
Robotics & Intelligent Systems Expo (RISEx 2025), Nov. 13-14, 2025, Edmonton, Canada 

Learning Based Estimation of Tool-Tissue Interaction Forces for Stationary and Moving Environments 

Lukasz Nowakowski, and Rajni V. Patel 
1 Electrical and Computer Engineering, Western University, London, Canada.  

Email:  lnowakow@uwo.ca, rvpatel@uwo.ca

INTRODUCTION 

Robotics-Assisted Minimally Invasive Surgery 

(RAMIS) has revolutionized surgical procedures by 

providing greater precision, flexibility, and control 

beyond human capabilities. However, most surgical 

systems in use today require surgeons to learn how to 

handle tissues without any haptic feedback. Recent 

haptic capable systems have shown reduced excessive 

interaction forces and the prevention of unnecessary 

trauma [1]. Many technical and engineering difficulties 

associated with sensorizing instruments exist, but neural 

networks have been shown to estimate these interaction 

forces well [2-3]. The focus of this paper is to 

understand the limitations of training neural networks 

on stationary environment ground truth data and the 

benefits of expanding the dataset to include moving 

environments. 

 

MATERIALS AND METHODS 

To collect tool-tissue interaction data where the 

environment is either stationary or moving, the 

phantom tissue is mounted on a 3 degrees-of-freedom 

prismatic manipulator. Trajectories are then generated 

with a range of parameters to mimic cardiac and 

respiratory motions found in surgical procedures. 

Mounted to the end-effector of the manipulator is a 

six-axes force-torque sensor which measures the 

ground-truth interaction forces. To estimate the 

interaction forces, we implemented the Feed Forward 

Network (FFN) approach of Chua et al. [2], the Long 

Short Term Memory (LSTM) network of Zhang et al. 

[3], and our own transformer encoder network which 

will be referred to as T-Enc. To evaluate each 

network’s domain sensitivity, we train on data where 

the environment was stationary and then evaluate on 

moving environments. We then train on samples from 

both stationary and moving environments and test the 

networks sensitivity to unseen tissue location in the 

surgical robot’s workspace. 

 

RESULTS AND DISCUSSION 

The RMSE of the force component, force magnitude, 

and angle are given in Table 1 for each test set split. The 

study reveals a clear challenge when networks trained 

only on stationary tissue data are tested on moving 

environments, showing a significant performance gap. 

Even in cases where the tissue's starting position 

matches the training data, these networks struggle to 

detect forces caused by motion, underscoring the 

limitations of stationary-only training. 

Training the models with a mix of stationary and 

moving tissue data greatly improved their ability to 

predict forces in new, unseen areas. Our T-Enc model 

had the lowest RMSE with 0.107 N and 0.106 N for X 

and Y directions respectively, and 0.140 N for force 

magnitudes. Fig 1 shows the RMSE for binned force 

ranges, highlighting the significance of the range 

of forces present in the training set and the frequency of 

their occurrence. 

 
Fig 1 Binned force RMSE loss distribution for models trained on 

stationary and moving phantom tissue samples. 

CONCLUSIONS 

The study introduces a custom manipulator designed to 

mimic physiological motions like cardiac and respiratory 

movements, enhancing the realism of the testing 

environment. The findings emphasize the sensitivity of 

neural networks to the domain gap between stationary 

and moving tissues, underscoring the need to include 

both types of data in training sets for better performance. 
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Table 1: RMSE of component force, force magnitude and force direction of S trained models on all test sets 
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