle details must NOT be the focus and mainstream of the story,

nor the characters’ main activity.
• Focus on objective, observable descriptions of actions, settings, and dialogue.
• Do NOT add thoughts, feelings, or commentary.
• Do NOT mention what did not happen.
• Do NOT use speculative or ambiguous expressions (e.g., “seems”, “appears”, “per-

haps”, “maybe”, “apparently”, “as if”).
• The story should be in 4–5 sentences.

Example

Schema:
Scene: A quiet café in the afternoon.
Characters: Lisa, a journalist; Mark, her childhood friend.
Objects: Coffee cups, a notepad, a scarf hanging behind Lisa’s chair.
Situation description: Lisa leans across the table, her voice low as she asks Mark about the
article. He listens, occasionally glancing at the entrance. The café hums softly around them.
Goal or activity: They are catching up and discussing a sensitive interview.
Visible tension or obstacle: Lisa is worried someone may overhear them.

Subtle details:
Two people are sitting in a café and talking.

Story in English:
Lisa lowered her voice, scribbling something in her notepad as Mark leaned in. The scarf
behind her chair fluttered slightly as the door opened. He looked up, eyes scanning the new
arrival. “Do you think they’re listening?” she whispered.

Now complete the story based on the following schema:
{schema}
Subtle details:
{details}
Story in {LANGUAGE}:
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Story Continuation A (Positive)

You are given the schema of a short story in {LANGUAGE}, a beginning and some subtle
details.
Your task is to write a plausible continuation of the story:

• The continuation must naturally follow from the story so far, not repeat or revise
the story.

• Subtly weave the follow-up of the provided details into the main storyline with
minimal exposition.

• Do not justify, rationalize, or explain the details.
• Focus on objective, observable descriptions of actions, settings, and dialogue.
• Do NOT add thoughts, feelings, or commentary.
• Do NOT mention events or outcomes that did not happen — focus on what is

occurring in the scene.
• Do NOT use negation words (e.g., “not”, “no”, “never”, “didn’t”, “hasn’t”, “with-

out”, “failed to”).
• Do NOT use speculative or ambiguous expressions (e.g., “seems”, “appears”, “per-

haps”, “maybe”, “apparently”, “as if”).
• The continuation should be in 1–2 sentences.

Example

Schema:
Scene: A quiet café in the afternoon.
Characters: Lisa, a journalist; Mark, her childhood friend.
Objects: Coffee cups, a notepad, a scarf hanging behind Lisa’s chair.
Situation description: Lisa leans across the table, her voice low as she asks Mark about the
article. He listens, occasionally glancing at the entrance. The café hums softly around them.
Goal or activity: They are catching up and discussing a sensitive interview.
Visible tension or obstacle: Lisa is worried someone may overhear them.

Story so far:
Lisa lowered her voice, scribbling something in her notepad as Mark leaned in. The scarf
behind her chair fluttered slightly as the door opened. He looked up, eyes scanning the new
arrival. “Do you think they’re listening?” she whispered.

Subtle details:
One cannot see what is happening behind himself/herself.

Continuation in English:
Mark shook his head subtly, his eyes drifting past Lisa toward the window. A delivery man
stepped inside, pausing to check the receipt in his hand.

Now you generate
Schema:
{schema}
Story so far:
{story}
Subtle details:
{details}
Continuation in {LANGUAGE}:
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Story Continuation B (Negative)

You are given the schema of a short story in {LANGUAGE}, a beginning, a continuation A
and some subtle details.
Your task is to write a nuanced different continuation B of the story:

• The continuation must naturally follow from the story so far, not repeat or revise
the story.

• Subtly but accurately weave all of the “follow-up” and “conflict” details provided
into the main storyline with minimal exposition.

• Do not include, mention, explain, or describe the knowledge and premise in the
provided details.

• Do not justify, rationalize, or explain the follow-up and conflict in the provided
details.

• Focus on objective, observable descriptions of actions, settings, and dialogue.
• Do NOT add thoughts, feelings, or commentary.
• Do NOT mention events or outcomes that did not happen — focus on what is

occurring in the scene.
• Do NOT use negation words (e.g., “not”, “no”, “never”, “didn’t”, “hasn’t”, “with-

out”, “failed to”).
• Do NOT use speculative or ambiguous expressions (e.g., “seems”, “appears”, “per-

haps”, “maybe”, “apparently”, “as if”).
• The continuation should be in 2–3 sentences.

Example

Schema:
Scene: A quiet café in the afternoon.
Characters: Lisa, a journalist; Mark, her childhood friend.
Objects: Coffee cups, a notepad, a scarf hanging behind Lisa’s chair.
Situation description: Lisa leans across the table, her voice low as she asks Mark about the
article. He listens, occasionally glancing at the entrance. The café hums softly around them.
Goal or activity: They are catching up and discussing a sensitive interview.
Visible tension or obstacle: Lisa is worried someone may overhear them.

Story so far:
Lisa lowered her voice, scribbling something in her notepad as Mark leaned in. The scarf
behind her chair fluttered slightly as the door opened. He looked up, eyes scanning the new
arrival. “Do you think they’re listening?” she whispered.

Continuation A:
Mark shook his head subtly, his eyes drifting past Lisa toward the window. A delivery man
stepped inside, pausing to check the receipt in his hand.

Subtle details:
As they chatted, one of them quietly described the suspicious figure sneaking up behind
himself.

Continuation B in English:
Mark nodded toward the hallway. “Someone just slipped behind me,” Lisa said, frowning.

Now you generate
Schema:
{schema}
Story so far:
{story}
Continuation A:
{silver}
Subtle details:
{details}
Continuation B in {LANGUAGE}:
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1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C HUMAN EVALUATION AND COST

We recruited human annotators who were required to hold at least a college degree, demonstrate
C1-level English proficiency (or an equivalent certification), and be native speakers of the languages
they were assigned to evaluate. Annotators were paid at an hourly rate of $16, with a maximum of
8 working hours per day. To date, the total cost of human annotation is approximately $19,200.

In addition, the API cost for LLM calls during data collection is approximately $36,800.
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