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INTRODUCTION

Robotics-Assisted  Minimally  Invasive  Surgery
(RAMIS) has revolutionized surgical procedures by
providing greater precision, flexibility, and control
beyond human capabilities. However, most surgical
systems in use today require surgeons to learn how to
handle tissues without any haptic feedback. Recent
haptic capable systems have shown reduced excessive
interaction forces and the prevention of unnecessary
trauma [1]. Many technical and engineering difficulties
associated with sensorizing instruments exist, but neural
networks have been shown to estimate these interaction
forces well [2-3]. The focus of this paper is to
understand the limitations of training neural networks
on stationary environment ground truth data and the
benefits of expanding the dataset to include moving
environments.

MATERIALS AND METHODS

To collect tool-tissue interaction data where the
environment is either stationary or moving, the
phantom tissue is mounted on a 3 degrees-of-freedom
prismatic manipulator. Trajectories are then generated
with a range of parameters to mimic cardiac and
respiratory motions found in surgical procedures.
Mounted to the end-effector of the manipulator is a
six-axes force-torque sensor which measures the
ground-truth interaction forces. To estimate the
interaction forces, we implemented the Feed Forward
Network (FFN) approach of Chua et al. [2], the Long
Short Term Memory (LSTM) network of Zhang et al.
[3], and our own transformer encoder network which
will be referred to as T-Enc. To evaluate each
network’s domain sensitivity, we train on data where
the environment was stationary and then evaluate on
moving environments. We then train on samples from
both stationary and moving environments and test the
networks sensitivity to unseen tissue location in the
surgical robot’s workspace.

RESULTS AND DISCUSSION

The RMSE of the force component, force magnitude,
and angle are given in Table 1 for each test set split. The
study reveals a clear challenge when networks trained

only on stationary tissue data are tested on moving
environments, showing a significant performance gap.
Even in cases where the tissue's starting position
matches the training data, these networks struggle to
detect forces caused by motion, underscoring the
limitations of stationary-only training.

Training the models with a mix of stationary and
moving tissue data greatly improved their ability to
predict forces in new, unseen areas. Our T-Enc model
had the lowest RMSE with 0.107 N and 0.106 N for X
and Y directions respectively, and 0.140 N for force
magnitudes. Fig 1 shows the RMSE for binned force
ranges, highlighting the significance of the range

of forces present in the training set and the frequency of
their occurrence.
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Fig 1 Binned force RMSE loss distribution for models trained on
stationary and moving phantom tissue samples.

CONCLUSIONS

The study introduces a custom manipulator designed to
mimic physiological motions like cardiac and respiratory
movements, enhancing the realism of the testing
environment. The findings emphasize the sensitivity of
neural networks to the domain gap between stationary
and moving tissues, underscoring the need to include
both types of data in training sets for better performance.
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Table 1: RMSE of component force, force magnitude and force direction of S trained models on all test sets

Unseen Stationary Seen Moving Unseen Moving
Model Angle Angle Angle
X Y z | Mag | g8 X Y Z | Mag | 008 X Y Z | Mag | o
Jrror Error Error
FFN 0424 | 0369 | 0.661 | 0.507 | 50.33 0.476 | 0.365 | 0.872 | 0.611 | 61.79 0.569 | 0.488 | 1.096 | 0.766 | 58.70
LSTM 0.367 | 0.295 | 0.511 | 0.401 | 34.68 0.556 | 0.443 | 1.108 | 0.760 | 78.71 0.712 | 0.533 | 1.108 | 0.820 | 63.38
T-Enc 0.390 | 0409 | 0.682 | 0.511 36.67 3.001 | 4506 | 4.295 | 3990 | 61.80 4441 | 4750 | 4.837 | 4679 | 51.04
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