

000 001 QUANTIZED GRADIENT PROJECTION FOR MEMORY- 002 EFFICIENT CONTINUAL LEARNING 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Real-world deployment of machine learning models requires the ability to continually
012 learn from non-stationary data while preserving prior knowledge and user
013 privacy. Therefore, storing knowledge acquired from past data in a resource- and
014 privacy-friendly manner is a crucial consideration in determining their viability.
015 We introduce Quantized Gradient Projection Memory (QGPM), a systematic frame-
016 work for continual learning that compresses and preserves the previous gradient
017 subspace. QGPM integrates three key components: (i) distribution-aware, basis-
018 wise quantization to minimize storage overhead, (ii) a Quantization Error-Aware
019 (QEA) gradient projection that selectively relaxes orthogonality to mitigate gradi-
020 ent drift caused by accumulated quantization noise, and (iii) an on-the-fly sparse
021 sketching strategy that improves runtime memory and computational efficiency.
022 Experiments across multiple benchmarks demonstrate that QGPM achieves state-
023 of-the-art performance under fixed memory budgets, highlighting its effectiveness
024 in scalable, privacy-preserving continual learning. Our code is available [here](#).

025 1 INTRODUCTION 026

027 Deep neural networks (DNNs) have achieved remarkable success across domains, particularly in
028 computer vision (He et al., 2015; Simonyan & Zisserman, 2014; He et al., 2017). However, their
029 standard training paradigm assumes access to the full dataset upfront—an unrealistic assumption in
030 real-world scenarios where data arrives sequentially and evolves over time. In contrast, intelligent
031 agents must learn continuously: acquiring new skills while retaining prior knowledge. This motivates
032 the field of *continual learning* (CL) (Lange et al., 2019), which aims to enable models to adapt to
033 new tasks without overwriting existing representations. Naively applying stochastic gradient descent
034 (SGD) in this setting leads to *catastrophic forgetting* (McCloskey & Cohen, 1989), where learning
035 new tasks disrupts previously acquired knowledge. To mitigate this, several CL strategies have been
036 proposed, including: (1) Regularization-based methods (Kirkpatrick et al., 2017), which penalize
037 updates to important weights; (2) Expansion-based methods (Rusu et al., 2016), which allocate new
038 parameters per task; (3) Rehearsal-based methods (Rolnick et al., 2019), which replay stored or
039 synthetic data (Gao & Liu, 2023); and (4) Projection-based methods (Saha et al., 2021; Farajtabar
040 et al., 2020), which constrain updates to subspaces orthogonal to prior gradients. Each strategy
041 encodes prior knowledge in a specific form: importance weights, dedicated modules, rehearsal buffers
042 or generative models, and gradient subspaces, respectively. As Rebuffi et al. (2017) emphasize, a
043 viable incremental learner must keep memory and compute demands bounded or slowly growing.
044 Thus, memory efficiency is a key factor in determining a CL method’s practical deployability.

045 Gradient Projection Memory (Saha et al., 2021) maintains a dedicated memory structure – the GPM –
046 where it stores a set of core bases that span the gradient subspaces associated with previous tasks.
047 When learning a new task, incoming gradients are projected onto the orthogonal complement of
048 the subspace spanned by the stored bases, thus minimizing interference with previously acquired
049 knowledge. These projection-based methods demonstrate state-of-the-art stability against catas-
050 tropic forgetting (Liang & Li, 2024). Furthermore, the method’s inherent privacy-preserving nature,
051 stemming from not storing raw data or intermediate representations, makes it well-suited for continual
052 learning in privacy-sensitive fields such as the medical domain (Verma et al., 2023).

053 In this paper, we demonstrate that the memory efficiency of continual learning can be significantly
054 improved by quantizing the bases stored in GPM, while preserving its core benefits. However, this
055 introduces two key challenges: (1) the distribution of individual bases is often heavy-tailed, leading

054 to large quantization errors; and (2) subspace distortion can cause projected gradients to deviate from
 055 their intended direction, resulting in what we call a *gradient drift*. To overcome these issues, we
 056 propose two complementary techniques: Centered Inlier Normal Float (CINF) quantization, which
 057 reduces the influence of outliers during quantization, and Quantization Error-Aware (QEA) gradient
 058 projection, which adaptively relaxes orthogonality constraints based on estimated deviation from the
 059 desired update direction.

060 The main contributions of this paper are:

- 061 1. We propose *Quantized Gradient Projection Memory* (QGPM), a novel framework for
 062 memory-efficient continual learning that leverages basis-wise quantization. Its core compo-
 063 nent, *Centered Inlier Normal Float* (CINF) quantization, enhances robustness to outliers
 064 and improves codebook utilization.
- 065 2. To mitigate performance degradation caused by accumulated quantization errors, we intro-
 066 duce *QEA gradient projection*, a technique that balances orthogonality with alignment to
 067 the desired gradient direction.
- 068 3. We propose *On-the-Fly Sparse Sketching* to accelerate the SVD computation and reduce
 069 intermediate training-time memory overhead during QGPM construction.
- 070 4. We conduct extensive experiments demonstrating that QGPM achieves strong performance
 071 under tight memory budgets, with detailed analysis of its memory-accuracy tradeoffs.

073 2 RELATED WORK

074 **Continual Learning.** To address catastrophic forgetting, numerous continual learning (CL) methods
 075 have been proposed. Among these, *regularization-based methods* add constraints to prevent significant
 076 changes to parameters deemed important for earlier tasks. For example, Elastic Weight Consolidation
 077 (EWC) (Kirkpatrick et al., 2017) adds a quadratic penalty term weighted by the Fisher Information
 078 Matrix, while Synaptic Intelligence (SI) (Zenke et al., 2017) computes parameter importance during
 079 training and penalizes deviations proportionally. Despite their simplicity, such methods often suffer
 080 from low stability and require parameter importance masks that scale with model size, limiting
 081 memory efficiency. *Expansion-based methods* allocate task-specific parameters or sub-networks
 082 to isolate learning across tasks. Progressive Neural Networks (PNN) (Rusu et al., 2016) grow the
 083 model by adding new columns of neurons for each task while freezing earlier ones, whereas Hard
 084 Attention to the Task (HAT) (Serrà et al., 2018) learns task-specific binary masks to protect important
 085 neurons. While effective, these approaches incur linearly growing memory overhead, violating the
 086 goal of bounded resource usage in CL. *Rehearsal-based methods* store and replay data or intermediate
 087 features from previous tasks to reinforce memory. Experience Replay (ER) (Rolnick et al., 2019)
 088 maintains a buffer of past samples and interleaves them with current training data. DER++ (Buzzega
 089 et al., 2020) and FDR (Benjamin et al., 2019) combine rehearsal with distillation-based regularization,
 090 penalizing shifts in logits or model outputs. These methods can perform well given a moderate buffer
 091 size but raise privacy concerns due to the storage of raw data. Finally, gradient projection-based
 092 methods constrain updates to lie in subspaces orthogonal to previous gradients. OGD (Farajtabar et al.,
 093 2020) and OWM (Zeng et al., 2019) pioneered this idea, while GPM (Saha et al., 2021) improves
 094 scalability by projecting in the space of input representations. Recent works (Yang et al., 2023; Liang
 095 & Li, 2023; Lin et al., 2022) build on this foundation to enhance performance and efficiency.

096 **Memory-Efficient Continual Learning.** Memory-efficient approaches to incremental learning
 097 remain relatively underexplored. Parameter isolation via pruning has been used to allocate disjoint
 098 parameter subsets per task (Zhao et al., 2022). Iscen et al. (2020) reduces the rehearsal buffer by
 099 storing compact representations (e.g., lightweight features) instead of raw data, combined with
 100 knowledge distillation. However, storing intermediate features remains vulnerable to inversion
 101 attacks (Jacobsen et al., 2018). While Zhou et al. (2023) expands only the last few task-specific layers,
 102 the overall memory footprint still grows linearly with the number of tasks. To eliminate memory
 103 buffers altogether, data-free knowledge distillation has been proposed (Smith et al., 2021; Chung
 104 et al., 2022; Choi et al., 2021). Although it effectively addresses privacy concerns, a full copy of
 105 the network must be retained for distillation, leading to additional memory overhead. Ermis et al.
 106 (2022) utilizes adapters on top of pretrained transformers, in conjunction with knowledge distillation;
 107 however, this is only applicable in scenarios where a pretrained foundation model is available. Many
 108 existing works leverage knowledge distillation to reduce memory usage from rehearsal or model

expansion. However, this typically requires either a dedicated auxiliary network or a full copy of the backbone model, introducing significant memory and computational overhead – an aspect often overlooked when reporting overall memory budgets. To the best of our knowledge, no prior work has explored the use of quantization to compress gradient subspaces, despite its potential to offer strong privacy guarantees and improved memory efficiency.

3 QUANTIZED GRADIENT PROJECTION MEMORY (QGPM)

In this section, we present the core ideas behind our approach to memory-efficient continual learning via basis-wise quantization of Gradient Projection Memory (GPM). The main challenge lies in the fact that the subspace spanned by the stored bases serves as the reference for orthogonal gradient updates, making it highly sensitive to quantization-induced distortions. As shown in Theorem 3.2, the deviation between the ideal orthogonal update – computed based on the true subspace – and the update derived from a quantized subspace grows quadratically with the quantization error. We find that standard linear quantization schemes are inadequate in this setting. In response, we propose a set of techniques to mitigate quantization effects while preserving the core functionality of GPM. Algorithm 1 summarizes the full QGPM procedure, which integrates CINF quantization, QEA gradient projection, and On-the-Fly sparse sketching into a unified CL framework.

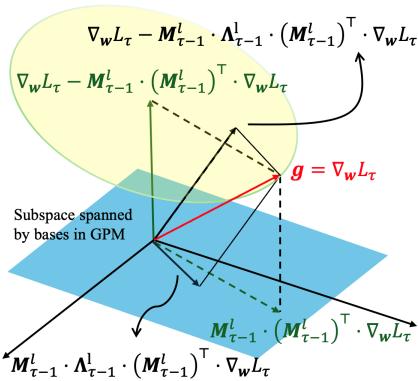


Figure 1: QEA Gradient Projection.

3.1 PRELIMINARIES

Gradient Projection for Continual Learning. The objective of continual learning is to solve $\min_{\mathbf{w}} \frac{1}{T} \sum_{\tau=1}^T L_\tau(\mathbf{w}, \mathcal{D}_{(\tau)})$, where L_τ and $\mathcal{D}_{(\tau)} = \{\mathcal{X}_{(\tau)}, \mathcal{Y}_{(\tau)}\}$ denote empirical loss and dataset of the τ -th task. Let $\mathbf{w}_\tau^l \subset \mathbf{w}_\tau$ denote l -th layer parameters trained on task τ and let \mathbf{R}_τ^l be the input representation to layer l at that point. The output activation of layer l after training on task τ is given by $\mathbf{w}_\tau^l \cdot \mathbf{R}_\tau^l$. We would like this activation to remain unchanged even after learning task $\tau + 1$, i.e., $\mathbf{w}_\tau^l \cdot \mathbf{R}_\tau^l = \mathbf{w}_{\tau+1}^l \cdot \mathbf{R}_\tau^l = (\mathbf{w}_\tau^l + \Delta\mathbf{w}^l) \cdot \mathbf{R}_\tau^l$. This requires that the weight update $\Delta\mathbf{w}^l$ satisfies the orthogonality condition $\Delta\mathbf{w}^l \cdot \mathbf{R}_\tau^l = 0$. To enforce this constraint, we store a set of core basis vectors that span the subspace of \mathbf{R}_τ^l (see lines 13–16 of Algorithm 3 in Appendix B), and restrict future gradient updates to lie in the orthogonal complement of this subspace (see line 5 of the same algorithm). We denote this memory (i.e., GPM) for layer l after task τ by \mathbf{M}_τ^l .

k -bit NormalFloat (NFk) Quantization. The authors of QLoRA (Dettmers et al., 2023) introduced NFk, an information-theoretically optimal quantization data type for normally distributed data. NFk is a variant of quantile quantization, which ensures that each quantization bin contains an equal number of data points mapped from the original distribution. For k -bit quantization, NFk stores 2^k codes in a pre-defined codebook: $\mathbf{c} = [c_1, c_2, \dots, c_{2^k}] \in [-1, 1]^{2^k}$. Given a vector $\mathbf{u} = (a_1, a_2, \dots, a_B) \in \mathbb{R}^B$, the quantization proceeds as follows: (1) Compute $M = \max_i |a_i|$. (2) Normalize each entry by M to scale the values into the range $[-1, 1]$. (3) For each normalized value, find the index j of the closest codebook value c_j , i.e., a_i is mapped/discretized according to the index $j = \text{argmin}_j |c_j - \frac{a_i}{M}|$.

3.2 CENTERED INLIER NORMAL FLOAT (CINF)

A key limitation of naïve NFk quantization is its vulnerability to outliers. It normalizes the input vector by its maximum absolute value, which can become large in the presence of outliers. This compresses the bulk of values toward zero, distorting the distribution into a highly sub-Gaussian. As a result, the quantization codebook is used inefficiently: most values are mapped to bins near zero, while only a few occupy the extreme bins near -1 and 1 , leading to significant information loss (Yoshida, 2023). To address this issue, we propose Centered Inlier Normal Float (CINF) quantization, which improves robustness to outliers by restricting normalization to a central quantile range. Given an input vector $\mathbf{u} = (a_1, a_2, \dots, a_B)$, CINF performs the following steps:

1. Compute the mean of the input, $\mu = \frac{1}{B} \sum_{i=1}^B a_i$.

162 2. Center the vector components by subtracting the mean, $a_{i,\text{centered}} = a_i - \mu$.
 163 3. Compute the δ and $1 - \delta$ quantiles of the centered values, q_δ and $q_{1-\delta}$.
 164 4. Values outside the quantile range $[q_\delta, q_{1-\delta}]$ are stored in full precision. The remaining inlier
 165 values are quantized using NFk, where normalization is performed using the scale factor
 166 $s = \max(|q_\delta|, |q_{1-\delta}|)$ rather than the global maximum $M = \max_i |a_i|$.
 167

168 Further details on CINF codebook construction are provided in Appendix E.1. We now analyze
 169 how this method reduces quantization error. Assume entries of vector \mathbf{u} follow a standard normal
 170 distribution, i.e., $a_i \sim \mathcal{N}(0, 1)$. Let $M = \max_i |a_i|$, and define the quantile threshold $q_\delta = \inf\{r \geq 0 : \frac{1}{B} \sum_{i=1}^B \mathbf{1}(|a_i| \leq r) \geq \delta\}$, with scaling factor $s = \max(|q_\delta|, |q_{1-\delta}|)$. Partition the data into
 171 outliers $\mathcal{O} = \{i : |a_i| \geq s\}$ and inliers $\mathcal{I} = \mathcal{O}^C$. Let $\mathbf{c} = [c_1, c_2, \dots, c_{2^k}]$ denote the fixed NFk
 172 codebook. The dequantized value under naïve NFk is
 173

$$174 \tilde{a}_i^{\text{NFk}} = M \mathbf{c}_{j^*(i)}, \quad j^*(i) = \arg \min_{j \in \{1, \dots, 2^k\}} |\mathbf{c}_j - \frac{a_i}{M}|, \quad i \in \mathcal{O} \cup \mathcal{I}. \quad (1)$$

175 In contrast, the dequantized value under CINF is given by
 176

$$177 \tilde{a}_i^{\text{CINF}} = \begin{cases} a_i, & i \in \mathcal{O}, \\ s \mathbf{c}_{j^*(i)} + \mu, & i \in \mathcal{I}, \end{cases} \quad j^*(i) = \arg \min_{j \in \{1, \dots, 2^k\}} \left| \mathbf{c}_j - \frac{a_i}{s} \right|. \quad (2)$$

178 The quantization errors are defined as $e^{\text{NFk}} = \frac{1}{|\mathcal{O} \cup \mathcal{I}|} \sum_{i \in (\mathcal{O} \cup \mathcal{I})} (a_i - \tilde{a}_i^{\text{NFk}})^2$ and $e^{\text{CINF}} =$
 179 $\frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} (a_i - \tilde{a}_i^{\text{CINF}})^2$, where the CINF error is computed over inliers only, as outliers are stored
 180 losslessly. To understand how normalization impacts quantization error, we compare the NFk scale
 181 factor $M = \max_i |a_i|$ to the CINF quantile threshold q_δ . The next result from order statistics offers a
 182 useful approximation for this comparison.
 183

184 **Theorem 3.1 (Expected Values of Normal Order Statistics (Harter, 1961))** Consider
 185 $\mathbf{u} = (a_1, a_2, \dots, a_B)$, a set of independent random variables drawn from a standard normal
 186 distribution, i.e., $a_i \sim \mathcal{N}(0, 1)$. Denote the expected value of the i -th order statistic by $\mathbb{E}[i : B]$.
 187 Then, for sufficiently large B , this expectation can be approximated as $\mathbb{E}[i : B] \approx \Phi^{-1}\left(\frac{i-\alpha}{B-2\alpha+1}\right)$,
 188 where Φ^{-1} is the inverse cumulative distribution function (CDF) of $\mathcal{N}(0, 1)$, and $\alpha = 0.375$.
 189

190 By definition, $\mathbb{E}[M] = \mathbb{E}[B : B] \approx \Phi^{-1}\left(\frac{B-\alpha}{B-2\alpha+1}\right)$. As B grows, M becomes large since
 191 $\frac{B-\alpha}{B-2\alpha+1} \rightarrow 1$. As previously discussed, this leads to overly aggressive normalization of the data
 192 via a_i/M , compressing most values near zero and resulting in inefficient utilization of quantization
 193 bins. In contrast, by excluding a small fraction of outliers (e.g., the top 1%), the expected scale
 194 for inlier-based normalization becomes $\mathbb{E}[s] = \mathbb{E}[0.99B : B] \approx \Phi^{-1}\left(\frac{0.99B-\alpha}{B-2\alpha+1}\right)$ which remains
 195 bounded above by $\Phi^{-1}(0.99) = 2.32$. This results in a more evenly spread normalized distribution
 196 and improved codebook utilization compared to the NFk case. Consequently, CINF produces a lower
 197 quantization error than NFk, i.e., $e^{\text{CINF}} \leq e^{\text{NFk}}$.
 198

199 Now, we define the basis-wise CINF quantization and dequantization functions for a single input
 200 vector $\mathbf{u} \in \mathbb{R}^d$ as $(\mathbf{u}_q, s, \mu, \lambda) = \mathcal{Q}_{\text{CINF}}(\mathbf{u})$ and $\tilde{\mathbf{u}} = \mathcal{Q}_{\text{CINF}}^{-1}(\mathbf{u}_q, s, \mu)$, where \mathbf{u}_q is the quantized
 201 vector, s is the inlier scale, μ is the mean, and λ is orthogonality weight (introduced later). In our
 202 implementation, the Quant function in Algorithm 1 applies the column-wise operator $\mathcal{Q}_{\text{CINF}}$ to the
 203 top- r left singular vectors $\hat{\mathbf{U}}_\tau^l[:, 1 : r]$ obtained from SVD. Formally,
 204

$$205 \mathbf{U}_{Q,\tau}^l[:, i], \mathbf{s}_\tau^l[i], \mathbf{z}_\tau^l[i], \mathbf{o}_\tau^l[i] = \mathcal{Q}_{\text{CINF}}(\hat{\mathbf{U}}_\tau^l[:, i]), \quad \forall i \in \{1, \dots, r\}. \quad (3)$$

206 Here, $\mathbf{U}_{Q,\tau}^l = [\mathbf{u}_q^{(1)}, \dots, \mathbf{u}_q^{(r)}] \in \mathbb{R}^{d \times r}$ stores the quantized basis vectors, while the auxiliary arrays
 207 $\mathbf{s}_\tau^l = [s_1, \dots, s_r]$, $\mathbf{z}_\tau^l = [\mu_1, \dots, \mu_r]$, and $\mathbf{o}_\tau^l = [\lambda_1, \dots, \lambda_r]$ record the corresponding scales, offsets,
 208 and orthogonality weights used in dequantization and QEA projection.
 209

210 3.3 QUANTIZATION ERROR-AWARE (QEA) GRADIENT PROJECTION

211 **QEA Gradient Projection.** In standard GPM-based CL, when training on the τ -th task using
 212 dataset $\mathcal{D}_{(\tau)}$, the raw gradient $\mathbf{g} = \nabla_{\mathbf{w}} L_\tau$ is computed via stochastic gradient descent (SGD). This
 213

Algorithm 1 QGPM Training Algorithm

```

216
217
218 Input:  $f_w$  the NN model,  $\mathcal{D}^{train}$  the training dataset, 12:  $B_{ns} \sim \mathcal{D}_\tau^{train}$ 
219  $\eta$  the learning rate, and  $\epsilon_{th}$  the threshold value. 13:  $\{\mathbf{R}_\tau^l\}_{l=1}^{L'} \leftarrow \text{forward}(B_{ns}, f_w)$ 
220 Initialize,  $\mathcal{M}_{Q,0}^l, \mathcal{S}_0^l, \mathcal{Z}_0^l, \mathcal{O}_0^l \leftarrow \emptyset$ , for all  $l =$  14:
221  $1, 2, \dots, L'$ , and  $\mathbf{w} \leftarrow \mathbf{w}_0$ . 15: for  $\forall l \in \{1, 2, \dots, L'\}$  do
222 1: for  $\tau = 1, 2, \dots, T$  do 16:  $\hat{\mathbf{R}}_\tau^l \leftarrow \mathbf{R}_\tau^l - \mathbf{M}_{\tau-1}^l \cdot (\mathbf{M}_{\tau-1}^l)^\top \cdot \mathbf{R}_\tau^l$ 
223 2: for  $\forall l \in \{1, 2, \dots, L'\}$  do 17:  $\hat{\mathbf{U}}_\tau^l, \hat{\mathbf{\Sigma}}_\tau^l, \hat{\mathbf{V}}_\tau^l \leftarrow \text{SVD}(\hat{\mathbf{R}}_\tau^l)$ 
224 3:  $\mathbf{M}_{\tau-1}^l \leftarrow \text{Dequant}(\mathcal{M}_{Q,\tau-1}^l, \mathcal{S}_{\tau-1}^l, \mathcal{Z}_{\tau-1}^l)$  18:  $r \leftarrow \text{criterion}(\hat{\mathbf{R}}_\tau^l, \mathbf{R}_\tau^l, \epsilon_{th})$ 
225 4:  $\mathbf{P}_{\tau-1}^l \leftarrow \mathbf{M}_{\tau-1}^l \cdot \text{Diag}(\mathcal{O}_{\tau-1}^l) \cdot (\mathbf{M}_{\tau-1}^l)^\top$  19:  $\mathbf{U}_{Q,\tau}^l, \mathbf{s}_\tau^l, \mathbf{z}_\tau^l, \mathbf{o}_\tau^l \leftarrow \text{Quant}(\hat{\mathbf{U}}_\tau^l[:, 1:r])$ 
226 5: end for 20:  $\mathcal{M}_{Q,\tau}^l \leftarrow \text{Concat}[\mathcal{M}_{Q,\tau-1}^l, \mathbf{U}_{Q,\tau}^l]$ 
227 6: repeat 21:  $\mathcal{S}_\tau^l \leftarrow \text{Concat}[\mathcal{S}_{\tau-1}^l, \mathbf{s}_\tau^l]$ 
228 7:  $B_n \sim \mathcal{D}_\tau^{train}$  22:  $\mathcal{Z}_\tau^l \leftarrow \text{Concat}[\mathcal{Z}_{\tau-1}^l, \mathbf{z}_\tau^l]$ 
229 8:  $\mathbf{g} \leftarrow \nabla_w L_\tau$  23:  $\mathcal{O}_\tau^l \leftarrow \text{Concat}[\mathcal{O}_{\tau-1}^l, \mathbf{o}_\tau^l]$ 
230 9:  $\hat{\mathbf{g}} \leftarrow \mathbf{g} - \mathbf{P}_{\tau-1}^l \cdot \mathbf{g}$  24: end for
231 10:  $\mathbf{w} \leftarrow \mathbf{w} - \eta \cdot \hat{\mathbf{g}}$  25: end for
232 11: until convergence

```

gradient is then projected to be orthogonal to the subspace spanned by the basis vectors stored in $\mathbf{M}_{\tau-1}^l$ (see line 5, Algorithm 3 in Appendix B). In QGPM, the basis vectors are quantized to reduce memory footprint, forming $\mathcal{M}_{Q,\tau}^l$. To perform gradient projection (line 5, Algorithm 1), the quantized basis vectors must be dequantized into full-precision (or optionally, a compact higher-precision format such as BF16) for use in tensor operations. This is handled by the `Dequant` function in line 4 of Algorithm 1, which reconstructs each basis vector by applying column-wise $\mathcal{Q}_{\text{CINF}}^{-1}$ operator

$$\mathbf{M}_{\tau-1}^l[:, i] = \mathcal{Q}_{\text{CINF}}^{-1}(\mathcal{M}_{Q,\tau-1}^l[:, i], \mathcal{S}_{\tau-1}^l[i], \mathcal{Z}_{\tau-1}^l[i]), \quad \forall i \in \{1, \dots, |\mathcal{M}_{Q,\tau-1}^l|\} \quad (4)$$

where $|\mathcal{M}_{Q,\tau-1}^l|$ denotes the number of basis vectors in the QGPM. However, as quantized bases are accumulated over multiple tasks, the quantization error compounds. We observe that this accumulated distortion can destabilize the learning process: when the subspace spanned by the quantized GPM is significantly misaligned from its original counterpart, the resulting gradient projection deviates from the true orthogonal direction. This leads to update directions that are no longer interference-free with respect to past tasks – we refer to these as gradient drift.

Theorem 3.2 (Quantization Error Accumulation) *Let $\mathbf{M}_o = [\mathbf{u}_1, \dots, \mathbf{u}_m] \in \mathbb{R}^{n \times m}$ be the full-precision GPM, and let $\mathbf{E} = [\epsilon_1, \dots, \epsilon_m] \in \mathbb{R}^{n \times m}$ be a random Gaussian error matrix, where each column $\epsilon_j \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$. Define the quantized GPM as $\mathbf{M}_e = \mathbf{M}_o + \mathbf{E}$. Let $\mathbf{g} \in \mathbb{R}^n$ be a gradient vector, and let $\hat{\mathbf{g}}_o$ and $\hat{\mathbf{g}}_e$ denote its orthogonal components with respect to the subspaces spanned by \mathbf{M}_o and \mathbf{M}_e , respectively. The expected deviation between the projected gradients satisfies:*

$$\mathbb{E}[\|\hat{\mathbf{g}}_o - \hat{\mathbf{g}}_e\|_2] \geq \|\mathbb{E}[\hat{\mathbf{g}}_o - \hat{\mathbf{g}}_e]\|_2 = m \cdot \sigma^2 \cdot \|\mathbf{g}\|_2, \quad (5)$$

implying that the projection error introduced by quantization grows linearly with the number of basis vectors m and quadratically with the quantization noise level σ .

Proof is in Appendix G.1. QGPM mitigates quantization errors by relaxing the strict orthogonality constraint of standard GPM, allowing a controlled parallel gradient component. This relaxation is adaptively scaled based on the quantization fidelity of each basis vector, which may vary across vectors due to differences in their distributions and compressibility. To capture this fidelity, the `Quant` function evaluates the quantization error individually for each of the r new basis vectors $\hat{\mathbf{U}}_\tau^l[:, i]$ to be incorporated into the QGPM. Specifically, immediately after quantization, each vector is dequantized to obtain an approximation $\tilde{\mathbf{U}}_\tau^l[:, i] = \mathcal{Q}_{\text{CINF}}^{-1}(\mathcal{Q}_{\text{CINF}}(\hat{\mathbf{U}}_\tau^l[:, i]))$, for $i = 1, \dots, r$. To assess the distortion introduced by quantization, we compute the cosine similarity between each original full-precision vector and its dequantized counterpart. The quantization error for the i -th basis is

$$e_i = 1 - \text{sim}_{\text{cos}}(\tilde{\mathbf{U}}_\tau^l[:, i], \hat{\mathbf{U}}_\tau^l[:, i]) = 1 - \frac{\tilde{\mathbf{U}}_\tau^l[:, i] \cdot \hat{\mathbf{U}}_\tau^l[:, i]}{\|\tilde{\mathbf{U}}_\tau^l[:, i]\|_2 \|\hat{\mathbf{U}}_\tau^l[:, i]\|_2}. \quad (6)$$

The value e_i quantifies how much the dequantized vector $\tilde{\mathbf{U}}_\tau^l[:, i]$ deviated from the original basis $\hat{\mathbf{U}}_\tau^l[:, i]$. To incorporate this into gradient projection mechanism, we introduce a hyperparameter α that scales the error, and define an orthogonality weight $\lambda_i = 1 - \alpha \cdot e_i$. The `Quant` function

computes λ_i for each of the r new basis vectors, resulting in a distinct orthogonality weight for every column in the QGPM. These weights are then used to specify the projection strength during gradient updates, controlling the extent to which the orthogonality is enforced. Formally,

$$\nabla_{\mathbf{w}} \hat{L}_{\tau} = \nabla_{\mathbf{w}} L_{\tau} - \mathbf{M}_{\tau-1}^l \cdot \Lambda_{\tau-1}^l \cdot (\mathbf{M}_{\tau-1}^l)^{\top} \cdot \nabla_{\mathbf{w}} L_{\tau} = \nabla_{\mathbf{w}} L_{\tau} - \mathbf{P}_{\tau-1}^l \cdot \nabla_{\mathbf{w}} L_{\tau} \quad (7)$$

where $\Lambda_{\tau-1}^l = \text{Diag}(\lambda_1, \dots, \lambda_{|\mathcal{M}_{Q,\tau-1}^l|}) \in \mathbb{R}^{|\mathcal{M}_{Q,\tau-1}^l| \times |\mathcal{M}_{Q,\tau-1}^l|}$, as illustrated in Figure 1. When the quantization error e_i is large, the corresponding λ_i is reduced, allowing a greater component of the gradient to pass through in the parallel direction – thereby increasing plasticity along the associated basis vector. This adaptive mechanism mitigates the impact of projection distortion due to quantization error, effectively preserving both model stability and past knowledge.

3.4 QGPM CONSTRUCTION WITH ON-THE-FLY SPARSE SKETCHING

After completing the τ -th task, QGPM is updated to \mathcal{M}_{τ}^l by incorporating r new basis vectors. To do so, a subset of training samples $B_{n_s} \subset \mathcal{D}_{\tau}^{\text{train}}$ is passed through the network $f_{\mathbf{w}}$, producing input representations at each layer, $\mathcal{R}_{\tau} = [\mathbf{R}_{\tau}^1, \mathbf{R}_{\tau}^2, \dots, \mathbf{R}_{\tau}^L]$. We extract the orthogonal component of the new representation relative to the current GPM subspace $\mathbf{M}_{\tau-1}^l$, i.e., $\hat{\mathbf{R}}_{\tau}^l = \mathbf{R}_{\tau}^l - \mathbf{M}_{\tau-1}^l \cdot (\mathbf{M}_{\tau-1}^l)^{\top} \cdot \mathbf{R}_{\tau}^l$, where $\mathbf{M}_{\tau-1}^l \cdot (\mathbf{M}_{\tau-1}^l)^{\top} \cdot \mathbf{R}_{\tau}^l$ is the component that already exists in $\mathbf{M}_{\tau-1}^l$. To extract orthogonal basis vectors from $\hat{\mathbf{R}}_{\tau}^l$, we apply Singular Value Decomposition (SVD) and retain the top- r singular vectors, $\hat{\mathbf{U}}_{\tau,r}^l \hat{\mathbf{\Sigma}}_{\tau,r}^l \hat{\mathbf{V}}_{\tau,r}^l = \hat{\mathbf{R}}_{\tau,r}^l \approx \hat{\mathbf{R}}_{\tau}^l$, where the value of r is chosen by the function criterion:

$$\frac{\|\mathbf{M}_{\tau-1}^l \cdot (\mathbf{M}_{\tau-1}^l)^{\top} \cdot \mathbf{R}_{\tau}^l\|_F^2}{\|\mathbf{R}_{\tau}^l\|_F^2} + \frac{\|\hat{\mathbf{R}}_{\tau,r}^l\|_F^2}{\|\mathbf{R}_{\tau}^l\|_F^2} \geq \epsilon_{th}. \quad (8)$$

This ensures that the retained directions collectively explain at least ϵ_{th} of the total variance in \mathbf{R}_{τ}^l . The selected r left singular vectors are then quantized, yielding r quantized singular vectors $\mathbf{U}_{Q,\tau}^l$, along with auxiliary arrays, $(\mathbf{s}_{\tau}^l, \mathbf{z}_{\tau}^l, \mathbf{o}_{\tau}^l)$, as introduced in Section 3.2. Finally, the newly quantized basis vectors and their associated metadata are appended to the QGPM: $\mathcal{M}_{Q,\tau}^l, \mathcal{S}_{\tau}^l, \mathcal{Z}_{\tau}^l$, and \mathcal{O}_{τ}^l .

On-the-Fly Sparse Sketching. In the standard GPM update, the representation matrix \mathbf{R}_{τ}^l is constructed by collecting local activation patches from the entire feature representation. Each patch is flattened into a column vector \mathbf{r}_i , and these vectors are concatenated to form $\mathbf{R}_{\tau}^l = [\mathbf{r}_1, \dots, \mathbf{r}_N]$. A key challenge is that N can become extremely large, especially in convolutional or transformer blocks – popular components of modern neural networks. As shown in Table 10 in Appendix C, this results in a high-dimensional matrix that significantly slows down SVD and incurs substantial memory overhead during training. To address this, we propose an On-the-Fly Sparse Sketching strategy, which constructs a low-dimensional approximation of \mathbf{R}_{τ}^l using a sparse sketch in a streaming manner.

Theorem 3.3 ((1 ± ϵ)- ℓ_2 Subspace Embedding via Sparse Sketching) *Let $\mathbf{S} \in \mathbb{R}^{r \times N}$ be a sparse embedding matrix constructed using hash functions $h : [N] \rightarrow [r]$ and $\sigma : [N] \rightarrow \{-1, 1\}$. The i -th column of \mathbf{S} has a single non-zero entry at row $h(i)$, with value $\sigma(i)$. Then, for any rank- k matrix $\mathbf{A} \in \mathbb{R}^{N \times n}$, if $r = O(\frac{k^2}{\epsilon^2 \delta})$, then with probability at least $1 - \delta$, \mathbf{S} is a $(1 \pm \epsilon)$ - ℓ_2 subspace embedding for the row space of \mathbf{A} in the ℓ_2 -norm. Equivalently, for all $x \in \mathbb{R}^n$,*

$$(1 - \epsilon) \|Ax\|_2 \leq \|\mathbf{S}Ax\|_2 \leq (1 + \epsilon) \|Ax\|_2.$$

Proof is in Appendix G.2. Leveraging the $(1 \pm \epsilon)$ - ℓ_2 subspace embedding property of sparse sketching (Theorem 3.3), we apply column-wise sketching for each new representation vector \mathbf{r}_i by setting $r = n$. This reduces the size of the representation matrix from $\mathbb{R}^{n \times N}$ to $\mathbb{R}^{n \times n}$, while approximately preserving the geometric structure of the original subspace. As a result, the peak intermediate memory required to construct the QGPM is reduced by a factor of N/n at each layer. In addition, the computational cost of SVD, the primary bottleneck in standard GPM, is reduced by the same factor. Specifically, the time complexity of computing the SVD of an $n \times N$ matrix is $O(N \times n^2)$ when $N \gg n$. Notably, with this sketching scheme, the representation matrix for ViT-S can be compressed from 1.62GB to just 66MB. Detailed implementation and analysis are provided in Appendix C.

4 EXPERIMENTS

Setup. We evaluate QGPM on three standard CL benchmarks: 10-split CIFAR-100, 5-Datasets (Ebrahimi et al., 2020), and 10/20-split miniImageNet (Vinyals et al., 2016). These benchmarks

324
 325
 326
 327
 328
 Table 1: Performance comparison on continual learning benchmarks. 8-bit QGPM (8QGPM) matches full-
 precision GPM (GPM-FP) with <0.5% drop in ACC/BWT while reducing memory by $3.83\times$ on average. Under
 the same memory budget, rehearsal-based baselines (AGEM, FDR, ER, DER++) suffer substantial forgetting
 (higher BWT). 4-bit QGPM (4QGPM) remains robust (<1% drop vs. GPM-FP) with a $6.44\times$ memory reduction,
 demonstrating scalability under stricter constraints.

329 330 Methods	331 10-split CIFAR100		332 5-Datasets		333 10-split miniImageNet		334 20-split miniImageNet	
	335 ACC (\uparrow)	336 BWT (\uparrow)	337 ACC (\uparrow)	338 BWT (\uparrow)	339 ACC (\uparrow)	340 BWT (\uparrow)	341 ACC (\uparrow)	342 BWT (\uparrow)
343 Memory GPM-FP	3.13 MB		27.67 MB		9.85 MB		11.07 MB	
344 71.11	345 -0.98	346 89.52	347 -1.83	348 73.84	349 -3.30	350 80.28	351 -2.73	352
353 Memory GPM-FP-MC	0.81 MB		7.24 MB		2.59 MB		2.88 MB	
354 64.58	355 -12.88	356 77.82	357 -16.14	358 71.48	359 -8.24	360 77.06	361 -6.69	362
363 AGEM-MC	50.72		-25.44		80.45		-23.74	
364 60.63	365 -14.82	366 84.08	367 -8.10	368 68.77	369 -11.51	370 76.12	371 -9.35	372
373 DER++-MC	56.41		-16.77		80.97		-14.37	
374 63.07	375 -13.74	376 83.54	377 -9.88	378 67.95	379 -12.93	380 75.56	381 -10.08	382
383 FDR-MC	70.70		-0.81		89.41		-3.54	
384 8QGPM (Ours)	70.70		-0.81		89.41		-3.54	
385 Memory GPM-FP-MC	0.48 MB		4.27 MB		1.52 MB		1.76 MB	
386 62.33	387 -20.23	388 70.86	389 -25.15	390 70.90	391 -9.48	392 76.36	393 -7.64	394
395 4QGPM (Ours)	69.74		-2.62		88.51		-4.50	
396 73.77	397 -3.79	398 80.25	399 -4.50	400 80.25	401 -3.38	402	403	404

343
 capture complementary challenges of continual learning, including large label spaces, cross-domain
 344
 heterogeneity, and scalability. We follow standard architectures for each benchmark: AlexNet (Serra
 345
 et al., 2018) for CIFAR-100, ResNet-18 (He et al., 2016) for 5-Datasets, and pretrained ViT-S (Tou-
 346
 vron et al., 2022) for miniImageNet. All models are trained in a multi-head setting, with a dedicated
 347
 classification head per task. Further architectural and dataset details are in Appendix A.2.

348
Baselines. We compare QGPM against rehearsal-based continual learning methods that support
 349
 flexible memory buffer sizes, unlike regularization- or expansion-based approaches. Specifically,
 350
 we include Average GEM (AGEM) (Chaudhry et al., 2019), Function Distance Regularization
 351
 (FDR) (Benjamin et al., 2019), Experience Replay (ER) (Rolnick et al., 2019), and Dark Experience
 352
 Replay (DER++) (Buzzega et al., 2020), which represent widely used and competitive baselines.
 353
 We also evaluate two GPM variants: the original full-precision version (GPM-FP) and a memory-
 354
 constrained variant with reduced ϵ_{th} (GPM-FC-MC). For fairness, all methods are matched to
 355
 QGPM’s memory budget by adjusting the buffer size to yield an equivalent overall overhead.

356
Metrics. We evaluate performance using two standard continual learning metrics (Lopez-Paz &
 357
 Ranzato, 2017). The average accuracy (ACC) measures overall test accuracy across tasks at the end
 358
 of training; it is defined as $ACC = \frac{1}{T} \sum_{t=1}^T acc_t^T$, where acc_t^T is the final accuracy on task t after
 359
 learning all T tasks. The backward transfer (BWT), quantifying the degree of forgetting (negative
 360
 values indicate loss on earlier tasks), is defined as $BWT = \frac{1}{T-1} \sum_{t=1}^{T-1} (acc_t^T - acc_t^t)$, where acc_t^t is
 361
 the accuracy on task t immediately after learning it.

362 4.1 PERFORMANCE ANALYSIS

363
Main Results. Table 1 reports results for 8-bit QGPM (8QGPM) and 4-bit QGPM (4QGPM)
 364
 compared to all baselines. Across benchmarks, 8QGPM matches full-precision GPM (GPM-FP),
 365
 with ACC and BWT reduced by less than 0.5%, while requiring $3.83\times$ less memory on average. Under
 366
 the same memory budget, rehearsal-based baselines suffer substantial forgetting due to limited buffer
 367
 size, leading to much higher BWT. With more aggressive compression, 4QGPM shows only a modest
 368
 drop (< 1% ACC/BWT relative to GPM-FP) while achieving a $6.44\times$ memory reduction. Since
 369
 8QGPM already outperforms all baselines at equal memory, we focus on the comparisons involving
 370
 8-bit results; 4-bit results highlight the scalability of QGPM under stricter memory constraints.

371
Memory Profile. Figure 2(a) reports the memory footprint of QGPM compared to full-precision
 372
 GPM (GPM-FP), with model parameter sizes included for reference. Specifically, the maximum
 373
 memory footprint of the fully occupied GPM can be compressed as follows: (1) ViT-S: 66.3MB
 374
 → 17.8MB (8-bit) / 10.2MB (4-bit); (2) ResNet-18: 34.27MB → 8.93MB (8-bit) / 5.29MB (4-bit);
 375
 and (3) AlexNet: 22.27MB → 5.74MB (8-bit) / 3.41MB (4-bit). These reductions approach the
 376
 theoretical $4\times$ (8-bit) and $8\times$ (4-bit) limits, with minor deviation due to overhead from storing
 377
 auxiliary metadata ($\mathcal{S}\tau^l, \mathcal{Z}\tau^l, \mathcal{O}_\tau^l$) and full-precision outliers. Additional experimental setup and
 378
 hyperparameter details can be found in Appendix A.

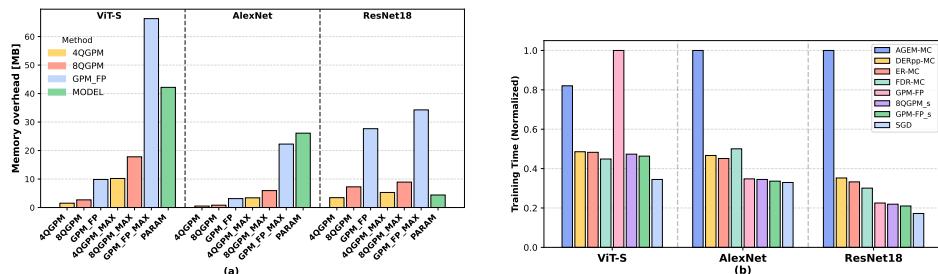


Figure 2: (a) Memory profile of QGPM vs. full-precision GPM. QGPM approaches the 4x (8-bit) and 8x (4-bit) compression limits with only minor metadata overhead, yielding substantial savings across all architectures. (b) Normalized training time under matched memory budgets. QGPM adds negligible overhead compared to GPM-FP, and sparse sketching mitigates the ViT-S bottleneck by accelerating SVD operations.

Runtime Analysis. Figure 2(b) reports normalized training time under matched memory budgets for AlexNet, ResNet-18, and ViT-S. Sparse sketching is applied to GPM-FP_s and 8QGPM_s, but not GPM-FP. SGD is included as a lower bound, since it does not incorporate any continual learning mechanisms. On AlexNet and ResNet-18, GPM-family models achieve the lowest training time, as their projection operation is cheaper than the additional forward/backward passes and distillation losses required in rehearsal-based baselines. The quantization/dequantization overhead in QGPM is negligible, as shown by the similar runtimes of 8QGPM_s and GPM-FP_s. For ViT-S, however, GPM-FP exhibits a significant slowdown because the SVD on large representations of transformer blocks dominate training cost. Applying sparse sketching mitigates this bottleneck, accelerating both SVD and overall training.

4.2 EFFECT OF BITWIDTH AND OUTLIERS ON QUANTIZATION FIDELITY

We examine how quantization bitwidth and the outlier proportion influence error characteristics and, ultimately, QGPM performance by analyzing experiments on 10-split CIFAR-100. The average quantization error across all stored bases is defined as $e_{avg} = \frac{1}{\sum_{l=1}^L |\mathcal{M}_{Q,T}^l|} \sum_{l=1}^L \sum_{i=1}^{|\mathcal{M}_{Q,T}^l|} e_i^l$, and the per-layer maximum error is measured as $e_{max} = \frac{1}{L} \sum_{l=1}^L \max_{1 \leq i \leq |\mathcal{M}_{Q,T}^l|} e_i^l$. **Effect of quantization bitwidth:** Table 2 reports e_{avg} , e_{max} , ACC, and BWT across different bitwidths. To isolate bitwidth effects, we disable QEA projection ($\alpha = 0$) and set the outlier proportion to zero ($p = 0$). As expected, larger bitwidths substantially reduce both error metrics, with accuracy converging to full-precision levels. A sharp performance drop occurs below 5 bits, caused by increased projection distortion and resulting gradient drift. **Effect of outlier proportion:** In Table 3, we fix the quantization to 4-bit with $\alpha = 0$ while varying p . Even with low e_{avg} , a single poorly quantized basis vector (large e_{max} at $p = 0$) can destabilize training by inducing a gradient drift. Introducing a small outlier proportion (e.g., $p = 0.5\%$) markedly reduces e_{max} and improves performance relative to the zero-outlier case.

Table 2: Effect of quantization bitwidth on QGPM.

bit	e_{avg}	e_{max}	ACC(%)	BWT
4-bit	0.544	1.173	25.03	-31.27
5-bit	0.126	0.254	38.97	-22.94
6-bit	0.033	0.057	64.22	-0.32
8-bit	0.004	0.011	65.01	0.61
FP	0	0	65.02	0.59

Table 3: Effect of outlier proportion on QGPM.

$p(%)$	e_{avg}	e_{max}	ACC(%)	BWT
0.0	0.573	1.205	41.23	-24.40
0.5	0.434	0.650	49.71	-16.29
1.0	0.401	0.553	50.26	-15.84
1.5	0.373	0.485	55.02	-11.76
2.0	0.353	0.453	55.36	-11.07

Table 4: Effect of QEA scaling factor α on λ_{avg} , ACC, and BWT. Moderate α improves performance by relaxing orthogonality based on quantization error.

α	λ_{avg}	ACC(%)	BWT
SGD	-	59.77	-18.68
FP	-	65.13	-1.07
0	1.0	44.20	-20.69
10	0.962	40.54	-25.44
40	0.849	58.73	-8.96
60	0.775	65.58	-3.87
80	0.699	67.26	-2.91
100	0.622	66.59	4.24
150	0.433	65.91	-5.79
200	0.249	65.17	-7.28

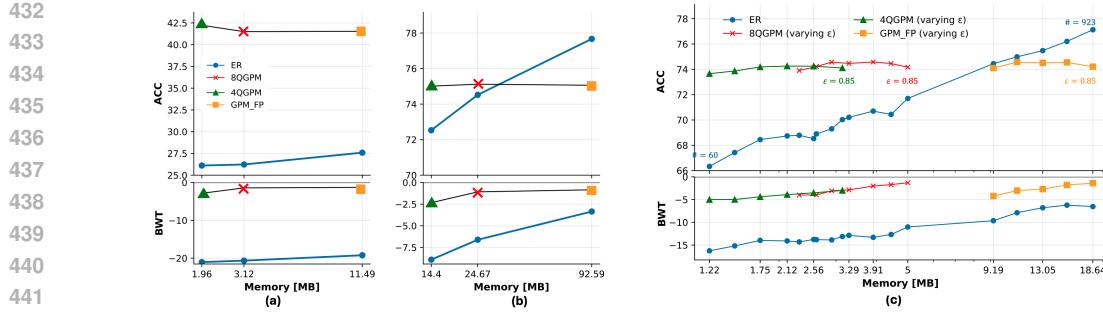


Figure 3: **Memory-accuracy tradeoffs of QGPM.** (a,b) QGPM outperforms ER at lower memory on ViT-Tiny and ViT-B/16. (c) Accuracy remains stable as ϵ decreases; 4QGPM with moderate ϵ is most efficient.

4.3 EFFECT OF QEA PROJECTION ON QUANTIZATION ROBUSTNESS

To counteract quantization error accumulation, QGPM integrates Quantization Error-Aware (QEA) projection, which adaptively relaxes orthogonality based on quantization fidelity. We study its effect by varying the error scaling factor α , which controls the strength of the orthogonality constraint. Table 4 reports performance as a function of α , with the outlier proportion fixed at $p = 1\%$, a setting where QEA has the most pronounced impact. All other hyperparameters match those used in Tables 2 and 3. For each basis vector, the orthogonality weight is $\lambda_i = 1 - \alpha e_i$, where e_i is the quantization error from Eq. 6. We also report the average of orthogonality weight across all basis vectors,

$$\lambda_{avg} = \frac{1}{\sum_{l=1}^L |\mathcal{M}_{Q,T}^l|} \sum_{l=1}^L \sum_{i=1}^{|\mathcal{M}_{Q,T}^l|} \lambda_i^l.$$

Given a fixed average quantization error (e.g., $e_{avg} = 0.376$ set by the bitwidth and p), increasing α lowers λ_{avg} , thereby relaxing the orthogonality constraint and permitting greater flexibility in gradient updates. This flexibility compensates for subspace distortion: as α rises from zero, accuracy consistently improves, showing that the parallel gradient component offsets quantization error. However, beyond a threshold, performance declines due to over-relaxation, which increases inter-task interference. Thus, α must be calibrated to match the severity of quantization. In practice, larger α values are required under higher quantization error, e.g., Table 9 in Appendix A.3 shows that 4QGPM generally uses a larger α than 8QGPM. Overall, QEA proves most beneficial under aggressive quantization settings, where error-aware relaxation can significantly stabilize learning.

4.4 MEMORY-ACCURACY TRADEOFFS IN QGPM

The memory characteristics of QGPM depend on two factors: (i) the embedding dimension (i.e., model size) and (ii) the threshold ϵ (i.e., subspace approximation quality).

Effect of model size: We evaluate QGPM on ViT-Tiny (192-dim) and ViT-B/16 (768-dim) using 10-split ImageNet-R, with ER (Rolnick et al., 2019) as a representative rehearsal baseline (Fig. 3(a) and (b)). GPM memory scales sharply with model size, e.g., fully occupied GPMs reach 34MB for ViT-S and 515MB for ViT-B/16. On smaller models, even GPM-FP outperforms ER under equal memory. On larger models, however, ER surpasses GPM-FP at 92.59MB. By contrast, QGPM compresses memory to as little as 14.4MB while still outperforming ER, with negligible accuracy loss. This validates QGPM’s effectiveness in scaling to large models under tight memory budgets.

Effect of threshold ϵ : Figure 3(c) shows performance as ϵ decreases from 0.85 in steps of 0.03. Smaller ϵ yields a coarser subspace approximation (fewer bases), reducing QGPM size. Performance remains largely stable across a wide range, suggesting that memory can be reduced further with modest trade-offs. Notably, 4QGPM with a moderate ϵ is often superior to 8QGPM or GPM-FP with an aggressively small ϵ .

5 CONCLUSION

We introduced QGPM, a scalable and memory-efficient framework for continual learning. By combining basis-wise quantization, quantization-aware gradient projection, and on-the-fly sparse sketching, QGPM achieves strong performance under tight memory constraints. Theoretical and empirical results demonstrate its effectiveness in mitigating forgetting while maintaining efficiency, making it a practical solution for memory-efficient and privacy-preserving continual learning.

486 REFERENCES
487

488 Ari S. Benjamin, David Rolnick, and Konrad P. Kording. Measuring and regularizing networks
489 in function space. In *7th International Conference on Learning Representations, ICLR 2019,*
490 *New Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=SkMwpipiR9Y7>.

491

492 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
493 experience for general continual learning: a strong, simple baseline. *Advances in neural information*
494 *processing systems*, 33:15920–15930, 2020.

495 Arslan Chaudhry, Marc’ Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
496 lifelong learning with A-GEM. In *7th International Conference on Learning Representations,*
497 *ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL https://openreview.net/forum?id=Hkf2_sc5FX.

498

499 Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Dual-teacher class-incremental learning with data-
500 free generative replay. *2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition*
501 *Workshops (CVPRW)*, pp. 3538–3547, 2021.

502

503 Jaeyoung Chung, Kanggeon Lee, Sungyong Baik, and Kyoung Mu Lee. Meil-nerf: Memory-efficient
504 incremental learning of neural radiance fields. *CoRR*, abs/2212.08328, 2022. doi: 10.48550/
505 ARXIV.2212.08328. URL <https://doi.org/10.48550/arXiv.2212.08328>.

506

507 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
508 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

509

510 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
511 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
512 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
513 In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,*
514 *May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

515

516 Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adver-
517 sarial continual learning. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow,*
518 *UK, August 23–28, 2020, Proceedings, Part XI 16*, pp. 386–402. Springer, 2020.

519

520 Beyza Ermis, Giovanni Zappella, Martin Wistuba, Aditya Rawal, and Cedric Archambeau. Memory
521 efficient continual learning with transformers. *Advances in Neural Information Processing Systems*,
522 35:10629–10642, 2022.

523

524 Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
525 learning. In Silvia Chiappa and Roberto Calandra (eds.), *The 23rd International Conference on*
526 *Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily,*
527 *Italy]*, volume 108 of *Proceedings of Machine Learning Research*, pp. 3762–3773. PMLR, 2020.
528 URL <http://proceedings.mlr.press/v108/farajtabar20a.html>.

529

530 Rui Gao and Weiwei Liu. Ddgr: Continual learning with deep diffusion-based generative replay. In
531 *International Conference on Machine Learning*, pp. 10744–10763. PMLR, 2023.

532

533 H Leon Harter. Expected values of normal order statistics. *Biometrika*, 48(1/2):151–165, 1961.

534

535 Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
536 *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2015.

537

538 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
539 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
540 pp. 770–778, 2016.

541

542 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask r-cnn. 2017.

543

544 Ahmet Iscen, Jeffrey O. Zhang, Svetlana Lazebnik, and Cordelia Schmid. Memory-efficient in-
545 cremental learning through feature adaptation. In *European Conference on Computer Vision*,
546 2020.

540 Jörn-Henrik Jacobsen, Arnold W. M. Smeulders, and Edouard Oyallon. i-revnet: Deep invertible
 541 networks. In *6th International Conference on Learning Representations, ICLR 2018, Vancouver,*
 542 *BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings*. OpenReview.net, 2018. URL
 543 <https://openreview.net/forum?id=HJsjkMb0Z>.

544

545 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 546 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
 547 catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114
 548 (13):3521–3526, 2017.

549 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory G.
 550 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
 551 tasks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44:3366–3385, 2019.

552

553 Yan-Shuo Liang and Wu-Jun Li. Adaptive plasticity improvement for continual learning. In
 554 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7816–
 555 7825, 2023.

556

557 Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
 558 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 559 23638–23647, 2024.

560

561 Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Beyond not-forgetting: Continual learning
 562 with backward knowledge transfer. *Advances in Neural Information Processing Systems*, 35:
 563 16165–16177, 2022.

564

565 David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning.
 566 *Advances in neural information processing systems*, 30, 2017.

567

568 Kanti V. Mardia. Measures of multivariate skewness and kurtosis with applications. *Biometrika*, 57:
 569 519–530, 1970.

570

571 Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
 572 sequential learning problem. *Psychology of Learning and Motivation*, 24:109–165, 1989.

573

574 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 575 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on*
 576 *Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.

577

578 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
 579 replay for continual learning. *Advances in neural information processing systems*, 32, 2019.

580

581 Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
 582 Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. *CoRR*,
 583 abs/1606.04671, 2016. URL <http://arxiv.org/abs/1606.04671>.

584

585 Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
 586 *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,*
 587 *May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=3AOj0RCNC2>.

588

589 Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
 590 forgetting with hard attention to the task. In *International conference on machine learning*, pp.
 591 4548–4557. PMLR, 2018.

592

593 Joan Serrà, Dídac Surís, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
 594 forgetting with hard attention to the task. In *International Conference on Machine Learning*, 2018.

595

596 Samuel S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete samples).
 597 *Biometrika*, 52:591–611, 1965.

598

599 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 600 recognition. *CoRR*, abs/1409.1556, 2014.

594 James Smith, Yen-Chang Hsu, John C. Balloch, Yilin Shen, Hongxia Jin, and Zsolt Kira. Always be
 595 dreaming: A new approach for data-free class-incremental learning. *2021 IEEE/CVF International*
 596 *Conference on Computer Vision (ICCV)*, pp. 9354–9364, 2021.

597

598 Hugo Touvron, Matthieu Cord, Alaeldin El-Nouby, Jakob Verbeek, and Hervé Jégou. Three things
 599 everyone should know about vision transformers. In *European Conference on Computer Vision*,
 600 pp. 497–515. Springer, 2022.

601 Tanvi Verma, Liyuan Jin, Jun Zhou, Jia Huang, Mingrui Tan, Benjamin Chen Ming Choong, Ting Fang
 602 Tan, Fei Gao, Xinxing Xu, Daniel S Ting, et al. Privacy-preserving continual learning methods for
 603 medical image classification: a comparative analysis. *Frontiers in Medicine*, 10:1227515, 2023.

604 Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
 605 shot learning. *Advances in neural information processing systems*, 29, 2016.

606

607 Enneng Yang, Li Shen, Zhenyi Wang, Shiwei Liu, Guibing Guo, and Xingwei Wang. Data aug-
 608 mented flatness-aware gradient projection for continual learning. In *Proceedings of the IEEE/CVF*
 609 *international conference on computer vision*, pp. 5630–5639, 2023.

610 Davis Yoshida. NF4 isn't information theoretically optimal (and that's good). *CoRR*, abs/2306.06965,
 611 2023. doi: 10.48550/ARXIV.2306.06965. URL <https://doi.org/10.48550/arXiv.2306.06965>.

612

613 Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent
 614 processing in neural networks. *Nature Machine Intelligence*, 1(8):364–372, 2019.

615 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
 616 *Proceedings of machine learning research*, 70:3987–3995, 2017.

617

618 Yuqing Zhao, Divya Saxena, and Jiannong Cao. Memory-efficient domain incremental learning for
 619 internet of things. *Proceedings of the 20th ACM Conference on Embedded Networked Sensor*
 620 *Systems*, 2022.

621

622 Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: Towards
 623 memory-efficient class-incremental learning. In *The Eleventh International Conference on Learn-
 624 ing Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
 625 <https://openreview.net/forum?id=S07feAlQHgM>.

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A EXPERIMENTAL DETAILS**
649650 **A.1 DATASETS**
651652 Tables 5 and 6 summarize the dataset configurations used in the main experiments. To match the
653 memory constraint of QGPM, the number of samples in the replay buffer is adjusted accordingly.
654 Here, buffer size indicate the number of replay images stored in the buffer. For CIFAR-100, the
655 memory overhead of QGPM is 0.81MB, which is equivalent to 264 training samples. Therefore,
656 the buffer size is set to 280. For the 5-Datasets benchmark, we assume all five datasets are equally
657 represented in the buffer. This results in an effective memory usage of 1.7KB per sample. To match
658 QGPM’s memory constraint of 7.24MB, a total of 4,259 samples can be stored in the buffer. For
659 miniImageNet, to match the memory overhead of 2.59 and 2.88MB, 128 and 143 numbers of samples
660 are used.
661

Table 5: Dataset statistics of CIFAR100 and miniImageNet.

662

	Split CIFAR-100	Split-miniImageNet
num. of tasks	10	20
input size ($C \times H \times W$)	$3 \times 32 \times 32$	$3 \times 84 \times 84$
# Classes/task	10	10
# Test samples/task	1,000	500
Memory per sample	3.072KB	21.168KB

662 Table 6: 5-Datasets statistics. MNIST images are replicated across all RGB channels so that each image has 3
663 channels.
664665

	CIFAR-10	MNIST	SVHN	Fashion-MNIST	notMNIST
# Classes	10	10	10	10	10
# Training samples	47,500	57,000	69,595	57,000	16,011
# Validation samples	2,500	3,000	3,662	3,000	842
# Test samples	10,000	10,000	26,032	10,000	1,873
Memory per sample	3.073KB	0.785KB	3.073KB	0.785KB	0.785KB

666 **A.2 MODEL ARCHITECTURES**
667668 The model architectures for the 5-layer AlexNet variant and the 20-layer ResNet-18 variant follow
669 those used in Saha et al. (2021). All networks use ReLU activations and a softmax layer combined
670 with cross-entropy loss at the final classification layer. AlexNet and ResNet-18 are trained from
671 scratch.
672673 For ViT, we adopt a ViT-S, a variant of ViT proposed in Dosovitskiy et al. (2021), with a 384-
674 dimensional patch embedding, 6 transformer blocks forming a total of 25 learnable layers and 6
675 attention heads. The MLP expansion ratio within each attention block is set to 4, and dropout is
676 applied with a probability of 0.1. ViT-S uses pre-trained weight trained on ImageNet-21k. It takes an
677 input image size of 224×224 with patch size of 16. Thus each input image is resized to 224×224 .
678679 Table 7 shows the fully occupied GPM configuration at each backbone and the corresponding full
680 precision memory overhead.
681682 **A.3 HYPERPARAMETER SETTINGS**
683684 In this section, we organize hyperparameters used in the experiment in Section 4. In the experiments
685 with AlexNet and ResNet-18, learning rate of 0.1 is used for the first task and 0.01 is used for all
686 subsequent tasks. For the experiment with AlexNet, 100 training epochs are used. For the ResNet18,
687 50 training epochs are used. For the ViT-S and ViT-Tiny, 0.01 learning rate is used with 10 epochs.
688 For the ViT-B/16, 0.005 learning rate is used with 20 epochs. In all experiments, SGD is used as an
689 optimizer with 64 mini-batch size.
690691 In the Table 9, method-specific hyperparameters are introduced. ϵ_{th} is threshold value of k-rank
692 approximation. α is the *QEA scaling factor* for the QEA gradient projection. All experiments were
693

Table 7: Maximum size of GPM at each layer and the number of GPM parameters for each network.

Network	Size of maximum M^l	Memory in Bytes
AlexNet	$48 \times 48, 576 \times 576,$ $512 \times 512, 1024 \times 1024,$ 2048×2048	22.28MB
ResNet18	$27 \times 27, 180 \times 180, 180 \times 180, 180 \times 180,$ $180 \times 180, 180 \times 180, 360 \times 360,$ $20 \times 20, 360 \times 360, 360 \times 360,$ $360 \times 360, 720 \times 720, 40 \times 40,$ $720 \times 720, 720 \times 720, 720 \times 720,$ $1440 \times 1440, 80 \times 80, 1440 \times 1440,$ 1440×1440	34.27MB
ViT-S	$768 \times 768, 384 \times 384, 384 \times 384, 384 \times 384, 1536 \times 1536,$ $384 \times 384, 384 \times 384, 384 \times 384, 1536 \times 1536,$ $384 \times 384, 384 \times 384, 384 \times 384, 1536 \times 1536,$ $384 \times 384, 384 \times 384, 384 \times 384, 1536 \times 1536,$ $384 \times 384, 384 \times 384, 384 \times 384, 1536 \times 1536,$ $384 \times 384, 384 \times 384, 384 \times 384, 1536 \times 1536$	66.37MB
ViT-B/16	$768 \times 768, 768 \times 768, 768 \times 768, 768 \times 768,$ $3072 \times 3072, 768 \times 768, 768 \times 768, 768 \times 768,$ $768 \times 768, 3072 \times 3072, 768 \times 768, 768 \times 768,$ $768 \times 768, 768 \times 768, 3072 \times 3072, 768 \times 768,$ $768 \times 768, 768 \times 768, 768 \times 768, 3072 \times 3072,$ $768 \times 768, 768 \times 768, 768 \times 768, 768 \times 768,$ $3072 \times 3072, 768 \times 768, 768 \times 768, 768 \times 768,$ $768 \times 768, 3072 \times 3072, 768 \times 768, 768 \times 768,$ $768 \times 768, 768 \times 768, 3072 \times 3072, 768 \times 768,$ $768 \times 768, 768 \times 768, 768 \times 768, 3072 \times 3072,$ $768 \times 768, 768 \times 768, 768 \times 768, 768 \times 768,$ 3072×3072	515.25MB

Table 8: Model parameters and GPM size comparison.

Network	Category	Memory in Byte
AlexNet	Model Param. size GPM_max size	26.1MB 22.28MB
ResNet-18	Model Param. size GPM_max size	4.4MB 34.27MB
ViT-S	Model Param. size GPM_max size	42.18MB 66.3MB
ViT-Tiny	Model Param. size GPM_max size	21.15MB 34MB
ViT-B/16	Model Param. size GPM_max size	327.59MB 515MB

conducted on a single AMD Vega 20 GPU.

B GRADIENT PROJECTION MEMORY (GPM)

Table 9: Hyper-parameters used for all baselines.

Methods	Hyperparameters
GPM-FP	ϵ_{th} : 0.9 (10 cifar100), 0.93 (5datasets), 0.93 (miniiImagenet)
GPM-MC	ϵ_{th} : 0.7 (10 cifar100, 0.79MB), 0.75 (5 datasets, 8.36MB), 0.52 (10 miniiImagenet, 2.66MB), 0.51 (20 miniiImagenet, 2.88MB)
AGEM-MC	Buffer size: 280 (10 cifar100), 4259 (5datasets), 128 (10 miniiImagenet), 143(20 miniiImagenet)
DER++-MC	Buffer size: 280 (10 cifar100), 4259 (5datasets), 128 (10 miniiImagenet), 143 (20 miniiImagenet) weight for MSE loss on replay logits: 0.1, weight for CE loss on replay samples: 0.5
ER-MC	Buffer size: 280 (10 cifar100), 4259 (5datasets), 128 (10 miniiImagenet), 143 (20 miniiImagenet)
FDR-MC	Buffer size: 280 (10 cifar100), 4259 (5datasets), 128 (10 miniiImagenet), 143 (20 miniiImagenet) weight for FDR replay loss: 0.6
8QGPM	α : 10 (cifar100), 10 (5datasets), 5 (10 miniiImagenet), 5 (20 miniiImagenet) outlier: 1% (cifar100), 1% (5datasets), 1% (10 miniiImagenet), 1% (20 miniiImagenet)
4QGPM	α : 20 (cifar100), 20 (5datasets), 15 (10 miniiImagenet), 15 (20 miniiImagenet) outlier: 3% (cifar100), 3% (5datasets), 2% (10 miniiImagenet), 2% (20 miniiImagenet)

Algorithm 2 On-Fly Sparse Sketching

```

1: Let  $\mathbf{R}$  be the representation matrix and  $\mathbf{r}_i$  be the  $i$ -th representation vector having  $n$  dimension.
2: Let's assume that there are  $N$  numbers of representation vector and they arrive one by one.
3: for  $\forall i \in \{1, 2, \dots, N\}$  do
4:    $seed \leftarrow i$ 
5:    $idx \leftarrow Random\_select(\{1, 2, \dots, n\}, seed)$ 
6:    $sign \leftarrow Random\_select(\{-1, +1\}, seed)$ 
7:    $\mathbf{R}[:, idx] \leftarrow \mathbf{R}[:, idx] + sign \cdot \mathbf{r}_i$ 
8: end for

```

We now provide a detailed explanation on the Gradient Projection Memory (GPM) scheme Saha et al. (2021). In continual learning, we aim to minimize the average loss over a sequence of tasks; however, without access to earlier data, models tend to forget previous tasks as they learn new ones. GPM combats this catastrophic forgetting by projecting gradients from the new tasks onto the subspace orthogonal to past task representations, without any data replay.

Let $\mathbf{w}_\tau^l \subset \mathbf{w}_\tau$ denote l -th layer parameters trained on task τ and \mathbf{R}_τ^l be the input representation to layer l at that point. The output activation of layer l after training on task τ is given by $\mathbf{w}_\tau^l \cdot \mathbf{R}_\tau^l$. We would like this activation to remain unchanged even after learning task $\tau + 1$, i.e., $\mathbf{w}_\tau^l \cdot \mathbf{R}_\tau^l = \mathbf{w}_{\tau+1}^l \cdot \mathbf{R}_\tau^l = (\mathbf{w}_\tau^l + \Delta\mathbf{w}^l) \cdot \mathbf{R}_\tau^l$. This requires that the weight update $\Delta\mathbf{w}^l$ satisfies the orthogonality condition $\Delta\mathbf{w}^l \cdot \mathbf{R}_\tau^l = 0$. To enforce this constraint, the learner stores a set of core basis vectors that span the subspace of \mathbf{R}_τ^l and restricts future gradient updates to lie in the orthogonal complement of this subspace. We denote this memory (i.e., GPM), for layer l after task τ by \mathbf{M}_τ^l .

Algorithm 3 outlines a continual learning procedure using GPM. For each task τ , the learner: (1) performs projected gradient descent using the existing basis memory $\{\mathbf{M}_{\tau-1}^l\}$ to remove interference (Lines 1–7); (2) gathers the new layer- l activations \mathbf{R}_τ^l and orthogonally project out components

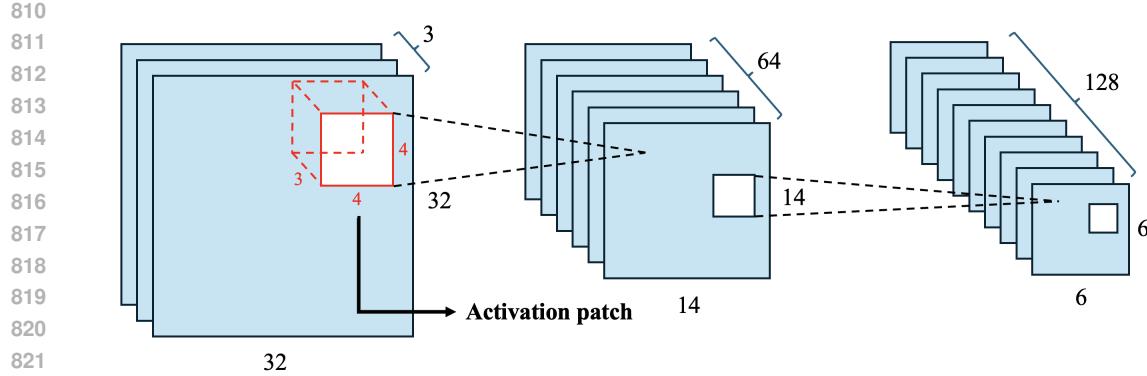


Figure 4: Feature map of AlexNet and its activation patch

Algorithm 3 GPM Algorithm

Input: f_w the NN model, \mathcal{D}^{train} the training dataset, η the learning rate, and ϵ_{th} the threshold value.

Initialize, \mathbf{M}_0^l , for all $l = 1, 2, \dots, L'$, and $\mathbf{w} \leftarrow \mathbf{w}_o$.

```

1: for  $\tau = 1, 2, \dots, T$  do
2:   repeat
3:      $B_n \sim \mathcal{D}_\tau^{train}$ 
4:      $\mathbf{g} \leftarrow \nabla_{\mathbf{w}} L_\tau$ 
5:      $\hat{\mathbf{g}} \leftarrow \mathbf{g} - \mathbf{M}_{\tau-1}^l \cdot (\mathbf{M}_{\tau-1}^l)^\top \cdot \mathbf{g}$ 
6:      $\mathbf{w} \leftarrow \mathbf{w} - \eta \cdot \hat{\mathbf{g}}$ 
7:   until convergence
8:
9:    $B_{n_s} \sim \mathcal{D}_\tau^{train}$ 
10:   $\{\mathbf{R}_\tau^l\}_{l=1}^{L'} \leftarrow \text{forward}(B_{n_s}, f_w)$ 
11:
12:  for  $\forall l \in \{1, 2, \dots, L'\}$  do
13:     $\hat{\mathbf{R}}_\tau^l \leftarrow \mathbf{R}_\tau^l - \mathbf{M}_{\tau-1}^l \cdot (\mathbf{M}_{\tau-1}^l)^\top \cdot \mathbf{R}_\tau^l$ 
14:     $\hat{\mathbf{U}}_\tau^l, \hat{\mathbf{\Sigma}}_\tau^l, \hat{\mathbf{V}}_\tau^l \leftarrow \text{SVD}(\hat{\mathbf{R}}_\tau^l)$ 
15:     $r \leftarrow \text{criteria}(\hat{\mathbf{R}}_\tau^l, \mathbf{R}_\tau^l, \epsilon_{th})$ 
16:     $\mathbf{M}_\tau^l \leftarrow [\mathbf{M}_{\tau-1}^l, \mathbf{U}_\tau^l[1 : r]]$ 
17:  end for
18: end for

```

already captured by $\mathbf{M}_{\tau-1}^l$ (Line 13); (3) applies SVD to the residual and retains its top singular vectors as the task’s core basis (Lines 14–15); (4) concatenates these new bases with $\mathbf{M}_{\tau-1}^l$ to form \mathbf{M}_τ^l for future tasks (Line 16).

C ON-THE-FLY SPARSE SKETCHING

C.1 REPRESENTATION MATRIX CONSTRUCTION AND ON-THE-FLY SPARSE SKETCHING

To build the activation (representation) vector \mathbf{r}_i for a convolutional layer, treat each receptive-field patch (activation patch) that will feed the next kernel as one training example: For every image in the mini-batch and every sliding-window position (u, v) , we slice the feature map tensor $X \in \mathbb{R}^{C \times H \times W}$ into the cuboid patch $P_{u,v} = X[:, u, u+k, v : v+k]$, where C_{in} is the number of channels and k is the kernel size. By flattening this patch in channel-major order, we obtain a length- n vector where $n = C_{in}k^2$. We generate this flattened feature vector over all mini-batches and spatial dimension of feature map. Thus, the total number of feature vectors is $N = s^2 \cdot bsz$, where s is size of feature map and bsz is number of samples in the mini-batch. Thus, if we construct a feature matrix without sparse sketch, the size of this matrix is $\mathbb{R}^{(k^2 \cdot C_{in}) \times (s^2 \cdot bsz)}$. The resulting representation matrix size for each layers constructed in these way are shown in the Table 10.

Table 10: The size of the representation matrix for each layer without sketching.

Algorithm 2 outlines the On-the-Fly sparse sketching procedure, where $N = s^2 \cdot bsz$ representation vectors arrive sequentially. Each incoming n -dimensional vector (where $n = k^2 \cdot C_{in}$) is processed by generating a random Rademacher sign and a target column index uniformly sampled from $\{1, \dots, n\}$. The signed vector is then accumulated into the corresponding column of the sketch matrix \mathbf{R} . Table 11 reports the size of the resulting representation matrix with sparse sketching. For example, in the case of ViT-S, the naive construction of the representation matrix incurs a memory overhead of 1624MB before performing SVD on it. Our method reduces this requirement to 66.37MB, achieving a $24.46 \times$ saving. Note that this is intermediate memory reduction (e.g., GPU RAM usage) and not permanent memory (e.g., Flash memory) reduction.

Figure 5 illustrates RAM usage across the ten-task training sequence on the miniImageNet benchmark using ViT-S. Table 12 reports the total training time, average GPM construction time (in seconds), average Random Access Memory (RAM) usage (in MB), peak RAM memory usage, and the final performance metrics (ACC and BWT). Without sketching, the average memory overhead is approximately 4533MB. By employing sparse sketching, this can be reduced to 3277.09MB without any degradation in performance. The GPM construction time (which includes the SVD on the representation matrix, r -rank approximation, and quantization) can be reduced from 115.06s to 10.60s.

Compared to dense Gaussian random projections, On-the-Fly sparse sketching method offers greater computational and memory efficiency. Each incoming activation vector is processed in $O(\text{nnz}(\mathbf{R}))$ time, using only sign flipping and bucketed additions with two light-weight hash functions, rather than a full $O(nN)$ matrix-vector multiplication. Here, $\text{nnz}(\mathbf{R})$ denotes the number of non-zero columns in \mathbf{R} .

918 Table 11: The size of the representation matrix for each layer with sketching.
919

920 Network	921 Size of input representation	922 Memory in Bytes
923 AlexNet	924 $48 \times 48, 576 \times 576,$ 925 $512 \times 512, 1024 \times 125,$ 926 2048×125	927 3.72MB
928 ResNet18	929 $27 \times 27, 180 \times 180, 180 \times 180, 180 \times 180,$ 930 $180 \times 180, 180 \times 180, 360 \times 360,$ 931 $20 \times 20, 360 \times 360, 360 \times 360,$ 932 $360 \times 360, 720 \times 720, 40 \times 40,$ 933 $720 \times 720, 720 \times 720, 720 \times 720,$ 934 $1440 \times 1440, 80 \times 80, 1440 \times 1440,$ 935 1440×1440	936 34.27MB
937 ViT-S	938 $768 \times 768, 384 \times 384, 384 \times 384, 384 \times 384, 1536 \times 1536,$ 939 $384 \times 384, 384 \times 384, 384 \times 384, 1536 \times 1536,$ 940 $384 \times 384, 384 \times 384, 384 \times 384, 1536 \times 1536,$ 941 $384 \times 384, 384 \times 384, 384 \times 384, 1536 \times 1536,$ 942 $384 \times 384, 384 \times 384, 384 \times 384, 1536 \times 1536$	943 66.37MB
944 ViT-B/16	945 $768 \times 768, 768 \times 768, 768 \times 768, 768 \times 768,$ 946 $3072 \times 3072, 768 \times 768, 768 \times 768, 768 \times 768,$ 947 $768 \times 768, 3072 \times 3072, 768 \times 768, 768 \times 768,$ 948 $768 \times 768, 768 \times 768, 3072 \times 3072, 768 \times 768,$ 949 $768 \times 768, 768 \times 768, 768 \times 768, 3072 \times 3072,$ 950 $768 \times 768, 768 \times 768, 768 \times 768, 768 \times 768,$ 951 $3072 \times 3072, 768 \times 768, 768 \times 768, 768 \times 768,$ 952 $768 \times 768, 3072 \times 3072, 768 \times 768, 768 \times 768,$ 953 $768 \times 768, 768 \times 768, 3072 \times 3072, 768 \times 768,$ 954 $768 \times 768, 768 \times 768, 768 \times 768, 3072 \times 3072,$ 955 $768 \times 768, 768 \times 768, 768 \times 768, 768 \times 768,$ 956 3072×3072	957 515.25MB

950 Empirically and theoretically, sparse sketch maintains ℓ_2 norms and leading eigen-directions within
951 Johnson–Lindenstrauss-type bounds, offering subspace quality comparable to dense Gaussian projec-
952 tions. Thus, it provides a compelling trade-off between accuracy and efficiency, making it especially
953 well-suited for real-time, resource-constrained continual learning settings.

954 Table 12: Resource usage comparison with and without sketching.
955

956 Methods	957 Without sketching		958 With sketching	
	959 ACC (%)	960 BWT (%)	961 ACC (%)	962 BWT (%)
963 8QGPM	964 72.21	965 -0.54	966 72.87	967 -0.34
968 GPM construction time [s]	969 115.06		970 10.60	
971 Total training time [s]	972 1768		973 820	
974 Average RAM consumption [MB]	975 4533.50 MB		976 3277.09 MB	
977 Peak RAM consumption [MB]	978 5603.06 MB		979 3586.50 MB	

980

D MIXED-SCHEME QUANTIZATION AND DE-QUANTIZATION

981

D.1 MIXED-SCHEME QUANTIZATION

982 The CINF quantization scheme performs well when the input distribution is approximately Gaussian.
983 However, it is important to note that the input activation to the very first layer (i.e., the raw image
984 patch) typically exhibits a non-Gaussian distribution. As this effect propagates, the activations in the

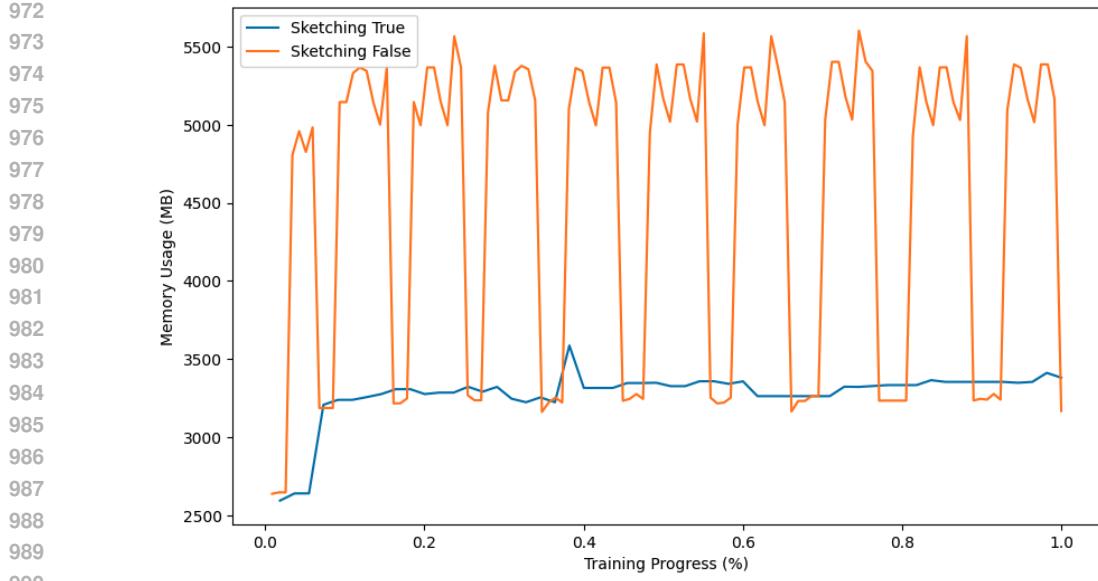


Figure 5: Training-time process RAM usage of 10-split miniImageNet experiment on ViT-S.

early layers also tend to deviate from Gaussianity, particularly during the initial stages of training when model parameters are not yet well-formed. This non-Gaussian behavior can result in significant quantization errors when CINF is applied indiscriminately across all layers. To address this concern, we propose a mixed-scheme quantization strategy where we apply affine quantization in the first layer by default, and conditionally in the second and third layers based on a normality test. The test combines two statistics: kurtosis κ of the input vector Mardia (1970) and p-value p_{SW} from the Shapiro–Wilk Test Shapiro & Wilk (1965). For deeper layers, where representations tend to become more Gaussian due to the central limit effect, we default to CINF quantization. Formally, given an input matrix $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_r]$, the mixed quantization function deployed at second and third layer can be defined as

$$\text{Quant}(\mathbf{U}[1:r]) = [\text{quant}(\mathbf{u}_j)]_{j=1}^r, \quad \text{quant}(\mathbf{u}) = \begin{cases} \mathcal{Q}_{\text{Affine}}(\mathbf{u}), & \kappa(\mathbf{u}) < 0 \wedge p_{SW}(\mathbf{u}) < \varepsilon, \\ \mathcal{Q}_{\text{CINF}}(\mathbf{u}), & \text{otherwise.} \end{cases} \quad (9)$$

Definition of *kurtosis* and *p-value* of Shapiro–Wilk Normality test are given as below.

Definition D.1 Kurtosis: Kurtosis measures the "tailedness" of the probability distribution. It quantifies whether the data distribution has heavier tails (positive kurtosis) or lighter tails (negative kurtosis) compared to a Gaussian distribution. The kurtosis of a dataset is given by $K = \mathbb{E}[(X - \mu)^4]/\sigma^4 - 3$, where μ is the mean and σ is the standard deviation of the dataset.

Definition D.2 Shapiro–Wilk Test of Normality: The p-value obtained from the Shapiro–Wilk test quantifies the likelihood of the data distribution being Gaussian. Formally, given a null hypothesis H_0 (the dataset is Gaussian) and an alternative hypothesis H_1 (the dataset is not Gaussian), the p-value measures the probability of observing data at least as extreme as the current dataset under the assumption of normality. Formally, $p\text{-value} = P(W \leq W_{\text{obs}} \mid H_0)$ where W is the Shapiro–Wilk test statistic. A low p-value (typically less than a threshold ϵ) suggests rejecting H_0 , indicating that the data significantly deviates from a Gaussian. The statistics can be defined as

$$W = \frac{\left(\sum_{i=1}^n a_i x_{(i)} \right)^2}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

for a sample of size n with ordered observations $x_{(1)} \leq \dots \leq x_{(n)}$ and sample mean \bar{x}

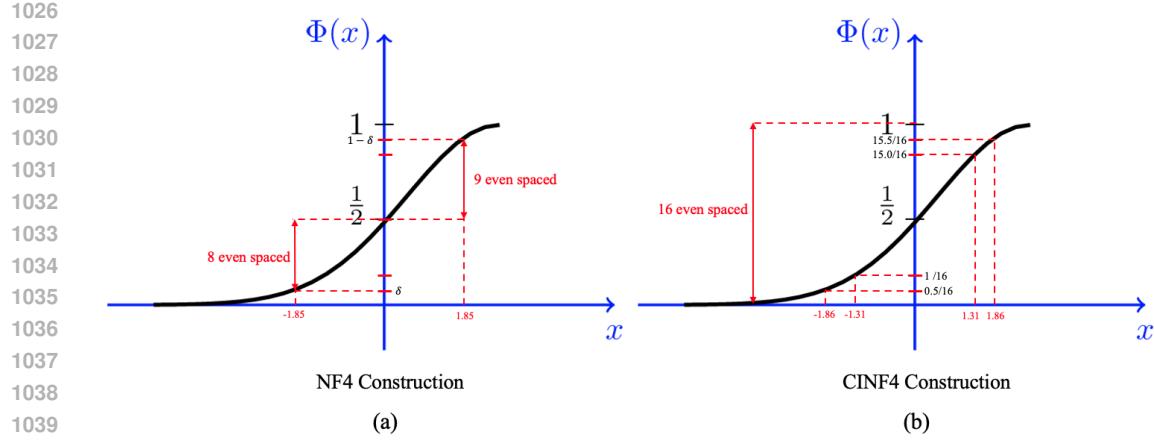


Figure 6: (a) NF4 codebook construction process; (b) 4-bit CINF construction process

Mixed-scheme dequantization. In equation equation 7, gradient projection is performed in full precision. Therefore, the quantized GPM must first be dequantized to reconstruct the full-precision projection matrix $\mathbf{P}_{\tau-1}$. Recall that each basis vector stored in the GPM is quantized using either the CINF or Affine scheme. Each scheme requires a distinct set of scalar values for dequantization and projection: (s, μ, λ_i) in the case of CINF, and (Δ, z, λ) in the case of Affine. To handle the mixed quantization setting, QGPM separates the basis vectors into two groups based on their quantization scheme and dequantizes them separately. Formally, for $i \in \{\text{Affine, CINF}\}$ we find

$$\mathbf{M}_{\tau-1,i}^l = \text{dequant}_i(\mathcal{M}_{Q,i}^l, \mathcal{S}_{\tau-1,i}^l, \mathcal{Z}_{\tau-1,i}^l, \mathcal{O}_{\tau-1,i}^l) \quad (10)$$

$$\mathbf{P}_{\tau-1,i}^l = \mathbf{M}_{\tau-1,i}^l \cdot \mathbf{\Lambda}_{\tau-1,i}^l \cdot (\mathbf{M}_{\tau-1,i}^l)^\top, \quad (11)$$

and then compute the final projection matrix as $\mathbf{P}_{\tau-1}^l = \mathbf{P}_{\tau-1, \text{Affine}}^l + \mathbf{P}_{\tau-1, \text{CINF}}^l$.

E CENTERED INLIER NORMAL FLOAT

E.1 CODEBOOK CONSTRUCTION

Here, we provide details that distinguish our CINF codebook from NF4. The original NF4 inserts an exact zero value into the codebook to enable lossless quantization of padding or other zero-valued elements. This design choice is appropriate for quantizing model parameters or activations, where exact zeros commonly arise due to operations such as zero-padding.

In contrast, our quantization target is the singular vectors $\hat{\mathbf{U}}_\tau^l[:, i]$ obtained from singular value decomposition (SVD), where such zero-generating operations do not exist. Therefore, we omit the inclusion of an exact zero in the codebook. In the following, we present the codebook construction procedures for both NF4 and CINF4.

NF4 Codebook construction

1. Set $\delta = \frac{1}{2}(\frac{1}{32} + \frac{1}{30})$.
2. Compute 8 evenly spaced probability values p_1, p_2, \dots, p_8 , such that $p_1 = \delta, p_8 = 1/2$.
3. Find their corresponding quantile values under Normal Cumulative Density Function (CDF): $\hat{q}_i = \Phi^{-1}(p_i)$ for $i = 0, 1, \dots, 8$.
4. Compute 9 evenly spaced probability values r_8, r_9, \dots, r_{16} such that $r_8 = 1/2$ and $r_{16} = 1 - \delta$.

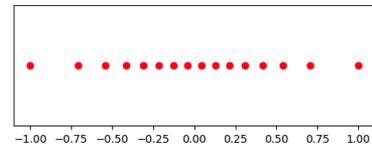


Figure 7: Actual CINF4 codebook.

1080
 1081 5. Find their corresponding quantile values under Normal CDF: $\hat{q}_i = \Phi^{-1}(r_i)$ for $i =$
 1082 $9, 10, \dots, 16$.
 1083 6. Normalize the \hat{q} to the range $[-1, 1]$ to get final code: $q_i = \hat{q}_i / \max_i |\hat{q}_i|$.

1084 **CINF4 Codebook construction**
 1085

1086 1. Compute 16 evenly spaced probability values p_1, p_2, \dots, p_{16} , such that $p_1 =$
 1087 $15.5/16, p_{16} = 0.5/16$.
 1088 2. Find their corresponding quantile values under Normal Cumulative Density Function (CDF):
 1089 $\hat{q}_i = \Phi^{-1}(p_i)$ for $i = 0, 1, \dots, 8$.
 1090 3. Normalize the \hat{q} to the range $[-1, 1]$ to get final code: $q_i = \hat{q}_i / \max_i |\hat{q}_i|$.

1092 Figure 6 visualize the aforementioned process of equal spacing Normal CDF and Figure 7 shows the
 1093 actual CINF4 codebook: $[-1.000, -0.707, -0.542, -0.416, -0.310, -0.215, -0.127, -0.042, 0.042, 0.127,$
 1094 $0.215, 0.310, 0.416, 0.542, 0.707, 1.000]$.
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 **F ADDITIONAL EXPERIMENTS**
11351136 **F.1 EXPERIMENTS WITH EMPTY ViT**
1137Table 13: ACC and BWT for 8QGPM and baselines on the empty ViT model
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150	1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150	1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150	
		1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150	1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
Memory	1.87 MB		
GPM-FP	48.47	-3.49	
Memory	0.52 MB		
GPM-MC	40.64	-15.23	
AGEM-MC	23.07	-37.00	
DER++-MC	26.84	-33.24	
ER-MC	25.02	-34.64	
FDR-MC	24.36	-34.04	
PCAOGD-MC [†]	20.47	-34.48	
8QGPM (Ours)	48.39	-3.59	

In the main paper, we use ViT-S with a pre-trained weight. Typically, ViT lack strong inductive biases such as CNN, which make them less data efficient and harder to train from scratch. In case of the continual learning scenario, we divide the dataset into several chunks to make a task. Thus, the amount of each task is extremely insufficient to train the ViT model from scratch. In this section, we investigate the continual learning performance of QGPM over other baselines on the empty ViT model which is trained from scratch. For the experiment, we use custom ViT model, which have 128 patch embedding, 6 transformer blocks, 4 multi-head attention with 4 MLP expansion ratio, forming 25 learnable layers. Model parameter size is 4.7MB and fully occupied GPM size is 7.2MB.

The results of Table 13 validate that QGPM maintains full-precision-level performance even when ViT is trained from scratch. Notably, QGPM incorporates fewer basis vectors in this setting, resulting in a smaller memory footprint compared to the pretrained ViT case in the main paper. As a result, the rehearsal-based baseline struggles significantly due to the severely constrained replay buffer.

1163 **F.2 EXPERIMENTS WITH OTHER DATASETS ON RESNET18**
1164Table 14: The results of continual learning with QGPM on miniImageNet using ResNet18.
1165

1166 1167 1168 1169 1170 1171 1172 1173	1166 1167 1168 1169 1170 1171 1172 1173	1166 1167 1168 1169 1170 1171 1172 1173		1166 1167 1168 1169 1170 1171 1172 1173	
		1166 1167 1168 1169 1170 1171 1172 1173	1166 1167 1168 1169 1170 1171 1172 1173	1166 1167 1168 1169 1170 1171 1172 1173	1166 1167 1168 1169 1170 1171 1172 1173
SGD		54.74	-26.79	33.21	-25.92
GPM-FP		70.23	-1.09	53.51	-1.61
Memory		60.32MB		22.94MB	
8QGPM (Ours)		70.46	-1.24	52.83	-1.93
Memory		5.41MB		5.99MB	

Table 14 presents the experimental results on 10-split CIFAR-100 and 5/10/20-split MiniImageNet using ResNet-18, as reported in the main paper. As shown, QGPM consistently maintains near full-precision performance on various datasets on ResNet18.

1178 **F.3 EXPERIMENTS ON AN NLP TASK**
1179Table 15: Continual learning result of QGPM with text classification task.
1180

1181 1182 1183 1184 1185	1181 1182 1183 1184 1185	1181 1182 1183 1184 1185		1181 1182 1183 1184 1185	
		1181 1182 1183 1184 1185	1181 1182 1183 1184 1185	1181 1182 1183 1184 1185	1181 1182 1183 1184 1185
Performance		75.73	-10.38	77.80	-6.15
Memory		-		266KB	75KB

While the main paper primarily focuses on vision tasks, in this section we demonstrate that QGPM can be extended to other domains, such as natural language processing (NLP). We use the *Yahoo Answers Topics* dataset for a topic classification task. Each sample consists of a *question title* (a short string

1188 summarizing the question) and *question content*, which provides a longer, more detailed description.
 1189 The label is an integer range from 0 to 9, representing one of ten coarse-grained categories (e.g.,
 1190 Health, Sports, etc.). The dataset contains 1,400,000 training samples and 60,000 test samples. While
 1191 text lengths vary across samples, they average around 300 words. For the continual learning setup,
 1192 we split the ten classes into five tasks, each containing two classes.

1193 We use a transformer-based lightweight encoder for text classification. It consist of:
 1194

- 1195 1. Token embedding of dimension 128
- 1196 2. Sinusoidal positional encoding
- 1197 3. 256 MLP hidden dimension
- 1198 4. 2 transformer block with 4 multi-head self attention module
- 1199 5. Redisual connections around both the attention and MLP layers with LayerNorm

1200 The encoder consists of a total of 7 learnable layers, and the input activation before each layer is
 1201 extracted. The fully occupied GPM size and the representation matrix size without sketching for this
 1202 network are shown in Tables 16 and 17, respectively.

1203 We train the encoder using stochastic gradient descent (SGD) with learning rate scheduling. Across
 1204 all experiments, the mini-batch size, number of training epochs, and initial learning rate are fixed to
 1205 64, 20, and 0.02, respectively. For the GPM parameters, the threshold value ϵ_{th} is set to 0.93. For
 1206 8-bit quantization, QEA scaling factor α and outlier percentage p are set to 10 and 2, respectively; for
 1207 4-bit quantization, they are set to 20 and 3.

1208 Table 15 illustrates that both 8QGPM and 4QGPM achieve performance comparable to the full-
 1209 precision baseline, while significantly reducing memory overhead. The fully occupied GPM-FP has
 1210 a size of 812 KB, which can be reduced to 228 KB and 143 KB using 8-bit and 4-bit quantization,
 1211 respectively.

1214 Network	1215 Size of maximum M^l	1216 Memory in Bytes
1215 Encoder (7 layers)	128 × 128, 128 × 128, 128 × 128, 256 × 256, 128 × 128, 128 × 128, 256 × 256	0.812MB

1217 Table 16: The maximum GPM size of the Transformer Encoder (Appendix F.3)

1220 Network	1221 Size of maximum M^l	1222 Memory in Bytes
1221 Encoder (7 layers)	128 × 10600, 128 × 10600, 128 × 10600, 256 × 10600, 128 × 10600, 128 × 10600, 256 × 10600	46.5MB

1224 Table 17: The representation matrix size of the Transformer Encoder (Appendix F.3) without sparse sketching

1227 F.4 REHEARSAL BUFFER ADJUSTMENT STRATEGY

1228 To ensure a fair comparison under identical memory constraints, we adjusted the number of rehearsal
 1229 samples stored in the buffer for each rehearsal-based method (e.g., GEM-MC, DER-MC, FDR-MC,
 1230 ER-MC) so that their total memory usage matched that of QGPM. We computed the per-sample
 1231 memory footprint (i.e., image resolution × number of channels × bit depth) and reduced the number
 1232 of stored samples accordingly — for example, constraining to 0.8MB in the CIFAR-100 setup. This
 1233 strategy aligns with prior works on memory-constrained continual learning Zhou et al. (2023); Iscen
 1234 et al. (2020) and allows for fair and controlled evaluation.

1235 Table 18 compares two strategies for reducing replay buffer memory: lowering image resolution
 1236 vs. reducing sample count. While both methods perform similarly compared to the performance
 1237 of 8QGPM for small images like CIFAR100, resolution reduction degrades performance on larger
 1238 images like miniImageNet due to severe distribution shifts induced by quantization.

1239 As shown in Table 19, even with more samples (280 and 560) on this resolution-based scheme, the
 1240 performance worsens, leading to the conclusion that resolution-based quantization is impractical –
 1241 even for moderately sized images (e.g. miniImageNet).

Table 18: Comparison of memory and performance across buffer strategies.

Dataset / Model	Metric	DER++ (Full res / Reduced #)	DER++ (Reduced res / Full #)	8QGPM
CIFAR100 / AlexNet	Per image mem. size [B]	$32 \times 32 \times 3 \times 1B = 3,072$	$32 \times 32 \times 3 \times 0.5B = 1,536$	–
	# in buffer	280	$280 \times 2 = 560$	–
	Buffer mem. size [MB]	0.8203125	0.8203125	0.81
	ACC	60.68	65.29	70.7
	BWT	–18.5	–13.2	–0.81
	Per image mem. size [B]	$84 \times 84 \times 3 \times 1B = 21,168$	$84 \times 84 \times 3 \times 0.5B = 10,584$	–
miniImageNet / ViT	# in buffer	93	$93 \times 2 = 186$	–
	Buffer mem. size [MB]	1.968624	1.968624	0.81
	ACC	30.01	26.23	48.39
	BWT	–26.7	–34.06	–3.59

Table 19: Buffer comparison under different per-image precisions (miniImageNet / ViT).

Metric	8-bit (21 168 B)	4-bit (10 584 B)
Images in buffer	280	560
Buffer size [MB]	5.92	5.92
Acc [%]	34.10	26.06
BWT [%]	–21.96	–34.10

1296 **G ADDITIONAL PROOFS**
12971298 **G.1 PROOF OF THEOREM 3.2**
1299

1300 **Quantization Error Accumulation:** Let $M_o = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m] \in \mathbb{R}^{n \times m}$ denote a full precision GPM, and $E = [\epsilon_1, \epsilon_2, \dots, \epsilon_m] \in \mathbb{R}^{n \times m}$ be a Gaussian error matrix with each column $\epsilon_j \in \mathbb{R}^n$ is drawn from $\mathcal{N}(0, \sigma^2 I_n)$. We define the quantized GPM incorporating error as $M_e = M_o + E = [\mathbf{v}_1 + \epsilon_1, \mathbf{v}_2 + \epsilon_2, \dots, \mathbf{v}_m + \epsilon_m] \in \mathbb{R}^{n \times m}$. When naive SGD produces a gradient $\mathbf{g} \in \mathbb{R}^n$, its orthogonal components with respect to M_o and M_e are denoted by $\hat{\mathbf{g}}_o$ and $\hat{\mathbf{g}}_e$, respectively. Then, it holds that $\mathbb{E}[\|\hat{\mathbf{g}}_o - \hat{\mathbf{g}}_e\|] \geq \|\mathbb{E}[\hat{\mathbf{g}}_o - \hat{\mathbf{g}}_e]\| = m \cdot \sigma^2 \cdot \|\mathbf{g}\|$, implying that the quantization error increases proportionally to the number of error-incorporating basis vector in the GPM and quadratically with σ which quantifies the degree of error.

1308 **Proof:** Let us define projection matrices for M_o and M_e as
1309

$$1310 \quad P_o = M_o \cdot M_o^T, \\ 1311 \quad P_e = M_e \cdot M_e^T.$$

1313 The orthogonal component of gradient \mathbf{g} with respect to the subspace spanned by M_o and M_e is
1314 found as

$$1315 \quad \hat{\mathbf{g}}_o = (I - P_o) \cdot \mathbf{g}, \\ 1316 \quad \hat{\mathbf{g}}_e = (I - P_e) \cdot \mathbf{g}.$$

1318 Hence, the difference between the projected component is
1319

$$1320 \quad \begin{aligned} \hat{\mathbf{g}}_o - \hat{\mathbf{g}}_e &= [(I - P_o) - (I - P_e)]\mathbf{g} \\ 1321 &= (P_o - P_e)\mathbf{g} \\ 1322 &= (M_o \cdot M_o^T - M_e \cdot M_e^T)\mathbf{g} \\ 1323 &= (M_o \cdot M_o^T - (M_o + E) \cdot (M_o + E)^T)\mathbf{g} \\ 1324 &= -(M_o E^T + E M_o^T + E E^T)\mathbf{g}. \end{aligned}$$

1326 Since the error matrix E is Gaussian distributed with each column $e_j \in \mathbb{R}^n$ drawn from $\mathcal{N}(0, \sigma^2 I_n)$,
1327

$$1328 \quad \mathbb{E}[(M_o E^T)\mathbf{g}] = M_o \cdot \mathbf{g} \cdot \mathbb{E}[E^T] = 0 \\ 1329 \quad \mathbb{E}[(E M_o^T)\mathbf{g}] = M_o^T \cdot \mathbf{g} \cdot \mathbb{E}[E] = 0 \\ 1330 \quad \mathbb{E}[E \cdot E^T] = \mathbb{E}\left[\sum_{j=1}^m e_j \cdot e_j^T\right] = \sum_{j=1}^m \mathbb{E}[e_j \cdot e_j^T] = m \cdot \sigma^2 \cdot I$$

1333 Thus, the expectation of $\hat{\mathbf{g}}_e - \hat{\mathbf{g}}_o$ can be found as
1334

$$1335 \quad \mathbb{E}[\hat{\mathbf{g}}_o - \hat{\mathbf{g}}_e] = -m \cdot \sigma^2 \cdot \mathbf{g}.$$

1336 Since $\|\mathbb{E}[X]\| \leq \mathbb{E}[\|X\|]$,
1337

$$1338 \quad \mathbb{E}[\|\hat{\mathbf{g}}_o - \hat{\mathbf{g}}_e\|_2] \geq \|\mathbb{E}[\hat{\mathbf{g}}_o - \hat{\mathbf{g}}_e]\|_2 = m \cdot \sigma^2 \cdot \|\mathbf{g}\|_2.$$

□

1341 **G.2 PROOF OF THEOREM 3.3**
1342

1343 **$(1 \pm \epsilon)$ ℓ_2 Subspace embedding:** A matrix $\mathbf{S} \in \mathbb{R}^{r \times k}$ is said to be a $(1 \pm \epsilon)$ -subspace embedding for
1344 the row space of $\mathbf{A} \in \mathbb{R}^{k \times n}$ in the ℓ_2 -norm if, for all $\mathbf{x} \in \mathbb{R}^n$,

$$1345 \quad (1 - \epsilon)\|\mathbf{A}\mathbf{x}\|_2^2 \leq \|\mathbf{S}\mathbf{A}\mathbf{x}\|_2^2 \leq (1 + \epsilon)\|\mathbf{A}\mathbf{x}\|_2^2.$$

1348 **Subspace embedding of Sparse Sketch:** Let S be the N by r sparse-embedding matrix constructed
1349 by $h : [N] \rightarrow [r]$ and $\sigma : [N] \rightarrow \{-1, 1\}$ be hash functions. Then the i -th column of the
sparse-embedding matrix S is non-zero only in the $h(i)$ -th row and this non-zero entry has a value

1350 of $\sigma(i)$. Then with probability $1 - \delta$ for any rank k matrix A and $r = O(\frac{k^2}{\epsilon^2 \delta})$, S is a $(1 \pm \epsilon) - l_2$
 1351 subspace embedding for the row of A .
 1352

1353 Before proving the theorem, we state a few definitions and a helpful lemma.
 1354

1355 **Definition 1:** We say C is an ϵ -approximate matrix product of A and B if it satisfies

$$1356 \quad \|A^\top B - C\|_F \leq \epsilon \|A\|_F \|B\|_F$$

1357 **Definition 2:** A distribution \mathcal{D} on $S \in \mathbb{R}^{N \times r}$ is said to satisfy the (ϵ, δ, l) -JL moment property if
 1358 $\forall x \in \mathcal{R}^N$ where $\|x\|_2 = 1$, $\mathbb{E}[\|\mathbf{S}^T x\|_2^2 - 1]^l \leq \epsilon^l \delta$.
 1359

1360 **Definition 3:** For a scalar random variable X , let $\|X\|_p := \mathbb{E}[|X|^p]^{1/p}$, which is L^p norm on the
 1361 space $L^p(\Omega)$. Minkowski's inequality gives the triangle inequality: $\|X + Y\|_p \leq \|X\|_p + \|Y\|_p$.
 1362

1363 **Lemma 1** Let $l \geq 2$, $\epsilon, \delta \in (0, 1/2)$, and \mathcal{D} on S be a distribution that satisfies the (ϵ, δ, l) -JL
 1364 moment property. Then for every pair of matrices A, B with N columns,
 1365

$$1366 \quad \Pr_{S \sim \mathcal{D}} [\|ASS^\top B^\top - AB^\top\|_F > 3\epsilon \|A\|_F \|B\|_F] \leq \delta$$

1367 **Proof of Lemma 1:** We first note that for $x, y \in \mathbb{R}^d$, $\langle S^T x, S^T y \rangle =$
 1368 $\frac{1}{2} (\|S^T x\|_2^2 + \|S^T y\|_2^2 - \|S^T(x - y)\|_2^2)$. Thus,

$$1369 \quad \begin{aligned} \mathbb{E}[\|\langle S^T x, S^T y \rangle - \langle x, y \rangle\|_l] &= \frac{1}{2} \|(\|S^T x\|_2^2 - x_2^2) + (\|S^T y\|_2^2 - y_2^2) - (\|S^T(x - y)\|_2^2 - \|x - y\|_2^2)\|_l \\ 1370 &\leq \frac{1}{2} (\| \|S^T x\|_2^2 - x_2^2 \|_l + \| \|S^T y\|_2^2 - y_2^2 \|_l + \| \|S^T(x - y)\|_2^2 - \|x - y\|_2^2 \|_l) \\ 1371 &\leq \frac{1}{2} (\epsilon \delta^{1/l} + \epsilon \delta^{1/l} + 4\epsilon \delta^{1/l}) \leq 3\epsilon \delta^{1/l} \end{aligned}$$

1372 where we first apply the triangle inequality and then apply the JL moment property. From this, we
 1373 can conclude that for arbitrary x, y , $\mathbb{E}[\|\langle S^T x, S^T y \rangle - \langle x, y \rangle\|_l] \leq 3\epsilon \delta^{1/l} \|x\|_2 \|y\|_2$. Now since the
 1374 ij -th entry of AB^\top is given by $\langle A^i, B^j \rangle$, the inner product of the i -th column of A and the j -th
 1375 column of B , we have that
 1376

$$1377 \quad \begin{aligned} \mathbb{E}[\|ASS^\top B^\top - AB^\top\|_F^l] &\leq (3\epsilon)^l \delta \sum_{ij} \|A^i\|_2^l \|B^j\|_2^l \leq (3\epsilon)^l \delta (\sum_{ij} \|A^i\|_2^2 \|B^j\|_2^2)^{l/2} \\ 1378 &= (3\epsilon)^l \delta (\|A\|_F^2 \|B\|_F^2)^{l/2} \\ 1379 &= (3\epsilon)^l \delta (\|A\|_F^l \|B\|_F^l) \end{aligned}$$

1380 where the first line follows from the triangle inequality, and the second inequality is from plugging in
 1381 the inequality derived previously. Now we plug this into Markov's inequality to get that
 1382

$$1383 \quad \Pr[\|ASS^\top B^\top - AB^\top\|_F^l > (3\epsilon)^l \|A\|_F^l \|B\|_F^l] \leq \frac{\mathbb{E}[\|ASS^\top B^\top - AB^\top\|_F^l]}{(3\epsilon)^l \|A\|_F^l \|B\|_F^l} \leq \delta$$

1384 This will be used to prove the final theorem.
 1385

1386 **Proof of the theorem:** We want to show that if S is the sparse embedding matrix with at least $r = \frac{2}{\epsilon^2 \delta}$
 1387 rows, S satisfies the $(\epsilon, \delta, 2)$ -JL moment property. We need to show that for a unit vector x with
 1388 $\|x\|_2 = 1$, $\mathbb{E}[(\|S^T x\|_2^2 - 1)^2] \leq \epsilon^2 \delta$. We do this by expanding to get $\mathbb{E}[\|S^T x\|_2^4 - 2\mathbb{E}[\|S^T x\|_2^2] + 1]$;
 1389 the middle term is 1 and from expansion we can show that $\mathbb{E}[\|S^T x\|_2^4 \leq 1 + \frac{2}{r}$, so $\mathbb{E}[(\|S^T x\|_2^2 - 1)^2] \leq$
 1390 $\frac{2}{r}$. Thus if $r > \frac{2}{\epsilon^2 \delta}$, the $(\epsilon, \delta, 2)$ -JL moment property hold. Let V be an orthonormal basis for the
 1391 rows of A . Now since S satisfies the $(\epsilon, \delta, 2)$ -JL moment property.
 1392

$$1393 \quad \Pr[V^\top S S^\top V - V^\top V > 3\epsilon \|V\|_F \|V\|_F] \leq \delta$$

$$1394 \quad \implies \Pr[\|V^\top S S^\top V - I_k\|_F > 3\epsilon k] \leq \delta$$

1395 so, with $\epsilon = \frac{\epsilon'}{k}$, we get $r = \mathcal{O}\left(\frac{k^2}{\epsilon'^2 \delta}\right)$ columns needed. \square