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Abstract

Stochastically Extended Adversarial (SEA) model
is introduced by Sachs et al. (2022) as an inter-
polation between stochastic and adversarial on-
line convex optimization. Under the smoothness
condition, they demonstrate that the expected re-
gret of optimistic follow-the-regularized-leader
(FTRL) depends on the cumulative stochastic
variance σ2

1:T and the cumulative adversarial
variation Σ2

1:T for convex functions. They also
provide a slightly weaker bound based on the
maximal stochastic variance σ2

max and the maxi-
mal adversarial variation Σ2

max for strongly con-
vex functions. Inspired by their work, we inves-
tigate the theoretical guarantees of optimistic on-
line mirror descent (OMD) for the SEA model.
For convex and smooth functions, we obtain
the same O(

√
σ2
1:T +

√
Σ2

1:T ) regret bound,
without the convexity requirement of individ-
ual functions. For strongly convex and smooth
functions, we establish an O(min{log(σ2

1:T +
Σ2

1:T ), (σ
2
max + Σ2

max) log T}) bound, better
than their O((σ2

max + Σ2
max) log T ) result. For

exp-concave and smooth functions, we achieve a
new O(d log(σ2

1:T +Σ2
1:T )) bound. Owing to the

OMD framework, we further establish dynamic
regret for convex and smooth functions, which is
more favorable in non-stationary online scenarios.

1. Introduction
Online convex optimization (OCO) is a fundamental frame-
work for online learning and has been applied in a variety of
real-world applications such as spam filtering and portfolio
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management (Hazan, 2016). OCO problems can be mainly
divided into two categories: adversarial online convex opti-
mization (adversarial OCO) (Zinkevich, 2003; Hazan et al.,
2007) and stochastic online convex optimization (SCO) (Ne-
mirovski et al., 2009; Hazan & Kale, 2011; Lan, 2012).
Adversarial OCO assumes that the loss functions are cho-
sen arbitrarily or adversarially and the goal is to minimize
the regret. SCO assumes that the loss functions are inde-
pendently and identically distributed (i.i.d.), and the goal
is to minimize the excess risk. Although the two models
have been extensively studied (Shalev-Shwartz et al., 2009;
Shapiro et al., 2014; Hazan, 2016; Orabona, 2019), in real
scenarios the nature is not always completely adversarial or
stochastic, but often lies somewhere in between.

Recently, Sachs et al. (2022) introduce the Stochastically
Extended Adversarial (SEA) model, in which the nature
chooses distribution Dt and the learner suffers a loss ft(xt)
where ft ∼ Dt for each round t. The distributions are
allowed to vary over time, and by choosing them appro-
priately, SEA reduces to adversarial OCO, SCO, or other
intermediate settings. To analyze the performance, they pro-
pose to use two quantities — cumulative stochastic variance
σ2
1:T and cumulative adversarial variation Σ2

1:T — to bound
the expected regret, which measure how stochastic or ad-
versarial the distributions are. For convex and smooth func-
tions, Sachs et al. (2022) prove that optimistic follow-the-
regularized-leader (FTRL) enjoys an O(

√
σ2
1:T +

√
Σ2

1:T )
expected regret bound, from which we can derive an excess
risk bound for SCO (Lan, 2012) and a gradient-variation
regret bound for adversarial OCO (Chiang et al., 2012) (see
details in Section 3). However, for the strongly convex
case, Sachs et al. (2022) only establish a weak bound of
O((σ2

max + Σ2
max) log T ), which depends on the maximal

stochastic variance σ2
max and the maximal adversarial varia-

tion Σ2
max instead of the cumulative counterparts.

Optimistic FTRL belongs to optimistic online learning al-
gorithms (Rakhlin & Sridharan, 2013), which aim to ex-
ploit prior knowledge during the online process. Besides
optimistic FTRL, optimistic online mirror descent (OMD)
is another popular framework, and in fact, the gradient-
variation bound of Chiang et al. (2012) is derived from op-
timistic OMD. Given the encouraging results of optimistic
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FTRL (Sachs et al., 2022), it is natural to ask what are the
theoretical guarantees of optimistic OMD for SEA, and we
provide answers below.

• For convex and smooth functions, optimistic OMD
enjoys anO(

√
σ2
1:T +

√
Σ2

1:T ) expected regret bound,
which is the same as that of Sachs et al. (2022) but
without the convexity condition of individual functions.

• For strongly convex and smooth functions, optimistic
OMD achieves an O(min{log(σ2

1:T +Σ2
1:T ), (σ

2
max +

Σ2
max) log T}) expected regret bound, which is better

than theO((σ2
max+Σ2

max) log T ) bound of Sachs et al.
(2022) for optimistic FTRL when σ2

1:T and Σ2
1:T are

small, and is no worse than theirs in any case.
• For exp-concave and smooth functions, our work es-

tablishes a new O(d log(σ2
1:T +Σ2

1:T )) bound for op-
timistic OMD, where d denotes the dimensionality.

• Our better results for optimistic OMD are due to more
careful analyses and do not suggest that optimistic
OMD is inherently superior to optimistic FTRL for
regret minimization. Indeed, we present a different
analysis of optimistic FTRL when encountering con-
vex functions, which eliminates the convexity condi-
tion of individual functions; similarly, we also pro-
vide new analyses for strongly convex functions and
exp-concave functions respectively, both obtaining the
same expected regret bounds as optimistic OMD.

Based on our theoretical guarantees, we apply optimistic
OMD to many intermediate examples between adversarial
OCO and SCO, leading to better results for strongly convex
functions and new results for exp-concave functions, hence
deepening our understanding of the intermediate scenarios.

Furthermore, owing to the OMD framework, we can gen-
eralize our results to dynamic regret, a strengthened mea-
sure comparing the online performance with a sequence of
changing comparators (Zinkevich, 2003). For convex and
smooth functions, we obtain anO(PT +

√
1 + PT (

√
σ2
1:T +√

Σ2
1:T )) expected dynamic regret bound for SEA, where

PT denotes the path length. The bound is new and
immediately recovers the O(

√
σ2
1:T +

√
Σ2

1:T ) expected
regret bound by setting PT = 0, and reduces to the
O(
√
T (1 + PT )) dynamic regret of Zhang et al. (2018)

in the adversarial setting. We regard the support of dy-
namic regret as an advantage of optimistic OMD over op-
timistic FTRL. To the best of our knowledge, even the
O(
√
T (1 + PT )) dynamic regret has not been established

for FTRL-style methods in online convex optimization.

2. Related Work
In this section, we review the related work in adversarial
OCO and SCO, as well as studies on intermediate states.

2.1. Adversarial Online Convex Optimization

Adversarial OCO can be seen as a repeated game between
the online learner and the nature (or called environments). In
round t ∈ [T ], the online learner chooses a decision xt from
the convex feasible set X ⊆ Rd, and suffers a convex loss
ft(xt) which may be adversarially selected by the nature.
In adversarial OCO, we aim to minimize the regret:

RegT =

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x),

which measures the cumulative loss difference between
the learner and the best decision in hindsight (Orabona,
2019). For the adversarial OCO, an O(

√
T ) regret bound

is achieved by online gradient descent (OGD) with step
size ηt = O(1/

√
t) (Zinkevich, 2003). For λ-strongly con-

vex functions, an O( 1λ log T ) bound is achieved by chang-
ing the step size ηt of OGD to O(1/[λt]) (Shalev-Shwartz,
2007). For α-exp-concave functions, online Newton step
(ONS) (Hazan et al., 2007) obtains an O( dα log T ) bound.
Those results are minimax optimal (Ordentlich & Cover,
1998; Abernethy et al., 2008) and can not be improved in
general.

Furthermore, various algorithms are proposed to achieve
problem-dependent regret guarantees, which can safeguard
the minimax rates in the worst case and become better when
problems satisfy benign properties such as smoothness (Sre-
bro et al., 2010; Chiang et al., 2012; Orabona et al., 2012),
sparsity (Duchi et al., 2011), or other structural proper-
ties (Yang et al., 2014; Kingma & Ba, 2015; Défossez et al.,
2022). Among them, Chiang et al. (2012) demonstrate that
the regret of smooth functions can be upper bounded by the
gradient-variation defined as

VT =

T∑
t=2

sup
x∈X
∥∇ft(x)−∇ft−1(x)∥22. (1)

Based on OMD (Nemirovski & Yudin, 1983), they prove
O(
√
VT ) regret and O( dα log VT ) regret for convex func-

tions and α-exp-concave functions respectively, under the
smoothness condition. Zhang et al. (2022) further extend
the result to λ-strongly convex and smooth functions, and
obtain an O( 1λ log VT ) bound. These bounds can be tighter
than previous results when the loss functions change slowly
such that the gradient variation VT is small.

Later, Rakhlin & Sridharan (2013) introduce the paradigm
of optimistic online learning that aims to take advantage of
prior knowledge about the loss functions. In each round,
the learner can obtain a prediction of the next loss, which
is exploited to yield tighter bounds when the predictions
are accurate and maintain the worst-case regret bound other-
wise. To this end, they develop two frameworks: optimistic
FTRL and optimistic OMD, where the latter generalizes the
algorithm of Chiang et al. (2012).
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2.2. Stochastic Online Convex Optimization

SCO assumes the loss functions to be i.i.d. and aims to
minimize a convex objective in an expectation form, that is,
minx∈X F (x) = Ef∼D[f(x)], where f(·) is sampled from
a fixed distribution D. The performance is measured by the
excess risk of the solution point over the optimum

F (xT )−min
x∈X

F (x).

For Lipschitz and convex functions, stochastic gradient de-
scent (SGD) achieves an O(1/

√
T ) risk bound. When the

functions are equipped with additional properties, faster
rates can be obtained. For smooth functions, SGD can reach
an O(1/T +

√
F∗/T ) rate, where F∗ = minx∈X F (x),

which will be tighter than O(1/
√
T ) when F∗ is small (Sre-

bro et al., 2010). For strongly convex functions, Hazan &
Kale (2011) establish an O(1/[λT ]) risk bound through a
variant of SGD. When the functions are α-exp-concave,
online Newton step (ONS) enjoys an O(d log T/[αT ])
rate (Hazan et al., 2007; Mahdavi et al., 2015). Further-
more, when strong convexity and smoothness hold at the
same time, accelerated stochastic approximation (AC-SA)
achieves an O(1/T ) rate with a smaller constant (Ghadimi
& Lan, 2012). Even faster results can be attained with
strengthened conditions and advanced algorithms (Johnson
& Zhang, 2013; Zhang et al., 2013; Zhang & Zhou, 2019).

2.3. Intermediate setting

In recent years, intermediate settings between adversarial
OCO and SCO have drawn attention in prediction with
expert advice (PEA) (Amir et al., 2020) and bandit prob-
lems (Zimmert & Seldin, 2021). Amir et al. (2020) study
the stochastic regime with adversarial corruptions in PEA
and obtain an O(logN/∆ + CT ) bound, where N is the
number of experts, ∆ is the suboptimality gap and CT ≥ 0
is the corruption level. Zimmert & Seldin (2021) focus on
the adversarial regime with a self-bounding constraint and
establish an O(N log T/∆+

√
CTN log T/∆) bound for

bandit problems. Ito (2021) further demonstrates an ex-
pected regret bound of O(logN/∆ +

√
CT logN/∆) on

the above setting. However, as mentioned by Ito (2021), we
know very little about the intermediate setting in OCO with
the recent exception of Sachs et al. (2022).

3. Problem Setup and Existing Results
Problem Setup. Stochastically Extended Adversarial (SEA)
model is introduced by Sachs et al. (2022) as an interme-
diate problem setup between adversarial OCO and SCO.
In round t ∈ [T ], the learner selects a decision xt from a
convex feasible domain X ⊆ Rd, and the nature chooses
a distribution Dt. Then, the learner suffers a loss ft(xt),
where the function ft is sampled from the distribution Dt.

Due to the randomness in online process, our goal is to
bound the expected regret against a comparator x ∈ X ,

E[RegT ] ≜ E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]
. (2)

Sachs et al. (2022) introduce the following quantities to
capture the characteristics of SEA. For each t ∈ [T ], define
the (conditional) expected function as

Ft(x) = Eft∼Dt [ft(x)]

and the (conditional) variance of gradients as

σ2
t = max

x∈X
Eft∼Dt

[
∥∇ft(x)−∇Ft(x)∥22

]
. (3)

Notice that both Ft(x) and σ2
t can be random variables

due to the randomness of distribution Dt. The cumulative
stochastic variance is defined as

σ2
1:T = E

[
T∑
t=1

σ2
t

]
, (4)

which reflects the stochastic aspect of the online process.
Moreover, the cumulative adversarial variation is defined as

Σ2
1:T = E

[
T∑
t=1

sup
x∈X
∥∇Ft(x)−∇Ft−1(x)∥22

]
, (5)

where∇F0(x) = 0, reflecting the adversarial difficulty.1

Besides, the following standard assumptions for online con-
vex optimization are required (Hazan, 2016).

Assumption 1 (boundness of the gradient norm). The gra-
dients of all the random functions are bounded by G, i.e. for
all t ∈ [T ], we have maxx∈X ∥∇ft(x)∥2 ≤ G.

Assumption 2 (diameter of the domain). The domain X
contains the origin 0, and the diameter of X is bounded by
D, i.e., for all x,y ∈ X , we have ∥x− y∥2 ≤ D.

Existing Results. With the condition of smoothness, Sachs
et al. (2022) establish a series of results for the SEA model,
including convex functions and strongly convex functions.
In the case of convex and smooth functions, they prove
an O(

√
σ2
1:T +

√
Σ2

1:T ) regret bound of optimistic FTRL.
Note that they require the individual functions {ft}Tt=1 to be
convex, which is relatively strict. When facing the adversar-
ial setting, we have σ2

t = 0 for all t and Σ2
1:T is equivalent

to VT , so the bound implies O(
√
VT ) regret matching the

result of Chiang et al. (2012), which also reduces to the
O(
√
T ) bound in the worst case (Zinkevich, 2003). In the

SCO setting, we have Σ2
1:T = 0 and σt = σ for all t,

1If the nature is oblivious, then both Ft(x) and σ2
t are deter-

ministic and we can remove the expectation in (4) and (5).
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where σ denotes the variance of stochastic gradients. Then
they obtain O(σ

√
T ) regret, leading to an O(σ/

√
T ) ex-

cess risk bound through the standard online-to-batch con-
version (Cesa-Bianchi et al., 2004).

To investigate the strongly convex case, they make an addi-
tional assumption about the maximum value of stochastic
variance and adversarial variation.

Assumption 3 (maximal stochastic variance and adversarial
variation). All the variance of the gradients are at most
σ2
max, and all the adversarial variations are upper bounded

by Σ2
max, that is, for all t ∈ [T ], it holds that σ2

t ≤ σ2
max

and supx∈X ∥∇Ft(x)−∇Ft−1(x)∥22 ≤ Σ2
max.

Based on Assumption 3, Sachs et al. (2022) prove an
O((σ2

max + Σ2
max) log T ) expected regret bound of opti-

mistic FTRL for λ-strongly convex and smooth functions.
Considering the adversarial setting, we have σ2

max = 0 and
Σ2

max ≤ 4G2, so their bound implies an O(log T ) regret
bound. We note that unlike in the convex and smooth case,
their expected regret bound fails to recover the O(log VT )
gradient-variation bound (Zhang et al., 2022). In the SCO
setting, we have Σ2

max = 0 and σ2
max = σ2. Therefore,

their result brings an O([σ2 log T ]/T ) excess risk bound
through online-to-batch conversion.

4. Our Results
We first introduce optimistic OMD, our main algorithmic
framework, and then present its theoretical guarantees for
SEA, as well as new results of optimistic FTRL. Finally, we
investigate a new performance measure—dynamic regret,
which is more suitable for non-stationary environments.

4.1. Algorithm

Optimistic OMD is a versatile and powerful framework for
online learning (Rakhlin & Sridharan, 2013). During the
learning process, it maintains two sequences {xt}Tt=1 and
{x̂t}Tt=1. At round t ∈ [T ], the learner first submits the
decision xt and observes the random function ft(·). Then,
an optimistic vector Mt+1 ∈ Rd is received that encodes
certain prior knowledge of the (unknown) function ft+1(·),
and the algorithm updates the decision by

x̂t+1 = argmin
x∈X

⟨∇ft(xt),x⟩+Bψt
(x, x̂t), (6)

xt+1 = argmin
x∈X

⟨Mt+1,x⟩+Bψt+1
(x, x̂t+1), (7)

whereBψ(x,y) = ψ(x)−ψ(y)−⟨∇ψ(y),x−y⟩ denotes
the Bregman divergence induced by a differentiable convex
function ψ : X 7→ R (or usually called regularizer). We
allow the regularizer to be time-varying, and the specific
choice of ψt(·) depends on the type of online functions and
will be determined later.

Algorithm 1 Optimistic OMD
1: Set x1 = x̂1 to be any point in X
2: for t = 1, . . . , T do
3: Predict xt and the nature selects a distribution Dt
4: Receive ft(·), which is sampled from Dt
5: Update the two solutions according to (6) and (7)
6: end for

To exploit smoothness, we simply set the optimism as the
last-round gradient, that is, Mt+1 = ∇ft(xt) (Chiang et al.,
2012). We set x1 = x̂1 to be an arbitrary point in X . The
overall procedures are summarized in Algorithm 1.

Remark 1. If we drop the expectation operation, the mea-
sure (2) becomes the standard regret. Thus, a straightfor-
ward way is to plug in existing regret bounds of optimistic
OMD (Chiang et al., 2012; Rakhlin & Sridharan, 2013), and
then simplify the expectation. However, as elaborated by
Sachs et al. (2022, Remark 4), this only yields very loose
bounds. So, we need to dig into the analysis and examine
the effect of expectations in the intermediate steps. ◁

In the following, we consider three different instantiations
of Algorithm 1 and present their theoretical guarantees.

4.2. Convex and Smooth Functions

In this part, we consider the case that the expected function
is convex and smooth, as stated below.

Assumption 4 (smoothness of expected function). For all
t ∈ [T ], the expected function Ft(·) is L-smooth over X ,
i.e., ∥∇Ft(x)−∇Ft(y)∥2 ≤ L∥x− y∥2, ∀x,y ∈ X .

Assumption 5 (convexity of expected function). For all
t ∈ [T ], the expected function Ft(·) is convex over X .

Remark 2. Sachs et al. (2022) require the random function
ft(·) to be convex (see A1 of their paper), whereas we only
require the expected function Ft(·) to be convex, which is a
much weaker condition. In fact, this relaxation is important
and was studied in many works of stochastic optimization
(Shalev-Shwartz, 2016; Hu et al., 2017; Ahn et al., 2020).

Indeed, we identify that the expectation in (2) allows us to
avoid the convexity assumption of the individual function.
Specifically, we have

E
[
ft(xt)− ft(x)

]
= E

[
Ft(xt)− Ft(x)

]
≤ E

[
⟨∇Ft(xt),xt − x⟩

]
= E

[
⟨∇ft(xt),xt − x⟩

]
, (8)

where the inequality follows from the convexity of Ft(·),
and the last step is because one can interchange differenti-
ation and integration by Leibniz integral rule. As a result,
we only need to bound the expected regret in terms of the
linearized function, i.e.,

∑T
t=1⟨∇ft(xt),xt − x⟩. ◁
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For convex and smooth functions, we set the Euclidean
regularizer ψt(x) = 1

2ηt
∥x∥22 with

ηt =
D√

δ + 4G2 + V̄t−1

≤ D√
δ
, (9)

where V̄t−1 =
∑t−1
s=1 ∥∇fs(xs) − ∇fs−1(xs−1)∥22,

∇f0(x0) = 0 and δ > 0 is a parameter to be specified
later. Then, the updates in (6) and (7) become

x̂t+1 = ΠX
[
x̂t − ηt∇ft(xt)

]
, (10)

xt+1 = ΠX
[
x̂t+1 − ηt+1∇ft(xt)

]
, (11)

where ΠX [·] denotes the Euclidean projection onto the fea-
sible domain X . The algorithm essentially performs gra-
dient descent twice in each round, and the step size is de-
termined adaptively, in a similar spirit with self-confident
tuning (Auer et al., 2002). We do not need to apply the
doubling trick used in previous works (Chiang et al., 2012;
Rakhlin & Sridharan, 2013; Jadbabaie et al., 2015).

Below, we provide the theoretical guarantee of optimistic
OMD for SEA with convex and smooth functions.

Theorem 1. Under Assumptions 1, 2, 4 and 5, we have

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]

≤ 5
√
10D2L+

5
√
5DG

2
+ 5
√
2D
√
σ2
1:T + 5D

√
Σ2

1:T

= O
(√

σ2
1:T +

√
Σ2

1:T

)
,

where we set δ = 10D2L2 in the step size (9).

Remark 3. Theorem 1 exhibits the same bound as Sachs
et al. (2022), but under weaker assumptions since we only
need the convexity of expected functions instead of individ-
ual functions. The regret bound is optimal according to the
lower bound of Sachs et al. (2022, Theorem 6). ◁

We further improve the analysis of optimistic FTRL for SEA
and demonstrate that even without convexity of individual
functions, optimistic FTRL can achieve the same guaran-
tee (Sachs et al., 2022) by feeding the algorithm with the
linearized surrogate loss {⟨∇ft(xt), ·⟩}Tt=1 instead of the
original loss {ft(·)}Tt=1.

Theorem 2. Under Assumptions 1, 2, 4, and 5 (without as-
suming convexity of individual functions), with appropriate
setup (see details in Appendix A.1), the expected regret of
optimistic FTRL is at most O

(√
σ2
1:T +

√
Σ2

1:T

)
.

4.3. Strongly Convex and Smooth Functions

In this part, we examine the case when expected functions
are strongly convex and smooth.

Assumption 6 (strong convexity of expected function). For
t ∈ [T ], the expected function Ft(·) is λ-strongly convex
over X .

We still employ optimistic OMD (Algorithm 1) with regu-
larizer ψt(x) = 1

2ηt
∥x∥22 and set the step size as

ηt =
2

λt
≤ 2

λ
. (12)

It is worth mentioning that this setting of step size is
new and much simpler than that in the earlier study of
gradient-variation bound for strongly convex and smooth
functions (Zhang et al., 2022), which uses a self-confident
step size. To summarize, the updating rules take the same
form as (10) and (11) with the step size in (12).

Then we pose the expected regret of optimistic OMD for
SEA with strongly convex and smooth functions.

Theorem 3. Under Assumptions 1, 2, 3, 4 and 6, we obtain

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]

≤ min

{
16G2

λ
ln
(
8σ2

1:T + 4Σ2
1:T +G2 + 1

)
+
16G2

λ
ln

(
512G2L2

λ2
+ 1

)
+

16G2 + 4

λ
+
λD2

4
,

1

λ

(
32σ2

max + 16Σ2
max

)
(lnT + 1) +

16L2D2 + 4G2

λ

+
16L2D2

λ
ln

(
1 + 8

√
2
L

λ

)
+
λD2

4

}
= O

(
min

{ 1

λ
log(σ2

1:T +Σ2
1:T ),

1

λ
(σ2

max +Σ2
max) log T

})
.

Remark 4. Compare with the O( 1λ (σ
2
max +Σ2

max) log T )
bound of Sachs et al. (2022), our result demonstrates advan-
tages on benign problems with small cumulative quantities
σ2
1:T and Σ2

1:T . When the cumulative quantities σ2
1:T and

Σ2
1:T are small, the maximal quantities σ2

max and Σ2
max

can still be large, making the bound of Sachs et al. (2022)
loose. For instance, consider the adversarial setting where
σ2
1:T = σ2

max = 0, and online functions only change
once such that Σ2

1:T = Σ2
max = O(1). In this case, The-

orem 3 gives an O(1) bound, while Sachs et al. (2022)
only have an O(log T ) guarantee. Moreover, our additional
bound O( 1λ log(σ2

1:T +Σ2
1:T )) can reduce an O( 1λ log VT )

gradient-variation bound in the adversarial OCO setting,
whereas Sachs et al. (2022)’s bound cannot. ◁

Remark 5. Our new upper bound in Theorem 3 does not
contradict with the Ω( 1λ (σ

2
max +Σ2

max) log T ) lower bound
of Sachs et al. (2022, Theorem 8), because their lower bound
focuses on the worst-case behavior while our result is better
only in certain cases. ◁
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Similar to Theorem 3, we demonstrate that in the strongly
convex case, optimistic FTRL can also attain the same guar-
antee for SEA as our optimistic OMD does.
Theorem 4. Under Assumptions 1, 2, 3, 4 and 6,
with appropriate setup (see details in Appendix A.2),
the expected regret of optimistic FTRL is at most
O(min

{
1
λ log(σ2

1:T +Σ2
1:T ),

1
λ (σ

2
max +Σ2

max) log T
}
).

4.4. Exp-concave and Smooth Functions

We further investigate SEA with exp-concave and smooth
functions. Note that Sachs et al. (2022) only study convex
and strongly convex functions, without considering the exp-
concave functions, so our result in this part is new.
Assumption 7 (exponential concavity of individual func-
tion). For t ∈ [T ], the individual function ft(·) is α-exp-
concave over X .
Remark 6. Note that Assumption 7 is about the random
function ft(·) rather than the expected function Ft(·). This
is due to the need of using the exponential concavity of
random functions in the regret analysis. We note that in the
studies of stochastic exp-concave optimization, it is common
to assume the random function to be exp-concave (Mahdavi
et al., 2015; Koren & Levy, 2015) ◁

Following Chiang et al. (2012), we set the regularizer
ψt(x) =

1
2∥x∥

2
Ht

, where the matrix Ht is defined as

Ht = I +
β

2
G2I +

β

2

t−1∑
s=1

∇fs(xs)∇fs(xs)⊤, (13)

where I is the d-dimensional identity matrix and β =
1
2 min

{
1

4GD , α
}

. Then, the updating rules of optimistic
OMD in (6) and (7) become

x̂t+1 =argmin
x∈X

⟨∇ft(xt),x⟩+
1

2
∥x− x̂t∥2Ht

,

xt+1 =argmin
x∈X

⟨∇ft(xt),x⟩+
1

2
∥x− x̂t+1∥2Ht+1

.

For exp-concave and smooth functions, we can prove the
following bound of optimistic OMD for the SEA model.
Theorem 5. Under Assumptions 1, 2, 4 and 7, we obtain

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]

≤ 16d

β
ln

(
β

d
σ2
1:T +

β

2d
Σ2

1:T +
β

8d
G2 + 1

)
+

16d

β
ln
(
32L2 + 1

)
+D2

(
1 +

β

2
G2

)
= O

( d
α
log(σ2

1:T +Σ2
1:T )

)
,

where β = 1
2 min

{
1

4GD , α
}

, and d is the dimensionality.

Remark 7. This is the first regret bound of exp-concave
and smooth functions under the SEA model. Due to the
difference in the analysis, we are unable to achieve an
O( dα (σ

2
max+Σ2

max) log T ) regret bound like in the strongly
convex case (Theorem 3). We will further investigate this
possibility in the future. ◁

Similarly, we obtain the same guarantee by optimistic FTRL
in the exp-concave case.

Theorem 6. Under Assumptions 1, 2, 4 and 7 with appropri-
ate setup (see details in Appendix A.3), the expected regret
of optimistic FTRL is at most O( dα log(σ2

1:T +Σ2
1:T )).

4.5. Extension to Dynamic Regret Minimization

Sections 4.2–4.4 show that with appropriate step size and
regularizer, optimistic OMD can achieve favorable guaran-
tees for the SEA model.

Note that all those results minimize the measure (2), i.e.,
E[
∑T
t=1 ft(xt) −

∑T
t=1 ft(x)], where the comparator is

fixed. Thus, it is usually called static regret. In this part,
we further consider a more strengthened measure called
dynamic regret (Zinkevich, 2003), defined as

Regd
T = E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

]
.

where the comparators u1, . . . ,uT ∈ X are allowed to
change over time. Therefore, this measure is more attractive
in non-stationary online learning (Zhao et al., 2021). No-
tably, the static regret can be treated as its special case with
a fixed comparator, i.e., u1 = . . . = uT = u, and thus it is
much more general.

To optimize the dynamic regret, following the recent studies
of non-stationary online learning (Zhang et al., 2018; Zhao
et al., 2020), we develop a two-layer approach based on
the optimistic OMD framework, which consists of a meta-
learner running over a group of base-learners. The full
procedure is summarized in Algorithm 2. Specifically, we
maintain a pool for candidate step sizesH = {ηi = c·2i|i ∈
[N ]}, where N is the number of base-learners of order
O(log T ) and c is some small constant given later. We
denote by Bi the i-th base-learner for i ∈ [N ]. At round t ∈
[T ], the online learner obtains the decision xt by aggregating
local base decisions via the meta-learner, namely, xt =∑N
i=1 pt,ixt,i, where xt,i is the decision returned by the

base-learner Bi for i ∈ [N ] and pt ∈ ∆N is the weight
vector returned by the meta-algorithm. The nature then
chooses a distribution Dt and the random function ft(·) is
sampled from Dt. Subsequently, the online learner suffers
the loss ft(xt) and observes the gradient ∇ft(xt).

For the base-learner Bi, in each round t, she obtains her
local decision xt+1,i by instantiating the optimistic OMD

6
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Algorithm 2 Dynamic Regret Minimization of SEA Model
Input: step size poolH = {η1, . . . , ηN}, learning rate of

meta-algorithm εt > 0, correction coefficient λ > 0
1: Initialization: x1 = x̂1 ∈ X , p1 = 1

N · 1N
2: for t = 1 to T do
3: Receive xt,i from base-learner Bi for i ∈ [N ]

4: Submit the decision xt =
∑N
i=1 pt,ixt,i

5: Observe the online function ft : X 7→ R sampled
from the underlying distribution Dt and suffer the
loss ft(xt)

6: Base-learner Bi updates the local decision by opti-
mistic OMD, that is, x̂t+1,i = ΠX

[
x̂t,i−ηi∇ft(xt)

]
and xt+1,i = ΠX

[
x̂t+1,i − ηi∇ft(xt)

]
, ∀i ∈ [N ]

7: Construct the feedback loss ℓt ∈ RN with ℓt,i =
⟨∇ft(xt),xt,i⟩+ λ∥xt,i − xt−1,i∥2 for i ∈ [N ]

8: Construct the optimism mt+1 ∈ RN with mt+1,i =
⟨∇ft(xt),xt+1,i⟩+ λ∥xt+1,i − xt,i∥2 for i ∈ [N ]

9: Update the weight pt+1 ∈ ∆N by optimistic Hedge,
that is, pt+1,i ∝ exp

(
− εt(

∑t
s=1 ℓs,i +mt+1,i)

)
10: end for

algorithm (see Algorithm 1) with ψ(x) = 1
2ηi
∥x∥22 and

Mt+1 = ∇ft(xt) over the linearized surrogate loss gt(x) =
⟨∇ft(xt),x⟩, where ηi ∈ H is the step size associated
with the i-th base-learner. Since ∇gt(xt,i) = ∇ft(xt), the
updating rules of Bi are demonstrated as

x̂t+1,i = ΠX
[
x̂t,i − ηi∇ft(xt)

]
,

xt+1,i = ΠX
[
x̂t+1,i − ηi∇ft(xt)

]
,

The meta-learner updates the weight vector pt+1 ∈ ∆N

by Optimistic Hedge (Syrgkanis et al., 2015) with a time-
varying learning rate εt, that is,

pt+1,i ∝ exp

(
− εt

( t∑
s=1

ℓs,i +mt+1,i

))
,

where the loss ℓt ∈ RN is ℓt,i = ⟨∇ft(xt),xt,i⟩ +
λ∥xt,i − xt−1,i∥22 for t ≥ 2 and ℓ1,i = ⟨∇f1(x1),x1,i⟩;
the optimism mt+1 ∈ RN is constructed as mt+1,i =
⟨Mt+1,xt+1,i⟩+ λ∥xt+1,i−xt,i∥22 with Mt+1 = ∇ft(xt)
for t ≥ 2 and M1 = 0; λ ≥ 0 being the coefficient of the
correction terms; and we set x0,i = 0 for i ∈ [N ].

Remark 8. Our algorithm design and regret analysis fol-
low the collaborative online ensemble framework pro-
posed by Zhao et al. (2021), where the correction term
λ∥xt,i−xt−1,i∥22 in the meta-algorithm (both feedback loss
and optimism) plays an important role. Technically, in this
two-layer structure, to cancel the additional positive term∑T
t=2∥xt − xt−1∥22 appearing in the derivation of σ2

1:T and
Σ2

1:T , one needs to ensure an effective collaboration between
the meta and base layers. This involves simultaneously ex-
ploiting negative terms of the regret upper bounds in both

the base and meta layers as well as leveraging additional
negative terms introduced by the above correction term. ◁

Remark 9. After the submission of our paper, Sachs et al.
(2022) released an updated version (Sachs et al., 2023),
where they also utilized optimistic OMD to achieve the same
dynamic regret as our approach. However, there is a signif-
icant difference between their method and ours. They em-
ployed an optimism design with mt,i = ⟨∇ft−1(x̄t),xt,i⟩,
based on the work of Zhao et al. (2020), where x̄t =∑N
i=1 pt−1,ixt,i. But this design may introduce a depen-

dence issue in SEA because x̄t depends on ft−1(·). ◁

Below, we provide the dynamic regret upper bound.

Theorem 7. Under Assumptions 1, 2, 4 and 5, set-
ting the step size pool H = {η1, . . . , ηN} with
ηi = min{1/(8L),

√
(D2/(8G2T )) · 2i−1} and N =

⌈2−1 log2(G
2T/(8L2D2))⌉ + 1, and setting the learn-

ing rate of meta-algorithm as εt = min{1/(8D2L),√
(lnN)/(D2V̄t)} for all t ∈ [T ], Algorithm 2 ensures

Regd
T ≤ O

(
PT +

√
1 + PT

(√
σ2
1:T +

√
Σ2

1:T

))
,

which holds for any comparator sequence u1, . . . ,uT ∈
X . In above, V̄t =

∑t
s=2 ∥∇fs(xs) − ∇fs−1(xs−1)∥22

with∇f0(x0) defined as 0, and PT =
∑T
t=2∥ut − ut−1∥2

denotes the path length of comparators.

Remark 10. As mentioned, the static regret studied in ear-
lier sections is a special case of dynamic regret with a fixed
comparator. As a consequence, Theorem 7 directly implies
an O(

√
σ2
1:T +

√
Σ2

1:T ) static regret bound by noticing
that PT = 0 when comparing to a fixed benchmark, which
recovers the result in Theorem 1. Moreover, Theorem 7
also recovers the O(

√
(1 + PT + VT )(1 + PT )) gradient-

variation bound of Zhao et al. (2020) for the adversarial
setting and the minimax optimal O(

√
(1 + PT )T ) bound

of Zhang et al. (2018) since σ2
1:T = 0 and Σ2

1:T = VT ≤
4G2T in this case. ◁

Remark 11. We focus on the convex and smooth case,
while for the strongly convex and exp-concave cases, current
understandings of their dynamic regret are still far from
complete (Baby & Wang, 2021). In particular, how to realize
optimistic online learning in strongly convex/exp-concave
dynamic regret minimization remains open. ◁

Finally, we note that to the best of our knowledge, optimistic
FTRL even has not been able to achieve the minimax opti-
mal bound of Zhang et al. (2018). In fact, FTRL is more like
a lazy update (Hazan, 2016), which seems unable to track a
sequence of changing comparators. We found that Jacobsen
& Cutkosky (2022) have given some preliminary results (in
Theorem 2 and Theorem 3 of their work): all the parameter-
free FTRL-based algorithms we are aware of cannot achieve
a dynamic regret bound better than O(PT

√
T ). Although
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this conclusion cannot cover all the cases of FTRL-based
algorithms on dynamic regret, it has at least shown that
FTRL-based algorithms do have some limitations in dy-
namic regret minimization.

5. Implications
First, we demonstrate how our results can be applied to
recover the regret bound for adversarial data and the ex-
cess risk bound for stochastic data. Then, we discuss the
implications for other intermediate examples.

We begin by listing two points followed in all the examples.

• For convex and smooth functions, we obtain the same
O(
√
σ2
1:T +

√
Σ2

1:T ) bound as Sachs et al. (2022),
so we will not repeat the analysis below unless neces-
sary. We emphasize, however, that our result eliminates
the assumption for convexity in individual functions,
which is required in their work.

• For strongly convex and smooth functions, we give an
O(min{ 1λ log(σ2

1:T +Σ2
1:T ),

1
λ (σ

2
max+Σ2

max) log T})
bound. TheO( 1λ (σ

2
max+Σ2

max) log T ) bound has been
fully discussed by Sachs et al. (2022), so we will focus
on the newly obtained O( 1λ log(σ2

1:T +Σ2
1:T )) bound.

5.1. Fully Adversarial Data

For fully adversarial data, we have σ2
1:T = 0 as σ2

t = 0 for
t ∈ [T ], and Σ2

1:T is equivalent to VT . In this case, the new
O( 1λ log(σ2

1:T + Σ2
1:T )) bound in Theorem 3 guarantees

an O( 1λ log VT ) regret bound for λ-strongly convex and
smooth functions, recovering the gradient-variation bound
of Zhang et al. (2022). By contrast, the result of Sachs et al.
(2022) can only recover the O( 1λ log T ) worst-case bound.
Furthermore, for α-exp-concave functions, our new result
(Theorem 5) implies anO( dα log VT ) regret bound for OCO,
recovering the result of Chiang et al. (2012).

5.2. Fully Stochastic Data

For fully stochastic data, the loss functions are i.i.d., so
we have Σ2

1:T = 0 and σt = σ, ∀t ∈ [T ]. Then for λ-
strongly convex functions, Theorem 3 implies the same
O(log T/[λT ]) excess risk bound as Sachs et al. (2022).
Besides, Theorem 5 further delivers a newO(d log T/[αT ])
bound for α-exp-concave functions. These results match the
well-known bounds in SCO (Hazan et al., 2007; Mahdavi
et al., 2015) through online-to-batch conversion.

5.3. Adversarially Corrupted Stochastic Data

In the adversarially corrupted stochastic model, the loss
function consists of two parts:

ft(·) = ht(·) + ct(·),

where ht(·) is the loss of i.i.d. data sampled from a fixed
distribution D, and ct(·) is a smooth adversarial perturba-
tion satisfying that

∑T
t=1 maxx∈X ∥∇ct(x)∥ ≤ CT , where

CT ≥ 0 is a parameter called the corruption level.

Ito (2021) studies this model in expert and bandit problems,
proposing a bound consisting of regret of i.i.d. data and an√
CT term measuring the corrupted performance. Sachs

et al. (2022) achieve a similar O
(
σ
√
T +
√
CT
)

bound in
OCO problems under convexity and smoothness conditions,
and raise an open question about how to extend the results to
strongly convex losses. We resolve the problem by applying
Theorem 3 of optimistic OMD to this model.

Corrollary 1. In the adversarially corrupted stochastic
model, our O( 1λ log(σ2

1:T + Σ2
1:T )) bound in Theorem 3

implies an O( 1λ log(σ2T + CT )) bound for λ-strongly con-
vex functions; and the result in Theorem 5 implies an
O( dα log(σ2T + CT )) bound for α-exp-concave functions.

The proof of Corollary 1 is in Appendix B.1. We success-
fully extend results of Ito (2021) not only to strongly convex
functions, but also to exp-concave functions.

5.4. Random Order Model

Random Order Model (ROM) (Garber et al., 2020; Sherman
et al., 2021) relaxes the adversarial setting in standard ad-
versarial OCO, in which the nature is allowed to choose the
set of loss functions even with complete knowledge of the
algorithm. However, the nature has no right to choose the
order of loss functions, which will be arranged in uniformly
random order instead.

Same as Sachs et al. (2022), let ∇̄T (x) ≜ 1
T

∑T
s=1∇fs(x).

Then we define σ2
1 = maxx∈X

1
T

∑T
t=1 ∥∇ft(x) −

∇̄T (x)∥22 and σ̃2
1 = 1

T

∑T
t=1 maxx∈X ∥∇ft(x) −

∇̄T (x)∥22. Note that σ̃2
1 is a relaxation of σ2

1 and the log-
arithm of σ̃2

1/σ
2
1 will not be large in reasonable scenar-

ios. Sachs et al. (2022) establish an O(σ1
√

log(σ̃1/σ1)T )
bound but require the convexity of individual functions, and
they ask whether σ-dependent regret bounds can be realized
under weaker assumptions on convexity of expected func-
tions like Sherman et al. (2021). In Corollary 2, we give an
affirmative answer based on Theorem 1 and obtain the re-
sults with weak assumptions. The proof is in Appendix B.2.

Corrollary 2. For convex expected functions, ROM enjoys
an O(σ1

√
log(σ̃1/σ1)T ) bound by Theorem 1.

For λ-strongly convex expected functions, our new bound in
Theorem 3 leads to an O( 1λ log(Tσ2

1 log(σ̃
2
1/σ

2
1))) bound,

which is more stronger than the O( 1λσ
2
1 log T ) bound of

Sachs et al. (2022) when σ2
1 is not too small. Mean-

while, the best-of-both-worlds guarantee in Theorem 3
safeguards that our final bound is never worse than theirs.
Besides, for α-exp-concave functions, we establish a new

8



Optimistic OMD for Bridging Stochastic and Adversarial Online Convex Optimization

O( dα log(Tσ2
1 log(σ̃

2
1/σ

2
1))) bound from Theorem 5, but the

curvature assumption is imposed over individual functions.
Thus an open question is whether a similar σ-dependent
bound can be obtained under weaker assumptions.

5.5. Slow Distribution Shift

We consider a simple problem instance of online learn-
ing with slow distribution shifts, in which the underly-
ing distributions selected by the nature in every two adja-
cent rounds are close on average. Formally, we suppose
that (1/T )

∑T
t=1 supx∈X ∥∇Ft(x) − ∇Ft−1(x)∥22 ≤ ε,

where ε is a constant. So we can get that Σ2
1:T ≤ Tε.

For λ-strongly convex functions, our Theorem 3 realizes
an O( 1λ log(σ2

1:T + εT )) regret bound, which is tighter
than the O( 1λ (σ

2
max log T + εT )) bound of Sachs et al.

(2022) for a large range of ε. We can further extend
the analysis to the α-exp-concave functions and obtain an
O( dα log(σ2

1:T + εT )) regret bound from Theorem 5.

5.6. Online Learning with Limited Resources

In real-world online learning applications, functions often
arrive not individually but rather in groups. Let Kt denote
the number of functions coming in round t and ft(·, i) de-
note the i-th function. Denote by Ft(·) ≜ 1

Kt

∑Kt

i=1 ft(·, i)
the average of all functions.

We consider the scenarios with limited computing resources
such that gradient estimation can only be achieved by sam-
pling a portion of the functions, leading to gradient variance.
Assume that at each time t we sample 1 ≤ Bt ≤ Kt func-
tions, where the i-th function is expressed as f̂t(·, i). We
can then estimate Ft(·) by ft(·) ≜ 1

Bt

∑Bt

i=1 f̂t(·, i), and
further we have an upper bound for σ2

t as follows.

σ2
t = max

x∈X
E

∥∥∥∥∥ 1

Bt

Bt∑
i=1

∇f̂t(x, i)−∇Ft(x)

∥∥∥∥∥
2

2


=

1

B2
t

max
x∈X

( Bt∑
i=1

E
[∥∥∥∇f̂t(x, i)−∇Ft(x)∥∥∥2

2

]
+ E

[∑
i ̸=j

〈
E
[
∇f̂t(x, i)−∇Ft(x)

]
,

E
[
∇f̂t(x, j)−∇Ft(x)

]〉])
=

1

B2
t

max
x∈X

(
Bt∑
i=1

E
[∥∥∥∇f̂t(x, i)−∇Ft(x)∥∥∥2

2

])

≤ 4G2

Bt
,

where we use the fact that ∇f̂t(x, i) and ∇f̂t(x, j) are in-
dependent when i ̸= j, and the fact that E[∇f̂t(x, i) −

∇Ft(x)] = 0. The last inequality is due to Assumption 1.
As a result, we have σ2

1:T = E[
∑T
t=1 σ

2
t ] ≤ 4G2

∑T
t=1

1
Bt

and obtain the following corollary by substituting it into
Theorem 1, Theorem 3, and Theorem 5, respectively.

Corrollary 3. In online learning with limited resources, we

can obtain an O(2G
√∑T

t=1
1
Bt

+
√
Σ2

1:T ) bound for con-

vex functions by Theorem 1; and ourO( 1λ log(σ2
1:T+Σ2

1:T ))

bound in Theorem 3 implies an O( 1λ log(4G2
∑T
t=1

1
Bt

+

Σ2
1:T )) bound for λ-strongly convex functions; and Theo-

rem 5 leads to an O
(
d
α log(4G2

∑T
t=1

1
Bt

+Σ2
1:T )

)
bound

for α-exp-concave functions.

When the number of sampled functions increases, the es-
timated gradient will gradually approach the real gradient,
and the gradient variance will be close to 0. It is noteworthy
that the ratio Bt/Kt can be viewed as the data throughput
determined by the available computing resources (Zhou,
2023). Corollary 3 demonstrates the impact of data through-
put on the learning performance.

6. Conclusion and Future Work
In this paper, we investigate the Stochastically Extended
Adversarial (SEA) model of Sachs et al. (2022) and propose
a different solution via the optimistic OMD framework. Our
results yield the same regret bound for convex and smooth
functions under weaker assumptions and a better regret
bound for strongly convex and smooth functions; more-
over, we establish the first regret bound for exp-concave and
smooth functions. For all three cases, we further improve
analyses of optimistic FTRL, proving equal regret bounds
with optimistic OMD for the SEA model. Furthermore, we
study the SEA model under dynamic regret and propose a
new two-layer algorithm based on optimistic OMD, which
obtains the first dynamic regret guarantee for the SEA model.
Lastly, we explore implications for intermediate learning
scenarios, leading to various new results.

Although our algorithms for various functions can be unified
using the optimistic OMD framework, they still necessitate
distinct configurations for parameters such as step sizes and
regularizers. Consequently, it becomes crucial to conceive
and develop more adaptive online algorithms that eliminate
the need for pre-set parameters. Exploring this area of
research and designing such algorithms will be an important
focus in future studies.
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tures on Stochastic Programming: Modeling and Theory.
SIAM, 2014.

Sherman, U., Koren, T., and Mansour., Y. Optimal rates
for random order online optimization. In Advances in
Neural Information Processing Systems 34 (NeurIPS), pp.
2097–2108, 2021.

Srebro, N., Sridharan, K., and Tewari, A. Smoothness, low-
noise and fast rates. In Advances in Neural Information
Processing Systems 23 (NIPS), pp. 2199–2207, 2010.

Syrgkanis, V., Agarwal, A., Luo, H., and Schapire, R. E.
Fast convergence of regularized learning in games. In
Advances in Neural Information Processing Systems 28
(NIPS), pp. 2989–2997, 2015.

Yang, T., Mahdavi, M., Jin, R., and Zhu, S. Regret bounded
by gradual variation for online convex optimization. Ma-
chine Learning, 95(2):183–223, 2014.

Zhang, L. and Zhou, Z.-H. Stochastic approximation
of smooth and strongly convex functions: Beyond the
O(1/T ) convergence rate. In Proceedings of the 32nd An-
nual Conference on Learning Theory (COLT), pp. 3160–
3179, 2019.

Zhang, L., Mahdavi, M., and Jin, R. Linear convergence
with condition number independent access of full gra-
dients. In Advance in Neural Information Processing
Systems 26 (NIPS), pp. 980–988, 2013.

Zhang, L., Lu, S., and Zhou, Z.-H. Adaptive online learning
in dynamic environments. In Advances in Neural Infor-
mation Processing Systems 31 (NeurIPS), pp. 1323–1333,
2018.

Zhang, L., Wang, G., Yi, J., and Yang, T. A simple yet
universal strategy for online convex optimization. In
Proceedings of the 39th International Conference on Ma-
chine Learning (ICML), pp. 26605–26623, 2022.

Zhao, P., Zhang, Y.-J., Zhang, L., and Zhou, Z.-H. Dynamic
regret of convex and smooth functions. In Advances in
Neural Information Processing Systems 33 (NeurIPS), pp.
12510–12520, 2020.

Zhao, P., Zhang, Y.-J., Zhang, L., and Zhou, Z.-H. Adap-
tivity and non-stationarity: Problem-dependent dynamic
regret for online convex optimization. ArXiv preprint,
arXiv:2112.14368, 2021.

Zhou, Z.-H. Stream efficient learning. ArXiv preprint,
arXiv:2305.02217, 2023.

Zimmert, J. and Seldin, Y. Tsallis-INF: An optimal algo-
rithm for stochastic and adversarial bandits. Journal of
Machine Learning Research, 22(28):1–49, 2021.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th
International Conference on Machine Learning (ICML),
pp. 928–936, 2003.

11



Optimistic OMD for Bridging Stochastic and Adversarial Online Convex Optimization

A. Omitted Details for Section 4
In this section, we present the omitted details for Section 4. We first provide the proofs of Theorem 1–Theorem 6 in
Appendix A.1–Appendix A.3, and then supplement the omitted details of Section 4.5 for the dynamic regret minimization
in Appendix A.4. We also collect some useful lemmas in Appendix A.5.

A.1. Convex and Smooth Functions

Proof of Theorem 1. Notice that our algorithm performs optimistic OMD on the random functions {f1, . . . , fT }. So we can
use Lemma 1 (variant of Bregman proximal inequality) by noting that the ψt(x) = 1

2ηt
∥x∥22 is 1

ηt
-strongly convex with

respect to ∥ · ∥2 and obtain

⟨∇ft(xt),xt − x⟩ ≤ 1

2ηt
∥x− x̂t∥22 −

1

2ηt
∥x− x̂t+1∥22

+ ηt∥∇ft(xt)−∇ft−1(xt−1)∥22 −
1

2ηt

(
∥xt − x̂t∥22 + ∥x̂t+1 − xt∥22

)
.

Summing the above inequality over t = 1, . . . , T , we have

T∑
t=1

⟨∇ft(xt),xt − x⟩

≤
T∑
t=1

(
1

2ηt
∥x− x̂t∥22 −

1

2ηt
∥x− x̂t+1∥22

)
︸ ︷︷ ︸

term (a)

+

T∑
t=1

ηt∥∇ft(xt)−∇ft−1(xt−1)∥22︸ ︷︷ ︸
term (b)

−
T∑
t=1

1

2ηt

(
∥xt − x̂t∥22 + ∥x̂t+1 − xt∥22

)
︸ ︷︷ ︸

term (c)

. (14)

In the following, we will bound the three terms on the right hand respectively. Before that, according to that
ηt = D/

√
δ + 4G2 + V̄t−1 where V̄t−1 =

∑t−1
s=1 ∥∇fs(xs) − ∇fs−1(xs−1)∥22, we derive that ηt ≤ D/

√
δ + V̄t by

Assumption 1 (boundness of the gradient norm).

To bound term (a), we notice that ηt ≤ ηt−1. Based on Assumption 2 (domain boundedness),

term (a) =
1

2η1
∥x− x̂1∥22 +

1

2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
∥x− x̂t∥22 −

1

2ηT
∥x− x̂T+1∥22

≤ 1

2η1
D2 +

1

2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
D2 =

D2

2ηT
=
D

2

√
δ + 4G2 + V̄T−1.

By applying Lemma 8 (self-confident tuning), we can bound term (b) as

term (b) ≤
T∑
t=1

D√
δ + V̄t

∥∇ft(xt)−∇ft−1(xt−1)∥22 ≤ 2D
√
δ + V̄T .

To bound term (c), we use the fact that ηt ≤ D√
δ

:

term (c) =

T∑
t=1

1

2ηt

(
∥xt − x̂t∥22 + ∥x̂t+1 − xt∥22

)
≥
√
δ

2D

T∑
t=1

(
∥xt − x̂t∥22 + ∥x̂t+1 − xt∥22

)
≥
√
δ

2D

T∑
t=2

(
∥xt − x̂t∥22 + ∥x̂t − xt−1∥22

)
≥
√
δ

4D

T∑
t=2

∥xt − xt−1∥22.
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Then we substitute the three bounds above into (14)

T∑
t=1

⟨∇ft(xt),xt − x⟩ ≤ D

2

√
δ + 4G2 + V̄T−1 + 2D

√
δ + V̄T −

√
δ

4D

T∑
t=2

∥xt − xt−1∥22

≤ 5D

2

√
δ + 4G2 + V̄T−1 −

√
δ

4D

T∑
t=2

∥xt − xt−1∥22.

Applying Lemma 5 (boundness of cumulative norm of gradient difference), we have

T∑
t=1

⟨∇ft(xt),xt − x⟩

≤ 5D

2

√
δ + 5G2 + 5

√
2D

√√√√ T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22 + 5DL

√√√√ T∑
t=2

∥xt − xt−1∥22

+ 5D

√√√√ T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 −
√
δ

4D

T∑
t=2

∥xt − xt−1∥22

≤ 5D

2

√
δ + 5G2 +

25D3L2

√
δ

+ 5
√
2D

√√√√ T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22

+ 5D

√√√√ T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22, (15)

where in the last step we make use of the AM-GM inequality

5DL

√√√√ T∑
t=2

∥xt − xt−1∥22 ≤
25D3L2

√
δ

+

√
δ

4D

T∑
t=2

∥xt − xt−1∥22.

Taking expectations over (15) and applying Jensen’s inequality lead to

E

[
T∑
t=1

⟨∇ft(xt),xt − x⟩

]
≤ 5D

2

√
δ +

25D3L2

√
δ

+
5
√
5DG

2
+ 5
√
2D
√
σ2
1:T + 5D

√
Σ2

1:T

= 5
√
10D2L+

5
√
5DG

2
+ 5
√
2D
√
σ2
1:T + 5D

√
Σ2

1:T

= O(
√
σ2
1:T +

√
Σ2

1:T ),

where we set δ = 10D2L2 and recall the definitions of σ2
1:T and Σ2

1:T in (4) and (5), as restated below:

σ2
1:T = E

[
T∑
t=1

max
x∈X

Eft∼Dt
∥∇ft(x)−∇Ft(x)∥22

]
, Σ2

1:T = E

[
T∑
t=1

sup
x∈X
∥∇Ft(x)−∇Ft−1(x)∥22

]
.

Then we complete the proof with the fact that the above expectation upper bounds the expected regret in (8).

Proof of Theorem 2. We introduce the procedure of optimistic FTRL for convex and smooth functions first. At each step t,
we define a new surrogate loss: ℓt(x) = ⟨∇ft(xt),x− xt⟩. Note that we do not directly use the original function ft(·) to
update the decision point in the convex case as in Sachs et al. (2022), this is to remove the requirement on the convexity of
individual functions (which is required by Sachs et al. (2022)). The decision xt is updated by deploying optimistic FTRL
over the linearized loss:

xt = argmin
x∈X

t−1∑
s=1

ℓs(x) + ⟨Mt,x⟩+
1

ηt
∥x∥22,
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where x0 is an arbitrary point in X , and the optimistic vector Mt = ∇ft−1(xt−1) (we set M1 = ∇f0(x0) = 0). And
the step size ηt is designed as ηt = D2/(δ +

∑t−1
s=1 ηs∥∇fs(xs) − fs−1(xs−1)∥22) with δ to be defined latter, which is

non-increasing for t ∈ [T ].

Obviously, we can easily obtain that

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]
≤ E

[
T∑
t=1

⟨∇ft(xt),xt − x⟩

]
≤ E

[
T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

]
.

As a result, we only need to consider the regret of the surrogate loss ℓt(·). The following proof is similar with Sachs
et al. (2022). To exploit Lemma 11 (standard analysis of optimistic FTRL), we map the Gt term in Lemma 11 to
1
ηt
∥x∥22 +

∑t−1
s=1 ℓs(x) and map the g̃t term to Mt. Note that Gt is 2

ηt
-strongly convex and ℓt is convex, we have

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x) ≤
D2

ηT
+

T∑
t=1

(
⟨∇ft(xt)−∇ft−1(xt−1),xt − xt+1⟩ −

1

ηt
∥xt − xt+1∥22

)

=
D2

ηT
+

T∑
t=1

(
ηt
2
∥∇ft(xt)−∇ft−1(xt−1)∥22 −

1

2ηt
∥xt − xt+1∥22

)

≤ δ + 3

2

T∑
t=1

ηt∥∇ft(xt)− ft−1(xt−1)∥22 −
δ

2D2

T∑
t=1

∥xt − xt+1∥22, (16)

where we use the fact that ⟨a, b⟩ ≤ ∥a∥∗∥b∥ ≤ 1
2c∥a∥

2
∗ +

c
2∥b∥

2 in the second inequality ( ∥ · ∥∗ denotes the dual norm of
∥ · ∥ ), based on the Hölder’s inequality.

To bound the second term above, we directly use the following inequality from Sachs et al. (2022, proof of Theorem 5)

T∑
t=1

ηt∥∇ft(xt)− ft−1(xt−1)∥2 ≤ D
√

2V̄T +
4D2G2

δ
.

In this way, we substitute the above bound into the origin regret (16) and obtain

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x) ≤
3
√
2

2
D
√
V̄T +

6D2G2

δ
+ δ − δ

2D2

T∑
t=1

∥xt − xt+1∥22.

By applying Lemma 5 (boundness of cumulative norm of the gradient difference), we have

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

≤ 6D

√√√√ T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22 + 3
√
2D

√√√√ T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22

+ 3
√
2DL

√√√√ T∑
t=2

∥xt − xt−1∥22 −
δ

2D2

T∑
t=1

∥xt − xt+1∥22 +
6D2G2

δ
+ δ +

3
√
2

2
DG

≤ 6D

√√√√ T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22 + 3
√
2D

√√√√ T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22

+
9D4L2

δ
+

6D2G2

δ
+ δ +

3
√
2

2
DG, (17)

where we use the following inequality in the last step:

3
√
2DL

√√√√ T∑
t=2

∥xt − xt−1∥22 ≤
9D4L2

δ
+

δ

2D2

T∑
t=1

∥xt − xt+1∥22,
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which cancels out the negative term in (17) with the second term.

Then, we take expectations over (17) with the help of definitions of σ2
1:T and Σ2

1:T , and use Jensen’s inequality. Given that
the expected regret of surrogate loss functions upper bounds the expected regret of original functions, we get the final result
and complete the proof:

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]
≤ E

[
T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

]

≤ 6D
√
σ2
1:T + 3

√
2D
√
Σ2

1:T +
9D4L+ 6D2G2

δ
+ δ +

3
√
2

2
DG

= 6D
√
σ2
1:T + 3

√
2D
√
Σ2

1:T + 2
√

9D4L+ 6D2G2 +
3
√
2

2
DG

= O(
√
σ2
1:T +

√
Σ2

1:T ),

where we set δ =
√
9D4L+ 6D2G2.

A.2. Strongly Convex and Smooth Functions

Proof of Theorem 3. For the case where we operate optimistic OMD on λ-strongly convex expected functions (see
Assumption 6), we have Ft(xt) − Ft(x) ≤ ⟨∇Ft(xt),xt − x⟩ − λ

2 ∥x − xt∥22. Then in view of the definition that
Ft(x) = Eft∼Dt

[ft(x)], we bound the expected regret as

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]
= E

[
T∑
t=1

Ft(xt)−
T∑
t=1

Ft(x)

]
(18)

≤ E

[
T∑
t=1

(
⟨∇Ft(xt),xt − x⟩ − λ

2
∥x− xt∥22

)]
= E

[
T∑
t=1

(
⟨∇ft(xt),xt − x⟩ − λ

2
∥x− xt∥22

)]
.

Since we use the same ψt(x) as Theorem 1, we can reuse the regret approximation in (14):

T∑
t=1

⟨∇ft(xt),xt − x⟩ − λ

2

T∑
t=1

∥x− xt∥22

≤
T∑
t=1

(
1

2ηt
∥x− x̂t∥22 −

1

2ηt
∥x− x̂t+1∥22

)
− λ

2

T∑
t=1

∥x− xt∥22︸ ︷︷ ︸
term (a)

(19)

+

T∑
t=1

ηt∥∇ft(xt)−∇ft−1(xt−1)∥22︸ ︷︷ ︸
term (b)

−
T∑
t=1

1

2ηt

(
∥xt − x̂t∥22 + ∥x̂t+1 − xt∥22

)
︸ ︷︷ ︸

term (c)

.

Because the regret bound in Theorem 3 consists of two parts, we first prove the O
(
1
λ log(σ2

1:T +Σ2
1:T )

)
bound and then

prove the O
(
1
λ (σ

2
max +Σ2

max) log T
)

bound.

The O
(
1
λ log(σ2

1:T +Σ2
1:T )

)
bound. First, we upper bound term (a), term (b), and term (c) respectively.

From Lemma 3 (stability lemma) we get that ∥x̂t+1−xt∥2 ≤ ηt∥∇ft(xt)−∇ft−1(xt−1)∥2. Then based on Assumption 2
(diameter of the domain) and the step size η = 2

λt (see (12)), we can bound term (a) as

term (a) ≤ 1

2η1
D2 +

1

2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
∥x− x̂t∥22 −

λ

2

T∑
t=1

∥x− xt∥22

≤ λD2

4
+
λ

4

T−1∑
t=1

(
∥x− x̂t+1∥22 − 2∥x− xt∥22

)
≤ λD2

4
+
λ

2

T−1∑
t=1

∥x̂t+1 − xt∥22
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≤ λD2

4
+
λη1
2

T−1∑
t=1

ηt∥∇ft(xt)−∇ft−1(xt−1)∥22 ≤
λD2

4
+ term (b),

where in the penultimate step, we use the fact that ηt is non-increasing. From the above derivation, we observe that the
upper bound of term (a) depends on term (b). To bound term (b), we apply Lemma 6 to term (b):

term (b) = 2

T∑
t=1

1

λt
∥∇ft(xt)−∇ft−1(xt−1)∥22 ≤

8G2

λ
ln
(
V̄T + 1

)
+

8G2 + 2

λ
.

Similar to the proof of Theorem 1, we substitute ηt = 2
λt into term (c) and bound it as

term (c) =

T∑
t=1

1

2ηt

(
∥xt − x̂t∥22 + ∥x̂t+1 − xt∥22

)
≥ λ

8

T∑
t=2

∥xt − xt−1∥22.

Replacing term (a), term (b), and term (c) with their corresponding upper bounds in (19), we have

T∑
t=1

⟨∇ft(xt),xt − x⟩ − λ

2

T∑
t=1

∥x− xt∥22

≤ λD2

4
+

16G2

λ
ln
(
V̄T + 1

)
+

16G2 + 4

λ
− λ

8

T∑
t=2

∥xt − xt−1∥22.

Then, applying Lemma 5 (boundness of cumulative norm of gradient difference), we can upper bound the ln
(
V̄T + 1

)
term

and get that

T∑
t=1

⟨∇ft(xt),xt − x⟩ − λ

2

T∑
t=1

∥x− xt∥22

≤ 16G2

λ
ln

(
8

T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22 + 4

T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 +G2 + 1

)

+
16G2

λ
ln

(
4L2

T∑
t=2

∥xt − xt−1∥22 + 1

)
− λ

8

T∑
t=2

∥xt − xt−1∥22 +
16G2 + 4

λ
+
λD2

4
, (20)

where we use the inequality below

ln(1 + u+ v) ≤ ln(1 + u) + ln(1 + v), ∀u, v ≥ 0. (21)

To simplify the last line of the above bound, we use Lemma 7 and obtain

16G2

λ
ln

(
4L2

T∑
t=2

∥xt − xt−1∥22 + 1

)
− λ

8

T∑
t=2

∥xt − xt−1∥22 ≤
16G2

λ
ln

(
512G2L2

λ2
+ 1

)
.

Under this simplification, we can reduce the regret bound to the following form:

T∑
t=1

⟨∇ft(xt),xt − x⟩ − λ

2

T∑
t=1

∥x− xt∥22

≤ 16G2

λ
ln

(
8

T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22 + 4

T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 +G2 + 1

)

+
16G2

λ
ln

(
512G2L2

λ2
+ 1

)
+

16G2 + 4

λ
+
λD2

4
. (22)
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To get the bound of expected regret, taking expectations over the above regret bound, and applying Jensen’s inequality, we
have

E

[
T∑
t=1

⟨∇ft(xt),xt − x⟩ − λ

2

T∑
t=1

∥x− xt∥22

]

≤ 16G2

λ
ln
(
8σ2

1:T + 4Σ2
1:T +G2 + 1

)
+

16G2

λ
ln

(
512G2L2

λ2
+ 1

)
+

16G2 + 4

λ
+
λD2

4
. (23)

Thus we have proven the O
(
1
λ log(σ2

1:T +Σ2
1:T )

)
bound.

The O
(
1
λ (σ

2
max +Σ2

max) log T
)

bound. With the techniques in Sachs et al. (2022), we can get another bound. Indeed,
their analysis is for optimistic FTRL, while ours is for optimistic OMD, but we show that our algorithm can also enjoy that
kind of guarantee.

For term (a) and term (b), we have already derived that

term (b) = 2

T∑
t=1

1

λt
∥∇ft(xt)−∇ft−1(xt−1)∥22 and term (a) ≤ λD2

4
+ term (b).

For term (c), we give a new bound, which follows Sachs et al. (2022):

term (c) ≥
T∑
t=2

(
1

2ηt
∥xt − x̂t∥22 +

1

2ηt−1
∥x̂t − xt−1∥22

)
≥

T∑
t=2

1

4ηt−1
∥xt − xt−1∥22,

where we make use of the fact that ηt is non-increasing.

Integrating the new upper bounds of term (a), term (b) and term (c) into (19) together with ηt = 2
λt , we have

T∑
t=1

⟨∇ft(xt),xt − x⟩ − λ

2

T∑
t=1

∥x− xt∥22

≤ λD2

4
+ 4

T∑
t=1

1

λt
∥∇ft(xt)−∇ft−1(xt−1)∥22 −

T∑
t=2

λ(t− 1)

8
∥xt − xt−1∥22.

Applying Lemma 4 (boundness of the norm of gradient difference) to the ∥∇ft(xt)−∇ft−1(xt−1)∥22 term, we can get that

T∑
t=1

⟨∇ft(xt),xt − x⟩ − λ

2

T∑
t=1

∥x− xt∥22

≤ 4G2

λ
+ 4

T∑
t=2

1

λt

(
4∥∇ft(xt)−∇Ft(xt)∥22 + 4∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22

+4∥∇Ft−1(xt−1)−∇ft−1(xt−1)∥22
)
+

T∑
t=2

(
16L2

λt
− λ(t− 1)

8

)
∥xt − xt−1∥22 +

λD2

4
.

The inequality can be simplified by

T∑
t=2

4

λt
∥∇Ft(xt)−∇ft(xt)∥22 +

T∑
t=2

4

λt
∥∇Ft−1(xt−1)−∇ft−1(xt−1)∥22

≤
T∑
t=2

4

λt
∥∇Ft(xt)−∇ft(xt)∥22 +

T∑
t=2

4

λ(t− 1)
∥∇Ft−1(xt−1)−∇ft−1(xt−1)∥22

≤
T∑
t=1

8

λt
∥∇Ft(xt)−∇ft(xt)∥22. (24)
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As a result, it turns out that

T∑
t=1

⟨∇ft(xt),xt − x⟩ − λ

2

T∑
t=1

∥x− xt∥22

(24)

≤ 4G2

λ
+

T∑
t=1

32

λt
∥∇ft(xt)−∇Ft(xt)∥22 +

T∑
t=2

16

λt
∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22

+

T∑
t=2

(
16L2

λt
− λ(t− 1)

8

)
∥xt − xt−1∥22 +

λD2

4

≤ 4G2

λ
+

T∑
t=1

32

λt
∥∇ft(xt)−∇Ft(xt)∥22 +

T∑
t=2

16

λt
∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22

+

T−1∑
t=1

(
16L2

λt
− λt

8

)
∥xt − xt−1∥22 +

λD2

4
.

Following Sachs et al. (2022), we define κ = L
λ . Then for t ≥ 8

√
2κ, we have 16L2

λt −
λt
8 ≤ 0. Using Assumption 2

(diameter of the domain), the fourth term above is bounded as

T−1∑
t=1

(
16L2

λt
− λt

8

)
∥xt − xt−1∥22 ≤

⌈8
√
2κ⌉∑

t=1

(
16L2

λt
− λt

8

)
D2 ≤ 16L2D2

λ

⌈8
√
2κ⌉∑

t=1

1

t

≤ 16L2D2

λ

(
1 +

∫ ⌈8
√
2κ⌉

t=1

1

t
dt

)
=

16L2D2

λ
ln

(
1 + 8

√
2
L

λ

)
+

16L2D2

λ
.

Combining the above two formulas, we get the bound:

T∑
t=1

⟨∇ft(xt),xt − x⟩ − λ

2

T∑
t=1

∥x− xt∥22

≤4G2

λ
+

T∑
t=1

32

λt
∥∇ft(xt)−∇Ft(xt)∥22 +

T∑
t=2

16

λt
∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22

+
16L2D2

λ
ln

(
1 + 8

√
2
L

λ

)
+

16L2D2

λ
+
λD2

4
.

Under Assumption 3 (maximal stochastic variance and maximal adversarial variation), we take expectations over the above
bound and get that

E

[
T∑
t=1

⟨∇ft(xt),xt − x, ⟩ − λ

2

T∑
t=1

∥x− xt∥22

]

=
32

λ

T∑
t=1

1

t
E
[
∥∇ft(xt)−∇Ft(xt)∥22

]
+

16

λ

T∑
t=2

1

t
E
[
∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22

]
+

16L2D2

λ
ln

(
1 + 8

√
2
L

λ

)
+

16L2D2 + 4G2

λ
+
λD2

4

≤ 32

λ

T∑
t=1

1

t
σ2
t +

16

λ

T∑
t=2

1

t
sup
x∈X
∥∇Ft(x)−∇Ft−1(x)∥22 +

16L2D2

λ
ln

(
1 + 8

√
2
L

λ

)
+

16L2D2 + 4G2

λ
+
λD2

4

≤ 1

λ

(
32σ2

max + 16Σ2
max

)
(lnT + 1) +

16L2D2

λ
ln

(
1 + 8

√
2
L

λ

)
+

16L2D2 + 4G2

λ
+
λD2

4
, (25)
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where the last inequality uses the fact that
∑T
t=1

1
t ≤ lnT + 1. Hence, we have proven the O

(
1
λ (σ

2
max + Σ2

max) log T
)

bound.

To summarize, combining the above two upper bounds for smooth and strongly convex functions by optimistic OMD (see
(23) and (25)) and considering the upper bound on expected regret we have proven in (18), we finally achieve the following
guarantee:

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]

≤ min

{
16G2

λ
ln
(
8σ2

1:T + 4Σ2
1:T +G2 + 1

)
+

16G2

λ
ln

(
512G2L2

λ2
+ 1

)
+

16G2 + 4

λ
+
λD2

4
,

1

λ

(
32σ2

max + 16Σ2
max

)
(lnT + 1) +

16L2D2 + 4G2

λ
+

16L2D2

λ
ln

(
1 + 8

√
2
L

λ

)
+
λD2

4

}
= O

(
min

{ 1

λ
log(σ2

1:T +Σ2
1:T ),

1

λ
(σ2

max +Σ2
max) log T

})
.

Proof of Theorem 4. We first present the procedure of optimistic FTRL for λ-strongly convex and smooth functions (Sachs
et al., 2022). In each round t, we define a new surrogate loss: ℓt(x) = ⟨∇ft(xt),x− xt⟩+ λ

2 ∥x− xt∥22. And the decision
xt+1 is determined by

xt+1 = argmin
x∈X

λ

2
∥x− x0∥22 +

t∑
s=1

ℓs(x) + ⟨Mt+1,x⟩,

where x0 is an arbitrary point inX , and the optimistic vectorMt+1 = ∇ft(xt). In the beginning, we setM1 = ∇f0(x0) = 0
and thus x1 = x0. Compared with the original algorithm of Sachs et al. (2022), we insert an additional λ2 ∥x− x0∥22 term in
the updating rule above, and in this way, the objective function in the t-th round is λt-strongly convex, which facilitates the
subsequent analysis.

According to (18), it is easy to verify that

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]
≤ E

[
T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

]
. (26)

Thus, we can focus on the regret of the surrogate loss ℓt(·). From Lemma 11 (standard analysis of optimistic FTRL), since
λ
2 ∥x− x0∥22 +

∑t−1
s=1 ℓs(x) is λt-strongly convex, we obtain

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

≤ λ

2
∥x− x0∥22 +

T∑
t=1

⟨∇ft(xt)−∇ft−1(xt−1),xt − xt+1⟩ −
T∑
t=1

λt

2
∥xt − xt+1∥22

≤ λD2

2
+

T∑
t=1

1

λt
∥∇ft(xt)−∇ft−1(xt−1)∥22 −

T∑
t=1

λt

4
∥xt − xt+1∥22

≤ λD2

2
+

T∑
t=1

1

λt
∥∇ft(xt)−∇ft−1(xt−1)∥22 −

λ

4

T∑
t=1

∥xt − xt+1∥22, (27)

where we again use the inequality of ⟨a, b⟩ ≤ ∥a∥∗∥b∥ ≤ 1
2c∥a∥

2
∗ +

c
2∥b∥

2 in the second step.

Because there are indeed two different upper bounds for strongly convex and smooth functions by optimistic FTRL in
Theorem 4, we will prove the two bounds respectively.
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The O
(
1
λ log(σ2

1:T +Σ2
1:T )

)
bound. Compared with the proof of Sachs et al. (2022), the main difference here is that we

propose a novel way to bound the second term in the last line of (27), which makes use of Lemma 6, in this way we obtain
that

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x) ≤
4G2

λ
ln
(
V̄T + 1

)
− λ

4

T∑
t=1

∥xt − xt+1∥22 +
4G2 + 1

λ
+
λD2

2
.

Then, we just simplify the above bound in the same way as we do in the proof of Theorem 3 (see (20) ∼ (22)). That means,
by applying Lemma 5 (boundness of cumulative norm of gradient difference) and the inequality (21), we have

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

≤ 4G2

λ
ln

(
8

T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22 + 4

T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 +G2 + 1

)

+
4G2 + 1

λ
+
λD2

2
+

4G2

λ
ln

(
4L2

T∑
t=2

∥xt − xt−1∥22 + 1

)
− λ

4

T∑
t=1

∥xt − xt+1∥22. (28)

And by exploiting Lemma 7, we have

4G2

λ
ln

(
4L2

T∑
t=2

∥xt − xt−1∥22 + 1

)
− λ

4

T∑
t=1

∥xt − xt+1∥22 ≤
4G2

λ
ln

(
1 +

64G2L2

λ2

)
.

Substituting the above inequality into (28), we arrive at

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

≤ 4G2

λ
ln

(
8

T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22 + 4

T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 +G2 + 1

)
+

4G2

λ
ln

(
1 +

64G2L2

λ2

)
+

4G2 + 1

λ
+
λD2

2
.

Taking expectations over the above bound, and applying Jensen’s inequality, we have

E

[
T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

]

≤ 4G2

λ
ln
(
8σ2

1:T + 4Σ2
1:T +G2 + 1

)
+

4G2

λ
ln

(
1 +

64G2L2

λ2

)
+

4G2 + 1

λ
+
λD2

2
, (29)

which completes the proof for the O
(
1
λ log(σ2

1:T +Σ2
1:T )

)
bound.

The O
(
1
λ (σ

2
max +Σ2

max) log T
)

bound. For the completeness of the work, we also show the proof of optimistic FTRL on
strongly convex functions in Sachs et al. (2022) below. Return to the standard analysis of optimistic FTRL (see (27)), which
derives that

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x) ≤
λD2

2
+

T∑
t=1

1

λt
∥∇ft(xt)−∇ft−1(xt−1)∥22 −

T∑
t=1

λt

4
∥xt − xt+1∥22.

Here they directly use Lemma 4 (boundness of the norm of gradient difference) to bound the above formula:

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)
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≤ G2

λ
+

T∑
t=2

1

λt

(
4∥∇ft(xt)−∇Ft(xt)∥22 + 4∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22

+4∥∇Ft−1(xt−1)−∇ft−1(xt−1)∥22
)
+

T∑
t=1

(
4L2

λ(t+ 1)
− λt

4

)
∥xt − xt−1∥22 +

λD2

2

≤ G2

λ
+

T∑
t=1

8

λt
∥∇ft(xt)−∇Ft(xt)∥22 +

T∑
t=2

4

λt
∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22

+

T∑
t=1

(
4L2

λt
− λt

4

)
∥xt − xt−1∥22 +

λD2

2
. (30)

The above formula reuses the simplification techniques in (24).

Still defining κ = L
λ , then for t ≥ 16κ, there is 4L2

λt −
λt
4 ≤ 0. For this reason, it turns out that

T∑
t=1

(
4L2

λt
− λt

4

)
∥xt − xt−1∥22 ≤

⌈16κ⌉∑
t=1

(
4L2

λt
− λt

4

)
D2 ≤ 4L2D2

λ

⌈16κ⌉∑
t=1

1

t

≤ 4L2D2

λ

(
1 +

∫ ⌈16κ⌉

t=1

1

t

)
=

4L2D2

λ
ln

(
1 + 16

L

λ

)
+

4L2D2

λ
.

Then substitute the above inequality into (30), and take expectations over it under Assumption 3 (maximal stochastic
variance and maximal adversarial variation):

E

[
T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

]

=
8

λ

T∑
t=1

1

t
E
[
∥∇ft(xt)−∇Ft(xt)∥22

]
+

4

λ

T∑
t=2

1

t
E
[
∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22

]
+

4L2D2

λ
ln

(
1 + 16

L

λ

)
+

4L2D2 +G2

λ
+
λD2

2

≤ 8

λ

T∑
t=1

1

t
σ2
t +

4

λ

T∑
t=2

1

t
sup
x∈X
∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 +

4L2D2

λ
ln

(
1 + 16

L

λ

)
+

4L2D2 +G2

λ
+
λD2

2

≤ 1

λ

(
8σ2

max + 4Σ2
max

)
(lnT + 1) +

4L2D2

λ
ln

(
1 + 16

L

λ

)
+

4L2D2 +G2

λ
+
λD2

2
, (31)

where the last inequality uses the fact that
∑T
t=1

1
t ≤ lnT + 1. So the proof for the O

(
1
λ (σ

2
max +Σ2

max) log T
)

bound is
finished.

To summarize, we complete the proof by combining the two upper bounds in (29) and (31):

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]

≤min
{4G2

λ
ln
(
8σ2

1:T + 4Σ2
1:T +G2 + 1

)
+

4G2

λ
ln

(
1 +

64G2L2

λ2

)
+

4G2 + 1

λ
+
λD2

2

1

λ

(
8σ2

max + 4Σ2
max

)
(lnT + 1) +

4L2D2

λ
ln

(
1 + 16

L

λ

)
+

4L2D2 +G2

λ
+
λD2

2

}
≤O

(
min

{ 1

λ
log(σ2

1:T +Σ2
1:T ),

1

λ
(σ2

max +Σ2
max) log T

})
.
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A.3. Exp-Concave and Smooth Functions

Proof of Theorem 5. As stated in Assumption 7 (exponential concavity of individual function), we operate optimistic OMD
on α-exp-concave individual functions in Theorem 5. Accordingly, we have ft(xt)− ft(x) ≤ ⟨∇ft(xt),xt − x⟩ − β

2 ∥x−
xt∥2ht

, where β = 1
2 min

{
1

4GD , α
}

, and ht = ∇ft(xt)∇ft(xt)⊤. Therefore, we can take advantage of the above formula
to get tighter regret bounds as follows

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]
≤ E

[
T∑
t=1

⟨∇ft(xt),xt − x⟩ − β

2

T∑
t=1

∥x− xt∥2ht

]
. (32)

Clearly, ψt(x) = 1
2∥x∥

2
Ht

is a 1-strongly convex function with respect to ∥ · ∥Ht , and ∥ · ∥−1
Ht

is the dual norm of it. Thus we
can get the following formula from Lemma 1 (variant of Bregman proximal inequality) with a sum operation:

T∑
t=1

⟨xt − x,∇ft(xt)⟩ −
β

2

T∑
t=1

∥x− xt∥2ht

≤
T∑
t=1

(
1

2
∥x− x̂t∥2Ht

− 1

2
∥x− x̂t+1∥2Ht

)
− β

2

T∑
t=1

∥x− xt∥2ht︸ ︷︷ ︸
term (a)

+

T∑
t=1

∥∇ft(xt)−∇ft−1(xt−1)∥2H−1
t︸ ︷︷ ︸

term (b)

−
T∑
t=1

1

2

(
∥xt − x̂t∥2Ht

+ ∥x̂t+1 − xt∥2Ht

)
︸ ︷︷ ︸

term (c)

. (33)

Then, we discuss the upper bounds of term (a), term (b) and term (c), respectively. According to Chiang et al. (2012, Proof
of Lemma 14), we write term (a) as

term (a) =
1

2
∥x− x̂1∥2H1

− 1

2
∥x− x̂T+1∥2HT+1

+
1

2

T∑
t=1

(
∥x− x̂t+1∥2Ht+1

− ∥x− x̂t+1∥2Ht

)
− β

2

T∑
t=1

∥x− xt∥2ht
.

Based on Assumption 2 (diameter of the domain), with the definition that Ht = I + β
2G

2I + β
2

∑t−1
τ=1∇fτ (xτ )∇fτ (xτ )⊤

(see (13)) and ht = ∇ft(xt)∇ft(xt)⊤, we have ∥x − x̂1∥2H1
≤ D2

(
1 + β

2G
2
)

and Ht+1 − Ht =
β
2ht. Thus we can

simplify term (a) to

term (a) ≤ D2

(
1 +

β

2
G2

)
+
β

4

T∑
t=1

∥x− x̂t+1∥2ht
− β

2

T∑
t=1

∥x− xt∥2ht

≤ D2

(
1 +

β

2
G2

)
+
β

2

T∑
t=1

∥xt − x̂t+1∥2ht
≤ D2

(
1 +

β

2
G2

)
+

T∑
t=1

∥xt − x̂t+1∥2Ht

≤ D2

(
1 +

β

2
G2

)
+

T∑
t=1

∥∇ft(xt)−∇ft−1(xt−1)∥2H−1
t

= D2

(
1 +

β

2
G2

)
+ term (b),

where the third inequality is based on the fact that Ht ⪰ β
2G

2I ⪰ β
2ht and the 4th inequality uses Lemma 3 (stability

lemma).

Obviously, the upper bound of term (b) determines that of term (a). Hence we move to bound term (b). Due to the definition
of Ht and Assumption 1 (boundness of the gradient norm), there is G2I ⪰ ∇ft(xt)∇ft(xt)⊤ for every t. In addition, we
know ∇f0(x0) = 0, so we have

Ht ⪰ I +
β

4

t∑
τ=1

(
∇fτ (xτ )∇fτ (xτ )⊤ +∇fτ−1(xτ−1)∇fτ−1(xτ−1)

⊤) . (34)
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As well as Chiang et al. (2012), we claim that

∇fτ (xτ )∇fτ (xτ )⊤ +∇fτ−1(xτ−1)∇fτ−1(xτ−1)
⊤

⪰ 1

2
(∇fτ (xτ )−∇fτ−1(xτ−1)) (∇fτ (xτ )−∇fτ−1(xτ−1))

⊤
. (35)

The above inequality comes from subtracting the RHS of it from the left and getting that
1
2 (∇fτ (xτ ) +∇fτ−1(xτ−1)) (∇fτ (xτ ) +∇fτ−1(xτ−1))

⊤ ⪰ 0.

To this end, we substituting (35) into (34) and obtain

Ht

(35)

⪰ I +
β

8

t∑
τ=1

(∇fτ (xτ )−∇fτ−1(xτ−1)) (∇fτ (xτ )−∇fτ−1(xτ−1))
⊤
.

Let Pt = I + β
8

∑t
τ=1 (∇fτ (xτ )−∇fτ−1(xτ−1)) (∇fτ (xτ )−∇fτ−1(xτ−1))

⊤, we have

term (b) ≤
T∑
t=1

∥∇ft(xt)−∇ft−1(xt−1)∥2P−1
t

=
8

β

T∑
t=1

∥∥∥∥∥
√
β

8
(∇ft(xt)−∇ft−1(xt−1))

∥∥∥∥∥
2

P−1
t

.

As a result, applying Lemma 10 with ut =
√

β
8 (∇ft(xt)−∇ft−1(xt−1)) and ε = 1, we get

term (b) ≤ 8d

β
ln

(
β

8d
V̄T + 1

)
.

Then, derived from the fact that Ht ⪰ Ht−1 ⪰ I , we can bound term (c) as

term (c) =
1

2

T∑
t=1

∥xt − x̂t∥2Ht
+

1

2

T+1∑
t=2

∥xt−1 − x̂t∥2Ht−1

≥ 1

2

T∑
t=2

∥xt − x̂t∥2Ht−1
+

1

2

T∑
t=2

∥xt−1 − x̂t∥2Ht−1
≥ 1

4

T∑
t=2

∥xt − xt−1∥22.

Combining the above bounds of term (a), term (b) and term (c), we can get

T∑
t=1

⟨xt − x,∇ft(xt)⟩ −
β

2

T∑
t=1

∥x− xt∥2ht

≤ 16d

β
ln

(
β

8d
V̄T + 1

)
+D2

(
1 +

β

2
G2

)
− 1

4

T∑
t=2

∥xt − xt−1∥22.

Then exploiting Lemma 5 (boundness of cumulative norm of gradient difference) with the inequality ln(1 + u + v) ≤
ln(1 + u) + ln(1 + v), we have

T∑
t=1

⟨xt − x,∇ft(xt)⟩ −
β

2

T∑
t=1

∥x− xt∥2ht

≤ 16d

β
ln

(
β

d

T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22 +
β

2d

T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 +
β

8d
G2 + 1

)

+
16d

β
ln

(
βL2

2d

T∑
t=2

∥xt − xt−1∥22 + 1

)
+D2

(
1 +

β

2
G2

)
− 1

4

T∑
t=2

∥xt − xt−1∥22, (36)

Similarly, we still use Lemma 7 to simplify the above formula:

16d

β
ln

(
βL2

2d

T∑
t=2

∥xt − xt−1∥22 + 1

)
− 1

4

T∑
t=2

∥xt − xt−1∥22 ≤
16d

β
ln
(
32L2 + 1

)
. (37)
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Through combining (36) and (37), we obtain that

T∑
t=1

⟨xt − x,∇ft(xt)⟩ −
β

2

T∑
t=1

∥x− xt∥2ht

≤ 16d

β
ln

(
β

d

T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22 +
β

2d

T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 +
β

8d
G2 + 1

)

+
16d

β
ln
(
32L2 + 1

)
+D2

(
1 +

β

2
G2

)
.

Taking the expectation, and making use of Jensen’s inequality, the above bound becomes

E

[
T∑
t=1

⟨∇ft(xt),xt − x⟩ − β

2

T∑
t=1

∥x− xt∥2ht

]

≤16d

β
ln

(
β

d
σ2
1:T +

β

2d
Σ2

1:T +
β

8d
G2 + 1

)
+

16d

β
ln
(
32L2 + 1

)
+D2

(
1 +

β

2
G2

)
=O

( d
α
log(σ2

1:T +Σ2
1:T )

)
We finish the proof by integrating the above inequality with the proven result of expected regret for exp-concave losses (see
(32)).

Proof of Theorem 6. We demonstrate the new procedure of optimistic FTRL for α-exp-concave and smooth functions. We
design a surrogate loss for each round t: ℓt(x) = ⟨∇ft(xt),x− xt⟩ + β

2 ∥x − xt∥2ht
, where β = 1

2 min
{

1
4GD , α

}
, and

ht = ∇ft(xt)∇ft(xt)⊤. And we use the following updating rule:

xt+1 = argmin
x∈X

1

2
(1 + βG2)∥x∥22 +

t∑
s=1

ℓs(x) + ⟨Mt+1,x⟩,

where x0 is an arbitrary point in X , and Mt+1 = ∇ft(xt). Furthermore, we set M1 = ∇f0(x0) = 0. From (32), we can
easily derive that

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]
≤ E

[
T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

]
. (38)

So in the following, we concentrate on the regret of surrogate losses. Denoting by Ht = I + βG2I + β
∑t−1
s=1 hs (where I

is the d× d identity matrix) and Gt(x) = 1
2 (1 + βG2)∥x∥22 +

∑t−1
s=1 ℓs(x), we have that Gt(x) is 1-strongly convex w.r.t.

∥ · ∥Ht . Hence, using Lemma 11 (standard analysis of optimistic FTRL), we immediately get the following guarantee

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

≤ 1 + βG2

2
∥x∥22 +

T∑
t=1

(
⟨∇ft(xt)−∇ft−1(xt−1),xt − xt+1⟩ −

1

2
∥xt − xt+1∥2Ht

)

≤ (1 + βG2)D2

2
+

T∑
t=1

∥∇ft(xt)−∇ft−1(xt−1)∥2H−1
t︸ ︷︷ ︸

term (a)

− 1

4

T∑
t=1

∥xt − xt+1∥2Ht︸ ︷︷ ︸
term (b)

, (39)

where we denote the dual norm of ∥ · ∥Ht
by ∥ · ∥H−1

t
, and use Assumption 2 (diameter of the domain) and ⟨a, b⟩ ≤

∥a∥∗∥b∥ ≤ 1
2c∥a∥

2
∗ +

c
2∥b∥

2 in the second inequality.
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To bound term (a) in (39), we begin with the fact that

Ht ⪰ I + β

t∑
s=1

∇fs(xs)∇fs(xs)⊤

⪰ I + β

2

t∑
s=1

(
∇fs(xs)∇fs(xs)⊤ +∇fs−1(xs−1)∇fs−1(xs−1)

⊤) , (40)

where the first inequality is due to Assumption 1 (boundness of the gradient norm) and the second inequality comes from
the definition that∇f0(x0) = 0. We substitute (35) in the proof of Theorem 5 into (40) and obtain that

Ht ⪰ I +
β

4

t∑
s=1

(∇fs(xs)−∇fs−1(xs−1)) (∇fs(xs)−∇fs−1(xs−1))
⊤
.

Let Pt = I + β
4

∑t
s=1 (∇fs(xs)−∇fs−1(xs−1)) (∇fs(xs)−∇fs−1(xs−1))

⊤ so that Ht ⪰ Pt, then we can bound term
(a) in (39) as

term (a) ≤
T∑
t=1

∥∇ft(xt)−∇ft−1(xt−1)∥2P−1
t

=
4

β

T∑
t=1

∥∥∥∥∥
√
β

4
(∇ft(xt)−∇ft−1(xt−1))

∥∥∥∥∥
2

P−1
t

.

By applying Lemma 10 with ut =
√

β
4 (∇ft(xt)−∇ft−1(xt−1)) and ε = 1, we get that

term (a) ≤ 4d

β
ln

(
β

4d
V̄T + 1

)
.

Then we move to term (b). Since Ht = I + βG2I + β
∑t−1
s=1 hs ⪰ I , we can derive that

term (b) =
1

4

T∑
t=1

∥xt − xt+1∥2Ht
≥ 1

4

T∑
t=1

∥xt − xt+1∥2I =
1

4

T∑
t=1

∥xt − xt+1∥22.

As a result, we bound the guarantee in (39) by substituting the bounds of term (a) and term (b):

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x) ≤
(1 + βG2)D2

2
+

4d

β
ln

(
β

4d
V̄T + 1

)
− 1

4

T∑
t=1

∥xt − xt+1∥22.

Through Lemma 5 (boundness of cumulative norm of gradient difference) together with the inequality of ln(1 + u+ v) ≤
ln(1 + u) + ln(1 + v), we get that

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

≤ 4d

β
ln

(
2β

d

T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22 +
β

d

T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 +
β

4d
G2 + 1

)

+
(1 + βG2)D2

2
+

4d

β
ln

(
βL2

d

T∑
t=2

∥xt − xt−1∥22 + 1

)
− 1

4

T∑
t=1

∥xt − xt+1∥22. (41)

By applying Lemma 7, the last two terms in (41) are bounded by

4d

β
ln

(
βL2

d

T∑
t=2

∥xt − xt−1∥22 + 1

)
− 1

4

T∑
t=1

∥xt − xt+1∥22 ≤
4d

β
ln(16L2 + 1). (42)
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Combining (41) with (42), we arrive at

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

≤ 4d

β
ln

(
2β

d

T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22 +
β

d

T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 +
β

4d
G2 + 1

)
+

(1 + βG2)D2

2
+

4d

β
ln(16L2 + 1).

Then we compute the expected regret by taking the expectation over the above regret with the help of Jensen’s inequality
and the derived result in (38):

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]
≤ E

[
T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

]

≤ 4d

β
ln

(
2β

d
σ2
1:T +

β

d
Σ2

1:T +
β

4d
G2 + 1

)
+

(1 + βG2)D2

2
+

4d

β
ln(16L2 + 1)

= O
( d
α
log(σ2

1:T +Σ2
1:T )

)
.

A.4. Proof of Theorem 7

In this part, we present the proof of Theorem 7. Since our algorithmic design is based on the collaborative online ensemble
framework proposed by Zhao et al. (2021), we first introduce the following general theorem (Zhao et al., 2021, Theorem 5)
and provide the proof for our theorem based on it.

Theorem 8 (Theorem 5 of Zhao et al. (2021).). Under Assumption 1 (boundness of the gradient norm) and Assumption 2
(diameter of the domain), setting the step size poolH as

H =

{
ηi = min

{
η̄,

√
D2

8G2T
· 2i−1

}
|i ∈ [N ]

}
, (43)

where N = ⌈2−1 log2((8G
2T η̄2)/D2)⌉+ 1, and setting the meta learning rate as

εt = min

{
ε̄,

√
lnN

D2
∑t
s=1∥∇ft(xt)− ft−1(xt−1)∥22

}
,

Algorithm 2 enjoys the following dynamic regret guarantee:

T∑
t=1

⟨∇ft(xt),xt − ut⟩

≤ 5
√
D2 lnNV̄T + 2

√
(D2 + 2DPT )V̄T +

lnN

ε̄
+ 8ε̄D2G2

+
D2 + 2DPT

η̄
+

(
λ− 1

4η̄

) T∑
t=2

∥xt,i − xt−1,i∥22 −
1

4ε̄

T∑
t=2

∥pt − pt−1∥21 − λ
T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥22.

In the above, V̄T =
∑T
t=1∥∇ft(xt)−∇ft−1(xt−1)∥22 is the adaptivity term measuring the quality of optimistic gradient

vectors {Mt = ft−1(xt−1)}Tt=1, and PT =
∑T
t=2∥ut−1 − ut∥2 is the path length of comparators.

In the following, we prove Theorem 7 based on Theorem 8.
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Proof. Noting that V̄T =
∑T
t=1∥∇ft(xt) − ∇ft−1(xt−1)∥22 in Theorem 8, thus by applying Lemma 5 (Boundness of

cumulative norm of gradient difference) and the inequality
√
a+ b ≤

√
a+
√
b(a, b > 0), we can bound the first and second

term in the regret of Theorem 8 as

5
√
D2 lnNV̄T + 2

√
(D2 + 2DPT )V̄T

=
(
5
√
D2 lnN + 2

√
(D2 + 2DPT )

)√
V̄T

≤ G
(
5
√
D2 lnN + 2

√
(D2 + 2DPT )

)
+
(
5
√
D2 lnN + 2

√
(D2 + 2DPT )

)√√√√4L2

T∑
t=2

∥xt − xt−1∥22

+ 2
√
2
(
5
√
D2 lnN + 2

√
(D2 + 2DPT )

)√√√√ T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22

+ 2
(
5
√
D2 lnN + 2

√
(D2 + 2DPT )

)√√√√ T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22. (44)

To eliminate the relevant terms of ∥xt − xt−1∥22, we first prove that

∥xt − xt−1∥22 =

∥∥∥∥∥
N∑
i=1

pt,ixt,i −
N∑
i=1

pt−1,ixt−1,i

∥∥∥∥∥
2

2

≤ 2

∥∥∥∥∥
N∑
i=1

pt,ixt,i −
N∑
i=1

pt,ixt−1,i

∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥
N∑
i=1

pt,ixt−1,i −
N∑
i=1

pt−1,ixt−1,i

∥∥∥∥∥
2

2

≤ 2

(
N∑
i=1

pt,i∥xt,i − xt−1,i∥2

)2

+ 2

(
N∑
i=1

|pt,i − pt−1,i|∥xt−1,i∥2

)2

≤ 2

N∑
i=1

pt,i∥xt,i − xt−1,i∥22 + 2D2∥pt − pt−1∥21.

Thus we can get

T∑
t=2

∥xt − xt−1∥22 = 2

T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥22 + 2D2
T∑
t=2

∥pt − pt−1∥21.

Then we can use the above inequality and the AM-GM inequality to bound the second term in (44):

(
5
√
D2 lnN + 2

√
(D2 + 2DPT )

)√√√√4L2

T∑
t=2

∥xt − xt−1∥22

≤ 5

√√√√D2 lnN

(
8L2

T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥22 + 8L2D2

T∑
t=2

∥pt − pt−1∥21

)

+ 2

√√√√(D2 + 2DPT )

(
8L2

T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥22 + 8L2D2

T∑
t=2

∥pt − pt−1∥21

)

≤ 25 lnN

4ε̄
+ 8ε̄D2L2

T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥22 + 8ε̄L2D4
T∑
t=2

∥pt − pt−1∥21

+
D2 + 2DPT

η̄
+ 8η̄L2

T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥22 + 8η̄L2D2
T∑
t=2

∥pt − pt−1∥21
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=
25 lnN

4ε̄
+
D2 + 2DPT

η̄
+
(
8ε̄D2L2 + 8η̄L2

) T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥22

+
(
8ε̄L2D4 + 8η̄L2D2

) T∑
t=2

∥pt − pt−1∥21.

Combining (44) and the above formula with the regret in Theorem 8, we have

T∑
t=1

⟨∇ft(xt),xt − ut⟩

≤ G
(
5
√
D2 lnN + 2

√
(D2 + 2DPT )

)
+ 2
√
2
(
5
√
D2 lnN + 2

√
(D2 + 2DPT )

)√√√√ T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22

+ 2
(
5
√
D2 lnN + 2

√
(D2 + 2DPT )

)√√√√ T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 +
29 lnN

4ε̄

+ 8ε̄D2G2 +
2D2 + 4DPT

η̄
+

(
λ− 1

4η̄

) T∑
t=2

∥xt,i − xt−1,i∥22

+

(
8ε̄L2D4 + 8η̄L2D2 − 1

4ε̄

) T∑
t=2

∥pt − pt−1∥21 +
(
8ε̄D2L2 + 8η̄L2 − λ

) T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥22.

By setting λ = 2L, η̄ = 1
8L and ε̄ = 1

8D2L , we can drop the last three non-positive terms and take expectations over the
above formula to get that

E

[
T∑
t=1

⟨∇ft(xt),xt − ut⟩

]

≤ G
(
5
√
D2 lnN + 2

√
(D2 + 2DPT )

)
+
(
5
√
D2 lnN + 2

√
(D2 + 2DPT )

)(
2
√
2
√
σ2
1:T + 2

√
Σ2

1:T

)
+ (58 lnN + 16)D2L+ 32DLPT +

1

L
G2

= O
(
PT +

√
(1 + PT )

(√
σ2
1:T +

√
Σ2

1:T

))
,

which completes the proof.

A.5. Useful Lemmas

Lemma 1 (variant of Bregman proximal inequality). Assume Rt(·) is a α-strongly convex function with respect to ∥ · ∥,
and denote by ∥ · ∥∗ the dual norm. Based on the updating rules of optimistic OMD in (6) and (7), for all x ∈ X and t ∈ [T ],
we have

⟨xt − x,∇ft(xt)⟩ ≤BRt
(x, x̂t)−BRt

(x, x̂t+1)

+
1

α
∥∇ft(xt)−∇ft−1(xt−1)∥2∗ −

α

2

(
∥xt − x̂t∥2 + ∥x̂t+1 − xt∥2

)
,

where∇f0(x0) = 0.

Proof. The above lemma can be extracted from previous studies (Nemirovski, 2005; Chiang et al., 2012). Here we provide
its proof with the following lemma (Nemirovski, 2005, Lemma 3.1). Let us review the updating rules of optimistic OMD in
(6) and (7):

xt = argmin
x∈X

⟨∇ft−1(xt−1),x⟩+Bψt
(x, x̂t), (45)
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x̂t+1 = argmin
x∈X

⟨∇ft(xt),x⟩+Bψt
(x, x̂t). (46)

Notice that the updating rule (45) of xt holds even for t = 1, since we define ∇f0(x0) = 0 and

x1 = x̂1 = argmin
x∈X

Bψ1
(x, x̂1).

Then, based on the following mappings

Z = E = U ← X , w← xt, γ ← 1, ξ ← ∇ft−1(xt−1), ω ← Rt, z− ← x̂t,

z+ ← x̂t+1, η ← ∇ft(xt),

we apply Lemma 2 to (45) and (46), and obtain Lemma 1.

Lemma 2 (Lemma 3.1 of Nemirovski (2005)). Let Z be a convex compact set in Euclidean space E with inner product ⟨·, ·⟩,
let ∥ · ∥ be a norm on E and ∥ · ∥∗ be its dual norm, and let ω(z) : Z 7→ R be a α-strongly convex function with respect to
∥ · ∥, and Bω(z,w) be the Bregman distance associated with ω. Let U be a convex and closed subset of Z , and let z− ∈ Z ,
let ξ,η ∈ E , and let γ > 0. Consider the points

w = argmin
y∈U

[
⟨γξ,y⟩+Bω(y, z−)

]
,

z+ = argmin
y∈U

[
⟨γη,y⟩+Bω(y, z−)

]
.

Then for all z ∈ U , one has

⟨w − z, γη⟩ ≤ Bω(z, z−)−Bω(z, z+) +
γ2

α
∥η − ξ∥2∗ −

α

2

(
∥w − z−∥2 + ∥z+ −w∥2

)
and

∥w − z+∥ ≤ α−1γ∥ξ − η∥∗.
Lemma 3 (stability lemma). By the same argument with Lemma 1, we have

∥x̂t+1 − xt∥ ≤ α−1∥∇ft(xt)−∇ft−1(xt−1)∥∗.

Proof. This conclusion is also proved by Lemma 2, which can be obtained from the proof of Lemma 1, and will not be
repeated here.

Lemma 4 (Boundness of the norm of gradient difference (Sachs et al. (2022), Analysis of Theorem 5)). Under Assumptions 4
and 1, we have

∥∇ft(xt)−∇ft−1(xt−1)∥22 ≤4∥∇ft(xt)−∇Ft(xt)∥22 + 4∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22
+ 4L2∥xt − xt−1∥22 + 4∥∇Ft−1(xt−1)−∇ft−1(xt−1)∥22,

where ∥∇f1(x1)−∇f0(x0)∥22 = ∥∇f1(x1)∥22 ≤ G2.

Proof. For t ≥ 2, from Jensen’s inequality and Assumption 4 (smoothness of expected function), we have

∥∇ft(xt)−∇ft−1(xt−1)∥22

=16

∥∥∥∥14[∇ft(xt)−∇Ft(xt)]+ 1

4

[
∇Ft(xt)−∇Ft(xt−1)

]
+
1

4

[
∇Ft(xt−1)−∇Ft−1(xt−1)

]
+

1

4

[
∇Ft−1(xt−1)−∇ft−1(xt−1)

]∥∥∥∥2
2

≤4∥∇ft(xt)−∇Ft(xt)∥22 + 4∥∇Ft(xt)−∇Ft(xt−1)∥22
+ 4∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 + 4∥∇Ft−1(xt−1)−∇ft−1(xt−1)∥22

≤4∥∇ft(xt)−∇Ft(xt)∥22 + 4L2∥xt − xt−1∥22
+ 4∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22 + 4∥∇Ft−1(xt−1)−∇ft−1(xt−1)∥22.

(47)
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For t = 1, from Assumption 1 (boundness of the gradient norm), we have

∥∇f1(x1)−∇f0(x0)∥22 = ∥∇f1(x1)∥22 ≤ G2. (48)

Lemma 5 (Boundness of cumulative norm of gradient difference (Sachs et al. (2022), Analysis of Theorem 5)). Under
Assumptions 4 and 1, we have

T∑
t=1

∥∇ft(xt)−∇ft−1(xt−1)∥22 ≤G2 + 4L2
T∑
t=2

∥xt − xt−1∥22

+8

T∑
t=1

∥∇ft(xt)−∇Ft(xt)∥22 + 4

T∑
t=2

∥∇Ft(xt−1)−∇Ft−1(xt−1)∥22.

(49)

Proof. It is easy to verify the above lemma by substituting (47) and (48) in Lemma 4 into
∑T
t=1 ∥∇ft(xt)−∇ft−1(xt−1)∥22

and simplifying the result.

Lemma 6. Under Assumption 1 and 6, we have

T∑
t=1

1

λt
∥∇ft(xt)−∇ft−1(xt−1)∥22 ≤

4G2

λ
ln

(
T∑
t=1

∥∇ft(xt)−∇ft−1(xt−1)∥22 + 1

)
+

4G2 + 1

λ
.

Proof. Define

α =

⌈
T∑
t=1

∥∇ft(xt)−∇ft−1(xt−1)∥22

⌉
.

Since α is obtained by rounding up the term
∑T
t=1 ∥∇ft(xt)−∇ft−1(xt−1)∥22, we have

T∑
t=1

1

λt
∥∇ft(xt)−∇ft−1(xt−1)∥22

=

α∑
t=1

1

λt
∥∇ft(xt)−∇ft−1(xt−1)∥22 +

T∑
t=α+1

1

λt
∥∇ft(xt)−∇ft−1(xt−1)∥22

≤4G2

λ

α∑
t=1

1

t
+

1

λ(α+ 1)

T∑
t=α+1

∥∇ft(xt)−∇ft−1(xt−1)∥22

≤4G2

λ

(
1 +

∫ α

t=1

1

t
dt

)
+

1

λ
≤ 4G2

λ
(lnα+ 1) +

1

λ

≤4G2

λ
ln

(
T∑
t=1

∥∇ft(xt)−∇ft−1(xt−1)∥22 + 1

)
+

4G2 + 1

λ
.

Lemma 7. Let AT be a non-negative term, a, b be non-negative constants and c be a positive constant, then we have

a ln(bAT + 1)− cAT ≤ a ln
(
ab

c
+ 1

)
.

Proof. We use the following inequality to prove the lemma:

ln p ≤ p

q
+ ln q +−1, ∀p > 0, q > 0.
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By setting p = bAT + 1 and q = ab
c + 1, we obtain

a ln(bAT + 1)− cAT ≤ a
(
bAT + 1

ab/c+ 1
+ ln

(
ab

c
+ 1

)
− 1

)
− cAT

= c

(
ab

ab+ c
− 1

)
AT +

(
1

ab/c+ 1
− 1

)
a+ a ln

(
ab

c
+ 1

)
≤ a ln

(
ab

c
+ 1

)
.

B. Omitted Details for Section 5
In this section, we present the missing proofs of corollaries in Section 5, including proof of Corollary 1 for the adversarially
corrupted stochastic model in Appendix B.1 and proof of Corollary 2 for the ROM model in Appendix B.2.

B.1. Proof of Corollary 1

Proof. We have introduced in Section 5.3 that the loss functions in adversarially corrupted stochastic model satisfy that

ft(x) = ht(x) + ct(x) (50)

for all t ∈ [T ], where ht(·) is sampled from a fixed distribution every iteration and
∑T
t=1 maxx∈X ∥∇ct(x)∥ ≤ CT

(CT > 0 is a corruption level parameter). Then according to the definition of Ft(x), we have

Ft(x) = Eft∼Dt
[ft(x)] = Eht∼D[ht(xt) + ct(x)] = Eht∼D[ht(xt)] + ct(x). (51)

Since ht(·) is i.i.d, the expectations of ht(·) for each t are the same. Refer to Sachs et al. (2022), we have

∥∇Ft(x)−∇Ft−1(x)∥22 ≤ 2G∥∇Ft(x)−∇Ft−1(x)∥2
(51)
= 2G∥∇ct(x)−∇ct−1(x)∥
≤ 2G(∥∇ct(x)∥+ ∥∇ct−1(x)∥).

Because Σ2
1:T = E

[∑T
t=2 supx∈X ∥∇Ft(x)−∇Ft−1(x)∥22

]
(see (5)), we can substitute the above formula into it and get

that

Σ2
1:T ≤

T∑
t=2

sup
x∈X

2G(∥∇ct(x)∥+ ∥∇ct−1(x)∥) ≤ 4GCT . (52)

Besides, due to that

σ2
t = max

x∈X
Eft∼Dt

[∥∇ft(x)−∇Ft(x)∥22]
(50),(51)
= max

x∈X
Eht∼Dt

[∥∇ht(x)−∇Eht∼D[ht(xt)]∥22] = σ,

where σ denotes the variance of the stochastic gradients, we have

σ2
1:T = E

[
T∑
t=1

σ2
t

]
= σT. (53)

We complete the proof by integrating the bound of σ2
1:T and Σ2

1:T (see (53), (52)) with the regret bounds of optimistic OMD
in Theorem 3 and Theorem 5.

B.2. Proof of Corollary 2

Proof. The difference between ROM and i.i.d. stochastic model is that ROM samples a loss from the loss set without
replacement in each round, while i.i.d. stochastic model samples independently and uniformly with replacement in each
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round. However, following Sachs et al. (2022), we can bound the variance of ROM with respect to Dt for each t by the
variance σ2

1 of the first round, which can also be regarded as the variance of the i.i.d. model for every round. Specifically, for
∀x ∈ X and every t ∈ [T ], we have

Eft∼Dt

[
∥∇ft(x)−∇Ft(x)∥22

]
≤ Eft∼Dt

[
∥∇ft(x)−∇F1(x)∥22

]
. (54)

Since ROM samples losses without replacement, let set Γt represent the index set of losses that can be selected in the tth
round, thus Γ1 = [T ], then we have

Eft∼Dt

[
∥∇ft(x)−∇F1(x)∥22

]
=

1

T − (t− 1)

∑
i∈Γt

∥∇fi(x)−∇F1(x)∥22

≤ 1

T − (t− 1)

∑
i∈Γ1

∥∇fi(x)−∇F1(x)∥22 ≤
T

T − (t− 1)
σ2
1 .

So combining (54) with the above inequality, we get that

Eft∼Dt

[
∥∇ft(x)−∇Ft(x)∥22

]
≤ T

T − (t− 1)
σ2
1 , ∀x ∈ X , t ∈ [T ]. (55)

Besides, from (54), we can also get that

E
[
σ2
t

]
≤ E

[
max
x∈X

Eft∼Dt

[
∥∇ft(x)−∇F1(x)∥22

]]
≤ E

[
Eft∼Dt

[
max
x∈X
∥∇ft(x)−∇F1(x)∥22

]]
= σ̃2

1 , (56)

where we review the definition that σ̃2
1 = 1

T

∑T
t=1 maxx∈X ∥∇ft(x)− ∇̄T (x)∥22. Then, we use a technique in Sachs et al.

(2022) by introduce a variable τ ∈ [T ], which help us upper bound σ2
1:T as

σ2
1:T = E

[
T∑
t=1

σ2
t

]
≤ E

[
τ∑
t=1

σ2
t

]
+ E

[
T∑

t=τ+1

σ2
t

]
(55),(56)

≤
τ∑
t=1

T

T − (t− 1)
σ2
1 + (T − τ)σ̃2

1

≤
T∑

n=T−(τ−1)

1

n
Tσ2

1 + (T − τ)σ̃2
1

≤

(∫ T

t=T−(τ−1)

1

t
dt+

1

T − (τ − 1)

)
Tσ2

1 + (T − τ)σ̃2
1

≤
(
1 + log

T

T − (τ − 1)

)
Tσ2

1 + (T − τ)σ̃2
1 .

If Tσ2
1/σ̃

2
1 > 2, we set τ = T − ⌊Tσ2

1/σ̃
2
1⌋, then we have

σ2
1:T ≤

(
1 + log

T

T − (τ − 1)

)
Tσ2

1 + (T − τ)σ̃2
1

=

(
1 + log

T

⌊Tσ2
1/σ̃

2
1⌋+ 1

)
Tσ2

1 + ⌊Tσ2
1/σ̃

2
1⌋σ̃2

1

≤
(
1 + log

T

⌊Tσ2
1/σ̃

2
1⌋

)
Tσ2

1 + Tσ2
1

≤
(
1 + log

1

σ2
1/σ̃

2
1 − 1/T

)
Tσ2

1 + Tσ2
1
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≤
(
1 + log

2σ̃2
1

σ2
1

)
Tσ2

1 + Tσ2
1

≤Tσ2
1 log

(
2e2σ̃2

1

σ2
1

)
.

Otherwise, if Tσ2
1/σ̃

2
1 ≤ 2, we set τ = T , then we can get the regret bound of O(Tσ2

1(1 + log T )). Since we have

O(Tσ2
1(1 + log T )) ≤ O(Tσ2

1(1 + log(2σ̃2
1/σ

2
1))) ≤ O(Tσ2

1 log(2e
2σ̃2

1/σ
2
1)),

then the final bound of σ2
1:T is of order O

(
Tσ2

1 log
( 2e2σ̃2

1

σ2
1

))
.

Next, we try to bound Σ2
1:T . We suppose that kt = Γt\Γt+1 represents the loss selected in round t, then we have

∥∇Ft(x)−∇Ft−1(x)∥22 =

∥∥∥∥∥∥ 1

T − (t− 1)

∑
i∈Γt

∇fi(x)−
1

T − (t− 2)

∑
i∈Γt−1

∇fi(x)

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥ (T − t+ 2)− (T − t+ 1)

(T − t+ 1)(T − t+ 2)

∑
i∈Γt

∇fi(x)−
1

T − t+ 2
∇fkt−1

(x)

∥∥∥∥∥
2

2

≤ 2

(T − t+ 2)2

∥∥∥∥∥ 1

T − t+ 1

∑
i∈Γt

∇fi(x)

∥∥∥∥∥
2

2

+
2

(T − t+ 2)2
∥∇fkt−1

(x)∥22

≤ 4G2

(T − t+ 2)2
,

where the last inequality is derived from Assumption 1 (boundness of the gradient norm).

Summing the above inequality over t = 1, ..., T , and taking the expectation give

Σ2
1:T = E

[
T∑
t=1

sup
x∈X
∥∇Ft(x)−∇Ft−1(x)∥22

]
≤

T∑
t=1

4G2

(T − t+ 2)2
≤ 8G2.

Finally, we substitute the bound of σ2
1:T and Σ1:T into Theorem 1, which is for convex and smooth functions, and complete

the proof.

C. Technical Lemmas
Lemma 8 (self-confident tuning (Auer et al., 2002, Lemma 3.5)). Let l1, . . ., lT and δ be non-negative real numbers. Then

T∑
t=1

lt√
δ +

∑t
i=1 li

≤ 2


√√√√δ +

T∑
t=1

lt −
√
δ

 ,

where we define 0/
√
0 = 0 for simplicity.

Lemma 9 (Lemma 12 of Hazan et al. (2007)). Let A ⪰ B ≻ 0 be positive definite matrices. Then ⟨A−1, A−B⟩ ≤ ln |A|
|B| ,

where |A| denotes the determinant of matrix A.

Lemma 10. Let ut ∈ Rd (t = 1, ..., T ), be a sequence of vectors. Define St =
∑t
τ=1 uτu

⊤
τ + εI , where ε > 0. Then

T∑
t=1

u⊤
t S

−1
t ut ≤ d ln

(
1 +

∑T
t=1 ∥ut∥22
dε

)
.

Proof. Using Lemma 9, we have ⟨A−1, A−B⟩ ≤ ln |A|
|B| for any two positive definite matricesA ⪰ B ≻ 0. Then, following

33



Optimistic OMD for Bridging Stochastic and Adversarial Online Convex Optimization

the argument of Luo et al. (2016, Theorem 2), we have

T∑
t=1

u⊤
t S

−1
t ut =

T∑
t=1

⟨S−1
t ,utu

⊤
t ⟩ =

T∑
t=1

⟨S−1
t , St − St−1⟩

≤
T∑
t=1

ln
|St|
|St−1|

= ln
|ST |
|S0|

=

d∑
i=1

ln

(
1 +

λi(
∑T
t=1 utu

⊤
t )

ε

)

=d

d∑
i=1

1

d
ln

(
1 +

λi(
∑T
t=1 utu

⊤
t )

ε

)

≤d ln

(
1 +

∑d
i=1 λi(

∑T
t=1 utu

⊤
t )

dε

)
= d ln

(
1 +

∑T
t=1 ∥ut∥22
dε

)
,

where the last inequality is due to Jensen’s inequality.

Lemma 11 (standard analysis of optimistic FTRL (Orabona, 2019, Theorem 7.35)). Let V ∈ Rd be convex, closed, and
non-empty. Denote by Gt(x) = Ψt(x) +

∑t−1
s=1 ℓs(x). Assume for t = 1, · · · , T that Gt is proper and λt-strongly convex

w.r.t. ∥ · ∥, ℓt and ℓ̃t proper and convex (ℓ̃t is the predicted next loss), and int dom Gt ∩ V ̸= {}. Also, assume that ∂ℓt(xt)
and ∂ℓ̃t(xt) are non-empty. Then there exists g̃t ∈ ∂ℓ̃t(xt) for t = 1, · · · , T such that

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x)

≤ ΨT+1(x)−Ψ1(x1) +

T∑
t=1

(
⟨gt − g̃t,xt − xt+1⟩ −

λt
2
∥xt − xt+1∥2 +Ψt(xt+1)−Ψt+1(xt+1)

)
for all gt ∈ ∂ℓt(xt).
Lemma 12 (Lemma 13 of Zhao et al. (2021)). Let a1, a2, · · · , aT , b and c̄ be non-negative real numbers and at ∈ [0, B] for
any t ∈ [T ]. Let the step size be

ct = min

{
c̄,

√
b∑t

s=1 as

}
and c0 = c̄.

Then, we have

T∑
t=1

ct−1at ≤ 2c̄B + 4

√√√√b

T∑
t=1

at.
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