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Figure 1: An example of controllable generation. We design two trajectories for the same scene to generate
different driving scenarios, i.e., one moving straight forward and the other with a curved path.

ABSTRACT

Recent successes in autoregressive (AR) generation models, such as the GPT series
in natural language processing, have motivated efforts to replicate this success in
visual tasks. Some research aims to extend this approach to autonomous driving
by building video-based world models capable of generating realistic future video
sequences and predicting the ego states. However, the prior works tend to produce
unsatisfactory results, since the classic GPT framework is designed to handle 1D
contextual information, such as text, and lacks the inherent capability to model
the spatial and temporal dynamics necessary for video generation. In this paper,
we present DrivingWorld, a GPT-style world model for autonomous driving with
several spatial-temporal fusion mechanisms. This design allows for effective
modeling of both spatial and temporal dynamics, enabling high-fidelity, long
time video generation. Specifically, we first propose next-state-prediction strategy
to model temporal coherence between consecutive frames and then apply next-
token-prediction strategy to capture spatial information within a frame. To further
enhance generalization ability, we propose a novel masking strategy and reweight
strategy for token prediction to mitigate long time drifting issues and enable
precise control. Our work is capable of producing high-fidelity and consistent
video clips with long-time duration. Experiments demonstrate that, in contrast to
prior works, our method delivers superior visual quality and significantly more
accurate controllable future video generation. Visit our project page at https:
//anonymous.4open.science/r/DrivingWorld-5714.

1 INTRODUCTION

In recent years, autoregressive (AR) learning schemes have achieved significant success in natural
language processing, as demonstrated by models like the GPT series (Radford, 2018; Radford
et al., 2019; Brown, 2020). These models predict future text responses from past data, making AR
approaches as leading candidates in the pursuit of Artificial General Intelligence (AGI). Inspired by
these advancements, many researchers have sought to replicate this success in visual tasks, such as
building vision-based world models for autonomous driving (Hu et al., 2023).
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A critical capability in autonomous driving systems is future event prediction (Guan et al., 2024).
However, many prediction models rely heavily on large volumes of labeled data, making them
vulnerable to out-of-distribution and long-tail scenarios (Santana & Hotz, 2016; Wang et al., 2023;
Lu et al., 2023). This is especially problematic for rare and extreme cases, such as accidents, where
obtaining sufficient training data is challenging. A promising solution lies in autoregressive world
models, which learn comprehensive information from unlabeled data like massive videos through
unsupervised learning. This enables more robust decision-making in driving scenarios. These
world models have the potential to reason under uncertainty and reduce catastrophic errors, thereby
improving the generalization and safety of autonomous driving systems.

The prior work, GAIA-1 (Hu et al., 2023), was the first to extend the GPT framework from language
to video, aiming to develop a video-based world model. Similar to natural language processing, GAIA
transforms 4D temporally correlated frames into a sequence of 1D feature tokens and employs the
next-token prediction strategy to generate future video clips. However, the classic GPT framework,
primarily designed for handling 1D contextual information, lacks the inherent capability to effectively
model the spatial and temporal dynamics necessary for video generation. As a result, the videos
produced by GAIA-1 often suffer from low quality and noticeable artifacts, highlighting the challenge
of achieving high fidelity and coherence within a GPT-style video generation framework.

In this paper, we introduce DrivingWorld, a driving world model built on a GPT-style video generation
framework. Our primary goal is to enhance the modeling of temporal coherence in an autoregressive
framework to create more accurate and reliable world models. To achieve this, our model incorporates
three key innovations: 1) Temporal-Aware Tokenization: We propose a temporal-aware tokenizer
that transforms video frames into temporally coherent tokens, reformulating the task of future video
prediction as predicting future tokens in the sequence. 2) Hybrid Token Prediction: Instead of
relying solely on the next-token prediction strategy, we introduce a next-state prediction strategy to
better model temporal coherence between consecutive states. Afterward, the next-token prediction
strategy is applied to capture spatial information within each state. 3) Long-time Controllable
Strategies: To improve robustness, we implement random token dropout and balanced attention
strategies during autoregressive training, enabling the generation of longer-duration videos with more
precise control.

Overall, our work enhances temporal coherence in video generation using the AR framework, learning
meaningful representations of future evolution. Experiments show that the proposed model achieves
good generalization performance, is capable of generating long-duration video sequences, and
provides accurate next-step trajectory predictions, maintaining a reasonable level of controllability.

2 RELATED WORK

World Model. The world model (LeCun, 2022) captures a comprehensive representation of the
environment and forecasts future states based on a sequence of actions. World models has been
extensively explored in both game (Hafner et al., 2019; 2020; 2023) and laboratory environments (Wu
et al., 2023). Dreamer (Hafner et al., 2019) trains a latent dynamics model using past experiences to
forecast state values and actions within a latent space. DreamerV2 (Hafner et al., 2020) builds upon
the original Dreamer model, reaching human-level performance in Atari games. DreamerV3 Hafner
et al. (2023) employs larger networks and successfully learns to acquire diamonds in Minecraft from
scratch. DayDreamer (Wu et al., 2023) extends Dreamer (Hafner et al., 2019) to train four robots
directly in the real world, successfully tackling locomotion and manipulation tasks. Recently, world
models for driving scenarios have garnered significant attention in both academia and industry. Most
previous works (Argenson & Dulac-Arnold, 2020; Diehl et al., 2021; 2023; Henaff et al., 2019) have
been limited to simulators or well-controlled lab environments. Drive-WM (Wang et al., 2024b)
explores real-world driving planners using diffusion models. GAIA-1 (Hu et al., 2023) investigates
real-world driving planners based on autoregressive models, but GAIA-1 has large parameters and
computational demands, which increase as the number of condition frames grows. In this paper, we
propose an efficient world model in an autoregressive framework for autonomous driving scenarios.

VQVAE. VQVAE (Van Den Oord et al., 2017) learns a discrete codebook representation via vec-
tor quantization to model image distributions. VQGAN (Esser et al., 2021) improves realism by
incorporating LPIPS loss (Zhang et al., 2018) and adversarial PatchGAN loss (Isola et al., 2017).
MoVQ (Zheng et al., 2022) tackles VQGAN’s spatially conditional normalization issue by embedding
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Figure 2: Pipeline of DrivingWorld. The vehicle orientations {θt}Tt=1, ego locations {(xt, yt)}Tt=1,
and an image sequence {It}Tt=1 are taken as the conditional input, which are first tokenized as latent
embeddings. Then our proposed multi-modal world model attempts to comprehend them and forecast
the future states, which are detokenized to the vehicle orientation θ̂T+1, location (x̂T+1, ŷT+1), and
the image ÎT+1. With the autoregressive process, we can generate over 30 seconds videos.

spatially variant information into quantized vectors. LlamaGen (Sun et al., 2024) further fine-tunes
VQGAN, showing that a smaller codebook vector dimension and a larger codebook size enhance
reconstruction performance. While VQGAN-based structures are widely used, some methods explore
more efficient architectures. ViT-VQGAN (Yu et al., 2021) replaces the convolutional encoder-
decoder with a Vision Transformer (ViT), improving the model’s ability to capture long-range
dependencies. VAR (Tian et al., 2024) employs a multi-scale structure to predict subsequent scales
based on previous ones, enhancing both generation quality and speed. However, these methods focus
on single-image processing, making it unable to capture temporal consistency. To address this, we
propose a temporal-aware tokenizer and decoder in this paper.

Autoregressive Image Generation. Early autoregressive models for image generation operate at the
pixel level, using CNNs (Van den Oord et al., 2016) or RNNs (Van Den Oord et al., 2016) to predict
unknown pixels in a zigzag manner. Inspired by language models and enabled by VQVAE (Van
Den Oord et al., 2017), images are encoded into discrete tokens. This allows autoregressive models
to shift from operating in pixel space to working in a discrete token space. VQGAN (Esser et al.,
2021), DALL-E (Ramesh et al., 2021), and Parti (Yu et al., 2022a) introduce VQVAE to encode
continuous images to discrete tokens, and use autoregressive models to generate images in a way
of next token prediction. VAR (Tian et al., 2024) decomposes an image into residuals at multiple
resolutions, encoding each resolution’s residuals into a different number of discrete tokens. During
the next scale prediction, all tokens at a specific resolution are predicted at once, reducing the
number of autoregressive steps. Llamagen (Sun et al., 2024) demonstrates that vanilla autoregressive
models, which use the same “next-token prediction” approach as language models, can also achieve
state-of-the-art performance in image generation. In this paper, we take it a step further by applying
autoregressive models to video generation.

Video Generation. Currently, there are three mainstream video generation models: GAN-based,
diffusion-based, and GPT-based methods. GAN-based methods (Yu et al., 2022b; Skorokhodov et al.,
2022; Tian et al., 2021) often face several challenges, such as mode collapse, where the diversity of
the videos generated by the generator becomes limited. Additionally, the adversarial learning between
the generator and discriminator can lead to instability during training. One major issue with diffusion-
based methods is their inability to generate precisely controlled videos because the stochastic nature
of the diffusion process introduces randomness at each step, making it difficult to enforce strict
control over specific attributes in the generated content. On the other hand, traditional GPT-based
methods (Yan et al., 2021; Han et al., 2022) allow for a certain level of control, but their computational
cost grows quadratically with the sequence length, significantly impacting model efficiency. In this
paper, we propose a decoupled spatio-temporal world model framework, which ensures precise
control while significantly reducing computational cost and improving model efficiency.

3 METHOD

Our proposed world model, DrivingWorld, leverages a GPT-style architecture to predict future states
with high efficiency, capable of extending predictions beyond 30 seconds at a frequency of 6Hz. This
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model is designed to comprehend past real-world states and forecast future video content and vehicle
motions. DrivingWorld is specifically focused on predicting the next frame status at time T +1 based
on the historical states from time 1 to T , and we can generate long videos by sequentially predicting
future states one by one. Each state at time t is represented as [θt, (xt, yt), It], where θt is the
vehicle’s orientation, (xt, yt) is its location, and It is the current image. Figure 2 presents the pipeline.
Our proposed DrivingWorld not only generates future states [θT+1, (xT+1, yT+1), IT+1] based on
past observations {[θt, (xt, yt), It]}Tt=1, but also supports controllable simulation of complex driving
scenarios by manipulating the vehicle’s location and orientation. Section 3.1 details our proposed
tokenizers for encoding temporal multimodal information into the unified latent space. To model the
relationships between long time sequential states, we introduce a GPT-style temporal multimodel
decoupled world model in Section 3.2. To extract the state from the tokens predicted by the world
model, we also introduce a temporal decoder, which is discussed in detail in Section 3.3. Additionally,
we introduce long-time controllable strategies in Section 3.4 to address the drift problem and enhance
the robustness of the proposed world model.

3.1 TOKENIZER

Tokenization (Zheng et al., 2022; Van Den Oord et al., 2017) converts continuous data into discrete
tokens, enabling integration with language models and enhanced multimodal sequence modeling.
In our approach, the tokenizer maps multimodal states into a unified discrete space, which enables
accurate and controllable multimodal generation. To produce temporally consistent embeddings
for images, we propose a temporal-aware vector quantized tokenizer. Our proposed vehicle pose
tokenizer discretizes pose trajectories and integrates them into our DrivingWorld.

Prelimilary: Single Image Vector Quantized Tokenizer. The single image vector quantized (VQ)
tokenizer, as described in Van Den Oord et al. (2017), is designed to convert an image feature map
f ∈ RH×W×C to discrete tokens q ∈ [K]H×W . The quantizer utilizes a learned discrete codebook
Z ∈ RK×C , containing K vectors, to map each feature f (i,j) to the index q(i,j) of the closest code
in Z . This method enables the conversion of continuous image data into discrete tokens.

Temporal-aware Vector Quantized Tokenizer. Single image VQ tokenizers often struggle to
produce temporally consistent embeddings, leading to discontinuous video predictions and hindering
the training of the world model. The image sequence{It}Tt=1 is encoded as {ft}Tt=1, where each
feature is processed independently and thus lacks temporal information.

To address this issue, we propose a temporal-aware vector quantized tokenizer designed to ensure
consistent embeddings over time. Specifically, to capture temporal dependencies, we insert a self-
attention layer both before and after VQGAN quantization, where the attention operates along the
temporal dimension. This allows our model to capture long-range temporal relationships between
frames, improving coherence and consistency in the generated sequences. Our model builds upon
the open-source VQGAN implementation from LlammaGen (Sun et al., 2024). The integration of
our straightforward yet effective temporal self-attentions can be seamlessly incorporated into the
original framework, followed by fine-tuning to develop a robust and generalizable temporal-aware
VQ tokenizer. {ft}Tt=1 are fed into temporal self-attention H(·) before performing quantization, thus
the tokens are:

q
(i,j)
t = argmin

k∈[K]

∥∥∥lookup(Z, k)−H(f
(i,j)
1 , ..., f

(i,j)
T )[t]

∥∥∥
2
, q

(i,j)
t ∈ [K], (1)

where lookup(Z, k) means taking the k-th vector in codebook Z .

Vehicle Pose Tokenizer. To accurately represent the vehicle’s ego status, including its orientation θ
and location (x, y), we adopt a coordinate system centered at the ego vehicle, as depicted in Figure 2.
Instead of global poses, we adopt the relative poses between adjacent frames. This is because that
global poses present a significant challenge due to the increasing magnitude of absolute pose values
over long-term sequences, making normalization difficult and reducing model robustness. As the
model generates longer sequences, these large pose values become harder to manage, ultimately
complicating the handling of long-term video generation.

For the sequence of the vehicle’s orientation {θt}Tt=1 and location {(xt, yt)}Tt=1, we propose to
compute relative values for each time step with respect to the previous one. The relative location
and orientation at the first time step is initialized as zero. The ego-centric status sequence is given
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by {∆θt}Tt=1 and {(∆xt,∆yt)}Tt=1. To tokenize them, we discretize the ego’s surrounding space.
Specifically, we discretize the orientation into α categories, and the X and Y axes into β and γ bins,
respectively. Thus, the relative trajectory at time t is tokenized as follows:

ϕt =

⌊
∆θt − θmin

θmax − θmin
α

⌋
, vt =

⌊
∆xt − xmin

xmax − xmin
β

⌋
· γ +

⌊
∆yt − ymin

ymax − ymin
γ

⌋
. (2)

Finally, we process the past T real-world states {[θt, (xt, yt), It]}Tt=1 and tokenize them into a discrete
sequence {[ϕt, vt,qt]}Tt=1, where each token is a discrete representation of the vehicle’s state at each
time step.

3.2 WORLD MODEL

The world model aims to comprehend past inputs, mimic real-world dynamics, and predict future
states. In our context, it forecasts upcoming driving scenarios and plans a feasible future trajectory.
To do this, the world model concatenates historical state tokens {[ϕt, vt,qt]}Tt=1 into a long sequence,
where the 2D image tokens are unfolded into a 1D form in zig-zag order. Thus the objective is to
predict next-state status rT+1 = (ϕT+1, vT+1,q

1
T+1, . . . ,q

H×W
T+1 ) based on the sequence of past

observations {rt}Tt=1, capturing both temporal and multimodal dependencies. Note that all discrete
tokens from different modalities are mapped into a shared latent space by their respective learnable
embedding layers before being fed to the world model, i.e. ht = Emb(rt). All subsequent processes
are conducted within this latent space.

Prelimilary: Next-Token Prediction. A straightforward method is to use the GPT-2 (Radford et al.,
2019) structure for 1-D sequential next-token prediction. Figure 3 (a) shows a simplified example.
The causal attention is applied for long-text prediction and the i-th token in T + 1 is modeled as:

r̂iT+1 = G([sos], r1, . . . , rT , r̂1T+1, . . . , r̂
i−1
T+1) (3)

where [sos] denotes the start-of-sequence token, r is the ground truth tokens, r̂ is the predict tokens,
and G represent GPT-2 (Radford et al., 2019) model. However, such a 1-D design is inadequate for
our specific scenarios. Predicting long videos requires generating tens of thousands of tokens, which
is significantly time-consuming. Additionally, it overlooks the spatially structured image features
inherent in images.

Therefore, we propose a next-state prediction pipeline, which consists of two modules: one integrates
temporal and multimodal information for next-state feature generation (i.e. Temporal-multimodal
Fusion Module), and the other is an autoregressive module (i.e. Intra-state Autoregressive Module)
for high-quality intra-state token generation.

Temporal-multimodal Fusion Module. Our temporal-multimodal module is composed of a separate
temporal layer and a multimodal layer. This decouples the processing of temporal and multimodal
information, thereby improving both training and inference speed while also reducing GPU memory
consumption. As shown in the Figure 3, We propose to employ a causal attention mask in the
temporal transformer layer Fa(·), where each token only attends to itself and tokens at the same
sequential position from all previous frames. This is designed to fully leverage temporal information.

h̃i
t = Fa(h

i
1, . . . ,h

i
t), i ∈ [1, H ×W + 2], t ∈ [1, T ]. (4)

In the multimodal information fusion layer Fb(·), we employ a bidirectional mask in the same frame,
which is designed to fully integrate intra-state multimodal information and facilitates interactions
between modalities. Each token attends to other tokens from the same time step,

h̊t = Fb(h̃t), t ∈ [1, T ]. (5)

The temporal and multimodal layers are alternately stacked for N layers to form this module.

Intra-state Autoregressive Module. After the temporal-multimodal module, we obtain features for
future frame state prediction. A naive approach is to predict next-state tokens ht at the same time.
Recently, multiple image-generation works (Sun et al., 2024) propose that an autoregressive pipeline
for next-token prediction generates better images, and even outperforms diffusion methods. Inspired
by this, we propose an intra-state autoregressive module for next-time action and image generation,
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World Model

(b)  Temporal-aware World Model (Ours)
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Figure 3: Inference illustration of Vanilla GPT and temporal-aware GPT (ours). For simplicity,
we assume a video clip only has 3 frames and each frame consists of only 3 tokens, where x1

2
denotes 1st token of the 2nd video frame. (a) The vanilla GPT places all tokens in a 1D sequence
and employ the causal attention, which can autoregressively predicts next tokens. (b) We propose
a temporal-multimodal fusion module to meld multi-modal information {hi

t}ni=1 and obtain the
next-state feature {h̊i

t+1}ni=1. To generate high-quality next-state videos and vehicle tokens, we
employ the causal attention, thus such tokens ({r̂it+1}ni=1) are autoregressively predicted. Emb(·)
denotes the embedding of corresponding tokens. In the temporal layer, each token only attends to
itself and tokens at the same sequential position from all previous frames. The multi-modal layer and
intra-state autoregressive module are separately operated to the tokens per frame.

see Figure 3. Specifically, to predict r̂T+1 = (r̂1T+1, . . . , r̂
H×W+2
T+1 ), we add the temporal-multimodal

output feature h̊T = (h̊1
T , . . . , h̊

H×W+2
T ) with the sequential tokens ([sos], r̂1T+1, . . . , r̂

H×W+1
T+1 ).

Then they are input to the intra-state autoregressive transformer layers Fc(·). The causal mask is
employed in these layers, thus each token can only attend itself and prefix intra-state tokens. The
autoregressive process is present in Eq. 6. As our pipeline incorporates both the next-state prediction
and the next intra-state token prediction, we enforce two teacher-forcing strategies in training, i.e.
one for the frame level and the other one for the intra-state level.
r̂iT+1 = G(Emb([sos])+ h̊1

T , Emb(r̂1T+1)+ h̊1
T , . . . , Emb(r̂)i−1

T+1+ h̊i
T ), i ∈ [1, H×W +2]. (6)

We use cross-entropy loss for training, as

LWorldModel = −
T+1∑
t=1

H×W+2∑
j=1

logP (r̂jt |r<t, r
1
t , . . . , r

j−1
t ). (7)

where r is the ground truth tokens, and r̂ is the predict tokens.

3.3 DECODER

By predicting the next-state tokens r̂T+1 = (ϕ̂T+1, v̂T+1, q̂T+1) using the world model, we can
then leverage the decoder to generate the corresponding relative orientation ∆θ̂T+1, relative location
(∆x̂T+1,∆ŷT+1), and the reconstructed image ÎT+1for that state. This process allows us to map the
predicted latent representations back into physical outputs, including both spatial and visual data.

Vehicle Pose Decoder. For the predicted relative orientation token ϕ̂T+1 and relative location token
v̂T+1, we can obtain the corresponding values through the inverse function of the Eq. 2 as follows:

∆θt = θmin +
ϕt

α
(θmax − θmin) ,

∆xt = xmin +
1

β

⌊
vt
γ

⌋
(xmax − xmin),∆yt = ymin +

(
vt
γ
vt −

⌊
vt
γ

⌋)
(ymax − ymin) .

(8)
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Figure 4: Example of autoregressive drift. Without our proposed masking strategy in training, when
generating only 10 frames, the scene will quickly corrupt.

Temporal-aware Decoder. For the predicted image tokens q̂T+1, we retrieve the corresponding
feature from the codebook Z ∈ RK×C in the Temporal-aware Vector Quantized Tokenizer. Note that
after the quantization layer we insert a temporal self-attention to enhance the temporal consistency.

f̂ i,jT+1 = lookup(Z, q̂i,j
T+1), i ∈ [1, H], j ∈ [1,W ]. (9)

3.4 LONG-TIME CONTROLLABLE GENERATION

Token Dropout for Drifting-free Autoregression. During training, the world model uses past
ground-truth tokens as conditioning to predict the next tokens. However, during inference, the model
must rely on previously generated tokens for conditioning, which may contain imperfections. Training
solely with perfect ground-truth images can lead to a content drifting problem during inference,
causing rapid degradation and eventual failure in the generated outputs. To address this, we propose a
random masking strategy (RMS), where some tokens from ground-truth tokens are randomly dropped
out. Each token has a 50% chance of being replaced by another random token in this frame, and this
dropout is applied to the entire conditioning image sequence with a probability of 30%. As shown in
Figure 4, this dropout strategy significantly mitigates the drifting issue during inference.

Balanced Attention For Precise Control. The world model utilizes extensive attention operations
to exchange and fuse information among tokens. However, each video frame in our experiments
contains 512 tokens, while only 2 tokens represent the ego pose (orientation and location). This
imbalance can cause the model to overlook pose signals, leading to unsatisfactory controllable
generation. To address this, we propose a balanced attention operation to achieve more precise
control by prioritizing ego state tokens in the attention mechanism, rather than attending to all tokens
equally. Specifically, we manually increase the weights of the orientation and location tokens in the
attention map (before the softmax layer), adding constant weights of 0.4 and 0.2, respectively, to
these tokens. Additionally, we incorporate QK-norm (Henry et al., 2020) and 2D-rotary positional
encoding (Su et al., 2024) to further stabilize training and enhance performance.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Tokenizer and Decoder. The video tokenizer has 70M trainable parameters. The images are with
size of 256× 512 and tokenized into 512 tokens. Considering 2 tokens for orientation and location
respectively, each state consists of 514 tokens. The size of adopted codebook is set to 16, 384. The
model is trained for 1,000k steps with a total batch size of 128 distributed across 32 NVIDIA 4090
GPUs. The traing images are selected from Openimages (Kuznetsova et al., 2020), COCO (Lin et al.,
2014), YoutubeDV (Zhang et al., 2022), and NuPlan (Caesar et al., 2021) datasets. We train the
temporal-aware VQ tokenizer and decoder using a combination of three loss functions: charbonnier
loss (Lai et al., 2018), perceptual loss from LPIPS (Zhang et al., 2018), and codebook loss (Van
Den Oord et al., 2017) (see Apendix for more details).

World Model. The world model module has 1 billion parameters and is trained on video sequences
consisting of 16 frames. The first 15 frames serve as conditional inputs, with the final frame used for
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Figure 5: Long time video generation. We present some videos generated by our method, each with
640 frames at 5Hz, i.e. 128 seconds. Please notice the coherent 3D scene structures captured by our
method across different frames (please see the digital version).

supervision. All video clips are sampled at 5 Hz. With 514 tokens per image, the sequence consists
of a total of 7,710 tokens. Training is conducted over 9 days, spanning 300k iterations with a fixed
learning rate of 1× 10−4 and a batch size of 64, distributed across 64 NVIDIA A100 80GB GPUs.
The model is trained on the NuPlan (Caesar et al., 2021) dataset, which comprises 120 hours of
human driving data downsampled to 5 Hz. We segment each scene into 75-frame clips, discarding
any that fall short of this length, resulting in a training set of 28,000 clips.

Evaluation Dataset and Metrics. We use 200 video clips from the NuPlan (Caesar et al., 2021)
test dataset as our test set, with each clip containing 100 frames sampled at 5 Hz. Additionally, we
include 150 video clips from the NuScenes (Caesar et al., 2020) test set as part of our evaluation. The
quality of video generation is assessed using the Frechet Video Distance (FVD), and we also report
the Frechet Inception Distance (FID) to evaluate image generation quality.

4.2 LONG TIME VIDEO GENERATION

One of the key advantages of our method is its ability to generate long-duration videos. As shown in
Figure 5, we visualize one long-duration video generated by our model. By conditioning on just 15
frames, our model can generate up to 640 future frames at 5 Hz, resulting in 128-second videos with
strong temporal consistency. These results demonstrate that our model maintains high video fidelity
and preserves 3D structural integrity across the generated frames. In contrast, previous methods often
struggle with drifting or degradation in long-duration videos. The ability to generate extended video
sequences underscores our model’s potential for tasks that require long-term predictions, such as
autonomous driving or video synthesis in complex dynamic environments.

4.3 COMPARISON WITH OTHER METHODS

Quantitative Comparison of Generated Videos. We provide the quantitative comparison with
several methods on the NuScenes (Caesar et al., 2020) dataset in Table 1. Since most methods are not
publicly available, we use the results reported in their respective papers for comparison. Our model
achieves competitive performance with a FID of 16.4 and an FVD of 174.4, despite being trained
exclusively on the NuPlan dataset (Caesar et al., 2021). Although Drive-WM and GenAN report
slightly better FID and FVD scores, they were both trained on the NuScenes dataset (Caesar et al.,
2020). Moreover, our method is capable of generating significantly longer videos than them.

Qualitative Comparison of Generated Videos. We provide a qualitative comparison with Stable
Video Diffusion (Blattmann et al., 2023), a well-known public video diffusion model, on the Nu-

8
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Table 1: Generation comparison on the NuScenes validation set.

Metric DriveGAN DriveDreamer WoVoGen Drive-WM GenAD DrivingWorld
(Santana &
Hotz, 2016)

(Wang et al.,
2023)

(Lu et al.,
2023)

(Wang et al.,
2024a)

(Yang et al.,
2024)

Ours

FID ↓ 73.4 52.6 27.6 15.8 15.4 16.4
FVD ↓ 502.3 452.0 417.7 122.7 184.0 174.4
Generation Length (s) N/A 4 2.5 8 4 30
Zero-shot ✗ ✗ ✗ ✗ ✗ ✓
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Figure 6: Comparison of SVD and ours. We compare our method with SVD for generating 26
frames on a zero-shot NuScenes scene. In these moderately long-term videos, our method better
preserves street lane details and maintains car identity more effectively.

Plan (Caesar et al., 2021) dataset. As shown in Figure 6, our generated videos demonstrate superior
temporal consistency, particularly in maintaining details like street lanes and vehicles.

Quantitative Comparison of Image Tokenizers. We further evaluate our temporal-aware image
tokenizer against those proposed in other works. Since the image tokenizer is part of a VQVAE, we
assess the encoding-decoding performance of these VQVAEs instead. The experiments, conducted
on the NuPlan (Caesar et al., 2021) dataset, are summarized in Table 2. The VQVAE models from
VAR (Tian et al., 2024) and VQGAN (Esser et al., 2021) demonstrate reasonable image quality in
terms of PSNR and LPIPS scores, but both fall short on FID and FVD metrics. In contrast, Llama-
Gen’s VQVAE (Sun et al., 2024) shows significant improvements in FID and FVD scores. After
fine-tuning it on driving scenes, we observe further enhancements in FVD performance. Ultimately,
our temporal-aware VQVAE outperforms all others, enhancing temporal consistency and achieving
the best scores across all four metrics.

Table 2: Quantitative comparison of different VQVAE methods. The evaluations are performed
on the 256× 512 NuPlan datasets.

VQVAE Methods FVD12 ↓ FID ↓ PSNR ↑ LPIPS ↓
VAR 164.66 11.75 22.35 0.2018
VQGAN 156.58 8.46 21.52 0.2602
Llama-Gen 57.78 5.99 22.31 0.2054
Llama-Gen Finetuned 20.33 5.19 22.71 0.1909
Temporal-aware (Ours) 14.66 4.29 23.82 0.1828

4.4 ABLATION STUDY

Setting. Due to the prolonged training time and computational costs, we experiment on a smaller
dataset for the ablation study. We extract 12 hours of video data from the NuPlan (Caesar et al., 2021)

9
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dataset for training, and select 20 videos from NuPlan (Caesar et al., 2021) test sets to create our
testing data. All ablation experiments are conducted on 32 NVIDIA A100 80GB GPUs with a total
batch size of 3. Each model is trained from scratch for 50,000 iterations, requiring approximately 96
GPU hours.

Model Structure w/ and w/o Random Masking Strategy. To evaluate the impact of our random
masking strategy on model robustness, we experiment model training with and without random token
masking. This masking process simulates potential prediction errors during inference, enhancing the
model’s ability to handle noise. As shown in Table 3, the model trained without masking experiences
a significant performance decline on NuPlan (Caesar et al., 2021) dataset, particularly in long term
videos where inference errors are more prevalent as we can see from the FVD40 scores. Generally
speaking, disabling masking results in a substantial increase in FVD, with a rise of 4 to 32 percent
across different scenarios, indicating poor generalization and reduced robustness against noisy inputs.

Table 3: Comparison of w/ and w/o Random Mask-
ing Strategy. Removing the random masking strategy
during training (“w/o Masking”) leads to drifting, re-
sulting in degraded performance on NuPlan dataset.

Methods FVD10 ↓ FVD25 ↓ FVD40 ↓

w/o Masking 449.40 595.49 662.60
Ours 445.22 574.57 637.60

Table 4: Performance comparison between
our method and GPT-2. Our method not
only improves efficiency but also produces
better results on NuPlan dataset.

Methods FVD10 ↓ FVD25 ↓ FVD40 ↓

GPT-2 2976.97 3505.22 4017.15
Ours 445.22 574.57 637.60

Table 5: Memory usage (GB) analysis of our method and vanilla GPT. Our method consumes
much lower GPU memory than vanilla GPT structure.

Num. of frames 5 6 7 8 9 10 15

vanilla GPT 31.555 39.305 47.237 55.604 66.169 77.559 OOM
Ours 21.927 24.815 26.987 29.877 31.219 34.325 45.873

Discussion With Vanilla GPT structure. We compare the memory usage of our Driving-
Worldstructure with the vanilla GPT architecture, specifically GPT-2, which processes tokens sequen-
tially across all frames during inference. GPT-2’s serial token prediction slows down performance,
significantly increasing computational burden and memory usage. As shown in Table 5, GPT-2’s
memory consumption grows quadratically with sequence length, making it inefficient for long se-
quences. In contrast, our method separates temporal and multimodal dependencies, allowing for
more efficient representation and computation. As sequence lengths increase, our model maintains
stable computational costs and memory usage, avoiding the sharp scaling seen in GPT-2. Moreover,
our approach not only enhances efficiency but also improves result quality. As shown in Table 4, our
model outperforms GPT-2 in FVD scores on NuPlan (Caesar et al., 2021) dataset.

5 CONCLUSION AND FUTURE WORK

In conclusion, DrivingWorld addressed the limitations of previous video generation models in
autonomous driving by leveraging a GPT-style framework to produce longer, high-fidelity video
predictions with improved generalization. Unlike traditional methods that struggle with coherence
in long sequences or rely heavily on labeled data, DrivingWorld generated realistic, structured
video sequences while enabling precise action control. Compared to the classic GPT structure, our
proposed spatial-temporal GPT structure adopts next-state-prediction strategy to model temporal
coherence between consecutive frames and then apply next-token-prediction strategy to capture spatial
information within a frame. Looking ahead, we plan to incorporate more multimodal information
and integrate multiple visual inputs. By fusing data from various modalities and viewpoints, we
aim to improve action control and video generation accuracy, enhancing the model’s ability to
understand complex driving environments and further boosting the overall performance and reliability
of autonomous driving systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11621–11631, 2020.

Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit Fong, Eric Wolff, Alex Lang, Luke Fletcher,
Oscar Beijbom, and Sammy Omari. nuplan: A closed-loop ml-based planning benchmark for
autonomous vehicles. arXiv preprint arXiv:2106.11810, 2021.
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Uncertainty-aware model-based offline reinforcement learning for automated driving. IEEE
Robotics and Automation Letters, 8(2):1167–1174, 2023.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873–12883, 2021.

Yanchen Guan, Haicheng Liao, Zhenning Li, Jia Hu, Runze Yuan, Yunjian Li, Guohui Zhang, and
Chengzhong Xu. World models for autonomous driving: An initial survey. IEEE Transactions on
Intelligent Vehicles, 2024.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Ligong Han, Jian Ren, Hsin-Ying Lee, Francesco Barbieri, Kyle Olszewski, Shervin Minaee, Dimitris
Metaxas, and Sergey Tulyakov. Show me what and tell me how: Video synthesis via multimodal
conditioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3615–3625, 2022.

Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-predictive policy learning with uncertainty
regularization for driving in dense traffic. arXiv preprint arXiv:1901.02705, 2019.

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query-key normalization
for transformers. arXiv preprint arXiv:2010.04245, 2020.

Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shotton,
and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. arXiv preprint
arXiv:2309.17080, 2023.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, et al. The open images dataset
v4: Unified image classification, object detection, and visual relationship detection at scale.
International journal of computer vision, 128(7):1956–1981, 2020.

Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Fast and accurate image
super-resolution with deep laplacian pyramid networks. IEEE transactions on pattern analysis and
machine intelligence, 41(11):2599–2613, 2018.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1–62, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Jiachen Lu, Ze Huang, Jiahui Zhang, Zeyu Yang, and Li Zhang. WoVoGen: World Volume-Aware Dif-
fusion for Controllable Multi-Camera Driving Scene Generation. arXiv preprint arXiv:2312.02934,
2023.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Eder Santana and George Hotz. Learning a Driving Simulator. arXiv preprint arXiv:1608.01230,
2016.

Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. Stylegan-v: A continuous video
generator with the price, image quality and perks of stylegan2. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 3626–3636, 2022.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng, Dimitris N Metaxas, and Sergey Tulyakov.
A good image generator is what you need for high-resolution video synthesis. arXiv preprint
arXiv:2104.15069, 2021.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. Advances in neural information processing systems, 29,
2016.
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A APPENDIX

We present more experiments in the appendix and provide additional video results on the website
(Click here to see more videos).

A.1 DIFFERENT CONDITION FRAMES

To investigate the effect of varying the number of condition frames on model performance, we conduct
a series of experiments by gradually increasing the length of the condition frames used during training
and inference. We extract 12 hours of video data from the NuPlan dataset for training, and select
20 videos from each of the NuScenes and NuPlan test sets to create our testing data, referred to
as NuScenes-Small and NuPlan-Small, respectively. As shown in Table 6, the model consistently
improves as the number of condition frames increases. Specifically, when fewer condition frames
are used, the model struggles to capture long-term dependencies. In contrast, with longer condition
frames, the model has more temporal context to work with, allowing it to better understand the
environment and generate more precise outputs.

Table 6: Ablation the amount of condition frames. DrivingWorld generates better videos (lower
FVD error) when conditioning more frames.

Number of
Condition Frames

Nuscene-Small Nuplan-Small
FVD10 ↓ FVD25 ↓ FVD40 ↓ FVD10 ↓ FVD25 ↓ FVD40 ↓

5 475.14 802.35 1113.81 494.86 597.95 679.05
10 448.93 719.57 965.62 449.29 577.54 646.60
15 440.27 695.26 933.13 445.22 574.57 637.60
25 360.55 546.11 721.56 400.94 512.73 580.10

A.2 THE EFFECT OF INTRA-STATE AUTOREGRESSIVE MODULE

To assess the impact of the final intra-state autoregressive (AR) module on our DrivingWorld’s overall
performance, we perform an ablation study by removing this module from the model structure. Thus
future state’s tokens are predicted simultaneously. The experimental results, as summarized in Table 7,
indicate that the absence of the AR module leads to a noticeable decrease in performance across
FVD metric. Note that ‘Baseline-w/o AR’ and ‘Ours’ have comparable model size. Specifically,
removing the AR module results in an increase from 18% to 71% in FVD metric, which suggests
that the module plays a crucial role in capturing sequential dependencies and refining the final output
predictions in the long-term generation.

Table 7: Ablation the effect of intra-state autoregressive module. ‘Baseline-w/o AR’ removes the
intra-state autoregressive module and generates all next-state tokens simultaneously, while ‘Ours’
autoregressively generates next-state tokens, which have much lower FVD error.

Methods Nuscene-Small Nuplan-Small
FVD10 ↓ FVD25 ↓ FVD40 ↓ FVD10 ↓ FVD25 ↓ FVD40 ↓

Baseline-w/o AR 523.53 1052.30 1601.36 525.04 729.75 1007.91
Ours 440.27 695.26 933.13 445.22 574.57 637.60

A.3 SCALING LAW OF OUR DrivingWorld.

To investigate the scaling law of our model, we conducted a series of ablation experiments by
progressively scaling up the number of parameters in the model. As shown in Table 8, increasing
the model size consistently leads to improved performance. In smaller models, the limited capacity
hinders the ability to fully capture the complexity of the data, resulting in suboptimal performance,
especially on long-term generation.

A.4 MODEL STRUCTURE w/ AND w/o RANDOM MASKING STRATEGY

To evaluate the impact of our random masking strategy on model robustness, we experiment model
training with and without random token masking. This masking process simulates potential prediction
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Table 8: Experiment of scaling law of our model. We compare three different model sizes (i.e. 10M,
100M, 1B). Larger model can generate much better videos on Nuscense and Nuplan-small datasets.

Methods Nuscene-Small Nuplan-Small
FVD10 ↓ FVD25 ↓ FVD40 ↓ FVD10 ↓ FVD25 ↓ FVD40 ↓

10M 654.95 1248.53 1817.82 816.39 1003.03 1262.31
100M 463.72 809.02 1120.30 481.25 609.20 915.01
1B 440.27 695.26 933.13 445.22 574.57 637.60

errors during inference, enhancing the model’s ability to handle noise. As shown in Table 9, the
model trained without masking experiences a significant performance decline on Nuscene dataset,
particularly in long term videos where inference errors are more prevalent as we can see from the
FVD40 scores.

A.5 DISCUSSION WITH VANILLA GPT STRUCTURE

We compare the performance of our DrivingWorldstructure with the vanilla GPT architecture, specifi-
cally GPT-2, which processes tokens sequentially across all frames during inference. As shown in
Table 10, our model outperforms GPT-2 in FVD scores on Nuscene dataset.

Table 9: Effect of Random Masking Strategy. Re-
moving the random masking strategy during training
(“w/o Masking”) leads to drifting, resulting in degraded
performance on Nuscene dataset.

Methods FVD10 ↓ FVD25 ↓ FVD40 ↓

w/o Masking 450.04 711.01 965.16
Ours 440.27 695.26 933.13

Table 10: Performance comparison be-
tween our method and GPT-2. Our method
not only improves efficiency but also pro-
duces better results on Nuscense dataset.

Methods FVD10 ↓ FVD25 ↓ FVD40 ↓

GPT-2 2122.24 3200.29 4063.26
Ours 440.27 695.26 933.13

A.6 LONG-TERM GENERATION

To demonstrate the long-time generation ability of our DrivingWorld, we create more long-time
generation videos, which are enclosed in the supplementary materials. Condition frames are marked
with white borders, while generated frames are in red borders.
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