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ABSTRACT

Real-world deployment of machine learning models requires the ability to contin-
ually learn from non-stationary data while preserving prior knowledge and user
privacy. Therefore, storing knowledge acquired from past data in a resource- and
privacy-friendly manner is a crucial consideration in determining their viability.
We introduce Quantized Gradient Projection Memory (QGPM), a systematic frame-
work for continual learning that compresses and preserves the previous gradient
subspace. QGPM integrates three key components: (i) distribution-aware, basis-
wise quantization to minimize storage overhead, (ii) a Quantization Error-Aware
(QEA) gradient projection that selectively relaxes orthogonality to mitigate gradi-
ent drift caused by accumulated quantization noise, and (iii) an on-the-fly sparse
sketching strategy that improves runtime memory and computational efficiency.
Experiments across multiple benchmarks demonstrate that QGPM achieves state-
of-the-art performance under fixed memory budgets, highlighting its effectiveness
in scalable, privacy-preserving continual learning. Our code is available here.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success across domains, particularly in
computer vision (He et al.,[2015; [Simonyan & Zisserman| 2014} He et al., 2017)). However, their
standard training paradigm assumes access to the full dataset upfront—an unrealistic assumption in
real-world scenarios where data arrives sequentially and evolves over time. In contrast, intelligent
agents must learn continuously: acquiring new skills while retaining prior knowledge. This motivates
the field of continual learning (CL) (Lange et al.,[2019)), which aims to enable models to adapt to
new tasks without overwriting existing representations. Naively applying stochastic gradient descent
(SGD) in this setting leads to catastrophic forgetting (McCloskey & Cohenl [1989), where learning
new tasks disrupts previously acquired knowledge. To mitigate this, several CL strategies have been
proposed, including: (1) Regularization-based methods (Kirkpatrick et al., 2017), which penalize
updates to important weights; (2) Expansion-based methods (Rusu et al., [2016)), which allocate new
parameters per task; (3) Rehearsal-based methods (Rolnick et al., 2019), which replay stored or
synthetic data (Gao & Liul [2023)); and (4) Projection-based methods (Saha et al., 2021} Farajtabar|
et al., [2020), which constrain updates to subspaces orthogonal to prior gradients. Each strategy
encodes prior knowledge in a specific form: importance weights, dedicated modules, rehearsal buffers
or generative models, and gradient subspaces, respectively. As Rebutfi et al.| (2017) emphasize, a
viable incremental learner must keep memory and compute demands bounded or slowly growing.
Thus, memory efficiency is a key factor in determining a CL method’s practical deployability.

Gradient Projection Memory (Saha et al.,[2021) maintains a dedicated memory structure — the GPM —
where it stores a set of core bases that span the gradient subspaces associated with previous tasks.
When learning a new task, incoming gradients are projected onto the orthogonal complement of
the subspace spanned by the stored bases, thus minimizing interference with previously acquired
knowledge. These projection-based methods demonstrate state-of-the-art stability against catas-
trophic forgetting (Liang & Li,2024). Furthermore, the method’s inherent privacy-preserving nature,
stemming from not storing raw data or intermediate representations, makes it well-suited for continual
learning in privacy-sensitive fields such as the medical domain (Verma et al.| 2023).

In this paper, we demonstrate that the memory efficiency of continual learning can be significantly
improved by quantizing the bases stored in GPM, while preserving its core benefits. However, this
introduces two key challenges: (1) the distribution of individual bases is often heavy-tailed, leading
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to large quantization errors; and (2) subspace distortion can cause projected gradients to deviate from
their intended direction, resulting in what we call a gradient drift. To overcome these issues, we
propose two complementary techniques: Centered Inlier Normal Float (CINF) quantization, which
reduces the influence of outliers during quantization, and Quantization Error-Aware (QEA) gradient
projection, which adaptively relaxes orthogonality constraints based on estimated deviation from the
desired update direction.

The main contributions of this paper are:

1. We propose Quantized Gradient Projection Memory (QGPM), a novel framework for
memory-efficient continual learning that leverages basis-wise quantization. Its core compo-
nent, Centered Inlier Normal Float (CINF) quantization, enhances robustness to outliers
and improves codebook utilization.

2. To mitigate performance degradation caused by accumulated quantization errors, we intro-
duce QFA gradient projection, a technique that balances orthogonality with alignment to
the desired gradient direction.

3. We propose On-the-Fly Sparse Sketching to accelerate the SVD computation and reduce
intermediate training-time memory overhead during QGPM construction.

4. We conduct extensive experiments demonstrating that QGPM achieves strong performance
under tight memory budgets, with detailed analysis of its memory-accuracy tradeoffs.

2 RELATED WORK

Continual Learning. To address catastrophic forgetting, numerous continual learning (CL) methods
have been proposed. Among these, regularization-based methods add constraints to prevent significant
changes to parameters deemed important for earlier tasks. For example, Elastic Weight Consolidation
(EWC) (Kirkpatrick et al.,|2017) adds a quadratic penalty term weighted by the Fisher Information
Matrix, while Synaptic Intelligence (SI) (Zenke et al,2017)) computes parameter importance during
training and penalizes deviations proportionally. Despite their simplicity, such methods often suffer
from low stability and require parameter importance masks that scale with model size, limiting
memory efficiency. Expansion-based methods allocate task-specific parameters or sub-networks
to isolate learning across tasks. Progressive Neural Networks (PNN) (Rusu et al., |2016) grow the
model by adding new columns of neurons for each task while freezing earlier ones, whereas Hard
Attention to the Task (HAT) (Serra et al.l 2018]) learns task-specific binary masks to protect important
neurons. While effective, these approaches incur linearly growing memory overhead, violating the
goal of bounded resource usage in CL. Rehearsal-based methods store and replay data or intermediate
features from previous tasks to reinforce memory. Experience Replay (ER) (Rolnick et al., [2019)
maintains a buffer of past samples and interleaves them with current training data. DER++ (Buzzega
et al.,[2020) and FDR (Benjamin et al., 2019) combine rehearsal with distillation-based regularization,
penalizing shifts in logits or model outputs. These methods can perform well given a moderate buffer
size but raise privacy concerns due to the storage of raw data. Finally, gradient projection—based
methods constrain updates to lie in subspaces orthogonal to previous gradients. OGD (Farajtabar et al.|
2020) and OWM (Zeng et al.,[2019) pioneered this idea, while GPM (Saha et al., [2021) improves
scalability by projecting in the space of input representations. Recent works (Yang et al.l 2023 |[Liang
& Li, 2023} |Lin et al., 2022)) build on this foundation to enhance performance and efficiency.

Memory-Efficient Continual Learning. Memory-efficient approaches to incremental learning
remain relatively underexplored. Parameter isolation via pruning has been used to allocate disjoint
parameter subsets per task (Zhao et al., [2022). [Iscen et al.| (2020) reduces the rehearsal buffer by
storing compact representations (e.g., lightweight features) instead of raw data, combined with
knowledge distillation. However, storing intermediate features remains vulnerable to inversion
attacks (Jacobsen et al.,[2018). While Zhou et al.|(2023)) expands only the last few task-specific layers,
the overall memory footprint still grows linearly with the number of tasks. To eliminate memory
buffers altogether, data-free knowledge distillation has been proposed (Smith et al., 2021} |Chung
et al., 2022 |Choi et al.} [2021). Although it effectively addresses privacy concerns, a full copy of
the network must be retained for distillation, leading to additional memory overhead. |[Ermis et al.
(2022)) utilizes adapters on top of pretrained transformers, in conjunction with knowledge distillation;
however, this is only applicable in scenarios where a pretrained foundation model is available. Many
existing works leverage knowledge distillation to reduce memory usage from rehearsal or model
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expansion. However, this typically requires either a dedicated auxiliary network or a full copy of
the backbone model, introducing significant memory and computational overhead — an aspect often
overlooked when reporting overall memory budgets. To the best of our knowledge, no prior work has
explored the use of quantization to compress gradient subspaces, despite its potential to offer strong
privacy guarantees and improved memory efficiency.

3  QUANTIZED GRADIENT PROJECTION MEMORY (QGPM)

In this section, we present the core ideas behind our approach to memory-efficient continual learning
via basis-wise quantization of Gradient Projection Memory (GPM). The main challenge lies in the fact
that the subspace spanned by the stored bases serves as .

the reference for orthogonal gradient updates, making Vile = Mi_y - Ary - (Mi_y) -Vl

it highly sgnsitive to quantization-ipdyced distortions. VLo — ML, - (ML ) VL.

As shown in Theorem [3.2] the deviation between the N

ideal orthogonal update — computed based on the true )
subspace — and the update derived from a quantized

subspace grows quadratically with the quantization er-

ror. We find that standard linear quantization schemes Subspace spanned
are inadequate in this setting. In response, we propose b
a set of techniques to mitigate quantization effects
while preserving the core functionality of GPM. Algo-
rithmE] summarizes the full QGPM procedure, which
integrates CINF quantization, QEA gradient projec-
tion, and On-the-Fly sparse sketching into a unified

CL framework. Figure 1: QEA Gradient Projection.

M‘lr—l ! A!r—l ! (M'lr—l)T *Vwly

3.1 PRELIMINARIES

Gradient Projection for Continual Learning. The objective of continual learning is to solve
Miny % 2321 L-(w, D), where L, and Dy = {&(+), V(r)} denote empirical loss and dataset
of the 7-th task. Let w!. C w, denote I-th layer parameters trained on task 7 and let R. be the input
representation to layer [ at that point. The output activation of layer [ after training on task 7 is given
by wl - RL. We would like this activation to remain unchanged even after learning task 7 + 1, i.e.,
wl-RL=wl - RL = (wl + Aw!) - RL. This requires that the weight update Aw' satisfies
the orthogonality condition Aw' - RL = 0. To enforce this constraint, we store a set of core basis
vectors that span the subspace of R (see lines 13—16 of Algorithm in Appendix E]), and restrict
future gradient updates to lie in the orthogonal complement of this subspace (see line 5 of the same
algorithm). We denote this memory (i.e., GPM) for layer [ after task 7 by M.

k-bit NormalFloat (NFK) Quantization. The authors of QLoRA (Dettmers et al., 2023)) introduced
NFk, an information-theoretically optimal quantization data type for normally distributed data. NFk is
a variant of quantile quantization, which ensures that each quantization bin contains an equal number
of data points mapped from the original distribution. For k-bit quantization, NFk stores 2* codes in a
pre-defined codebook: ¢ = [c1, ¢a, . .., cor] € [—1, 1]2k. Given a vectoru = (aj,as,...,ag) € R5,
the quantization proceeds as follows: (1) Compute M = max; |a;|. (2) Normalize each entry by M
to scale the values into the range [—1, 1]. (3) For each normalized value, find the index j of the closest
codebook value ¢;, i.e., a; is mapped/discretized according to the index j = argmin; lcj — 4|
3.2 CENTERED INLIER NORMAL FLOAT (CINF)

A key limitation of naive NFk quantization is its vulnerability to outliers. It normalizes the input
vector by its maximum absolute value, which can become large in the presence of outliers. This
compresses the bulk of values toward zero, distorting the distribution into a highly sub-Gaussian. As a
result, the quantization codebook is used inefficiently: most values are mapped to bins near zero, while
only a few occupy the extreme bins near —1 and 1, leading to significant information loss (Yoshida,
2023)). To address this issue, we propose Centered Inlier Normal Float (CINF) quantization, which
improves robustness to outliers by restricting normalization to a central quantile range. Given an
input vector u = (ay, as, ..., ap), CINF performs the following steps:

1. Compute the mean of the input, y = % 2?:1 a;.
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2. Center the vector components by subtracting the mean, a; centered = @i — 4.
3. Compute the § and 1 — § quantiles of the centered values, g5 and g1 .

4. Values outside the quantile range [gs, g1 5] are stored in full precision. The remaining inlier
values are quantized using NFk, where normalization is performed using the scale factor
s = max(|gs|, |g1—s]) rather than the global maximum M = max; |a;].

Further details on CINF codebook construction are provided in Appendix We now analyze
how this method reduces quantization error. Assume entries of vector u follow a standard normal
distribution, i.e., a; ~ N(0,1). Let M = max; |a;|, and define the quantile threshold g5 = inf{r >
0: % 253:1 1(|a;| < r) > &}, with scaling factor s = max(|gs|, |q1—s|). Partition the data into
outliers O = {i : |a;| > s} and inliers Z = O°. Letc = [c1,ca, ..., cor] denote the fixed NFk
codebook. The dequantized value under naive NFk is

a; " = Mg, j*(i) = argmin |c; — %, i€ OULT. (1
je{1,...,2~F}
In contrast, the dequantized value under CINF is given by
a;, 7 S 07 )
CNlZCINF _ ‘7*(@) = arg min cj — % ) )
SCJ*(z) +M, ) GI, je{1,...,2%} S

NFk ~NFk)2 and eCINF —

_ 1

= Jouz] Zie(OUI) (a; — @
|71‘ Y ier(ai — a$™F)2 where the CINF error is computed over inliers only, as outliers are stored
losslessly. To understand how normalization impacts quantization error, we compare the NFk scale
factor M = max; |a;| to the CINF quantile threshold gs. The next result from order statistics offers a
useful approximation for this comparison.

The quantization errors are defined as e

Theorem 3.1 (Expected Values of Normal Order Statistics (Harter,|1961)) Consider
u = (ai,az,...,ap), a set of independent random variables drawn from a standard nor-
mal distribution, i.e., a; ~ N(0,1). Denote the expected value of the i-th order statistic by E[i : B.

Then, for sufficiently large B, this expectation can be approximated as Eli : B] ~ ®~1 (#&_1) ,

where @1 is the inverse cumulative distribution function (CDF) of N'(0,1), and o = 0.375.

By definition, E[M] = E[B : B] = @‘1(Bf;aﬁ1). As B grows, M becomes large since
B—«

Bozar1 — 1. As previously discussed, this leads to overly aggressive normalization of the data
via a; /M, compressing most values near zero and resulting in inefficient utilization of quantization
bins. In contrast, by excluding a small fraction of outliers (e.g., the top 1%), the expected scale
for inlier-based normalization becomes E[s] = E[0.99B : B] ~ ®~($%2=%) which remains
bounded above by ®1(0.99) = 2.32. This results in a more evenly spread normalized distribution
and improved codebook utilization compared to the NFk case. Consequently, CINF produces a lower
quantization error than NFk, i.e., e“INF < oNFk,

Now, we define the basis-wise CINF quantization and de(iluantization functions for a single input
vector u € R? as (ug, s, 1, A) = Qcine(u) and @ = Qgyp(uy, 8, 1), Where u, is the quantized
vector, s is the inlier scale, p is the mean, and )\ is orthogonality weight (introduced later). In our
implementation, the Quant function in Algorithm [T|applies the column-wise operator Qcinr to the

top-r left singular vectors UL[-, 1 : 7] obtained from SVD. Formally,

UL [ ), shli], 2L[i], oh[i] = Qemr(UL[, i), Vie{l,...,r}. 3)
Here, UIQ,T = [ugl), cel, u((;')] € R¥*" stores the quantized basis vectors, while the auxiliary arrays
st =1[s1,...,8:), 2L = [u1,...,pr], and oL = [y, ..., \,] record the corresponding scales, offsets,

and orthogonality weights used in dequantization and QEA projection.

3.3 QUANTIZATION ERROR-AWARE (QEA) GRADIENT PROJECTION

QEA Gradient Projection. In standard GPM-based CL, when training on the 7-th task using
dataset D(,), the raw gradient g = V L is computed via stochastic gradient descent (SGD). This
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Algorithm 1 QGPM Training Algorithm

Input: f,, the NN model, D'"%" the training dataset, 12: B,k ~ Dein
7 the learning rate, and €, the threshold value. {3. {RL }zL:/ 1 < forward(Bn,, fw)
Initialize, MbyO,Sé,Zé,Oé — [, foralll = 14.

1,2,...,L and w < w,. 15 forvVie{1,2,...,L'} do
1: forr=1,2,...,T do 16: R « RL —M! 1-(Ml 1)T~Rl
/ T T T— VT — T
2 fOI‘VZZE{l,Q,...,L}dOZ z l 17: Ui,EL,Vi(—SVD(Ri)
3 M’ _; < Dequant(Mgq ,_1,57_1,Zr-1) q. S
4 P._, « M. _, Diag(O._;)- (M},_,)" v iy anten?n(R” Rr, )
5. end Eo}l T T T 19: Ug,+»8r,2%7,07 < Quant(U [,1:7])
6:  repeat 20: MQJ — Concat[/\/tQ’T,l7 UQ,T]
7: B,, ~ Direin 21: SL + Concat[S:_;,s!]
8 g+ Vwl- 22: ZL « Concat[ZL_,, 2]
9 g« g— P-r—} '8 23: OL < Concat[O% _;, 0]
10 W—w—1-8g 24:  end for
11:  until convergence 25: end for

gradient is then projected to be orthogonal to the subspace spanned by the basis vectors stored in
M. _| (see line 5, Algorithmin Appendix . In QGPM, the basis vectors are quantized to reduce
memory footprint, forming ./\/llQ . To perform gradlent projection (line 5, Algorlthm , the quantized
basis vectors must be dequantlzed into full-precision (or optionally, a compact hlgher-premswn format
such as BF16) for use in tensor operations. This is handled by the Dequant function in line 4 of
Algorlthm which reconstructs each basis vector by applying column-wise QCINF operator

MT 1[ ] = QE%NF(MQ,Tfl[.7 i]v Sql—f [ ] Z-r 1[2])7 Vie {17 RS |MQ,7-71|} (4)

where |Ml _ 1| denotes the number of basis vectors in the QGPM. However, as quantized bases are
accumulated over multiple tasks, the quantization error compounds. We observe that this accumulated
distortion can destabilize the learning process: when the subspace spanned by the quantized GPM is
significantly misaligned from its original counterpart, the resulting gradient projection deviates from
the true orthogonal direction. This leads to update directions that are no longer interference-free with
respect to past tasks — we refer to these as gradient drift.

Theorem 3.2 (Quantization Error Accumulation) Let M, = [uy,...,u,,] € R™"*™ be the full-
precision GPM, and let E = [e1, . . ., €,] € R"*™ be a random Gaussian error matrix, where each
column €; ~ N (0, 0°1,,). Define the quantized GPM as M, = M, + E. Let g € R" be a gradient
vector, and let g, and g, denote its orthogonal components with respect to the subspaces spanned by
M, and M., respectively. The expected deviation between the projected gradients satisfies:

Eflg — gell2] > [E[go — &clll, = m - o - [Igll2, ®)

implying that the projection error introduced by quantization grows linearly with the number of basis
vectors m and quadratically with the quantization noise level o.

Proof is in Appendix [G.T] QGPM mitigates quantization errors by relaxing the strict orthogonality
constraint of standard GPM, allowing a controlled parallel gradient component. This relaxation is
adaptively scaled based on the quantization fidelity of each basis vector, which may vary across
vectors due to differences in their distributions and compressibility. To capture this fidelity, the
Quant function evaluates the quantization error individually for each of the r new basis vectors
ﬂi[:, 1] to be incorporated into the QGPM. Specifically, immediately after quantization, each vector
is dequantized to obtain an approximation U’ [-,i] = QE%NF(QCINF(ﬁlT[~, i])),fori=1,...,r. To
assess the distortion introduced by quantization, we compute the cosine similarity between each
original full-precision vector and its dequantized counterpart. The quantization error for the i-th basis
1S ol . ool .

e = 1 — simgon (L[ 1], UL i]) = 1 — — Ozl Uelvil

UL dlll2 U5l

The value e; quantifies how much the dequantized vector Ul [-,i] deviated from the original basis
I:TZT[, i]. To incorporate this into gradient projection mechanism, we introduce a hyperparameter
« that scales the error, and define an orthogonality weight A; = 1 — « - ¢;. The Quant function

(6)
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computes \; for each of the r new basis vectors, resulting in a distinct orthogonality weight for every
column in the QGPM. These weights are then used to specify the projection strength during gradient
updates, controlling the extent to which the orthogonality is enforced. Formally,

Vwly =VaL; =M. AL (M. )T VL, =VwL, —P. |- V4L, (7

T—1" T
l L . . .
where Ai_il = Diag()\l, ey )\lMIQ _1|) S RIMQ,T—IIX‘MQ,T—II’ as illustrated in Flgure When

the quantization error e; is large, the corresponding )\; is reduced, allowing a greater component
of the gradient to pass through in the parallel direction — thereby increasing plasticity along the
associated basis vector. This adaptive mechanism mitigates the impact of projection distortion due to
quantization error, effectively preserving both model stability and past knowledge.

3.4 QGPM CONSTRUCTION WITH ON-THE-FLY SPARSE SKETCHING

After completing the 7-th task, QGPM is updated to M. by incorporating r new basis vectors. To
do so, a subset of training samples B,,, C D" is passed through the network fy,, producing
input representations at each layer, R, = [RL,R2,... RL]. We extract the orthogonal component

of the new representation relative to the current GPM subspace M _ |, ie., RL = RL - ML -

M. )T -RL, where ML | - (ML _)T - R. is the component that already exists in M!_,. To
T—1 T T—1 T—1 T p y T—1
extract orthogonal basis vectors from R!, we apply Singular Value Decomposition (SVD) and retain
the top-r singular vectors, UL 3! VL = RL ~ RL, where the value of r is chosen by the
function criterion: R
1 I \T . Rl2 U2
HMT—I ) (M‘r—l) ) RTHF ||RT,’)"||F > ey (8)
2 2 = Cth

IRLIZ IRLIZ

This ensures that the retained directions collectively explain at least e, of the total variance in R..
The selected r left singular vectors are then quantized, yielding r quantized singular vectors UZQ’T,

along with auxiliary arrays, (s’ ,z, 0l), as introduced in Section Finally, the newly quantized

Ty 4Ty VT

basis vectors and their associated metadata are appended to the QGPM: M, _, St, ZL, and OL.

On-the-Fly Sparse Sketching. In the standard GPM update, the representation matrix R. is
constructed by collecting local activation patches from the entire feature representation. Each patch is
flattened into a column vector r;, and these vectors are concatenated to form R. = [ry,...,ry]. A
key challenge is that IV can become extremely large, especially in convolutional or transformer blocks
— popular components of modern neural networks. As shown in Table[T0]in Appendix [C] this results
in a high-dimensional matrix that significantly slows down SVD and incurs substantial memory
overhead during training. To address this, we propose an On-the-Fly Sparse Sketching strategy, which
constructs a low-dimensional approximation of R! using a sparse sketch in a streaming manner.

Theorem 3.3 ((1 & ¢)-/, Subspace Embedding via Sparse Sketching) Let S € R™YN be a
sparse embedding matrix constructed using hash functions h : [N] — [r] and o : [N] — {-1,1}.
The i-th column of S has a single non-zero entry at row h(i), with value o (i). Then, for any rank-k
matrix A € RN*" jfp = O(%), then with probability at least 1 — 9, S is a (1 £ €)-l subspace
embedding for the row space of A in the {3-norm. Equivalently, for all x € R",

(1—¢)[[Azllz < [[SAz]2 < (1+¢)[|Az]lo.
Proof is in Appendix Leveraging the (1+¢)-¢5 subspace embedding property of sparse sketching
(Theorem [3.3), we apply column-wise sketching for each new representation vector r; by setting
r = n. This reduces the size of the representation matrix from R™*" to R"*", while approximately
preserving the geometric structure of the original subspace. As a result, the peak intermediate
memory required to construct the QGPM is reduced by a factor of N/n at each layer. In addition, the
computational cost of SVD, the primary bottleneck in standard GPM, is reduced by the same factor.
Specifically, the time complexity of computing the SVD of an n x N matrix is O(N x n?) when
N > n. Notably, with this sketching scheme, the representation matrix for ViT-S can be compressed
from 1.62GB to just 66MB. Detailed implementation and analysis are provided in Appendix [C]

4 EXPERIMENTS

Setup. We evaluate QGPM on three standard CL benchmarks: 10-split CIFAR-100, 5-Datasets
(Ebrahimi et al., 2020), and 10/20-split minilmageNet (Vinyals et al., 2016)). These benchmarks
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Table 1: Performance comparison on continual learning benchmarks. 8-bit QGPM (8QGPM) matches full-
precision GPM (GPM-FP) with <0.5% drop in ACC/BWT while reducing memory by 3.83x on average. Under
the same memory budget, rehearsal-based baselines (AGEM, FDR, ER, DER++) suffer substantial forgetting
(higher BWT). 4-bit QGPM (4QGPM) remains robust (<1% drop vs. GPM-FP) with a 6.44 X memory reduction,
demonstrating scalability under stricter constraints.

Methods 10-split CIFAR100 5-Datasets 10-split minilmageNet  20-split minilmageNet
ACC(1) BWT (1) | ACC(D) BWT (D) | ACC(1) BWT(1) | ACC(1) BWT()

Memory 3.13MB 27.67 MB 9.85 MB 11.07 MB \
GPM-FP 71.11 -0.98 89.52 -1.83 | 73.84 -3.30 80.28 -2.73
Memory 0.81 MB 7.24 MB 2.59 MB 2.88 MB |
GPM-FP-MC 64.58 -12.88 77.82 -16.14 71.48 -8.24 77.06 -6.69
AGEM-MC 50.72 -25.44 80.45 -14.81 57.43 -23.74 60.42 -24.02
DER++-MC 60.63 -14.82 84.08 -8.10 68.77 -11.51 76.12 -9.35
ER-MC 56.41 -16.77 80.97 -11.79 67.95 -14.37 75.56 -10.08
FDR-MC 63.07 -13.74 83.54 -9.88 67.80 -12.93 70.73 -13.94
8QGPM (Ours) 70.70 -0.81 89.41 -2.08 73.78 -3.54 80.23 -2.77
Memory 0.48 MB 4.27 MB 1.52 MB 1.76 MB \
GPM-FP-MC 62.33 -20.23 70.86 -25.15 70.90 -9.48 76.36 -7.64
4QGPM (Ours) 69.74 -2.62 88.51 -3.79 73.77 -4.50 80.25 -3.38

capture complementary challenges of continual learning, including large label spaces, cross-domain
heterogeneity, and scalability. We follow standard architectures for each benchmark: AlexNet (Serra
et al.,[2018)) for CIFAR-100, ResNet-18 (He et al., 2016) for 5-Datasets, and pretrained ViT-S (Tou
vron et al., 2022)) for minilmageNet. All models are trained in a multi-head setting, with a dedicated
classification head per task. Further architectural and dataset details are in Appendix [A.2]

Baselines. We compare QGPM against rehearsal-based continual learning methods that support
flexible memory buffer sizes, unlike regularization- or expansion-based approaches. Specifically,
we include Average GEM (AGEM) (Chaudhry et al., 2019), Function Distance Regularization
(FDR) (Benjamin et al.} 2019), Experience Replay (ER) (Rolnick et al.,|2019), and Dark Experience
Replay (DER++) (Buzzega et all [2020), which represent widely used and competitive baselines.
We also evaluate two GPM variants: the original full-precision version (GPM-FP) and a memory-
constrained variant with reduced ¢;;, (GPM-FC-MC). For fairness, all methods are matched to
QGPM’s memory budget by adjusting the buffer size to yield an equivalent overall overhead.

Metrics. We evaluate performance using two standard continual learning metrics (Lopez-Paz &
Ranzato} 2017). The average accuracy (ACC) measures overall test accuracy across tasks at the end
of training; it is defined as ACC = % Zthl accl’, where accl is the final accuracy on task ¢ after
learning all T tasks. The backward transfer (BWT), quantifying the degree of forgetting (negative
values indicate loss on earlier tasks), is defined as BWT = ﬁ tT:_ll (accl’ — accl), where acct is
the accuracy on task ¢ immediately after learning it.

4.1 PERFORMANCE ANALYSIS

Main Results. Table (1| reports results for 8-bit QGPM (8QGPM) and 4-bit QGPM (4QGPM)
compared to all baselines. Across benchmarks, 8QGPM matches full-precision GPM (GPM-FP),
with ACC and BWT reduced by less than 0.5%, while requiring 3.83 x less memory on average. Under
the same memory budget, rehearsal-based baselines suffer substantial forgetting due to limited buffer
size, leading to much higher BWT. With more aggressive compression, 4QGPM shows only a modest
drop (< 1% ACC/BWT relative to GPM-FP) while achieving a 6.44 x memory reduction. Since
8QGPM already outperforms all baselines at equal memory, we focus on the comparisons involving
8-bit results; 4-bit results highlight the scalability of QGPM under stricter memory constraints.

Memory Profile. Figure [2{(a) reports the memory footprint of QGPM compared to full-precision
GPM (GPM-FP), with model parameter sizes included for reference. Specifically, the maximum
memory footprint of the fully occupied GPM can be compressed as follows: (1) ViT-S: 66.3MB
— 17.8MB (8-bit) / 10.2MB (4-bit); (2) ResNet-18: 34.27MB — 8.93MB (8-bit) / 5.29MB (4-bit);
and (3) AlexNet: 22.27MB — 5.74MB (8-bit) / 3.41MB (4-bit). These reductions approach the
theoretical 4x (8-bit) and 8% (4-bit) limits, with minor deviation due to overhead from storing
auxiliary metadata (S7!, Z7!, OL) and full-precision outliers. Additional experimental setup and
hyperparameter details can be found in Appendix [A]
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Figure 2: (a) Memory profile of QGPM vs. full-precision GPM. QGPM approaches the 4x (8-bit) and 8x (4-bit)
compression limits with only minor metadata overhead, yielding substantial savings across all architectures.
(b) Normalized training time under matched memory budgets. QGPM adds negligible overhead compared to
GPM-FP, and sparse sketching mitigates the ViT-S bottleneck by accelerating SVD operations.

Runtime Analysis. Figure[2[b) reports normalized training time under matched memory budgets
for AlexNet, ResNet-18, and ViT-S. Sparse sketching is applied to GPM-FP_s and 8QGPM_s, but
not GPM-FP. SGD is included as a lower bound, since it does not incorporate any continual learning
mechanisms. On AlexNet and ResNet-18, GPM-family models achieve the lowest training time, as
their projection operation is cheaper than the additional forward/backward passes and distillation
losses required in rehearsal-based baselines. The quantization/dequantization overhead in QGPM
is negligible, as shown by the similar runtimes of 8QGPM_s and GPM-FP_s. For ViT-S, however,
GPM-FP exhibits a significant slowdown because the SVD on large representations of transformer
blocks dominate training cost. Applying sparse sketching mitigates this bottleneck, accelerating both
SVD and overall training.

4.2 EFFECT OF BITWIDTH AND OUTLIERS ON QUANTIZATION FIDELITY

We examine how quantization bitwidth and the outlier proportion influence error characteristics and,
ultimately, QGPM performance by analyzing experiments on 10-split CIFAR-100. The average
quantization error across all stored bases is defined as e,,q = W Zz— Z‘: Q! el,
=1

and the per-layer maximum error is measured as €,,q,; = % lel Max; << ml | el. Effect of

quantization bitwidth: Table [2| reports €44, €maz, ACC, and BWT across dlfferent bitwidths.
To isolate bitwidth effects, we disable QEA projection (o = 0) and set the outlier proportion to
zero (p = 0). As expected, larger bitwidths substantially reduce both error metrics, with accuracy
converging to full-precision levels. A sharp performance drop occurs below 5 bits, caused by increased
projection distortion and resulting gradient drift. Effect of outlier proportion: In Table 3] we fix
the quantization to 4-bit with o = 0 while varying p. Even with low e,,,4, a single poorly quantized
basis vector (large e,,4, at p = 0) can destabilize training by inducing a gradient drift. Introducing a
small outlier proportion (e.g., p = 0.5%) markedly reduces e, and improves performance relative
to the zero-outlier case.

Table 2: Effect of quantization bitwidth on QGPM. Table 4: Effect of QEA scaling factor
@ on Agyg, ACC, and BWT. Moderate
« improves performance by relaxing or-

bit | eavg | €max | ACC(%) | BWT

4-bit | 0544 | 1173 25.03 -31.27 thogonality based on quantization error.
5-bit | 0126 | 0.254 38.97 -22.94
6-bit | 0.033 | 0.057 64.22 032
8bit | 0.004 | 0011 65.01 0.61 a | Aawg | ACC(%) | BWT
FP 0 0 65.02 059 SGD 5077 | -18.68
FP ‘ ‘ 65.13 ‘ -1.07
Table 3: Effect of outlier proportion on QGPM. 0 1420 20.69
10 | o 962 40.54 -25.44
ACC(%) | BWT
p(%) | eavg | emas | ) | 40 | 0849 | 5873 -8.96
0.0 0.573 | 1205 41.23 -24.40 60 | 0775 65.58 -3.87
0.5 0.434 | 0.650 49.71 -16.29 80 | 0.699 67.26 2291
1.0 0.401 | 0553 50.26 -15.84 100 | 0.622 66.59 424
1.5 0.373 | 0485 55.02 -11.76 150 | 0.433 65.91 -5.79
2.0 0.353 | 0453 55.36 -11.07 200 | 0.249 65.17 -7.28
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Figure 3: Memory-accuracy tradeoffs of QGPM. (a,b) QGPM outperforms ER at lower memory on ViT-Tiny
and ViT-B/16. (c¢) Accuracy remains stable as e decreases; 4QGPM with moderate € is most efficient.

4.3 EFFECT OF QEA PROJECTION ON QUANTIZATION ROBUSTNESS

To counteract quantization error accumulation, QGPM integrates Quantization Error-Aware (QEA)
projection, which adaptively relaxes orthogonality based on quantization fidelity. We study its effect
by varying the error scaling factor «, which controls the strength of the orthogonality constraint.
Table ] reports performance as a function of «, with the outlier proportion fixed at p = 1%, a setting
where QEA has the most pronounced impact. All other hyperparameters match those used in Tables 2]
and[3] For each basis vector, the orthogonality weight is \; = 1 — «e;, where e; is the quantization
error from Eq.[6] We also report the average of orthogonality weight across all basis vectors,

L MG rl

/\avg Z Z )\l

i 1|M

Given a fixed average quantization error (€.g., €qyg = 0.376 set by the bitwidth and p), increasing
a lowers Ay, 4, thereby relaxing the orthogonality constraint and permitting greater flexibility in
gradient updates. This flexibility compensates for subspace distortion: as « rises from zero, accuracy
consistently improves, showing that the parallel gradient component offsets quantization error.
However, beyond a threshold, performance declines due to over-relaxation, which increases inter-task
interference. Thus, o must be calibrated to match the severity of quantization. In practice, larger a
values are required under higher quantization error, e.g., Table[9]in Appendix shows that 4QGPM
generally uses a larger o than 8QGPM. Overall, QEA proves most beneficial under aggressive
quantization settings, where error-aware relaxation can significantly stabilize learning.

4.4 MEMORY-ACCURACY TRADEOFFS IN QGPM

The memory characteristics of QGPM depend on two factors: (i) the embedding dimension (i.e.,
model size) and (ii) the threshold ¢ (i.e., subspace approximation quality).

Effect of model size: We evaluate QGPM on ViT-Tiny (192-dim) and ViT-B/16 (768-dim) using
10-split ImageNet-R, with ER (Rolnick et al.,[2019) as a representative rehearsal baseline (Fig. [3(a)
and (b)). GPM memory scales sharply with model size, e.g., fully occupied GPMs reach 34MB for
ViT-S and 515MB for ViT-B/16. On smaller models, even GPM-FP outperforms ER under equal
memory. On larger models, however, ER surpasses GPM-FP at 92.59MB. By contrast, QGPM
compresses memory to as little as 14.4MB while still outperforming ER, with negligible accuracy
loss. This validates QGPM’s effectiveness in scaling to large models under tight memory budgets.
Effect of threshold e: Figure [3(c) shows performance as e decreases from 0.85 in steps of 0.03.
Smaller ¢ yields a coarser subspace approximation (fewer bases), reducing QGPM size. Performance
remains largely stable across a wide range, suggesting that memory can be reduced further with
modest trade-offs. Notably, 4QGPM with a moderate € is often superior to SQGPM or GPM-FP with
an aggressively small e.

5 CONCLUSION

We introduced QGPM, a scalable and memory-efficient framework for continual learning. By
combining basis-wise quantization, quantization-aware gradient projection, and on-the-fly sparse
sketching, QGPM achieves strong performance under tight memory constraints. Theoretical and
empirical results demonstrate its effectiveness in mitigating forgetting while maintaining efficiency,
making it a practical solution for memory-efficient and privacy-preserving continual learning.
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A EXPERIMENTAL DETAILS

A.1 DATASETS

Tables 5| and [6] summarize the dataset configurations used in the main experiments. To match the
memory constraint of QGPM, the number of samples in the replay buffer is adjusted accordingly.
Here, buffer size indicate the number of replay images stored in the buffer. For CIFAR-100, the
memory overhead of QGPM is 0.81MB, which is equivalent to 264 training samples. Therefore,
the buffer size is set to 280. For the 5-Datasets benchmark, we assume all five datasets are equally
represented in the buffer. This results in an effective memory usage of 1.7KB per sample. To match
QGPM’s memory constraint of 7.24MB, a total of 4,259 samples can be stored in the buffer. For
minilmageNet, to match the memory overhead of 2.59 and 2.88MB, 128 and 143 numbers of samples

are used.
Table 5: Dataset statistics of CIFAR100 and minilmageNet.

Split CIFAR-100  Split-minilmageNet

num. of tasks 10 20
input size (C'x H x W) 3 X 32 x 32 3 x 84 x 84
# Classes/task 10 10

# Test samples/task 1,000 500
Memory per sample 3.072KB 21.168KB

Table 6: 5-Datasets statistics. MNIST images are replicated across all RGB channels so that each image has 3
channels.

CIFAR-10 MNIST SVHN  Fashion-MNIST notMNIST

# Classes 10 10 10 10 10

# Training samples 47,500 57,000 69,595 57,000 16,011
# Validation samples 2,500 3,000 3,662 3,000 842

# Test samples 10,000 10,000 26,032 10,000 1,873
Memory per sample 3.073KB  0.785KB  3.073KB 0.785KB 0.785KB

A.2 MODEL ARCHITECTURES

The model architectures for the 5-layer AlexNet variant and the 20-layer ResNet-18 variant follow
those used in[Saha et al.|(2021)). All networks use ReLU activations and a softmax layer combined
with cross-entropy loss at the final classification layer. AlexNet and ResNet-18 are trained from
scratch.

For ViT, we adopt a ViT-S, a variant of ViT proposed in [Dosovitskiy et al.| (2021)), with a 384-
dimensional patch embedding, 6 transformer blocks forming a total of 25 learnable layers and 6
attention heads. The MLP expansion ratio within each attention block is set to 4, and dropout is
applied with a probability of 0.1. ViT-S uses pre-trained weight trained on ImageNet-21k. It takes an
input image size of 224 x 224 with patch size of 16. Thus each input image is resized to 224 x 224.

Table[/|shows the fully occupied GPM configuration at each backbone and the corresponding full
precision memory overhead.

A.3 HYPERPARAMETER SETTINGS

In this section, we organize hyperparameters used in the experiment in Section[4] In the experiments
with AlexNet and ResNet-18, learning rate of 0.1 is used for the first task and 0.01 is used for all
subsequent tasks. For the experiment with AlexNet, 100 training epochs are used. For the ResNet18,
50 training epochs are used. For the ViT-S and ViT-Tiny, 0.01 learning rate is used with 10 epochs.
For the ViT-B/16, 0.005 learning rate is used with 20 epochs. In all experiments, SGD is used as an
optimizer with 64 mini-batch size.

In the Table 0] method-specific hyperparameters are introduced. €, is threshold value of k-rank
approximation. « is the QFA scaling factor for the QEA gradient projection. All experiments were
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Table 7: Maximum size of GPM at each layer and the number of GPM parameters for each network.

Network  Size of maximum M’

Memory in Bytes

48 x 48, 576 x 576,
AlexNet 512 x 512, 1024 x 1024,
2048 x 2048

22.28MB

27 x 27, 180 x 180, 180 x 180, 180 x 180,
180 x 180, 180 x 180, 360 x 360,
20 x 20, 360 x 360, 360 x 360,
ResNet18 360 x 360, 720 x 720, 40 x 40,
720 x 720, 720 x 720, 720 x 720,
1440 x 1440, 80 x 80, 1440 x 1440,
1440 x 1440

34.27MB

768768, 384x384, 384x384, 384x384, 1536x1536,
384x384, 384x384, 384x384, 1536x1536,
384 %384, 384x384, 384x384, 1536x1536,
384384, 384x384, 384x384, 1536x1536,
384x384, 384x384, 384x384, 1536x1536,
384384, 384x384, 384x384, 1536x1536

ViT-S

66.37MB

768 x 768, 768 x 768, 768 x 768, 768 x 768,
3072 x 3072, 768 x 768, 768 x 768, 768 x 768,
768 x 768, 3072 x 3072, 768 x 768, 768 x 768,
768 x 768,768 x 768, 3072 x 3072, 768 x 768,
768 x 768, 768 x 768, 768 x 768, 3072 x 3072,
768 x 768,768 x 768, 768 x 768, 768 x 768,
3072 x 3072, 768 x 768, 768 x 768, 768 x 768,
768 x 768, 3072 x 3072, 768 x 768, 768 x 768,
768 x 768,768 x 768, 3072 x 3072, 768 x 768,
768 x 768, 768 x 768, 768 x 768, 3072 x 3072,
768 x 768, 768 x 768, 768 x 768, 768 x 768,
3072 x 3072

ViT-B/16

515.25MB

Table 8: Model parameters and GPM size comparison.

Network | Category | Memory in Byte

Model Param. size 26.1MB

AlexNet | ~Gpn T max size 22.28MB
Model Param. size 4.4MB

ResNet-18 | = 5o\ max size 34.27MB
ViT-S Model Param. size 42.18MB
GPM_max size 66.3MB

. . Model Param. size 21.15MB
ViT-Tiny GPM_max size 34MB

. Model Param. size 327.59MB
VIT-B/6 |~ Gpn max size 515MB

conducted on a single AMD Vega 20 GPU.

B GRADIENT PROJECTION MEMORY (GPM)
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Table 9: Hyper-parameters used for all baselines.

Methods Hyperparameters
GPM-FP en: 0.9 (10 cifar100), 0.93 (5datasets), 0.93 (miniimagenet)

GPM-MC €n: 0.7 (10 cifar100, 0.79MB), 0.75 (5 datasets, 8.36MB), 0.52 (10
miniimagenet, 2.66MB), 0.51 (20 miniimagenet, 2.88MB)

AGEM-MC  Buffer size: 280 (10 cifar100), 4259 (5datasets), 128 (10 miniimagenet),
143(20 miniimagenet)

DER++-MC  Buffer size: 280 (10 cifar100), 4259 (5datasets), 128 (10 miniimagenet),
143 (20 miniimagenet)
weight for MSE loss on replay logits: 0.1, weight for CE loss on replay
samples: 0.5

ER-MC Buffer size: 280 (10 cifar100), 4259 (5datasets), 128 (10 miniimagenet),
143 (20 miniimagenet)

FDR-MC Buffer size: 280 (10 cifar100), 4259 (Sdatasets), 128 (10 miniimagenet),
143 (20 miniimagenet)
weight for FDR replay loss: 0.6

8QGPM a: 10 (cifar100), 10 (Sdatasets), 5 (10 miniimagenet), 5 (20 miniimagenet)
outlier: 1% (cifar100), 1% (Sdatasets), 1% (10 miniimagenet), 1% (20
miniimagenet)

4QGPM a: 20 (cifar100), 20 (5datasets), 15 (10 miniimagenet), 15 (20 miniima-
genet)
outlier: 3% (cifar100), 3% (S5datasets), 2% (10 miniimagenet), 2% (20
miniimagenet)

Algorithm 2 On-Fly Sparse Sketching

1: Let R be the representation matrix and r; be the ¢-th representation vector having n dimension.
Let’s assume that there are N numbers of representation vector and they arrive one by one.

2: R+ 0,xn

3: forvVie {1,2,...,N} do

4:  seed +1

5 idx < Random_select({1,2,...,n}, seed)
6:  sign < Random_select({—1,41}, seed)
7 R, idx] + RJ[:,idx] + sign - r;

8: end for

We now provide a detailed explanation on the Gradient Projection Memory (GPM) scheme Saha et al.
(2021)). In continual learning, we aim to minimize the average loss over a sequence of tasks; however,
without access to earlier data, models tend to forget previous tasks as they learn new ones. GPM
combuats this catastrophic forgetting by projecting gradients from the new tasks onto the subspace
orthogonal to past task representations, without any data replay.

Let w! C w, denote [-th layer parameters trained on task 7 and R be the input representation to
layer [ at that point. The output activation of layer [ after training on task 7 is given by w' - RL.
We would like this activation to remain unchanged even after learning task 7 + 1, i.e., WlT . RlT =
wl -RL = (wl 4+ Aw')-RL. This requires that the weight update Aw' satisfies the orthogonality
condition Aw! - RlT = 0. To enforce this constraint, the learner stores a set of core basis vectors that
span the subspace of R. and restricts future gradient updates to lie in the orthogonal complement of
this subspace. We denote this memory (i.e., GPM), for layer [ after task 7 by M’

Algorithm 3 outlines a continual learning procedure using GPM. For each task 7, the learner: (1)
performs projected gradient descent using the existing basis memory {M_’ _,} to remove interference

(Lines 1-7); (2) gathers the new layer-/ activations R. and orthogonally project out components
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Figure 4: Feature map of AlexNet and its activation patch

Algorithm 3 GPM Algorithm

Input: f,, the NN model, D'"*" the training dataset, 7 the learning rate, and e;, the threshold value.
Initialize, M}, foralll = 1,2,..., L', and w < Wo.

l: forr=1,2,...,Tdo

2 repeat

3 Bn ~ Di'rain

4 g <+ VwlL-,

5: g+g-M_; - (M., g

6 W—W—1n-8

7 until convergence

8

an ~ zD_trra,in
10: {RlT}lell + forward(Bn,, fw)

12: forvVie {1,2,...,1'} do

13: R, < R, -M._ ;- (M;_;)" -RL
14: UL, 2L, VL« SVD(RL)

15: T4 criteria(lA{lT,RlT7 €th)

16: ML« ML, UL L 1]]

17: end for

18: end for

already captured by M _; (Line 13); (3) applies SVD to the residual and retains its top singular
vectors as the task’s core basis (Lines 14—15); (4) concatenates these new bases with MZT_1 to form
ML for future tasks (Line 16).

C ON-THE-FLY SPARSE SKETCHING

C.1 REPRESENTATION MATIX CONSTRUCTION AND ON-THE-FLY SPARSE SKETCHING

To build the activation (representation) vector r; for a convolutional layer, treat each receptive-field
patch (activation patch) that will feed the next kernel as one training example: For every image in the
mini-batch and every sliding-window position (u, v), we slice the feature map tensor X € R¢>*HxW
into the cuboid patch P, , = X[:,u,u + k,v : v+ k], where Cy, is the number of channels and & is
the kernel size. By flattening this patch in channel-major order, we obtain a length-n vector where
n = C;,k%. We generate this flattened feature vector over all mini-batches and spatial dimension of
feature map. Thus, the total number of feature vectors is N = s2 - bsz, where s is size of feature map
and bsz is number of samples in the mini-batch. Thus, if we construct a feature matrix without sparse
sketch, the size of this matrix is R(%"-Cin)* (s*bs2) The resulting representation matrix size for each
layers constructed in these way are shown in the Table[I0]
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Table 10: The size of the representation matrix for each layer without sketching.

Network Size of input representation Memory in Bytes
48 x 20184, 576 x 14400,

AlexNet 512 x 2500, 1024 x 125, 41.46MB
2048 x 125

27 x 17640, 180 x 17640, 180 x 17640, 180 x 17640,
180 x 17640, 180 x 4410, 360 x 4410,
20 x 4410, 360 x 4410, 360 x 22050,
ResNetl8 360 x 6050, 720 x 6050, 40 x 6050, 258.65MB
720 x 12100, 720 x 12100, 720 x 3600,
1440 x 3600, 80 x 3600, 1440 x 3600,
1440 x 3600

768 x 25088, 384 x 25216, 384 x 25216, 384 x 25216,
1536 x 25216, 384 x 25216, 384 x 25216, 384 x 25216,
1536 x 25216, 384 x 25216, 384 x 25216, 384 x 25216,
ViT-S 1536 x 25216, 384 x 25216, 384 x 25216, 384 x 25216, 1.62GB
1536 x 25216, 384 x 25216, 384 x 25216, 384 x 25216,
1536 x 25216, 384 x 25216, 384 x 25216, 384 x 25216,
1536 x 25216

768 x 25088, 768 x 25216, 768 x 25216, 768 x 25216,
3072 x 25216, 768 x 25216, 768 x 25216, 768 x 25216,
3072 x 25216, 768 x 25216, 768 x 25216, 768 x 25216,
3072 x 25216, 768 x 25216, 768 x 25216, 768 x 25216,
3072 x 25216, 768 x 25216, 768 x 25216, 768 x 25216,
3072 x 25216, 768 x 25216, 768 x 25216, 768 x 25216,
3072 x 25216, 768 x 25216, 768 x 25216, 768 x 25216,
3072 x 25216, 768 x 25216, 768 x 25216, 768 x 25216,
3072 x 25216, 768 x 25216, 768 x 25216, 768 x 25216,
3072 x 25216, 768 x 25216, 768 x 25216, 768 x 25216,
3072 x 25216, 768 x 25216, 768 x 25216, 768 x 25216,
3072 x 25216

ViT-B/16 6.13GB

Al gorithmoutlines the On-the-Fly sparse sketching procedure, where N = s? - bsz representation
vectors arrive sequentially. Each incoming n-dimensional vector (where n = k2 - C;,,) is processed by
generating a random Rademacher sign and a target column index uniformly sampled from {1, ... ,n}.
The signed vector is then accumulated into the corresponding column of the sketch matrix R. Table[T1]
reports the size of the resulting representation matrix with sparse sketching. For example, in the case
of ViT-S, the naive construction of the representation matrix incurs a memory overhead of 1624MB

before performing SVD on it. Our method reduces this requirement to 66.37MB, achieving a 24.46 %

saving. Note that this is intermediate memory reduction (e.g., GPU RAM usage) and not permanent
memory (e.g., Flash memory) reduction.

Figure [§]illustrates RAM usage across the ten-task training sequence on the minilmageNet benchmark
using ViT-S. Table [I2]reports the total training time, average GPM construction time (in seconds),
average Random Access Memory (RAM) usage (in MB), peak RAM memory usage, and the
final performance metrics (ACC and BWT). Without sketching, the average memory overhead is
approximately 4533MB. By employing sparse sketching, this can be reduced to 3277.09MB without
any degradation in performance. The GPM construction time (which includes the SVD on the
representation matrix, r-rank approximation, and quantization) can be reduced from 115.06s to
10.60s.

Compared to dense Gaussian random projections, On-the-Fly sparse sketching method offers greater
computational and memory efficiency. Each incoming activation vector is processed in O(nnz(R)))
time, using only sign flipping and bucketed additions with two light-weight hash funciton, rather than
a full O(nN') matrix-vector multiplication. Here, nnz(R.) denotes the number of non-zero columns
in R.
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Table 11: The size of the representation matrix for each layer with sketching.

Network  Size of input representation Memory in Bytes
48 x 48, 576 x 576,

AlexNet 512 x 512, 1024 x 125, 3.72MB
2048 x 125

27 x 27, 180 x 180, 180 x 180, 180 x 180,
180 x 180, 180 x 180, 360 x 360,
20 x 20, 360 x 360, 360 x 360,
ResNet18 360 x 360, 720 x 720, 40 x 40, 34.27MB
720 x 720, 720 x 720, 720 x 720,
1440 x 1440, 80 x 80, 1440 x 1440,
1440 x 1440

768 <768, 384x384, 384x384, 384x384, 1536x1536,
384 %384, 384x384, 384x384, 1536x1536,
384x384, 384x384, 384x384, 1536x1536,
384x384, 384x384, 384x384, 1536x1536,
384 %384, 384x384, 384x384, 1536x1536,
384x384, 384x384, 384x384, 1536x1536

768 x 768, 768 x 768, 768 x 768, 768 x 768,
3072 x 3072, 768 x 768, 768 x 768, 768 x 768,
768 x 768, 3072 x 3072, 768 x 768, 768 x 768,
768 x 768, 768 x 768, 3072 x 3072, 768 x 768,
768 x 768, 768 x 768, 768 x 768, 3072 x 3072,
768 x 768,768 x 768, 768 x 768, 768 x 768,
3072 x 3072, 768 x 768, 768 x 768, 768 x 768,
768 x 768, 3072 x 3072, 768 x 768, 768 x 768,
768 x 768, 768 x 768, 3072 x 3072, 768 x 768,
768 x 768, 768 x 768, 768 x 768, 3072 x 3072,
768 x 768,768 x 768, 768 x 768, 768 x 768,
3072 x 3072

VIiT-S 66.37MB

ViT-B/16 515.25MB

Empirically and theoretically, sparse sketch maintains ¢, norms and leading eigen-directions within
Johnson—Lindenstrauss-type bounds, offering subspace quality comparable to dense Gaussian projec-
tions. Thus, it provides a compelling trade-off between accuracy and efficiency, making it especially
well-suited for real-time, resource-constrained continual learning settings.

Table 12: Resource usage comparison with and without sketching.

Methods | Without sketching | With sketching

‘ ACC (%) BWT (%) ‘ ACC (%) BWT (%)
8QGPM ‘ 72.21 -0.54 ‘ 72.87 -0.34
GPM construction time [s] | 115.06 | 10.60
Total training time [s] | 1768 | 820
Average RAM consumption [MB] | 4533.50 MB | 3277.09 MB
Peak RAM consumption [MB] | 5603.06 MB | 3586.50 MB

D MIXED-SCHEME QUANTIZATION AND DE-QUANTIZATION

D.1 MIXED-SCHEME QUANTIZATION

The CINF quantization scheme performs well when the input distribution is approximately Gaussian.
However, it is important to note that the input activation to the very first layer (i.e., the raw image
patch) typically exhibits a non-Gaussian distribution. As this effect propagates, the activations in the
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Figure 5: Training-time process RAM usage of 10-split minilmageNet experiment on ViT-S.

early layers also tend to deviate from Gaussianity, particularly during the initial stages of training
when model parameters are not yet well-formed. This non-Gaussian behavior can result in significant
quantization errors when CINF is applied indiscriminately across all layers. To address this concern,
we propose a mixed-scheme quantization strategy where we apply affine quantization in the first
layer by default, and conditionally in the second and third layers based on a normality test. The
test combines two statistics: kurtosis x of the input vector Mardia (1970) and p-value pgw from the
Shapiro—Wilk Test|Shapiro & Wilk| (1965). For deeper layers, where representations tend to become
more Gaussian due to the central limit effect, we default to CINF quantization. Formally, given an
input matrix U = [uy, . .., u,], the mixed quantization function deployed at second and third layer
can be defined as

{QAane(u)y K(u) <0 A pSW(u) <g,
Quant(U[1 : 7]) = [quant(u)]j_;, quant(u) =
Qcinr(u), otherwise.

©))

Definition of kurtosis and p-value of Shapiro-Wilk Normality test are given as below.

Definition D.1 Kurtosis: Kurtosis measures the "tailedness" of the probability distribution. It
quantifies whether the data distribution has heavier tails (positive kurtosis) or lighter tails (negative
kurtosis) compared to a Gaussian distribution. The kurtosis of a dataset is given by K = E[(X —
)4 /o* — 3, where i is the mean and o is the standard deviation of the dataset.

Definition D.2 Shapiro-Wilk Test of Normality: The p-value obtained from the Shapiro—Wilk test
quantifies the likelihood of the data distribution being Gaussian. Formally, given a null hypothesis
Hy (the dataset is Gaussian) and an alternative hypothesis Hy (the dataset is not Gaussian), the
p-value measures the probability of observing data at least as extreme as the current dataset under
the assumption of normality. Formally, p-value = P(W < W,s | Ho) where W is the Shapiro-Wilk
test statistic. A low p-value (typically less than a threshold €) suggests rejecting Hy, indicating that
the data significantly deviates from a Gaussian. The statistics can be defined as

n 2
(Z a; JJ(Q)
1=1

n 9

Z(wi — 55)2

i=1

W =

Jfor a sample of size n with ordered observations x(1y < - -+ < x(,) and sample mean T
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Figure 6: (a) NF4 codebook construction process; (b) 4-bit CINF construction process

Mixed-scheme dequantization. In equation equation |/} gradient projection is performed in full
precision. Therefore, the quantized GPM must first be dequantized to reconstruct the full-precision
projection matrix P, _;. Recall that each basis vector stored in the GPM is quantized using either the
CINF or Affine scheme. Each scheme requires a distinct set of scalar values for dequantization and
projection: (s, ft, A;) in the case of CINF, and (A, z, ) in the case of Affine. To handle the mixed
quantization setting, QGPM separates the basis vectors into two groups based on their quantization
scheme and dequantizes them separately. Formally, for ¢ € {Affine, CINF} we find

le—l,z‘ = dequanti(MlQ,hSi—l,iv Z‘f’—l,ia Olf—l,i) (10)
P%rfl,i = M{rfl,i ’ A%rfl,i : (Mérfl,z’)—r’ 11

and then compute the final projection matrixas P, _; =P!_| o '+ P! | e

E CENTERED INLIER NORMAL FLOAT

E.1 CODEBOOK CONSTRUCTION

Here, we provide details that distinguish our CINF code-
book from NF4. The original NF4 inserts an exact zero
value into the codebook to enable lossless quantization of © o scssscssscsc o o
padding or other zero-valued elements. This design choice is
appropriate for quantizing model parameters or activations,
where exact zeros commonly arise due to operations such as
zero-padding. Figure 7: Actual CINF4 codebook.

-1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75 100

In contrast, our quantization target is the singular vectors fIlT[:, i] obtained from singular value
decomposition (SVD), where such zero-generating operations do not exist. Therefore, we omit the
inclusion of an exact zero in the codebook. In the following, we present the codebook construction
procedures for both NF4 and CINF4.

NF4 Codebook construction

1. Setd = 5(35 + 35)-
2. Compute 8 evenly spaced probability values py, pa, ..., ps, such that p; = §,ps = 1/2.

3. Find their corresponding quantile values under Normal Cumulative Density Function (CDF):
G = ®Y(p;) fori =0,1,...,8.

4. Conpute 9 evenly spaced probability values rg, 79, ..., 716 such that rg = 1/2 and 716 =
1-9.
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5. Find their corresponding quantile values under Normal CDF: §; = ®~!(r;) for i =
9,10, ..., 16.

6. Normalize the § to the range [-1, 1] to get final code: ¢; = §;/ max; |{;|.

CINF4 Codebook construction
1. Compute 16 evenly spaced probability values pi,pa,...,p16, such that p; =

15.5/16, p1g = 0.5/16.

2. Find their corresponding quantile values under Normal Cumulative Density Function (CDF):
ljl' = (I)il(pi) fori = 0,1,....,8.

3. Normalize the ¢ to the range [-1, 1] to get final code: ¢; = ¢;/ max; |d;|.
Figure [f] visualize the aforementioned process of equal spacing Normal CDF and Figure [7] shows the

actual CINF4 codebook: [-1.000, -0.707, -0.542, -0.416, -0.310, -0.215, -0.127, -0.042, 0.042, 0.127,
0.215, 0.310, 0.416, 0.542, 0.707, 1.000].
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F ADDITIONAL EXPERIMENTS

F.1 EXPERIMENTS WITH EMPTY VIT
Table 13: ACC and BWT for 8QGPM and baselines on the empty ViT model

10-split minilmageNet

Methods
ACC (%) BWT (%)

Memory 1.87 MB
GPM-FP 48.47 -3.49
Memory 0.52 MB
GPM-MC 40.64 -15.23
AGEM-MC 23.07 -37.00
DER++-MC 26.84 -33.24
ER-MC 25.02 -34.64
FDR-MC 24.36 -34.04
PCAOGD-MC' 20.47 -34.48
8QGPM (Ours) 48.39 -3.59

In the main paper, we use ViT-S with a pre-trained weight. Typically, ViT lack strong inductive
biases such as CNN, which make them less data efficient and harder to train from scratch. In case of
the continual learning scenario, we divide the dataset into several chunks to make a task. Thus, the
amount of each task is extremely insufficient to train the ViT model from scratch. In this section,
we investigate the continual learning performance of QGPM over other baselines on the empty ViT
model which is trained from scratch. For the experiment, we use custom ViT model, which have 128
patch embedding, 6 transformer blocks, 4 multi-head attention with 4 MLP expansion ratio, forming
25 learnable layers. Model parameter size is 4.7MB and fully occupied GPM size is 7.2MB.

The results of Table[T3] validate that QGPM maintains full-precision-level performance even when
ViT is trained from scratch. Notably, QGPM incorporates fewer basis vectors in this setting, resulting
in a smaller memory footprint compared to the pretrained ViT case in the main paper. As a result, the
rehearsal-based baseline struggles significantly due to the severely constrained replay buffer.

F.2 EXPERIMENTS WITH OTHER DATASETS ON RESNET18
Table 14: The results of continual learning with QGPM on minilmageNet using ResNet18.

| 10-split CIFAR100 | 10-split minilmageNet

Methods

| ACC(%) BWT | ACC (%) BWT
SGD | 54.74 2679 | 3321 -25.92
GPM-FP 70.23 -1.09 53.51 -1.61
Memory 60.32MB 22.94MB
8QGPM (Ours) 70.46 -1.24 52.83 -1.93
Memory 5.41MB 5.99MB

Table [T4] presents the experimental results on 10-split CIFAR-100 and 5/10/20-split MinilmageNet
using ResNet-18, as reported in the main paper. As shown, QGPM consistently maintains near
full-precision performance on various datasets on ResNet18.

F.3 EXPERIMENTS ON AN NLP TASK
Table 15: Continual learning result of QGPM with text classification task.

Bitwidth | SGD | Full Precision | 8-bit QGGPM

| ACC(%) BWT (%) | ACC(%) BWT (%) | ACC(%) BWT (%)
Performance ‘ 75.73 -10.38 ‘ 77.80 -6.15 ‘ 77.97 -5.97
Memory | - | 266KB | 75KB

While the main paper primarily focuses on vision tasks, in this section we demonstrate that QGPM can
be extended to other domains, such as natural language processing (NLP). We use the Yahoo Answers
Topics dataset for a topic classification task. Each sample consists of a question title (a short string
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summarizing the question) and qguestion content, which provides a longer, more detailed description.
The label is an integer range from 0 to 9, representing one of ten coarse-grained categories (e.g.,
Health, Sports, etc.). The dataset contains 1,400,000 training samples and 60,000 test samples. While
text lengths vary across samples, they average around 300 words. For the continual learning setup,
we split the ten classes into five tasks, each containing two classes.

We use a transformer-based lightweight encoder for text classification. It consist of:
. Token embedding of dimension 128
. Sinusoidal positional encoding

. 256 MLP hidden dimension
. 2 transformer block with 4 multi-head self attention module

whn A W N =

. Redisual connections around both the attention and MLP layers with LayerNorm

The encoder consists of a total of 7 learnable layers, and the input activation before each layer is
extracted. The fully occupied GPM size and the representation matrix size without sketching for this
network are shown in Tables[I6]and [I7] respectively.

We train the encoder using stochastic gradient descent (SGD) with learning rate scheduling. Across
all experiments, the mini-batch size, number of training epochs, and initial learning rate are fixed to
64, 20, and 0.02, respectively. For the GPM parameters, the threshold value ey, is set to 0.93. For
8-bit quantization, QEA scaling factor o and outlier percentage p are set to 10 and 2, respectively; for
4-bit quantization, they are set to 20 and 3.

Table [T5] illustrates that both 8QGPM and 4QGPM achieve performance comparable to the full-
precision baseline, while significantly reducing memory overhead. The fully occupied GPM-FP has
a size of 812 KB, which can be reduced to 228 KB and 143 KB using 8-bit and 4-bit quantization,
respectively.

Network  Size of maximum M’ Memory in Bytes
Encoder 128 x 128, 128 x 128,

128 x 128, 256 x 256, 0.812MB
(7 layers)

128 x 128, 128 x 128, 256 x 256

Table 16: The maximum GPM size of the Transformer Encoder (Appendix

Network  Size of maximum M/ Memory in Bytes
Encoder 128 x 10600, 128 x 10600,

128 x 10600, 256 x 10600, 46.5MB
(7 layers)

128 x 10600, 128 x 10600, 256 x 10600

Table 17: The representation matrix size of the Transformer Encoder (Appendix ) without sparse sketching

F.4 REHEARSAL BUFFER ADJUSTMENT STRATEGY

To ensure a fair comparison under identical memory constraints, we adjusted the number of rehearsal
samples stored in the buffer for each rehearsal-based method (e.g., GEM-MC, DER-MC, FDR-MC,
ER-MC) so that their total memory usage matched that of QGPM. We computed the per-sample
memory footprint (i.e., image resolution x number of channels x bit depth) and reduced the number
of stored samples accordingly — for example, constraining to 0.8MB in the CIFAR-100 setup. This
strategy aligns with prior works on memory-constrained continual learning [Zhou et al.| (2023)); Iscen
et al.|(2020) and allows for fair and controlled evaluation.

Table [18| compares two strategies for reducing replay buffer memory: lowering image resolution
vs. reducing sample count. While both methods perform similarly compared to the performance
of 8QGPM for small images like CIFAR100, resolution reduction degrades performance on larger
images like minilmageNet due to severe distribution shifts induced by quantization.

As shown in Table[I9] even with more samples (280 and 560) on this resolution-based scheme, the
performance worsens, leading to the conclusion that resolution-based quantization is impractical —
even for moderately sized images (e.g. minilmageNet).
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Table 18: Comparison of memory and performance across buffer strategies.

Dataset / Model Metric DER++ (Full res / Reduced #) DER++ (Reduced res/ Full #) 8QGPM
Per image mem. size [B] 32 x32x3x 1B =3,072 32 x 32 x 3 x 0.5B = 1,536 -
# in buffer 280 280 x 2 = 560 -

CIFAR100 / AlexNet = Buffer mem. size [MB] 0.8203125 0.8203125 0.81
ACC 60.68 65.29 70.7
BWT —18.5 —-13.2 —0.81
Per image mem. size [B] 84 x 84 x 3 x 1B = 21,168 84 x 84 x 3 x 0.5B = 10,584 -
# in buffer 93 93 x 2 =186 -

minilmageNet / ViT ~ Buffer mem. size [MB] 1.968624 1.968624 0.81
ACC 30.01 26.23 48.39
BWT —26.7 —34.06 —3.59

Table 19: Buffer comparison under different per-image precisions (minilmageNet / ViT).

Metric 8-bit (21168 B) 4-bit (10584 B)
Images in buffer 280 560
Buffer size [MB] 5.92 5.92
Acc [%] 34.10 26.06
BWT [%] —21.96 —34.10
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G ADDITIONAL PROOFS

G.1 PROOF OF THEOREM[3.2]

Quantization Error Accumulation: Let M, = [vi,Va,...,Vy] € R"™™ denote a full preci-
sion GPM, and E = |e1,€a,....€6y] € R ™ be a Gaussian error matrix with each column
¢; € R"™ is drawn from N (0,021,). We define the quantized GPM incorporating error as
M, = M, + E = [vi + €1,Va + €2, ...,V + €] € R" ™. When naive SGD produces a
gradient g € R", its orthogonal components with respect to M, and M, are denoted by g, and g,
respectively. Then, it holds that E]||g, — &.||] > ||E[&o — &]|| = m - 02 - ||g|, implying that the
quantization error increases proportionally to the number of error-incorporating basis vector in the
GPM and quadratically with o which quantifies the degree of error.

Proof: Let us define projection matrices for M, and M, as
P,=M, M,
P,=M, MT.

The orthogonal component of gradient g with respect to the subspace spanned by M, and M, is
found as

go = (I - Po) '8
g.=(I—-P.) g
Hence, the difference between the projected component is
go_ge:[([_Po)_(I_Pe)]g
= (P, — P)g
:<M0'M(’)T_M6'M6T)g
= (M, - M;F — (M, + E) - (M, + E)T)g
—(M,ET + EM! + EE")g.
Since the error matrix E is Gaussian distributed with each column e; € R" drawn from N(0,021,,),
E[(M,ET)g] = M, - g -E[ET] =0
E[(EM;)g] = M; -g-E[E] =0

E[E-ET) = Zej - :ZE[ej~ejT]=m-02-I
j=1

Thus, the expectation of g, — &, can be found as
E[go_ge] =—-m-o -8
Since ||E[X][| < E[[|X]|].

E[|go — 8ell2] > [IE[go — elll2 = m - o Igll2-

G.2 PROOF OF THEOREM[3.3]

(14 €) ¢y Subspace embedding: A matrix S € R™** is said to be a (1 + ¢)-subspace embedding for
the row space of A € R¥*™ in the ly-norm if. for all x € R™,

(1-e)llAx|3 < < (1+ o)llAx|3.

Subspace embedding of Sparse Sketch: Let S be the N by r sparse-embedding matrix constructed
by h : [N] = [r] and o : [N] — {—1,1} be hash functions. Then the i-th column of the
sparse-embedding matrix S is non-zero only in the h(i)-th row and this non-zero entry has a value
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of o(i). Then with probability 1 — § for any rank k matrix A and r = O(%), Sisa(lxe)—1Iy
subspace embedding for the row of A.

Before proving the theorem, we state a few definitions and a helpful lemma.
Definition 1: We say C is an e-approximate matrix product of A and B if it satisfies

|IATB - C|lr < ¢l|A|r|Blr

Definition 2: A distribution D on S € RNX" is said to satisfy the (e, §,1)—JL moment property if
Vx € RY where ||x|2 = 1, E[|[|STx]3 — 1|'] < €o.

Definition 3: For a scalar random variable X, let | X |, := E[| X |P]'/P, which is LP norm on the
space LP(QY). Minkowski’s inequality gives the triangle inequality: || X +Y |, < | X |, + [|Y ||,

Lemma 1 Let | > 2,¢,6 € (0,1/2), and D on S be a distribution that satisfies the (e,0,1)—JL
moment property. Then for every pair of matrices A, B with N columns,

Prs.p [||[ASSTBT — AB'||r > 3¢[|A|¢|Bl/p] <6

Proof of Lemma 1: We first note that for x,y € R (STx STy) =
5 (IS™x[13 +I8y/13 = IS” (x = y)II3). Thus,

E[(S"x,8Ty) - (x,3)li] = *II(IIST 15— x3) + (ISTyl3 —¥3) = (IST(x = 93 — [Ix = ¥ID)]s

(IS Tx[13 — =3[l + 18Ty 3 = ¥l + 18T (x = ¥)II5 = Ix — yl3:)

l\DM—l

< 3 (661/l +edt/t 4 4651/l) < 3e61/!t

where we first apply the triangle inequality and then apply the JL moment property. From this, we
can conclude that for arbitrary x, y, E[[(STx,STy) — (x,¥)|li] < 3e6*/!||x]|2||y |2 Now since the
ij-th entry of ABT is given by (Ai B’), the inner product of the i-th column of A and the j-th
column of B, we have that

E[ASSTBT — ABT ] < (3¢)'6 ) [|A'[I5 B3 < (3¢)'6(D _ [ A"I3B[13)"2

= (3¢)'8(|A 11 [IBI[)"2
= (3¢)' (|| A7 IBII%)

where the first line follows from the triangle inequality, and the second inequality is from plugging in
the inequality derived previously. Now we plug this into Markov’s inequality to get that

E[|ASSTBT — ABT|]
Bo'lAlEIBlIE  ~

Pr|ASSTB" — AB | > (3¢)'|A[[ || B;] <

This will be used to prove the final theorem.

Proof of the theorem: We want to show that if S is the sparse embedding matrix with at least r = %

rows, S satisfies the (e, J, 2) —JL moment property. We need to show that for a unit vector X wit h
[x]l2 = LE[(ISTx(|3 — 1)?] < €*3. We do this by expanding to gc:t]E[HSTxH2 uSTxH
the middle term 1s 1 and from expansion we can show that E[||Sx][3 < 1+2, so E[( H x|)3-1

; Thus if r > 52 5. the (€, 0,2)—JL moment property hold. Let V be an oﬂhonormal basis for the
rows of A. Now since S satisﬁes the (¢, 8, 2)—JL moment property.

PrViSSTV - V'V > 3¢|V|p|V|r] <6
= Pr[[V'SSTV —I|lp > 3ck] <6

E

2
so, with e = ¢, we getr = O (5’;“76) columns needed. 0
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