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Abstract

Building high-quality datasets for specialized tasks is a time-consuming and
resource-intensive process that often requires specialized domain knowledge. We
propose Corpus Retrieval and Augmentation for Fine-Tuning (CRAFT), a method
for generating synthetic datasets, given a small number of user-written few-shots
that demonstrate the task to be performed. Given the few-shot examples, we use
large-scale public web-crawled corpora and similarity-based document retrieval
to find other relevant human-written documents. Lastly, instruction-tuned large
language models (LLMs) augment the retrieved documents into custom-formatted
task samples, which then can be used for fine-tuning. We demonstrate that CRAFT
can efficiently generate large-scale task-specific training datasets for four diverse
tasks: biology question-answering (QA), medicine QA and commonsense QA as
well as summarization. Our experiments show that CRAFT-based models outper-
form or achieve comparable performance to general LLMs for QA tasks, while
CRAFT-based summarization models outperform models trained on human-curated
data by 46 preference points.

1 Introduction

Large language models (LLMs) demonstrate strong generalization capabilities across diverse tasks
Dubey et al. [2024], Ouyang et al. [2022], but optimizing these models for specific tasks remains a
considerable challenge. Although zero-shot and few-shot prompting methods provide some degree
of adaptability Dong et al. [2024], task-specific fine-tuning generally delivers better performance,
particularly for specialized and out-of-domain tasks Liu et al. [2022]. A key challenge for effective
fine-tuning is obtaining high-quality task-specific examples at large scale.

Traditionally, creating high-quality datasets for specific tasks involves a time-consuming and resource-
intensive process, often requiring extensive manual curation and annotation (e.g. Marcus et al. [1993]).
This challenge is particularly acute for low-resource domains or novel tasks where existing datasets
may be limited or non-existent.

On the other hand, “raw” (i.e., unannotated, free-text) web-crawled corpora are known for their
diversity and potential utility for various tasks Maini et al. [2024]. Prior work has used raw data by
targeted crawling of recipe websites [Bień et al., 2020] or word-specific filtering of crawling metadata
to gather examples from pre-training corpora for sentiment analysis and summarization tasks via
ratings [Maas et al., 2011] and bullet point summaries found in news articles [See et al., 2017].
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These approaches either rely on a predefined task definition based on keywords, or on the targeted
crawling of websites which are expected to contain the desired content. This reliance hinders the
generalization of these methods to tasks where such prior knowledge is unavailable, difficult to define,
or highly context-dependent.

In this work, we propose Corpus Retrieval and Augmentation for Fine-Tuning (CRAFT) to curate
task-specific samples from raw data for a wide variety of tasks. CRAFT only requires a small set
of few-shot examples from a user to initiate the process of crawling and structuring task examples.
CRAFT first detects relevant corpus examples from large-scale unannotated corpora using similarity-
based retrieval. Then it uses LLMs to structure these examples into a proper task format, effectively
transforming free-text documents into custom-formatted task samples for fine-tuning.

We demonstrate the effectiveness of CRAFT on four diverse tasks: three QA tasks – in biology,
medicine and commonsense – as well as a text summarization generative task. Our results show that
models fine-tuned on CRAFT-generated datasets achieve performance that is either better than or
comparable to instruction-tuned LLMs. This holds across diverse tasks, LLMs, and dataset sizes,
highlighting the effectiveness of our approach. We publicly release the code to craft datasets for other
tasks as well as all datasets and checkpoints at github.com/ziegler-ingo/CRAFT.

2 Related work

Synthetic data refers to artificially generated data that mimics the characteristics of real-world
data [Little et al., 1993]. It can be generated using statistical [Sue, 1987, Maqsud, 2015] or deep
neural approaches [Sutskever et al., 2011] with the aim of replicating the patterns, distributions, and
structures found in real-world datasets.

Fully synthetic data generation A dataset is fully synthetic if the question or instruction, the
possible context, as well as the answers are generated synthetically. For instance, Self-Instruct [Wang
et al., 2023a], Unnatural Instructions [Honovich et al., 2023], and Alpaca [Taori et al., 2023] are
examples of fully synthetic general-purpose data generated by LLMs. More focused approaches
for task-specific fine-tuning data generation have also been proposed, especially based around the
rephrasing of already existing task-specific datasets [Yin et al., 2023, Gandhi et al., 2024]. Recently
proposed methods that generate pre-training data from general-purpose corpora [Maini et al., 2024]
have been adapted for fine-tuning data generation, but these adaptations either require complex
multi-agent workflows [Mitra et al., 2024] or are restricted to a small set of tasks, as the generation
process relies on a model that has been fine-tuned for those tasks [Nayak et al., 2024].

The two greatest drawbacks of current approaches to fully synthetic data generation are repetition and
low quality. Unnatural Instructions reported that a majority of their samples have a BERTScore [Zhang
et al., 2020] of above 45% when compared to other samples in the generated dataset. Self-Instruct
faces similar issues, with generated instructions often having ROUGE-L scores [Lin, 2004] greater
than 0.4 compared to the provided seed instructions. Both approaches also only contain about
54%-56.5% correct samples, while the correctness rate in Alpaca is as low as 17% [Chen et al.,
2024a]. This suggests that a large portion of the samples in these datasets may not be useful for
fine-tuning models.

Partially synthetic data generation In partially synthetic data generation, a portion of the input,
context, or output is generated synthetically, while the remaining portion is human-curated. It is
distinct from approaches that combine fully synthetic and purely human-curated samples at the
dataset level, such as Phi [Gunasekar et al., 2023].

One recent approach is reverse instruction generation [Köksal et al., 2023], where a language model,
provided with a human-curated output in context, generates the instruction that would have prompted
this output. This produces more coherent and correct input-output pairs because the LLM does not
need to generate the longer and more complex component of the data sample. Conversely, when
the output is synthetically generated from human-curated input samples, these methods employ
distillation techniques to extract patterns from larger, more capable models to teach those patterns
and skills to smaller models [Mukherjee et al., 2023, Mitra et al., 2023].

Partially synthetic data generation alleviates some of the quality and diversity concerns of fully
synthetic data generation. However, taking a raw corpus document as the output can result in
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Figure 1: Synthetic dataset generation process. Given a small set of task-specific few-shots 1 , we

retrieve the top-k most similar free-text documents 2 from an embedding database. Each document

is then integrated into a task template 3 alongside original few-shots and an instruction prompt. An

instruction-tuned LLM generates new synthetic task samples 4 by augmenting the content of the
corpus samples to mimic the style of the few-shots. The transformation process for each numbered
step is illustrated with example documents in Appendix A, Figures 4 – 7.

generating noisy or unnecessary information [Agarwal et al., 2007], but data augmentation can
mitigate these concerns [Maini et al., 2024]. Augmentation techniques were already applied to
generating fine-tuning data, but it required GPT-4 [OpenAI, 2023] to build an intermediate synthetic
dataset to fine-tune a model that then creates the synthetic samples [Chen et al., 2024b]. This approach
can result in a sample creator model that is a distilled version of the larger model’s knowledge and
data, while also limiting the model’s task flexibility, depending on the synthesized training data.

In contrast, CRAFT produces fully synthetic data but leverages the quality and diversity advantages
of human-written documents from partially synthetic data generation approaches while removing
noise through augmentation. Our approach does not require intermediate datasets, nor a separately
fine-tuned model, nor knowledge distillation from a larger model; instead, it relies only on a small
number of human-curated examples, retrieval, and in-context learning.

3 The CRAFT approach

3.1 Architecture overview

CRAFT is used to fine-tune language models by generating task-specific synthetic datasets, given a
few human-curated examples of the task. During CRAFT (see Figure 1), we retrieve human-written,
free-text documents from a large collection of corpora by calculating their similarity to the provided
few-shots and transforming them into the task-specific format through augmentation. The only
human effort required is in writing a small number of high-quality examples of the target task.
CRAFT has two phases: In the initial phase, an embedding database is created from large corpora.
While this phase can be resource-intensive, its cost is incurred only once for all subsequent tasks,
and it can be easily expanded with new corpora. In the second phase, the user-generated, task-
specific few-shot examples are embedded, enabling the retrieval of relevant documents by calculating
similarity measures between few-shots and corpus documents. Once relevant documents are retrieved,
an instruction-tuned LLM is used to augment the retrieved free-text documents into a task-specific
design, generating synthetic task samples in the layout that is needed for instruction-tuning (illustrated
in Figure 1). Finally, the synthetic dataset is used to fine-tune a task-specific language model. We
report implementation details for the whole CRAFT framework in Appendix B.

3.2 Few-shot examples

A small number of human-curated few-shots serve as the “definition” of the task, i.e., they indicate
how the task is to be performed. The few-shot samples consist of three elements: (i) a long text that
mirrors in language, content, and accuracy what a high-quality corpus sample from the web should
look like, (ii) a natural language instruction for the task to be performed, which can take the form
of a direct instruction or a question about the text, and (iii) an output that satisfies the instruction or
answers the question the way that the final model should later respond. Length statistics for texts,
instructions, and outputs of our few-shots can be found in the XS row of Appendix D.
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We note that the task does not need to be explicitly specified. For example, there is no need to
state the task as “biology question-answering”; it is sufficient for the human-curated few shots to
focus on QA in the domain of biology. If multiple-choice questions or single-letter outputs are
in the few-shots, this will result in a corresponding dataset and fine-tuned model behavior. These
examples show that CRAFT is highly customizable: few-shot examples enable users to tailor the
model’s behavior to specific formats, use cases, or domains. Users can create few-shots with unique
terminology, style preferences, or domain-specific constraints, optimizing the retrieval and the final
model’s performance for particular tasks. Appendix A, Figure 4 shows an example few-shot.

3.3 Corpora and embedding database

The embedding database is a key element of CRAFT as it provides, for all corpora, embeddings of
human-written documents that should be retrievable for task-specific augmentation. It is, therefore,
important that the embedding database encompasses a wide variety of linguistically and semantically
diverse documents. This diversity can be achieved by including corpora that exhibit different writing
styles, tones, and vocabularies. Task-specific, task-agnostic, public, and also private documents can
provide a comprehensive coverage of relevant information. The more varied the documents in the
embedding database, the better the coverage will be for diverse or rare tasks. Notably, CRAFT can
also handle sensitive company data, as the encoding, storage, and retrieval can be performed on-site.

3.4 Document retrieval

Our retrieval system is task agnostic, both in terms of domain and complexity, in contrast to previous
approaches [Ein-Dor et al., 2020, Dai et al., 2022, Lewis et al., 2021]. The CRAFT approach relies on
human-curated few-shot examples as query documents and can dynamically retrieve any document
of the base corpora. As the few-shot samples include a text containing the domain, the instruction
or question, as well as the output, the resulting embedding representation of the sample contains
contextualized [Reimers and Gurevych, 2019] semantic information about both the domain and the
nature of task to be performed. Relevant text documents that contain similar latent features as the
few-shots are retrieved from the corpora by calculating similarity scores based on the embedded
few-shots and corpus samples.

As corpus size increases, the risk of retrieving redundant or similar corpus samples also increases.
This is partly due to the growing volume of documents, but also because the diversity of documents
within the corpora may plateau, resulting in a higher proportion of similar documents. Designing
few-shots that are sufficiently diverse in topic may alleviate this issue. For example, when creating
few-shots for biology question-answering, various subtopics of biology, such as genetics, anatomy, or
physiology, should be covered to broaden the range of retrieved documents.

3.5 Task sample synthesis

The retrieved documents naturally contain noise [Agarwal et al., 2007] and lack the formatting re-
quired for fine-tuning. Therefore, it is necessary to convert these free-text documents into appropriate
task samples by removing noise and undesired sections.

To address this, we utilize instruction-tuning prompt templates [Sanh et al., 2022, Maini et al., 2024]
to augment the free-text documents into task-specific training data while simultaneously eliminating
noise. A few-shot task template consists of three elements: (i) one or more few-shots, (ii) a corpus
sample, (iii) and a brief instruction for the model to generate instruction-output pairs from the content
of the corpus sample. Aside from the brief instruction, it is easy to assemble these templates from
material we already have. The template only structures all information from the instruction, the
few-shots, and the retrieved corpus samples to generate one continuous string that serves as input for
the model generating the synthetic task samples. In this setup, the contents of the few-shots serve as
in-context examples for the completion of the instruction. Appendix A, Figure 6, shows an example
of how these templates guide the model in augmenting the corpus samples into synthetic task samples.
Any instruction-tuned language model can be used for this purpose. This augmentation step not
only rephrases the text but also condenses the retrieved document down to the essential information
required for the task. The result of this step produces the final synthetic instruction-output pairs that
can be used to fine-tune a language model. Appendix A, Figure 7 shows an actual example output
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from the generated pool of synthetic training samples, and Appendix D provides an overview of
length statistics from the stages of corpus retrieval up to the synthesized input-output pairs.

4 Experimental setup

4.1 Tasks

We generate datasets for all tasks in sizes 100, 500, 5000, and 25,000. We refer to the few-shots as
a dataset of size XS, and to the sizes ranging from 100 to 25,000 as S, M, L, and XL, respectively.
Implementation details related to fine-tuning can be found in Appendix B.6.

We generate three synthetic QA datasets for biology (BioQA), medicine (MedQA), and commonsense
(CSQA). The multiple-choice QA datasets follow the MMLU format [Hendrycks et al., 2021], where
the task is to identify the correct answer from a set of options. Additionally, we create datasets for
two generative tasks: summarization, which aims to convey accurate and concise information from a
longer text, and recipe generation, which requires creating coherent and structured text that adheres
to specific formatting and stylistic conventions [Wang et al., 2022].

4.2 Evaluation

4.2.1 Metrics

All multiple-choice QA tasks are evaluated using accuracy. We follow the evaluation approach
of MMLU and assess the logarithmic probabilities for the vocabulary options corresponding to
the letter labels of the answer choices [Hendrycks et al., 2021]. Accordingly, greedy decoding
without temperature scaling is performed. For generative tasks, we do not use automated metrics like
ROUGE [Lin, 2004] and METEOR [Banerjee and Lavie, 2005], which rely heavily on n-gram overlap
and may not accurately reflect the true quality of generated text [Barbella et al., 2021, Graham, 2015,
Sai et al., 2019, Sottana et al., 2023, Celikyilmaz et al., 2020].

As an alternative, we opt to evaluate generations using LLMs as a judge [Eldan and Li, 2023]. In
this setup, the LLM effectively acts as a human annotator, providing a binary preference score for
each pair of outputs, resulting in a win rate as the final metric [Chiang et al., 2024]. This approach
has become increasingly common: LLMs have been successfully employed as annotators while
demonstrating high inter-rater reliability [Hackl et al., 2023, Sottana et al., 2023, Liu et al., 2023].

For general-purpose outputs, we use the popular Alpaca-Eval benchmark [Li et al., 2023] that
evaluates multiple LLMs on about 650 human-curated questions [Dubois et al., 2023]. We select
Llama 3 70B [Dubey et al., 2024] as our annotator model due to its open nature and cost-efficiency
for high-volume experiments. As of July 2024, Llama 3 70B ranks 4th in human agreement with a
score of 67.5, close to customized GPT-4 versions at 69.2.

4.2.2 Datasets

To assess the quality of our synthetically generated datasets, we compare the performance of models
trained on them to those trained on human-curated datasets.

We use five datasets: The biology subsection (800 samples) from ScienceQA [Lu et al., 2022],
MedMCQA (4183 samples) [Pal et al., 2022], CommonsenseQA 2.0 (2541 samples) [Talmor et al.,
2021], RecipeNLG (1000 samples) [Bień et al., 2020], and CNN-DailyMail (1000 samples) [See
et al., 2017]. Specifically, BioQA and MedMCQA feature expert-curated question-answer pairs,
while CSQA was generated through a standardized gamified and controlled process. RecipeNLG
was post-processed using a fine-grained cleaning and formatting process to ensure correctness. The
CNN-DailyMail dataset consists of news articles and their corresponding abstract or bullet-points
summaries, making it a suitable benchmark for summarization tasks.
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Figure 2: Performance scaling with increasing data size across multiple tasks when running CRAFT
with 8 (solid blue line) and 32 (dashed black line) few-shots. The graphs illustrate consistent
improvement as the training data size increases from few-shots (XS) to 25,000 synthetic task samples
(XL). CRAFT-trained models consistently outperform or match the Mistral 7B Instruct v0.2 baseline
(dotted red line). Shaded regions represent the standard deviation across three runs.

5 Results

5.1 Baselines

We compare the performance of CRAFT, trained on our synthetic datasets, against three baselines.
The few-shot baseline is a model fine-tuned only on the XS size CRAFT dataset, with human-curated
few-shots. It serves as the primary baseline since this model uses all human-curated data available in
our pipeline.

The second baseline is the instruction-tuned model, Mistral 7B Instruct v0.2 [Jiang et al., 2023],
which has been fine-tuned on proprietary instruction-following datasets that mix various tasks and
sources. This baseline provides a meaningful comparison, as it is similar in size and instruction-tuned
like CRAFT models, though it is trained on undisclosed datasets of unknown quality and quantity.
Thus, matching or exceeding the performance of instruction-tuned models with our synthetic data
would indicate that CRAFT can produce high-quality datasets.

The upper bound of expected performance is fine-tuning the models on the in-domain human-curated
training splits from the chosen evaluation datasets. This baseline represents the optimal performance
achievable with human-quality datasets.

5.2 Scaling the data

We report the performance gain when scaling up our training data in Figure 2. We report the mean
and standard deviation across three seeds. We observe consistent improvements across four tasks as
we increase the data size. Relative to the baseline models trained with only few-shot examples, we
see improvements of 17% (from 66.9 to 78.1), 12% (from 55.3 to 62.1), 23% (from 39.1 to 48.0),
and 124% (from 43.7 to 97.9) for BioQA, CSQA, MedQA, and Summarization, respectively. This
shows that CRAFT can be used for diverse tasks, starting with just a few curated examples. We
also find appropriate scaling for each set of examples, ranging from 100 to 25,000 across all tasks.
Additionally, models trained with fewer examples (32, 100) exhibit much more variance than those
trained with 5,000 and 25,000 examples, as indicated by the gray regions in the plots that visualize
the standard deviation.
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For all tasks, we achieve results that are clearly better or comparable to Mistral Instruct. It is worth
noting that CRAFT uses an LLM in a limited way (to restructure and rewrite existing corpora)
that seem to exclude the possibility that distillation may have played a role here. However, even
if distillation were to be considered the reason for good CRAFT performance, the results indicate
otherwise: we use the same model (Mistral Instruct) to paraphrase existing corpora examples but
achieve even stronger results. Finally, we observe that CRAFT models outperform those trained with
official human-curated large-scale data in Summarization. For other tasks, while we observe lower
performance than with official data, we speculate that this could be due to in-domain evaluation for
official human-curated data. We use their test split to evaluate our models, which may give these
models an unfair advantage. We investigate this further in the next section.

5.3 OOD generalization and data contamination

We now report experiments to understand the level of data contamination or similarity between test
and training examples in the experiments introduced in Figure 2. We conduct 5-gram weighted
Jaccard similarity analyses between CRAFT datasets and the test data. For each sample, we combine
the instruction and output and gather 5-gram frequencies for the whole dataset. We then calculate
the Jaccard similarity between the 5-gram frequency distributions of the respective CRAFT and test
dataset, where 5-grams receive weight proportional to their frequency.

Table 1: OOD evaluation of baseline and CRAFTXL.

Dataset Baseline CRAFTXL

In-domain 89.9 78.1

MMLUMedical Genetics 60.0 69.0
MMLUAnatomy 55.6 57.0
MMLUHigh School Biology 69.3 67.4
MMLUCollege Biology 66.7 74.3
MMLU-Avg 62.9 66.9

This analysis shows that all CRAFT datasets
have less than 0.4% similarity with the
task test set, whereas the original human-
authored datasets show much higher sim-
ilarities: BioQA (17.9%); CSQA (4.4%),
MedQA (1.1%), and Summarization (0.3%);
this may indicate some overlap between
train and test splits. Since we have curated
the few-shots manually, rather than copy-
ing from existing datasets, our low overlap
(0.4%) may be expected. To further inves-
tigate CRAFT’s performance improvement,
we select four out-of-domain datasets for
the biology question answering task and compare CRAFT with the human-curated baseline.

In Table 1, we compare the human-curated baseline with CRAFT on the in-domain dataset for the
baseline and four out-of-domain (OOD) datasets selected from MMLU Hendrycks et al. [2021].
Although the baseline outperforms CRAFT by more than 11% in the biology subset of the ScienceQA
test set (in-domain for the baseline), CRAFT outperforms the baseline on 3 out of 4 OOD datasets.
On average, CRAFT outperforms the baseline by 4%.

5.4 Negative results: recipe generation
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Figure 3: Non-scaling behavior observed in
the RecipeGen. The graph shows an inverse
relationship between dataset size and qual-
ity. Unlike the general trend, data quality
decreases as synthetic samples increase.

Out of the five tasks we selected, we observe non-
scaling behavior in one task: Recipe Generation.
While our manually curated few-shots are of high
quality, we see a drop when scaling from 32 to 25,000
examples, as illustrated in Figure 3. CRAFT’s per-
formance is still better than the baseline with official
human data, which means that the final dataset is us-
able. However, we explore why this reverse scaling
occurs and examine the drop in performance.

An initial analysis suggested that the CRAFT pipeline
tends to find less relevant examples over time. We
conducted automated data quality analysis to analyze
this on a larger scale. For 500 randomly sampled
instructions from different sizes of CRAFT datasets
(i.e., the training sets), we used the Llama 3 8B In-
struct model to answer the instructions. Then, using
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Table 2: Performance comparison of Llama and Mistral across different tasks and few-shot settings.
Values show accuracy ± standard deviation, with relative improvement in parentheses compared to
the CRAFTXS model.

Task Model CRAFTXS CRAFTS CRAFTM CRAFTL CRAFTXL

BioQA Mistral 66.88±1.24 65.71±1.74 (-1.74%) 71.00±1.87 (6.17%) 76.75±0.64 (14.76%) 78.13±0.35 (16.82%)
Llama 64.38±1.98 69.09±0.78 (7.32%) 70.38±0.57 (9.32%) 73.38±1.24 (13.99%) 76.63±1.22 (19.03%)

CSQA Mistral 55.33±5.09 56.47±4.76 (2.06%) 60.68±0.31 (9.67%) 61.77±0.80 (11.63%) 62.10±0.54 (12.23%)
Llama 56.72±0.82 54.60±0.44 (-3.74%) 59.57±0.85 (5.02%) 60.45±0.40 (6.58%) 61.64±0.64 (8.67%)

MedQA Mistral 39.17±0.48 41.81±1.79 (6.72%) 46.49±1.13 (18.68%) 46.16±0.27 (17.83%) 47.99±0.36 (22.52%)
Llama 49.65±0.35 49.70±0.07 (0.10%) 52.38±0.11 (5.49%) 52.07±0.42 (4.86%) 52.82±0.29 (6.37%)

Summ Mistral 43.73±2.78 52.80±3.35 (20.73%) 91.90±1.02 (110.14%) 96.23±0.40 (120.05%) 97.90±0.37 (123.86%)
Llama 31.70±3.97 28.20±3.28 (-11.04%) 88.27±1.18 (178.44%) 96.63±0.24 (204.84%) 97.17±0.38 (206.52%)

Llama 3 70B Instruct as a judge, we compared win rates, i.e., which output the model preferred: the
gold output in the CRAFT dataset or the output generated by Llama 3 8B Instruct. We report the
average win rate against the Llama outputs as the data quality metric. Higher scores indicate that the
pipeline created higher quality output than Llama 3 8B Instruct’s answers.

We observe that data quality drops when scaling up to 25,000 examples. The 100 and 500 example
sets have win rates around 0.4, while the win rate for 25K drops to 0.3. We believe this is the cause of
the performance drop with scaling. While the final dataset is still useful (it outperforms the baseline
with official human data), the next version of CRAFT should include either effective stopping criteria
or additional validators for quality.

5.5 Base model comparison

In previous sections, we fine-tuned CRAFT models using the pretrained Mistral 7B model. Now, we
repeat the experiments using the pretrained Llama 3 8B model. We observe similar trends across
all tasks, and the relative improvement is comparable when scaling up from few-shots to 25,000
examples, as illustrated in Table 2.

In all experiments, we manually curated 32-shot examples and expanded our synthetic data examples
from that point. However, even curating 32 examples can be time-consuming. We can limit the
number of few-shots to just eight examples to bootstrap the CRAFT process. Figure 2 shows the
results compared to the CRAFT pipeline with 32-shots. While the final results with 25,000 examples
are slightly lower for 8-shots, the trend is similar for both 8- and 32-shot examples. We observe that
the model trained with 25,000 samples, based on running CRAFT with 8 few-shots, significantly
outperforms the model trained with only 32 few-shots (i.e., no extra synthetic data). This suggests
that if there are time and resource limitations, using CRAFT with fewer initial examples leads to
better models than trying to curate and train only on more human-curated few-shot examples.

6 Conclusion

In this work, we introduced CRAFT (Corpus Retrieval and Augmentation for Fine-Tuning), a
framework for generating task-specific synthetic datasets grounded in text corpora. CRAFT requires
only a small set of human-curated few-shot examples to bootstrap the creation of large-scale training
data by leveraging existing corpora and instruction-tuned language models. Our experiments across
multiple tasks, including biology, medicine, and commonsense question-answering, as well as
summarization, demonstrate that models fine-tuned on CRAFT-generated datasets can match or
outperform strong baselines, including instruction-tuned models and those trained on human-curated
datasets. Notably, CRAFT-based models showed better generalization capabilities on out-of-domain
datasets compared to models trained on human-curated data, highlighting the robustness of our
approach.

While CRAFT shows promising results for most tasks, we also identified limitations in scaling
performance for recipe generation, emphasizing the need for careful quality control and potential
stopping criteria in future iterations. Nevertheless, the overall success of CRAFT in producing
high-quality synthetic datasets with minimal human effort opens up new possibilities for efficient and
adaptable model fine-tuning across a wide range of domains and tasks.
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A Synthetic task sample generation process

1 Few-Shot Design

Text: However, it has become clear that human chromosomes also carry a great deal of
information that is epigenetic, and not contained in the sequence of the DNA itself. Imprinting
is one example. Another is seen in the phenomenon of mono-allelic expression, in which only
one of the two copies of certain human genes is expressed [. . . ].

Question: What is epigenetic inheritance, and what are two examples of epigenetic changes?

Options: A. Epigenetic inheritance signifies any heritable difference in the phenotype [. . . ]
B. Epigenetic inheritance refers to inheriting variations in the number of chromosomes [. . . ]
C. Epigenetic inheritance implies inheriting acquired traits during lifetime, whereas two [. . . ]
D. Epigenetic inheritance denotes acquiring beneficial mutations via natural selection, [. . . ]

Answer: A.

Figure 4: Few-shot design. The layout of a user-written few-shot sample that is used to guide the
retrieval and task sample creation process. The color coding indicates where the section is reused
throughout the process in Figure 6. For readability, we shorten text sections in this figure, indicated
by “[. . . ]”.

2 Corpus Sample

Text: Proteins are involved in the formation of higher-ordered chromosome structures, such
as chromosome loops. Some proteins, including special AT-rich sequence-binding protein-1
(SATB1), CCCTC-binding factor (CTCF) and cohesin, play key roles in disease development
and recovery.

Figure 5: Corpus sample. A retrieved free-text document from the embedding database based on
cosine similarity to the user-written few-shot. The color coding indicates where the section is reused
throughout the process in Figure 6. For readability, we shorten text sections in this figure, indicated
by “[. . . ]”.
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3 Few-Shot Task Template

<s>[INST] Please carefully read the text below. Then, generate exactly one question along
with four answer choices designated as A, B, C, and D based on the provided text. Then,
respond to the question with the correct answer using only the corresponding letter label.
Return the output only as a JSON structure in this format: {"question": [. . . ], "options":
[. . . ], "answer": [. . . ]}
However, it has become clear that human chromosomes also carry a great deal [. . . ] [/INST]
{"question": [. . . ], "options": [. . . ], "answer": [. . . ]}</s>

Repeat for randomly sampled few-shots 2 and 3

<s>[INST] Please carefully read the text below. Then, generate exactly one question [. . . ]
Proteins are involved in the formation of higher-ordered chromosome structures [. . . ] [/INST]

Figure 6: Few-shot task template. The prompting template that is used to augment the retrieved
corpus sample into a synthetic task sample by using multiple few-shots as in-context examples. The
color coding indicates where previous sections from Figures 4 and 5 as well as current sections are
reused throughout the process. For readability, we shorten text sections in this figure, indicated by
“[. . . ]”.

4 Synthetic Task Sample

Question: Which proteins play key roles in the formation of higher-ordered chromosome
structures and disease development?

Options: A. SATB1, CTCF, and cohesin
B. Histone proteins only
C. Transcription factors and co-TFs
D. RNA polymerase II and transcription factors

Answer: A.

Figure 7: Synthetic task sample. This is an actual synthetic task sample that is generated from the
corpus sample in Figure 5 using the few-shot task template of Figure 6.

B Implementation details

B.1 Few-shot design

The BioQA few-shot text samples were compiled from a diverse range of sources, including text-
books [Alberts, 2017, Malmquist and Prescott, 2022, Wilkin and Brainard, 2016, Rye et al., 2016],
openly accessible materials, and Encyclopedia Britannica. For MedQA, we primarily drew upon
openly accessible websites, such as the National Institutes of Health, National Health Service, Food
and Drug Administration, Mayo and Cleveland Clinics, and other medicine-related websites, to
generate our few-shot text samples. The CSQA few-shot text samples were sourced from a variety of
online resources, including blogs, articles, and other websites tailored to the specific topic at hand.
From sources that are not openly accessible through websites, continuous text snippets were directly
extracted and used as texts, while all other material was shortened, rephrased, or restructured by
the authors. This process ensures that articles which may have been crawled through C4 [Raffel
et al., 2020] do not produce exact matches at retrieval time. Since none of these texts have direct
question-answer pairs available, the question, answer options, and the answer were generated by the
authors for each sample. Figure 4 shows an example.
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The recipe generation few-shots were taken from blogs and other openly accessible websites. Their
design always includes a simple instruction or question to cook a meal, as well as bulleted or
numbered lists of ingredients and steps to produce the meal. Sometimes, the recipes on websites were
described only as continuous text. In such cases, the authors added the list of ingredients and steps to
create the few-shots. Similar to the QA few-shots, it is desirable to increase the vocabulary diversity
for retrieval. Therefore, we made sure to cover a wide range of recipes in the few-shots. To design
summarization few-shots, we collected a wide variety of texts from websites, blogs, and magazines,
as well as specialized sources such as GitHub issues. Here, the few-shots feature a text, an instruction
to create a summary, as well as the summary output. On some websites, summarized versions of
the main text are given, while in other cases continuous or bulleted summaries were created by the
authors.

B.2 Embedding database

To create the embeddings, SentenceTransformers [Reimers and Gurevych, 2019] is used, specifically
a MiniLM [Wang et al., 2020] version (multi-qa-MiniLM-L6-cos-v1) optimized for cosine-
similarity search between two document pairs. This model creates 384D embeddings, which are
stored in an HDF5 database [The HDF Group, 2002], that allows for native storage and retrieval of
array-like data.

B.3 Corpora

To enable retrieving human-written documents for general-purpose as well as specialized domains,
we include four large corpora.

The Colossal Clean Crawled Corpus [Raffel et al., 2020, C4] dataset consists of approximately 750GB
of English data, pre-cleaned by the creators to exclude non-informative texts. We use a 305GB subset
of the dataset, which excludes not-safe-for-work or offensive content.

The English Wikipedia corpus comprises a diverse and high-quality collection of textual information
on a wide range of topics. We use the January 2nd, 2024 dump of English Wikipedia, which we
pre-process using WikiExtractor [Attardi, 2015] to extract clean text documents.

The Stack Exchange corpus [Flax Sentence Embeddings Team, 2021] features a structured format
with title, body, and best-voted answer collected from the Stack Exchange network. The dataset
encompasses 173 distinct sub-communities, covering both technical and non-technical topics.

The WikiHow corpus [Koupaee and Wang, 2018] presents information in a step-by-step instructional
layout, making it a valuable resource for tasks such as summarization or recipe generation. Each
document consists of a title, clear instructions, and accompanying text.

After filtering out documents with fewer than 200 characters or more than 25,000 characters, the
resulting datasets contain approximately 362 million documents from C4, 10.5 million documents
from English Wikipedia, 9.5 million documents from Stack Exchange, and 190,000 documents from
WikiHow. The resulting 383 million documents take up approximately 247GB of storage when GZIP
compressed [Deutsch, 1996] and represented as 16-bit NumPy arrays [Harris et al., 2020].

B.4 Document retrieval

To retrieve relevant human-written samples, we employ a two-step process that approximates a global
similarity search. Due to the large size of the embedding database (383 million documents), a direct
global pair-wise comparison is impractical.

In the first step, we divide the embedding database sequentially into subsections of approximately
350,000 documents each. We calculate cosine similarity between each subsection and the few-
shot samples, and store the top 5% most similar documents in memory. This reduces the number
of documents considered from 383 million to approximately 19 million. In the second step, we
recalculate cosine similarity and perform traditional top-k similarity retrieval on the filtered documents.
This yields the indices of the top-k most similar documents to the few-shot examples.

Optimizing solely for top-k similarity between individual few-shot samples and the embedding
database may lead to limited variation and high similarity among the retrieved documents. Conversely,
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optimizing for similarity by averaging the embedding representations of all few-shot samples may
prioritize a single dominant topic, potentially biasing the selection. To balance these approaches, we
adopt a mixed similarity retrieval strategy, combining two methods: (i) 50% of samples are retrieved
based on individual top-k similarity to each few-shot sample, ensuring a minimum number of similar
samples for each few-shot and mitigating topic dominance, and (ii) the remaining 50% of samples
are retrieved based on fully averaged similarity, which aims to help uncover more latent topics.

B.5 Task sample synthesis

To facilitate the creation of high-quality synthetic task samples, we align the text generation process
to the few-shot design through in-context learning [Brown et al., 2020]. This approach helps reduce
issues like hallucinations [Lei et al., 2023, Wang et al., 2023b] and formatting errors, although it does
not entirely prevent them. Specifically, three few-shot examples from the human-curated few-shots
are dynamically and randomly sampled for each input prompt and corpus sample, interleaving them
with the instruction to augment the text. Since each few-shot example includes a text similar in length
to corpus samples, the three-shot prompting technique can result in input prompts that often exceed
10,000 tokens, sometimes reaching 20,000 tokens. For optimal performance, it is recommended to
use models offering long context lengths.

In our experiments, all task samples are created using Mistral 7B Instruct v0.2 [Jiang et al., 2023]
along with the few-shot task template shown in Figure 6. During the generation process, vLLM [Kwon
et al., 2023] is used with temperature 0.7, top-k [Fan et al., 2018] and top-p [Holtzman et al., 2020]
sampling at 40 and 0.9, respectively. The maximum generation length was determined based on
preliminary experiments with the goal of accommodating full-length sample generation. For all
QA datasets we limited samples to 256 tokens, whereas recipe generation and summarization were
limited at 1280 and 1536 tokens, respectively.

To enable quality control checks such as checking whether the QA datasets have the desired number
of answer options, or whether the samples have been fully generated, we instruct the model to produce
all task samples as valid JSON objects with a set number of keys and proper naming. We perform
checks on each JSON object to ensure that the questions, instructions, and generative task answers
exceed a reasonable minimum length, as well as that the answer option generated for the QA tasks
contain valid letters. If no valid JSON is found, or keys are missing, or any formatting check fails, we
discard the sample. Furthermore, we filter task samples that are either too similar to the few-shots
or to other generated task samples using fuzzy string matching [Ranjith et al., 2022] at a token set
similarity ratio of 0.85. To account for the removal of samples during deduplication, we recommend
retrieving approximately twice as many corpus samples as the number of desired final synthetic task
samples. A detailed breakdown of the retrieval and deduplication quantities for each task is provided
in Appendix C.

B.6 Training and optimization

For all experiments, low-rank adaptation [Hu et al., 2021, LoRA] fine-tuning is performed with 16-bit
BrainFloat [Abadi et al., 2016] as the computation data type. All experiments are implemented using
PyTorch [Paszke et al., 2019] and the Hugging Face packages [Wolf et al., 2020]. For optimization,
the adaptive momentum optimizer with decoupled weight decay [Loshchilov and Hutter, 2019] of
5% and a learning rate of 1 × 10−4 is employed. A linear learning rate schedule is applied with
a warm-up ratio of 10%. Fine-tuning is performed for 3 epochs across all tasks and dataset size
variations. When fine-tuning on only the human-curated few-shots, a batch size of 2 is adopted. In
all other scenarios, fine-tuning is performed with a batch size of 16 or the equivalent with gradient
accumulation steps. Following Dettmers et al. [2024], LoRA adapters are used on every linear layer,
specifically on the query-, key-, value-, output-, gate-, up-, and down-projection matrices. We use a
rank and α parameter of 64, the adapter’s dropout rate is set to 0.1, and the bias terms of the update
matrices are deactivated. In total, this adds 2.3%, or about 160 million parameters, of the model’s 7
billion base parameters as LoRA adapters. The rest of the model remains frozen during fine-tuning,
and the updated parameters will be merged with the base model after fine-tuning.
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C Filtering statistics

Table 3: BioQA corpus and task sample filtering process. Corpus samples are turned into task samples
after filtering for excessive length.

Filter Criteria S M L XL

Retrieved Corpus Samples 240 1,200 12,000 60,000

Exact duplicates 25 37 819 8,551
Excessive length 2 14 266 1,632
Format errors 10 40 466 2,174
Similarity to few-shots 0 1 22 45
Similarity to other task samples 9 117 1,469 5,961

Available synthetic task samples 194 991 8,958 41,637

Table 4: CSQA corpus and task sample filtering process. Corpus samples are turned into task samples
after filtering for excessive length.

Filter Criteria S M L XL

Retrieved Corpus Samples 240 1,200 12,000 60,000

Exact duplicates 24 30 165 1,348
Excessive length 2 8 64 307
Format errors 5 30 364 1,879
Similarity to few-shots 11 19 141 410
Similarity to other task samples 14 129 2,655 17,749

Available synthetic task samples 184 984 8,611 38,307

Table 5: MedQA corpus and task sample filtering process. Corpus samples are turned into task
samples after filtering for excessive length.

Filter Criteria S M L XL

Retrieved Corpus Samples 240 1,200 12,000 60,000

Exact duplicates 24 24 50 773
Excessive length 1 10 141 890
Format errors 15 36 540 2,911
Similarity to few-shots 0 10 55 204
Similarity to other task samples 3 40 813 5,221

Available synthetic task samples 197 1,080 10,401 50,001
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Table 6: RecipeGen corpus and task sample filtering process. Corpus samples are turned into task
samples after filtering for excessive length.

Filter Criteria S M L XL

Retrieved Corpus Samples 240 1,200 12,000 60,000

Exact duplicates 24 24 28 620
Excessive length 1 1 20 54
Format errors 87 417 4,035 18,684
Similarity to few-shots 6 18 111 389
Similarity to other task samples 0 7 473 3,711

Available synthetic task samples 122 733 7,333 36,542

Table 7: Summarization corpus and task sample filtering process. Corpus samples are turned into
task samples after filtering for excessive length.

Filter Criteria S M L XL

Retrieved Corpus Samples 240 1,200 12,000 60,000

Exact duplicates 24 24 19 101
Excessive length 34 189 1,793 8,964
Format errors 55 336 3,119 14,803
Similarity to few-shots 21 28 99 379
Similarity to other task samples 1 1 32 394

Available synthetic task samples 105 622 6,938 35,359
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D Dataset token count statistics

Table 8: Dataset token count statistics. TS is short for task sample. For summarization, the instruction
includes the model-generated long but cleaned text augmentation from a corpus sample that will
subsequently be summarized.

Dataset Size Corpus Samples TS Instruction TS Output

Mean Median Mean Median Mean Median

BioQA

XS 1,109 1,088 93 91

1 1
S 1,786 1,170 83 77
M 1,858 1,093 76 64
L 2,033 1,038 80 69

XL 2,122 972 86 77

CSQA

XS 1,496 1,444 25 26

1 1
S 1,265 851 25 25
M 1,399 884 26 25
L 1,324 864 26 25

XL 1,300 848 27 26

MedQA

XS 1,755 1,815 117 118

1 1
S 1,612 1,203 85 77
M 1,577 1,053 79 67
L 1,599 1,013 78 68

XL 1,691 1,001 81 71

RecipeGen

XS 1,277 1,223 16 16 593 528
S 1,168 823 20 19 433 363
M 1,107 807 24 22 369 326
L 1,058 786 24 23 355 319

XL 1,005 754 24 23 345 316

Summarization

XS 1,595 734 1,019 690 82 61
S 1,442 829 612 442 107 92
M 1,440 852 471 366 116 106
L 1,396 880 432 358 122 110

XL 1,369 882 433 355 117 107
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