
Layered Weighted Blended Order-Independent Transparency
Fabian Friederichs*

TH Köln
Martin Eisemann†

TU Braunschweig
Elmar Eisemann‡

Delft University of
Technology

ABSTRACT

Our approach improves the accuracy of weighted blended order-
independent transparency, while remaining efficient and easy to
implement. We extend the original algorithm to a layer-based ap-
proach, where the content of each layer is blended independently
before compositing them globally. Hereby, we achieve a partial
ordering but avoid explicit sorting of all elements. To ensure smooth
transitions across layers, we introduce a new weighting function.
Additionally, we propose several optimizations and demonstrate the
method’s effectiveness on various challenging scenes in terms of
geometric- and depth complexity. We achieve an error reduction
more than an order of magnitude on average compared to weighted
blended order-independent transparency for our test scenes.

Index Terms: Computing methodologies—Computer graphics—
Rendering—Rasterization;

1 INTRODUCTION

Real-time rendering of semi-transparent objects is challenging for
a rasterizer. The classic approach is costly, as it sorts primitives
or objects by depth and alpha-blends them back-to-front or front-
to-back, which heavily depends on the scene’s depth complexity.
Further, intersecting primitives or objects are difficult to handle.
Order-independent approaches use depth-sorted fragments per pixel
via A-Buffers [5] or depth peeling and its variants [4, 9]. Peeling
costs can be reduced by a constant factor rendering several layers
per pass [12] or by applying bin depth peeling [11] which introduces
potential artifacts due to collisions within a bin. These depth peeling
solutions do not scale well with depth complexity, reducing the
framerate in scenes containing many layers of transparency, e.g. hair
or smoke.

Current fast techniques approximate the correct solution. Easy-to-
implement and resource-efficient are the blended order-independent
transparency (OIT) operators [14]. They modify the classic alpha
blending to make it order-independent at the cost of correctness.
Unfortunately, they cannot always represent depth cues adequately,
especially in scenes with many rather opaque surfaces (e.g. foliage)
or different colors (e.g. colored smoke).

To address the blending accuracy, we extend the OIT algo-
rithm [14] via a layering approach. We divide the view frustum
into multiple depth intervals on which the weighted blended OIT
algorithm is applied separately. Then the intermediate values are
blended front-to-back to obtain the final result. This leads to more
robust depth cues and improves color precision.

In the following section, we recap the existing order-independent
blending operators (Sect. 2), introduce our algorithm (Sect. 3), in-
cluding two variants and their implementation details (Sect. 4) before
discussing results (Sect. 5) and concluding (Sect. 6).

*e-mail: fabian.friederichs@th-koeln.de
†e-mail: eisemann@cg.cs.tu-bs.de
‡e-mail: e.eisemann@tudelft.nl

2 RELATED WORK

The seminal Porter-Duff algorithm blends two semi-transparent
colors Ca and Cb with opacity values αa and αb respectively: Cdst =
(αaCa +(1−αa)αbCb)/(αa +(1−αa)αb). Extending it to more
than two surfaces requires ordering the surfaces, which is costly for
modern GPU rasterizers. A plethora of methods has been developed
to achieve or approximate transparency on a pixel basis, we refer
to [17] for a good overview and focus on the most relevant.

Meshkin et al. introduced the ”weighted sum” operator [15],
which is basically an alpha blending ignoring order-dependent parts
of the expanded expression, expressed as: Cdst =

(
∑

n
i=1 Ciαi

)
+

Cbg
(
1−∑

n
i=1 αi

)
, where Cbg denotes the background color, n the

number of semi-transparent fragments in front of it. This operator
works well with surfaces of small coverage but becomes increasingly
inaccurate for α-values≥ 0.3. Blending surfaces with large coverage
values leads to colors outside of the span of the interpolants, i.e.,
causes over-darkening or over-brightening of the final color.

Replacing all occurrences of surface colors and coverage with
their respective coverage-weighted averages, no longer ignores parts
of the alpha-blending equation, while maintaining order indepen-
dence:

Cavg =
∑

n
i=1 Ciαi

∑
n
i=1 αi

; αavg =
∑

n
i=1 αi

n

Cdst =Cavg
(
1−
(
1−αavg

)n)
+Cbg

(
1−αavg

)n

This removes the overdarkening issue of Meshkin’s operator [15],
but two other issues remain. Firstly, because every surface receives
the same average coverage, invisible surfaces (zero coverage) can
erroneously affect others [14]. Secondly, there is still no depth
information incorporated, so it is impossible to tell if a surface is
behind or in front of another surface.

McGuire and Bavoil [14] extended this approach by a pre-pass
to determine the coverage αnet = 1−∏

n
i=1 (1−αi) to compute

Cdst =Cavgαnet +Cbg (1−αnet). They also incorporated depth by
weighting contributions of fragments w.r.t their distance from the
camera (Eq. 1). The weights used come from a monotonic decreas-
ing function w(z,α), which has to be carefully tuned for each scene
in order to provide good results (Eq. (7)–(10) in [14]).

Cdwavg =
∑

n
i=1 Ciαiw(zi,αi)

∑
n
i=1 αiw(zi,αi)

(1)

Replacing Cavg with Cdwavg leads to the final weighted blended
order-independent transparency operator (WBOIT).

Cdst =Cdwavgαnet +Cbg (1−αnet) (2)

The algorithm can have issues with rather opaque surfaces, particu-
larly for dense clusters of transparent geometry with large distances
between. Figure 1 shows a stack of squares rendered using the
WBOIT technique. The material is amost fully opaque, i.e α ≈ 1.0.
Hence, the frontmost, red square should occlude the others but the
close proximity leads to a wrong result using the suggested depth-
weighting functions [14]. To achieve better results, the ratio wi

wi+1
for

two subsequent layers has to be very large. Rescaling the weighting
function helps with accuracy but unfortunately one looses the ability
to accurately combine surfaces farther away by doing so.

Figure 1: Inaccurate rendering of almost opaque squares due to
an inadequate depth weighting function in weighted blending order-
independent transparency operator.

3 LAYERED WEIGHTED BLENDED ORDER-INDEPENDENT
TRANSPARENCY

Figure 2 illustrates our basic algorithm. The view frustum is divided
into a fixed number of depth intervals (”bins”). After applying
WBOIT to every bin, the per-bin results are blended front-to-back
using the under blending operator as described in [4]. Explicit
sorting is avoided entirely and, instead, the bins enforce a partial
order. After describing this basic solution (Sec. 3.1), we will increase
its robustness, make it temporally coherent, and improve its accuracy
(Sec. 3.2–3.4).

To further motivate our approach let us assume non-identical
depth of different fragments per pixel. Let z∆ be the minimum depth
distance between two fragments of the same pixel, and let zmin, zmax
be the depth of the closest and furthest bin boundary respectively. If
the number of bins n fulfills n > (zmax− zmin)/z∆ the result of our
algorithm is equal to the reference solution. If two fragment have
the same depth value, our algorithm still produces correct results,
due to the same depth weights computed by the WBOIT algorithm.
We show an empirical evaluation of the influence the number of bins
have on the overall error in Sec. 5.

Bin 1
Bin 2

Bin 3
Bin 4

Bin B

Figure 2: The view frustum is divided into a number of depth intervals
or ”bins”. The WBOIT result is computed for every bin and the bin’s
results are combined front-to-back using the under operator. Here,
we see a best case, where each primitive lies in one bin, generally,
primitives can span several bins, which our full algorithm addresses.

3.1 Naive layering

For the naive approach, we apply OIT per bin k (cf. Eq. (1) and ((2)),
with Fk denoting the list of fragment indices in the k-th of B bins:

Cdwavgk
=

∑i∈Fk
Ciαiw(zi,αi)

∑i∈Fk
αiw(zi,αi)

, αnetk =

(
1−∏

i∈Fk

(1−αi)

)

The individual results are then combined using under blending
[4] to discard fragments when the accumulated visibility of the
background approaches zero. Given the opaque background Cbg, the

Figure 3: Left: Visible layer transitions where bin boundaries cut
through primitives. Right: Smooth layer transitions improve the results
but artifacts are still visible.

final pixel color is given by C f = AdstBCbg + cdstB , where

cdst0 =

0
0
0

 , Adst0 = 1

cdstk = Adstk−1

(
Cdwavgk

αnetk

)
+ cdstk−1 , Adstk = (1−αnetk)Adstk−1

This naive approach is accurate if every primitive falls into a
single bin (Figure 2). However, when bins cut through primitives
layer artifacts can become visible (Fig. 3 left).

3.2 Smooth layer transitions
To reduce the visibility of layer boundaries (Fig. 3 right) we dis-
tribute the contribution of each rendered fragment to multiple bins
using a bin weighting function. Its peak is at the bin’s center and
it decreases smoothly with increasing distance. A tent function
seems natural but produces visible artifacts due to being only C0

continuous. We chose a bell-shaped function instead:

bk (z) = e
−

(
σ

(zbstartk
−zbendk)·0.5

·|(zbstartk+(zbendk−zbstartk)·0.5)−z|

)2

,

where zbstartk being the depth of the k-th
bins near-plane k, zbendk the depth of the
respective far-plane and z the depth value
the function is evaluated for. Its peak is
at the center of a bin with a value of 1.0
and it decreases smoothly to 0.5 at the
bin’s boundaries with σ = 0.832555 .

Instead of considering only the frag-
ments in bin k, we now iterate over all
fragments F of a pixel and weigh their color contribution with the
bin weight function bk(z):

Cdwavgk
= ∑

i∈F
Ciαiw(zi,αi)bk (zi))/(∑

i∈F
αiw(zi,αi)bk (zi)). (3)

Additionally we must weigh the fragments’ contribution to the cov-
erage in the bin: αnetk = 1−∏i∈F (1−αibk (zi))

3.3 Normalization
The multiplication of coverage αi with the bin weight bk(zi) in
equation (3) introduces some error in the total coverage per bin
αnetk . If there are only a few layers of transparent geometry near
a bin boundary, the final color of that bin tends to get slightly too
dark, because of premultiplied colors usage. It leads to visible layer
artifacts, especially at shallow viewing angles (Fig. 3 right). For
correct results the total coverage should be equal to αnet from the
WBOIT algorithm.

To mitigate this problem, we employ a pre-pass, similar to [14],
to compute the correct net coverage of the background. We further

include a normalization factor during blending of the bin’s results.
Under blending then simply becomes another weighted sum:

Adst0 = 1, CdstB =
∑

B
k=1 Cdwavgk

αnetk Adstk−1

∑
B
k=1 αnetk Adstk−1

(4)

Adstk = (1−αnetk) ·Adstk−1 , cdstB =CdstB αnet

Note that, due to the normalization, the resulting color is not
in premultiplied format anymore. Therefore, we multiply color
CdstB with coverage αnet before blending the result with the scene
background.

3.4 Shaping the layers
Using depth maps can reduce artifacts for semi-transparent layers
with great success [7, 18]. In another pre-pass, we render the depth
of the first layer of transparent geometry. Using these depth values,
we can offset the bins at each pixel, which increases precision and
eliminates the artifacts for the first layer (Fig. 4).

The bin boundaries can still cut through the geometry of the
remaining layers but these artifacts are typically strongly reduced.
Furthermore, the final color is invariant w.r.t view-space depth since
layers and depth weighting function are not moving directly with
the camera anymore. Hereby, one issue of the original WBOIT
algorithm is fixed. A dependency on the viewing angle, which has
an impact on the depth distance between layers remains (Fig. 5 and
6) but are less noticeable. Furthermore, if all primitives share the
same orientation, all layering artifacts are removed (Fig. 7).

Bin
1
Bin

2
Bin

3

Bin
B

Figure 4: The shape of the layers match the first layer of transparency.

Figure 5: The depth distance between two bins changes with viewing
angle.

Figure 6: Influence of the viewing angle on the final color.

We additionally shift the origin of the weighting function towards
the camera to prevent unreasonable depth weights for the first layer,
Fig. 8. This option allows to trade off between accuracy in highly
opaque surfaces and accuracy in fairly transparent surfaces using the
amount of shift as a single parameter.

Figure 7: Adaptive layers remove visible layering artifacts.

(a) Depth peeling (b) Without shift (c) With shift

Figure 8: Shifting the depth weight function towards the camera
improves results compared to ground truth. Notice the red tint in (b).
MSE are (b) 602.44 and (c) 12.49 .

4 STORING AND DISTRIBUTING FRAGMENTS

To implement our rendering method, we will discuss two implemen-
tations to store the rendered fragments: per-pixel linked lists and
layered rendering. The first will collect all fragments that will vir-
tually be associated with a bin in a postprocess, the second enables
us to collect the content directly in bins. The linked lists method is
advantageous in scenes with high geometric but lower depth com-
plexity, while layered rendering is beneficial for scenes with high
depth complexity but lower geometric complexity.

Per-Pixel Linked Lists This implementation uses per-pixel
linked lists to store the rendered fragments before blending them
using our approach from Sec. 3. While advanced schemes for per-
pixel linked lists exist that are cache efficient and robust regarding
capacity issues, we chose for an easy-to-implement approach storing
color, depth and an index to the next fragment [2]. This solution
works well when the manually-set capacity (usually a multiple of the
target resolution) is not exceeded. If the buffer’s capacity is reached,
remaining fragments are discarded. Consequently, complex scenes
might require a high memory consumption and can lead to potential
buffer overflow artifacts.

To produce the final image, we apply the layer shaping (Sec. 3.4)
implicitly. The final rendering pass without geometry loops over all
collected fragments f per pixel, normalizes their position, finds each
respective bin b f , applies the corresponding blending weights w f ,
and accumulates the result in an array of bin values v[b f]. Finally,
the values in v are blended to determine the final transparent color
that is blended with the background.

Layered Rendering One can render into multiple layers of a
2D-array texture or 3D texture simultaneously with layered render-
ing. Each layer represents a bin and the primitives are redirected
to the bins based on their spanned depth interval from within the
GPU’s geometry shader. In practice, geometry-shader instancing
allows us to invoke the shader a user-defined number of times per
primitive. As 32 instances are guaranteed on current hardware [10],
we render batches of 32 bins per pass, adding additional passes if
more than 32 bins are requested, and blend the result batch by batch.

To produce the final image, the span of each triangle is detected
and if the instance intersects the depth interval of the corresponding

bin, we output the triangle via layered rendering. We apply the
weights corresponding to the bin and the fragments position in the
fragment shader. In a final render pass without geometry, we blend
the different layers together.

Unfortunately, when layer shaping is used, the span of a triangle
would need to be determined via the depth map. NBuffers [6] and
Mipmaps can be used to compute an estimate by extracting the
min/max value over a bounding square but this adds an overhead to
the method. In practice, we emit the triangle to all layers and resolve
the span in the fragment shader. For a small amount of layers, one
can also use multiple render targets (current GPUs typically support
eight) to avoid geometric duplications.

5 EVALUATION

We evaluated our approach on seven scenes and compared to the
original WBOIT algorithm [14] and depth peeling [9] as a reference
solution (Fig. 12). The scenes all feature different depth- and geo-
metric complexity and are summarized in Table 1. The distribution
of non-opaque fragments is highly non-uniform in image space and
depth (Fig. 9). This challenges our algorithm, as a uniform distri-
bution would be best for performance. Table 2 shows the tested
algorithms and abbreviations used in the diagrams. All measure-
ments were conducted on an AMD Ryzen 7 3700X CPU with an
8GB AMD Radeon RX 5700XT at a 1280×720-pixel resolution.

Scene GC DC Source
per pix. per bin

Ø max. Ø max
squares 128 0.86 8 0.01 2 BG from [13]
dragon high poly 8,713k 0.57 22 0.01 8 [13]
powerplant 12,748k 3.23 95 0.05 31 [13]
colored smoke ∼ 2,100 6.53 320 0.13 99 BG from [13]
grey smoke ∼ 120k 361.11 18.7k 7.14 13.8k BG from [13]
burning wood 225k 7.66 76 0.10 50 [16]

engine 150,674 2.61 87 0.03 18 [1]

Table 1: Test scenes. GC: Geometric Complexity (num. non-opaque
triangles), DC: Depth Complexity (avg./max. num. non-opaque frag-
ments per pix and bin), BG: Background. The number of bins per
scene is listed in Fig. 12.

Abbreviation Algorithm

DP Depth Peeling
WBOIT Weighted Blended Order-Independent Transparency
SNDLL{8, 16, 32, 64} Smoothed, normalized, depth buffer offset per-pixel

linked lists
SNDLR{8, 16, 32, 64} Smoothed, normalized, depth buffer offset layered ren-

dering,

Table 2: Abbreviations of tested algorithms. The numbers in curly
braces denote bin counts.

We measured the average rendering time for transparent geometry
and blending with the opaque background (Fig. 11). Mean squared
error with respect to the depth-peeling reference is reported globally
and per-pixel in a heatmap (Fig. 12). For qualitative comparisons,
we chose the highest number of layers/bins, while maintaining real-
time performance (> 25 fps) on our system with all optimizations
enabled. We also analyze the performance and mean squared error
with respect to the number of bins (Fig. 10).

5.1 Results
We provide performance measurements (Fig. 9–11) and visual com-
parisons (Fig. 12). Our baseline algorithms perform as expected

Scene: squares

0.0

8.0 Scene: dragons high poly

0.0

22.0

Scene: power plant

0.0

95.0 Scene: colored smoke

0.0

320.0

Scene: grey smoke

0.0

1.9 × 104
Scene: burning wood

0.0

76.0

Scene: engine

0.0

87.0

Figure 9: Heatmaps showing the depth complexity per pixel for our
test scenes. The scaling has been normalized for each scene for
better visualization.

with WBOIT, a very simple two-pass algorithm, being the fastest
technique in all cases at the cost of reduced quality and DP being
the slowest with highest quality.

Bin count: Fig. 10 plots the effect of the bin count vs. MSE
(top row) and rendering time (bottom row) exemplarily for two test
scenes (the results for all test scenes are available in the supplemen-
tal material). We see for most scenes an exponential reduction in
the MSE and a clear convergence towards the reference solution
which reinforces our theoretical considerations from Sec. 3. Small
irregularities in convergence can appear as neighboring fragments in
depth might or might not fall into the same bin, depending on the
number of bins. The only exception is the grey smoke scene as the
number of bins becomes irrelevant with high depth complexity but
low color variance.

Looking at the bin count vs. frametime we can see a few inter-
esting patterns in the data. In geometrically complex scenes, such
as ”power plant”, the linked list approach works extremely well and
the limiting factor here is the rendering itself. On the other hand the
layered rendering approach struggles to deliver good performance
in these scenes as multiple rendering passes are required. The sud-
den ”jumps” in the performance are due to the limit on the number
of rendering targets that can be rendered during one pass. Scenes
with a low geometric complexity, such as ”grey/colored smoke” and
”burning wood”, show a clear linear increase in rendering time with
respect to the number of bins which is desired as it shows that no
bigger additional overhead is produced by our algorithm.

Squares: Very low geometric and depth complexity. Our
linked-list versions outperform layered rendering due to the over-
head of the geometry-shader stage. Increasing the bin count from
32 to 64 leads to a significant increase in frame times because two
32-batches of geometry shader invocations are now needed instead
of just one. Color accuracy using our approach is improved reducing
the MSE compared to WBOIT by a factor of 46×.

0 20 40 60 80 100 120
of bins

200

400

M
SE

Scene: power plant
linked list
layered rendering

0 20 40 60 80 100 120
of bins

0

200

400

M
SE

Scene: dragons high poly
linked list
layered rendering

0 20 40 60 80 100 120
of bins

0

500

1000

1500

fra
m

e
tim

e
in

 m
s

Scene: grey smoke
linked list
layered rendering

0 20 40 60 80 100 120
of bins

0

2000

4000

6000

fra
m

e
tim

e
in

 m
s

Scene: power plant
linked list
layered rendering

Figure 10: Top row: Influence of bin count on the MSE. Bottom row:
Influence of bin count on the rendering time.

Dragon high poly: High geometric and low depth complex-
ity. The linked list approach delivers excellent performance and
again improves color accuracy compared to WBOIT by a factor of
8.6×. The layered rendering approach is not applicable for such
geometrically complex scenes and is even slower than depth peeling.

Power Plant: High geometric and medium depth complexity.
Again the layered rendering approach comes to its limits due to
the complex geometry. The linked list approach performs well and
reduces the MSE compared to WBOIT by a factor of 5.6×.

Colored smoke: Low geometric and high depth complexity.
Here, layered rendering outperforms the linked lists. The linked
lists are flooded with fragments and the mostly random memory
access becomes a bottle-neck. Since the particle billboards all face
the camera, the primitives do not span a large depth range, making
discarding in the geometry shader effective. This is a tough case for
WBOIT in terms of visual quality. The red particles appear to be
even in front of the blue ones. Color accuracy improves by a factor
of 16.4× compared to WBOIT.

Gray smoke: Low geometric, very high depth complexity. The
linked list buffers are flooded with fragments and most are discarded.
Depth peeling needs around 3 minutes to peel all layers of a single
frame. Layered rendering benefits again from the primitive discard
optimization but the variants with depth buffer offset struggle due
to the high amount of geometry. The scene is optimal for WBOIT
because all particles share a uniform color, which hides blending ar-
tifacts. Still, color accuracy improves by a factor of 1.05× compared
to WBOIT.

Burning wood: Medium geometric and depth complexity. We
included this one to test rendering of foliage, which combines very
opaque and very transparent objects. WBOIT attributes an insuffi-
cient contribution to the nearby needles with respect to the orange
particles, creating the impression of needles disappearing. This
leads to clearly visible artifacts around the stem. Layered rendering
produces more accurate images improving the results by a factor of
1.3× compared to WBOIT.

Engine: Medium geometric and depth complexity. This scene
is typical for CAD design, where surfaces are often semi-transparent.
Layered rendering suffers when using a too low number of bins
(here 16). WBOIT cannot cope well with the different materials
encountered, resulting in a higher overall error but also strong error
spikes in several positions. The linked lists work well in this scene
reducing the MSE compared to WBOIT by a factor of 4.4×.

5.2 Discussion
Our layering approach enhances color accuracy and can improve
depth cues. When applying layer shaping, artifacts are eliminated
to a large extent and it partially solves the problem of color varia-
tions when the distance to the camera changes. However, a slight
dependence on the viewing angle is introduced, which can be visible
for very simple and consistent shapes, such as the squares. Organic

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

DP
WBOIT

SNDLL8
SNDLL16
SNDLL32
SNDLL64

SNDLR8
SNDLR16
SNDLR32
SNDLR64

Scene: squares

0 20 40 60 80 100 120 140

DP
WBOIT

SNDLL8
SNDLL16
SNDLL32
SNDLL64

SNDLR8
SNDLR16
SNDLR32
SNDLR64

Scene: dragon high poly

0 10 20 30 40 50

DP
WBOIT

SNDLL8
SNDLL16
SNDLL32
SNDLL64

SNDLR8
SNDLR16
SNDLR32
SNDLR64

Scene: power plant

0 10 20 30 40 50 60 70 80

DP
WBOIT

SNDLL8
SNDLL16
SNDLL32
SNDLL64

SNDLR8
SNDLR16
SNDLR32
SNDLR64

Scene: colored smoke

0 100 200 300 400 500 600 700 800

DP
WBOIT

SNDLL8
SNDLL16
SNDLL32
SNDLL64

SNDLR8
SNDLR16
SNDLR32
SNDLR64

Scene: grey smoke

0 10 20 30 40 50

DP
WBOIT

SNDLL8
SNDLL16
SNDLL32
SNDLL64

SNDLR8
SNDLR16
SNDLR32
SNDLR64

Scene: burning wood

0 20 40 60 80 100

DP
WBOIT

SNDLL8
SNDLL16
SNDLL32
SNDLL64

SNDLR8
SNDLR16
SNDLR32
SNDLR64

Scene: engine

Figure 11: Performance measurements (frame times in ms).

Depth peeling WBOIT SNDLL SNDLR

Figure 12: Visual comparison. Left to right: Depth peeling, WBOIT, our methods. Odd rows: rendered images, even rows: error images. Top to
bottom: ”squares” (with 64 layers both for SNDLL and SNDLR), ”dragon high poly” (64 for SNDLL and 8 for SNDLR), ”power plant” (64 for SNDLL
and 8 for SNDLR), ”colored smoke” (64 for SNDLL and SNDLR), ”grey smoke” (16 for SNDLL and 8 SNDLR), ”burning wood” (32 for SNDLL and
32 for SNDLR), ”engine” (64 for SNDLL and 16 for SNDLR)

shapes, like the Stanford Dragon, are less susceptible to this effect
and most layering artifacts are hard to perceive.

The linked-list approach works well for complex transparent ge-
ometry but runs into memory issues for a high depth complexity.
Using layered rendering introduces an overhead for complex ge-
ometry but delivers good performance for high depth complexity
because only a portion of the fragments must be held in memory
at any given time. High geometric and depth complexity remains
a challenge (Table 3). Still, our algorithm handles several scenes
that are problematic for existing algorithms. For example, it renders
particle systems well, which rely heavily on sorting, as well as de-
tailed transparent objects, which would typically result in a serious
reduction of quality.

Geometric Complexity
Depth complexity Low to Medium High
Low to Medium LL / LR LL
High LR ?

Table 3: The linked list (LL) and layered rendering (LR) distribution
methods favor different kinds of scene configurations.

6 CONCLUSIONS

We introduced a layered solution of weighted blended order-
independent transparency that improves color accuracy. We achieved
smooth layer transitions by introducing a bin weighting function
and shaping the bin decomposition based on the first layer of semi-
transparent surfaces. Our approach is easy to implement and builds
upon two variants; per-pixel linked lists and layered rendering. It
avoids sorting of fragments but enforces a partial order implicitly, the
latter enabling results closer to a reference solution. Our algorithm
shows good performance for challenging cases, such as particles
with high depth but relatively low geometric complexity, or scenes
with only a few layers of transparency but rather complex geometry
and therefore closes a gap in existing OIT algorithms.

In the future, we want to test techniques such as K-Buffers [3]
or stochastic transparency [8] to bound the memory requirements
and optimize the list structures, e.g., by coupling them to screen
tiling for a reduced memory consumption, increased throughput and
improved cache friendliness.

ACKNOWLEDGMENTS

This work was partially funded via the NWO Vernieuwingsimpuls
VIDI Grant NextView. The authors would like to thank 3D Ware-
house [1],TurboSquid [16], and McGuire [13] for providing the test
scenes.

REFERENCES

[1] 3DWarehouse. 3dwarehouse, 2019.
[2] P. Barta, B. Kovács, S. L. Szecsi, and L. Szirmay-kalos. Order inde-

pendent transparency with per-pixel linked lists. Budapest University
of Technology and Economics, 2011.

[3] L. Bavoil, S. P. Callahan, A. Lefohn, J. L. Comba, and C. T. Silva.
Multi-fragment effects on the gpu using the k-buffer. In Symposium on
Interactive 3D Graphics and Games, pp. 97–104, 2007.

[4] L. Bavoil and K. Myers. Order independent transparency with dual
depth peeling. NVIDIA OpenGL SDK, pp. 1–12, 2008.

[5] L. Carpenter. The a-buffer, an antialiased hidden surface method. ACM
Siggraph Computer Graphics, 18(3):103–108, 1984.

[6] X. Décoret. N-buffers for efficient depth map query. Computer Graph-
ics Forum, 24(3):393–400, 2005.

[7] E. Eisemann and X. Décoret. Fast scene voxelization and applications.
In Symposium on Interactive 3D Graphics and Games, I3D ’06, pp.
71–78. ACM, 2006.

[8] E. Enderton, E. Sintorn, P. Shirley, and D. Luebke. Stochastic trans-
parency. IEEE Transactions on Visualization and Computer Graphics,
17(8):1036–1047, 2011.

[9] C. Everitt. Interactive order-independent transparency. White paper,
nVIDIA, 2(6):7, 2001.

[10] Khronos Group Inc. ARB gpu shader5, 3 2012. Version 16.
[11] B. Liu, L. Wei, Y. Xu, and E. Wu. Multi-layer depth peeling via

fragment sort. In IEEE International Conference on Computer-Aided
Design and Computer Graphics, pp. 452–456, 2009.

[12] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu. Efficient depth peeling
via bin sort. In High Performance Graphics, pp. 51–57, 2009.

[13] M. McGuire. Computer graphics archive, 2017.
[14] M. McGuire and L. Bavoil. Weighted blended order-independent

transparency. Journal of Computer Graphics Techniques, 2013.
[15] H. Meshkin. Sort-independent alpha blending. GDC Talk, 2007.
[16] TurboSquid. Turbosquid, 2019.
[17] C. Wyman. Exploring and expanding the continuum of OIT algorithms.

In High Performance Graphics, pp. 1–11, 2016.
[18] C. Yuksel and J. Keyser. Deep opacity maps. Computer Graphics

Forum, 27(2):675–680, 2008.

	Introduction
	Related Work
	Layered Weighted Blended Order-Independent Transparency
	Naive layering
	Smooth layer transitions
	Normalization
	Shaping the layers

	Storing and Distributing Fragments
	Evaluation
	Results
	Discussion

	Conclusions

