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We aim at the solution of inverse problems in imaging, by combining a penalized
sparse representation of image patches with an unconstrained smooth one. This
allows for a straightforward interpretation of the reconstruction. We formulate the
optimization as a bilevel problem. The inner problem deploys classical algorithms
while the outer problem optimizes the dictionary and the regularizer parameters
through supervised learning. The process is carried out via implicit differentiation
and gradient-based optimization. We evaluate our method for denoising, super-
resolution, and compressed-sensing magnetic-resonance imaging. We compare it
to other classical models as well as deep-learning-based methods and show that it
always outperforms the former and also the latter in some instances.

1. Introduction
We aim to learn a smooth-plus-sparse model for the resolution of linear inverse problems [1]. More
precisely, given a measurement operator H ∈ Rm×n and noisy measurements y ∈ Rm, we want to
find the underlying ground truth x∗ ∈ Rn that satisfiesHx∗ ≈ y. AsH is commonly ill-conditioned
or even singular, direct inversion fails and variational regularization can be deployed instead, as in

argmin
x∈Rn

1

2
∥Hx− y∥2 +R(x). (1)

Here, the first term ensures data consistency, and the regularizer R : Rn → R≥0 encodes prior
information. We deploy the patch-based regularizer R(x) =

∑n
k=1Rk(Pkx), where Pk ∈ Rd×n

extracts a patch of size
√
d ×
√
d at pixel k. To each patch, we apply dictionary-based regularizers

Rk : Rd → R≥0 of the form

Rk(Pkx) = min
αk∈Rp

β

2
∥Pkx−Dαk∥2 + λR(αk) (2)

with weights β, λ > 0, a synthesis dictionary D ∈ Rd×p, coefficients αk ∈ Rp, and a sparsity prior
R : Rp → R≥0. Essentially, (2) enforces that each patch has an R-sparse (low regularization cost)
representation in the dictionaryD. These considerations lead to the patch-based reconstruction

x∗ ∈ argmin
x∈Rn

min
(αk)nk=1

1

2
∥Hx− y∥2 +

n∑
k=1

β

2
∥Pkx−Dαk∥2 + λR(αk), (3)

where we considerD andR as learnable parameters. In particular, they will be chosen such that x∗

is a high-quality reconstruction. Such data-driven variational models for solving inverse problems
have become increasingly popular in recent years [2, 3].
Given paired training data (xm,ym)Mm=1, we use supervised learning to obtain themodel parameters
D and R such that the solutions x∗

k of (3) minimize the reconstruction error L on the training set
given by

L(D, R) =
1

M

M∑
m=1

∥x∗
m − xm∥1. (4)
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For this, we need to solve a bilevel task with two subproblems:

• the inner problem in (3), namely, a search for the optimal x∗ with classical optimization
algorithms such as inertial proximal alternating linearized minimization (iPALM) [4];

• the outer problem (4), where we learnD andR. Gradient-based algorithms such as ADAM
[5] require the derivatives of x∗

m with respect to the parameters. These are accessible via
implicit differentiation, popularized with the deep equilibrium (DEQ) framework [6].

Contribution Wepropose a learning scheme to determine the parameters in (3). To improve image
reconstruction, we found it helpful to ignore low-frequency components in the regularization (2) of
each patchPkx. Hence, we modifyPk into P̂k = (I−QQT )Pk with a learnable analysis dictionary
Q ∈ Rd×p2 . Since (I−QQT ) projects onto ker(QT ), thismeans that we remove a learned subspace of
Rd during the patch extraction. This leads to a decomposition of the reconstruction x∗ into a smooth
component induced byQ, and a sparse one induced byD. For the optimization in (3), we show that
all linear operators are expressible as convolutions. Hence, the minimization in (3) amounts to a
search for the fixed point of a two-layer convolutional neural networkwithout any explicit extraction
of patches. After having trained the dictionaries D and Q, and the regularizer R, we evaluate the
model on denoising, super-resolution and compressed-sensing magnetic-resonance imaging (CS-
MRI). We compare our results with similar classical methods such as TV [7], K-SVD [8] and BM3D
[9] as well as two deep-learning-basedmethods, namely, DRUNet [10] and Prox-DRUNet [11]. Our
code is accessible on Github1.

2. Related Work
Patch-based techniques have a long history [12–15] in image reconstruction. Since the empirical
patch distributions are similar at different image scales, they are well-suited for image characteriza-
tion [16]. In principle, we can interpret ourmodel (3) as a special case of the generic expected patch
log likelihood model [17] with a dictionary-based sparsity prior [18]. To minimize this objective,
one can deploy half quadratic splitting, which makes the surrogate objective in each step similar
to (3). Commonly deployed priors for the coefficients αk are ℓ0, ℓ1, or non-convex relaxations be-
tween these two. However, the β is successively increased during the iterations. Over the years,
patch-based modeling ideas have also been incorporated into data-driven approaches.
Dictionary Learning Dictionary-based priors are well-established [13, 19]. Aside from computing
the α, most approaches also adaptD during the reconstruction process [20, 21], which we only do
during the training. To perform the updates, themost popular approach used to be alternatingmin-
imization with updates ofD based on either the SVD, [8], sequential schemes [20], or the proximal
gradient method [22]. Alternatives are based on block coordinate descent [21, 23]. Nowadays, after
the pioneering work of [24], algorithm unrolling is commonly used to optimize overD [25, 26]. We
pursue a different strategy for training, namely, a bilevel approach with implicit differentiation to
compute the required gradient ∇Dxk, see also [27, 28].
Convolutional Dictionaries There is a line of work that uses convolutional dictionaries to improve
the computational efficiency [29–31]. A recent extension aims to also incorporate multiscale mod-
eling [32]. In contrast to our model (3), x is modeled as the convolution of a dictionary D with
sparse coefficientsα. As it leads to more degrees of freedom, the approach might be suboptimal for
challenging inverse problems [21].
Variational Image Decomposition Images can be often modeled as the superposition of cartoon
parts (piecewise smooth) and texture parts (high-frequency content) [33]. With synthesis-based
variational models, one can perform such a decomposition based on morphological components
[34], specific texture priors [35, 36], specific dictionaries [37], or generative models [38]. In contrast
to all these models, our cartoon part is actually smooth and does not contain discontinuities. Hence,

1https://github.com/StanislasDucotterd/Smooth-Plus-Sparse-Model
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we do not have the issue that there is an ambiguity between the two components. Closest in spirit
to our work is [39], where the authors also aim to learn two different dictionaries. However, they
impose fewer strict constraints on the dictionaries and treat each patch separately. Hence, their
approach does not readily generalizes to inverse problems.

3. Method
We seek to learn two dictionaries of atomsD ∈ Rd×p1 andQ ∈ Rd×p2 withQTD = 0 andQTQ = I,
as well as a regularizer R such that any minimizer (x∗,α∗) ⊂ Rn×(Rp1)n of the objective

JD,Q,R,y(x,α) =
1

2
∥Hx− y∥2 + min

(ck)nk=1

( n∑
k=1

β

2
∥Pkx−Qck −Dαk∥2 + λR(αk)

)
(5)

corresponds to a high-quality reconstructionx∗ of the datay. Here, the constraintQTD = 0 ensures
that the representations Dαk and Qck are contained in two orthogonal subspaces. Since only the
column space of Q matters in (5), the constraint that Q be a tight frame is not restrictive. Then,
(I−QQT ) is the orthogonal projection onto the subspace ker(QT ), which allows us to rewrite (5)
as

JD,Q,R,y(x,α) =
1

2
∥Hx− y∥2 +

n∑
k=1

β

2
∥P̂kx−Dαk∥2 + λR(αk), (6)

where P̂k = (I − QQT )Pk. By replacing Pk with P̂k in (3), we follow the paradigm that not
everything in a patch Pkx should be penalized. In particular, it makes sense to relax constraints on
the mean (see also [28]) and on some low-frequency components. Due to the constraintQTD = 0,
we can rewrite our generalized patch regularizer (2) as

Rk(x) = min
u∈Rd

(β
2
∥(I−QQT )(x− u)∥2 + min

α s.t. Dα=u
λR(α)

)
, (7)

namely, as the infimal convolution of an analysis- and a synthesis-based regularizer. To evaluate the
bilevel training objective (4) with the additional parameter Q, we need to minimize the objective
(6). This is detailed in the Section 3.1.

3.1. Training of the Model—Inner Optimization
We minimize the objective (6) using the iPALM algorithm [4], which consists of the updates

β
(m)
k = α

(m)
k +

m− 1

m+ 2

(
α

(m)
k −α

(m−1)
k

) (8)

α
(m+1)
k = Proxγ1λR

(
β
(m)
k − γ1D

T
(
Dβ

(m)
k − P̂kx

(m)
)) (9)

z(m) = x(m) +
m− 1

m+ 2

(
x(m) − x(m−1)

) (10)

x(m+1) = z(m) − γ2

(
HT (Hz(m) − y) +

n∑
k=1

βP̂T
k

(
P̂kz

(m) −Dα
(m+1)
k

))
, (11)

where γ1 = 0.99/∥DTD∥ and γ2 = 0.99/∥β
∑n

k=1 P̂
T
k P̂k∥. The convergence of iPALM under some

weak conditions is guaranteed by [4, Thm. 4.1].
In Iterations (8)–(11), an important detail is the handling of boundary for the patch extractionPkx.
Specifically, for an image with n pixels, we extract n patches by applying circular padding to the
image. This extension allows us to express all the relevant linear operators as convolutions. For
this, we represent the code α as a p1-channel image with the same spatial dimensions as x. Then,
αk ∈ Rp1 refers to a single pixel on that code. The matrix DTD ∈ Rp1×p1 in (9) is applied to every
pixel on the code using a 1×1 convolution. The operator ∑n

k=1 P̂
T
kD in (11) maps a p1-channel

image to a single-channel one and can be implemented as a
√
d ×
√
d convolution whose filters
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Algorithm 1: Parameterization of B
Input : D̃ ∈ Rd×p1 , Q̃ ∈ Rd×(p2−1)

Output : D,Q ∈ B
Remove the mean of each column of Q̃
Q = Björck(Q̃)
Add a non-zero constant column to Q
D = (I−QQT )D̃
D← Ddiag((∥dk∥−1)p1

k=1)Divide D by its spectral norm
return D,Q

are the flipped atoms of D. Since ∑n
k=1 D

T P̂k is the transpose of ∑n
k=1 P̂

T
kD, we can similarly

implement it as a convolution. Thus, we can evaluate (9) for each pixel using two convolutions and
one nonlinearity.
For ∑n

k=1 P̂
T
k P̂k in (11), we now prove that it is Linear Shift-Invariant and, hence, a convolution.

Therefore, we can also efficiently compute γ2 in (11) with the Fourier transform.
Lemma 1. The operator

∑n
k=1 P̂

T
k P̂k is Linear Shift-Invariant.

Proof. We get that P̂k = (I −QQT )Pk is linear since both (I −QQT ) and Pk are linear operators.
Hence, the same holds for its transpose and the sum ∑n

k=1 P̂
T
k P̂k. For the need of the proof, we

express the sum over the two-dimensional indices of the image k ∈ Ω = [1...H] × [1...W ], where
H,W ∈ Z are the height and width of the image. We get that for any m ∈ Z2 with associated shift
operator Tm, it holds that∑

k∈Ω

P̂T
k P̂kTmx =

∑
k∈Ω

P̂T
k P̂(k−m)∗x = Tm

∑
k∈Ω

P̂T
(k−m)∗P̂(k−m)∗x = Tm

∑
k∈Ω

P̂T
k P̂kx, (12)

where all equalities rely on the circular padding and where p∗ = pmod(H + 1,W + 1).

Therefore, solving (6) amounts to finding the fixed point of a two-layer convolutional neural net-
work.

3.2. Training of the Model—Outer Optimization
All the parameters in (6) are learned through implicit differentiationwith the torchdeq library [40].
In the following, we provide the parameterization details.
Dictionaries We enforced the constraints QTQ = I and QTD = 0 in Section 3.1 to ensure the
equivalence of (5) and (6). Now, we impose additional constraints on the dictionaries D and Q.
More precisely, if we denote the kth column of D by dk, which corresponds to the kth atom, the
feasible set reads

B =
{
D ∈ Rd×p1 ,Q ∈ Rd×p2 : ∥D∥2 = 1, ∥dk∥ = ∥d1∥ ∀k,QTQ = I,QTD = 0

}
. (13)

Due to the normalization ∥D∥2 = 1, we get that γ1 = 0.99 in (9) for the inner optimization. The
norm constraint ∥dk∥ = ∥d1∥, 1 ≤ k ≤ p1, ensures that the relative importance of each atom dk gets
encoded in R and not in D itself. This makes the objective (6) more interpretable. In Algorithm
1, we explicitly enforce that Q contains a constant atom. For an efficient training, it is important to
embed the constraints into the forward pass, through a suitable parameterization.
We parameterize the elements {D,Q} in B by unconstrained matrices D̃ ∈ Rd×p1 , Q̃ ∈ Rd×(p2−1),
as outlined in Algorithm 1. There, the Björck algorithm (of order p = 1) is used to parameterize the
elementQ withQTQ = I [41]. It sets Q0 = Q̃ and performs the fixed-point iteration

Qk+1 =
1

2
Qk(3 · I−QT

kQk). (14)
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Figure 1: The proximal operator of the non-convex model and the corresponding potential com-
puted numerically when γ = 2 and τ = 1.

If we remove the mean of each column in Q0 = Q̃, we can recursively verify that it holds that
1T
d Qk+1 = 1

21
T
d Qk(3·I−QT

kAk) = 0T
p1

for the iterations (14). Hence, the Björck algorithmpreserves
the zero mean. In practice, 15 iterations of (14) are enough to obtain QwithQTQ ≈ I.
Regularizers We deploy both convex and non-convex regularizersR in (3). As convex regularizer,
we choose themixed group sparsity (ℓ1−ℓ2)-normwith learnable non-negativeweights τ = {τl}p1

l=1,
as given by

Rτ (α) =

n/4∑
k=1

p1∑
p=1

τl
(
α2
4k,p + α2

4k−1,p + α2
4k−2,p + α2

4k−3,p

)1/2
. (15)

We refer to the resulting model as a convex patch-based regularizer (CPR).
For the non-convex case, we (implicitly) choose a pixel-wise regularizerRwhose proximal operator
with learnable non-negative weights {τl}p1

p=1 is expressed as

ProxR(α) = ((φp(αk,p))
n
k=1)

p1

p=1, where φp(x) =
x|x|γ

τγp + |x|γ
, γ > 0. (16)

Note that (16) converges pointwise to the hard threshold x 7→ x · 1R\[−τ,τ ](x) as γ →∞. A similar
approximation is also used in [42]. For our experiments, we use γ ≤ 2, which remains far from
the hard-threshold function. We display a numerical approximation of the associatedR in Figure 1,
and refer to the associated model as the non-convex patch-based regularizer (NCPR).

4. Experiments

4.1. Training on Denoising
We learn the parameters {D,Q, R} in (6) on a basic denoising task. The training dataset consists
of 238400 small images of size (40 × 40) with values in [0, 1] from the BSD500 images [43]. For the
experiment, we corrupt them with Gaussian noise with σ ∈ {5/255, 25/255}. We use atoms of size
13×13, 120 for Q and 200 for D. The iPALM algorithm terminates if the relative difference of the
iterates is smaller than 10−4. For the implicit differentiation of the inner solutions x∗

m, we use 75
iterations of the Anderson algorithm [44] for σ = 5/255 and 50 iterations of the Broyden algorithm
[45] for σ = 25/255. We use the ADAM optimizer with a batch size of 16, a learning rate of 2 · 10−4

for {D,Q} and a learning rate of 10−3 for R and β. We train for two epochs and decay the learning
rate 10 times per epoch by 0.75 and 0.9 for the CPR and NCPR models, respectively. The whole
training takes approximately 10 hours on a Tesla V100 GPU.
We report the metrics on the BSD68 dataset in Table 1, and compare our methods with

• the convex TV regularization [7];
• the patch-based methods K-SVD [8] and BM3D [9];

5



Free Atoms (Q) Regularized Atoms (D)

Figure 2: Learned atoms for the NCPR model with σ = 25/255.

• the deep learning methods DRUNet [10] and Prox-DRUNet [11].

The DRUNet is a deep denoiser that has around 32 million parameters, 600 times more than our
method. It achieves state-of-the-art performance in denoising andmany image-reconstruction tasks.
The Prox-DRUNet constrains the parameters such that it is (approximately) the proximal operator
of an unknown non-convex potential. We can see that both our models significantly outperform TV
and our non-convex model outperforms K-SVD (which approximates the ℓ0-norm and is therefore
also not convex) and BM3D (which does not result from the minimization of an objective).

4.2. Visualization of the Model
We show the learned free and regularized atoms (corresponding to Q and D, respectively) in
Figure 2. Note that Q represents a p2-dimensional subspace of Rd. For any orthonormal matrix
R ∈ Rp2×p2 , the substitution ofQR forQ encodes the same model. For visualization purposes, we
computed R such that the first atom (top left) and last atom (bottom right) in the figure have the
highest (lowest, respectively) variance in all of the overlapping patches of the BSD68 dataset. Note
thatQ also has an atom enforced to be constant which is not displayed here.
The regularized atoms are sorted by the value of their respective τp, so that, the atom on the top
left is the least penalized and the atom on the bottom right is the most penalized in the model. We
show a similar plot for the other noise level and the other regularizer in Section A.1. We can split
any reconstruction x∗ into two components based on(

HTH+ β

n∑
k=1

PT
k (I−QQT )Pk

)
x∗ = HTy + β

n∑
k=1

PT
kDα∗

k, (17)

namely, a smooth part corresponding to a generalized Tikhonov regularization, and a sparse one
induced by the reconstruction fromD. Visual examples are given in Figure 3 and Sections A.1,A.2.

4.3. Inverse Problems
We benchmark CPR and NCPR for image super-resolution and CS-MRI. For this, we set H in (6)
(which was the identity during training) to the linear operator that corresponds to the imaging
modality. Again, we compare with the models in Section 4.1, except for the K-SVD and BM3D,
which are not suited to inverse problems.
Image reconstruction with these methods (except DRUNet) requires the minimization of an objec-
tive function. We use the Chambolle algorithm [46] for TV, the iPALM algorithm for our models,
and the Douglas-Ratchford splitting algorithm [47] for Prox-DRUNet. The optimization is termi-
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CP
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Figure 3: Denoising with σ = 25/255: decomposition of x∗ into the free-atom and constrained-atom
dictionaries. The last column shows the cost associated with each local patch Pkx

∗.

nated when the relative difference of the iterates is below 10−5. For DRUNet, we simply follow the
algorithm proposed in [10].
To deploy the models, we tune their hyperparameters on a validation set using the coarse-to-fine
grid search from [48]. Then, the performance is reported on a dedicated test set. For TV, we only
tune the regularization strength λ in (1). For Prox-DRUNet, we tune λ and the noise level σ over
which the model was trained. For CPR, we tune the β and λ in (6). For NCPR we tune β and
a constant multiplying all the {τl}p1

p=1 described in (16). For DRUNet, we use the recommended
algorithm [10, Sec. 4.2] and tune the σ1 and λ. While we use the recommended 40 iterations for
super-resolution, we increase this number to 80 iterations for CS-MRI as this significantly improves
the performance.
DRUNet uses a fixed number of steps and does not have any convergence guarantees. As result, its
reliability depends heavily on empirical performance, which questions its robustness. This is why
we changed the number of steps for the CS-MRI experiment. Prox-DRUNet mitigates this problem
by constraining its network to approximately be a proximal operator. While it demonstrates con-
vergence in practice, it lacks provable guarantees. This limitation arises from the NP-hardness of
the computation the Lipschitz constant of a deep network [49], a key factor to ensure the theoretical
convergence of themethod [11, Thm. 4.4]. In constrast, our method has provable convergence guar-
antees and offers an interpretable decomposition of the reconstructionwith the free and regularized
atoms.

Super-Resolution Here, we investigate the super-resolution of microstructures. The ground truth
consists of 2D slices of size 600× 600. They are extracted from a volume of size 2560× 2560× 2120
acquired at the Swiss light-source beamline TOMCAT. We chooseH as a convolution with a 16×16
Gaussian kernel with standard deviation of 2 and a stride 4. When simulating the data y = Hx +
n from the ground truth, we add Gaussian noise with σn = 0.01. For all methods, we tune the
hyperparameters with a single validation image. The resulting test performances on 100 images are
reported in Table 2. The results are shown in Figure 4 and the decomposition from CPR and NCPR
are shown in Section A.2.

Compressed-Sensing MRI We now look at the CS-MRI recovery of an image x ∈ Rn from noisy
measurements y = MFx + n ∈ Cm, where M is a subsampling mask (identity matrix with some
missing entries), F is the discrete Fourier transform, and n is a complex Gaussian noise with σn =
2 · 10−3 for both the real and imaginary parts. We consider two different types of masks. Their
subsampling rate is determined by the acceleration factorMacc with the number of columns kept in

7



GT Low-Res (24.00 dB) TV (27.28 dB) CPR (27.59 dB) NCPR (27.66 dB) Prox-DRUNet (27.83 dB) DRUNet (27.96 dB)

GT Low-Res (21.80 dB) TV (25.13 dB) CPR (25.50 dB) NCPR (25.57 dB) Prox-DRUNet (25.77 dB) DRUNet (25.81 dB)

Figure 4: Reconstruction performances for the super-resolution task.

GT Zero-fill (26.76 dB) TV (30.24 dB) CPR (30.32 dB)

NCPR (30.81 dB) Prox-DRUNet (32.41 dB) DRUNet (32.66 dB)

Figure 5: Reconstruction performances for 8-fold subsampling and PD data.

the k-space being proportional to 1/Macc. Our setups are 8-fold (Macc = 8) and 16-fold (Macc = 16).
The ground truth comes from the fastMRI dataset [50] and we consider it with (PDFS) or without
(PD) fat suppression. For each instance, we run the validation over 10 images and test on 50 other
images.
In Table 3, we provide the PSNR values on centered (320 × 320) patches. The deep-learning-based
methods outperform the classical ones for the 8-fold subsampling and the 16-foldwith PD.However,
despite containing significantly fewer parameters and being trained on significantly fewer data, our
NCPR model outperforms the deep-learning-based methods for 16-fold subsampling with PDFS
data. We also provide visual results in Figures 5 and 6. While the deep-learning-based methods
yield higher resolution in Figure 5, they still contain several artifacts. For example, we can see a black
structure at the bottom of the Prox-DRUNet reconstruction. We can also see some oscillations on the
left of the DRUNet reconstruction. In Figure 6, the deep-learning-based methods are outperformed
by the NCPR. Note that several methods contain an almost-identical artifact on the bottom right of
the image. We show the decomposition of both CPR and NCPR for those two examples in Section
A.2. Suprisingly, due to the very low value of the optimal β (< 0.02 for both), it seems that the free
images are not smooth with the NCPR model. This makes sense as the noise is very low and the
zero-filled signal contains valuable information which should not be smoothed by the model.
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GT Zero-fill (24.76 dB) TV (27.04 dB) CPR (27.36 dB)

NCPR (28.62 dB) Prox-DRUNet (27.90 dB) DRUNet (27.71 dB)

Figure 6: Reconstruction performances for 16-fold subsampling and PDFS data.

Noise level σ=5/255 σ=25/255
TV 36.41 27.48
K-SVD - 28.32
BM3D 37.54 28.60
CPR (Ours) 36.93 28.18
NCPR (Ours) 37.62 28.68
Prox-DRUNet 37.98 29.18
DRUNet 38.09 29.48

Table 1: PSNR values for the denoising of
the BSD68 dataset.

Super-resolution PSNR SSIM
Bicubic 25.63 0.699
TV 27.69 0.763
CPR (Ours) 27.98 0.775
NCPR (Ours) 28.04 0.781
Prox-DRUNet 28.21 0.789
DRUNet 28.37 0.788

Table 2: Super-resolution on the
SiC Diamonds dataset.

8-fold 16-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS
Zero-fill 23.46 26.84 0.592 0.634 20.76 24.67 0.548 0.590
TV 25.76 28.70 0.666 0.654 21.78 25.71 0.576 0.598
CPR 25.82 28.77 0.672 0.667 21.81 25.68 0.583 0.602
NCPR 26.92 29.53 0.712 0.690 22.10 26.16 0.601 0.619
Prox-DRUNet 28.80 30.07 0.750 0.699 22.70 25.85 0.619 0.608
DRUNet 28.85 30.32 0.752 0.699 22.73 25.83 0.606 0.610
Table 3: PSNR values for MRI reconstruction on the fastMRI dataset.

5. Conclusion
In this paper, we have introduced a patch-based smooth-plus-sparse model for image reconstruc-
tion. Our approach integrates both synthesis and analysis dictionaries to facilitate a smooth re-
construction process. In particular, low-frequency components are allowed greater flexibility with
the analysis prior, while high-frequency details are regularized through the use of the synthesis
dictionary. The expression of our optimization process as a two-layer convolutional neural network
allows us to train the synthesis dictionary and analysis prior in an efficient and effectivemanner. Ex-
perimental results show that our model can outperform state-of-the-art methods when the inverse
problem involves very few measurements. This suggests a robustness stemming from our model
principled design, which is less reliant on large datasets compared to deep-learning approaches.
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A. Appendix

A.1. Additional Model Visualizations

Free Atoms (Q) Regularized Atoms (D)

Figure 7: Learned atoms for the CPR model with σ = 5/255.

Free Atoms (Q) Regularized Atoms (D)

Figure 8: Learned atoms for the CPR model with σ = 25/255.

Free Atoms (Q) Regularized Atoms (D)

Figure 9: Learned atoms for the NCPR model with σ = 5/255.
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Figure 10: Denoising with σ = 5/255: decomposition of x∗ into the free-atom and constrained-atom
dictionaries. The last column shows the cost associated with each local patch Pkx

∗.

A.2. Image Reconstructions Visualization

Low-Res Prediction Free Image Regularized Image Cost
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Figure 11: Reconstruction of the super-resolution task: decomposition of x∗ into the free-atom and
constrained-atom dictionaries. The last column shows the cost associated with each local patch
Pkx

∗.
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Zero-fill Prediction Free Image Regularized Image Cost

CP
R

NC
PR

Figure 12: Reconstruction with 8-fold subsampling and PD data: decomposition of x∗ into the free-
atom and constrained-atom dictionaries. The last column shows the cost associated with each local
patch Pkx

∗.

Zero-fill Prediction Free Image Regularized Image Cost
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Figure 13: Reconstruction with 16-fold subsampling and PDFS data: decomposition of x∗ into the
free-atom and constrained-atom dictionaries. The last column shows the cost associated with each
local patch Pkx

∗.
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