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ABSTRACT

Knowledge distillation has been widely-used to improve the performance of a
“student” network by hoping to mimic soft probabilities of a “teacher” network.
Yet, for self-distillation to work, the student must deviate from the teacher in some
manner (Stanton et al., 2021). What is the nature of these deviations, and how do
they relate to the generalization gains of distillation? To investigate these questions,
we first conduct a variety of experiments across image and language classification
datasets. One of our key observations is that in a majority of our settings, the
student underfits points that the teacher finds hard. We also find that student-
teacher deviations during the initial phase of training are not crucial to see the
benefits of distillation — simply switching to distillation in the middle of training
can recover much of its gains. We then provide two parallel theoretical perspectives
of these deviations, one casting distillation as a regularizer in eigenspace, and
another as a denoiser of gradients. In both views, we argue how student-teacher
deviations emerge, and how they relate to generalization in the context of our
experiments. Our analysis also bridges fundamental gaps between existing theory
and practice by focusing on gradient descent and avoiding label noise assumptions.

1 INTRODUCTION

Distillation (Bucilǎ et al., 2006; Hinton et al., 2015) has emerged as a highly effective model
compression technique, wherein one trains a small “student” model to match the predicted soft label
distribution of a large “teacher” model, rather than match one-hot labels. An actively developing
literature has sought to explore applications of this technique to various settings (Radosavovic
et al., 2018; Furlanello et al., 2018; Xie et al., 2019), design more effective variants of the above
recipe (Romero et al., 2015; Anil et al., 2018; Park et al., 2019; Beyer et al., 2022), and better
understand theoretically when and why distillation is effective (Lopez-Paz et al., 2016; Phuong &
Lampert, 2019; Mobahi et al., 2020; Allen-Zhu & Li, 2020; Menon et al., 2021; Dao et al., 2021).

On paper, distillation intends to transfer the teacher’s soft probabilities over to the student. How-
ever, Stanton et al. (2021) challenge this premise: they show there is often a mismatch of student
and teacher probabilities, and in fact, that a greater mismatch is correlated with better student perfor-
mance. Indeed, in the self-distillation setting (Furlanello et al., 2018; Zhang et al., 2019) — where
the student and teacher architectures are identical — some form of deviation (in the representation, if
not in the probabilities) is necessary for the student’s generalization to supercede the teacher.

In this work, we are interested in better characterizing these deviations in probabilities, and in
understanding how they play a role in the student outperforming the teacher. In the first half of the
paper, we conduct experiments characterizing what kind of deviations exist between the teacher and
the student, and which deviations are relevant for better generalization. In the second half, we provide
two complementary theoretical perspectives on how distillation can induce such deviations, and why
that can subsequently aid generalization. More concretely, our key contributions are as follows:

(i) What deviations exist? Across various architectures (ResNet56, ResNet20, MobileNet, and
RoBERTa), and image/language classification data (CIFAR100, TinyImageNet, CIFAR10,
GLUE). we empirically demonstrate (§3.1) that the the student tends to underfit on “hard”
points for the teacher (Fig 1a) in terms of the final probabilities learned by both models.

(ii) Which deviations matter? We find (§3.2) that it is possible to switch from one-hot loss in the
middle of training to distillation loss and (a) still recover a considerable fraction of distillation’s
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(a) Teacher-student logit plots for self-distillation. (b) Effect of loss-switching.

Figure 1: Left: Deviation in probabilities of (one-hot trained) teacher vs. (self-distilled) stu-
dent: For each training sample (x, y), we plot φ(pte

yte(x)) versus φ(pst
yte(x)) for logit transformation

φ(u) = log [u/(1− u)] and teacher predicted label yte. We consistently find that the distilled student
predictions deviate from the X = Y line (dashed) with teacher’s “hard” points (small X) being
underfit by the student (Y ≤ X). This hints at distillation acting as a regularizer. Right: Effect
of late loss-switching: In CIFAR-Resnet56 self-distillation, we switch the loss (gradually over the
course of a few steps) late during training and find that switching to distillation (OneHot to KD line)
recovers nearly all the gains of distillation (KD). This suggests that the initial phase of training is not
critical for distillation to help.

gains (Fig 1b), (b) and also recover the final-epoch underfitting behavior on TinyImageNet and
CIFAR100. Thus, we conclude that any student-teacher deviations unique to the early phase
of training – such as those proposed in Allen-Zhu & Li (2020); Jha et al. (2020) – are not by
themselves adequate to explaining the success of distillation, but the underfitting may be.

Next, we ask how deviations arise and why they help.

(iii) Eigenspace view: We provide a counterpart of the seminal result of Mobahi et al. (2020) —
which demonstrates distillation as a regularizer in a non-gradient-descent setting — for the
gradient descent setting for linear regression (Theorem 4.1). We propose this view as a way to
understand the empirically observed underfitting in distillation. Besides providing a much simpler
proof and a more practically relevant version of Mobahi et al. (2020), our result also formalizes
existing empirical intuition about the importance of early-stopping in distillation (Dong et al.,
2019; Cho & Hariharan, 2019; Ji & Zhu, 2020; Wang et al., 2022).

(iv) Gradient space view. As a complementary viewpoint, we formalize distillation as a gradient
denoiser in the presence of class similarities (Theorem 4.2). We propose this view as a way to
understand our empirical observations on loss-switching. Importantly, unlike prior work (Menon
et al. (2021)), we show how denoising can occur even when the data is perfectly classifiable and
has no inherent label noise.

(v) A unified view. We informally unify these two views, thus painting a more coherent picture of
two disjoint lines of existing theories (Mobahi et al. (2020) vs. Menon et al. (2021)).

Overall, we hope that our discussion helps bridge the gap between existing theoretical understanding
and empirics in distillation by (a) making more practical assumptions than existing theories, and (b)
making connections to various empirical observations. Our findings also suggest that not matching
the teacher probabilities exactly can be a good thing, which future empirical work on distillation may
want to be mindful of.
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2 BACKGROUND AND NOTATION

Our interest in this paper is multiclass classification problems. This involves learning a classifier
h : X→ Y which, for input x ∈ X, predicts the most likely label h(x) ∈ Y = [K]

.
= {1, 2, . . . ,K}.

Such a classifier is typically implemented by computing logits f : X→ RK that score the plausibility
of each label, and then computing h(x) = argmaxy∈Y fy(x). In neural models, these logits are
parameterised as f(x) = W>Z(x) for learned weights W ∈ RD×K and embeddings Z(x) ∈ RD.
One may learn such logits by minimising the empirical loss on a training sample S .

= {(xn, yn)}Nn=1:

Remp(f)
.
=

1

N

∑
n∈[N ]

e(yn)
>`(f(xn)), (1)

where e(y) ∈ {0, 1}K denotes the one-hot encoding of y, `(·) .
= [`(1, ·), . . . , `(K, ·)] ∈ RK

denotes the loss vector of the predicted logits, and each `(y, f(x)) is the loss of predicting logits
f(x) ∈ RK when the true label is y ∈ [K]. Typically, we set ` to be the softmax cross-entropy
`(y, f(x)) = − log py(x), where p(x) ∝ exp(f(x)) is the softmax transformation of the logits.

Equation 1 guides the learner via one-hot targets e(yn) for each input. Distillation (Bucilǎ et al.,
2006; Hinton et al., 2015) instead guides the learner via a target label distribution pte(xn) provided
by a teacher, which are the softmax probabilities from a distinct model trained on the same dataset.
In this context, the learned model is referred to as a student, and the training objective is

Rdist(f)
.
=

1

N

∑
n∈[N ]

pte(xn)
>`(f(xn)). (2)

One may also consider a weighted combination of Remp and Rdist for algorithmic reasons, but we
focus on the above objective in this paper since we are interested in understanding each objective
individually. Compared to training on the one-hot labels, distillation often results in improved
performance for the student (Hinton et al., 2015). Typically, the teacher model is of higher capacity
than the student model; the performance gains of the student may thus informally be attributed to the
teacher transferring rich information about the problem to the student. In such settings, distillation
may be seen as a form of model compression. Intriguingly, however, even when the teacher and
student are of the same capacity (a setting known as self-distillation), one may see gains from
distillation (Furlanello et al., 2018; Zhang et al., 2019). The questions we explore in this paper are
motivated by the self-distillation setting; however, for a well-rounded analysis, we will empirically
study both the self- and cross-architecture-distillation settings.

3 A FINE-GRAINED LOOK AT TEACHER-STUDENT DEVIATIONS

Stanton et al. (2021) found that, contrary to the premise of distillation, more accurate students
are poorer at matching the teacher probabilities. They quantified the student-teacher deviation by
measuring the disagreement or the KL divergence between the student and teacher probabilities, in
expectation over all points. Could the average deviation in probabilities be attributed merely to an
arbitrary lack of precision in matching the probabilities during training? In the following section,
through a closer study of per-sample relationship between the teacher and student predictions, we do
not find this to be the case; rather, there are discernible patterns in student-teacher deviations.

3.1 WHAT DEVIATIONS EXIST: A PER-SAMPLE VIEW

Suppose we have teacher and distilled student models f te, f st : X → RK respectively. We seek to
visualize the deviations in the corresponding predicted probability vectors pte(x) and pst(x) for
each (x, y) in the train and test set, rather than in the aggregated sense as in Stanton et al. (2021).
To visualize the deviations, we need a scalar summary of these vectors. An obvious candidate
is the probabilities (pte

y?(x), p
st
y?(x)) assigned to the ground truth label y?. However, since the

student does not have access to the ground truth label, and is only trying to mimic the teacher, we
examine deviations of probabilities of the teacher’s predicted label, i.e., (pte

yte(x), p
st
yte(x)) where

yte .
= argmaxy′∈[K] p

te
y′(x). To make patterns easier to detect, we further perform a monotonic logit

transformation φ(u) = log [u/(1− u)] that produces real-values in (−∞,+∞). Thus, we compare
φ(pte

yte(x)) and φ(pst
yte(x)) for each train and test sample (x, y).
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Figure 2: Teacher-student logit-transformed probability plots under cross-architecture distilla-
tion settings: In the last plot, we find that underfitting is clearly beneficial in deprioritizing noisy
train labels, demonstrating that even a smaller student can go beyond a larger teacher.

We report a scatter plot of φ(pte
yte(x)) (X-axis) vs. φ(pst

yte(x)) (Y -axis) on the training set for both
various self-distillation settings in Figures 1a and cross-architecture distillation settings in Fig 2. In
all plots, the dashed line indicates the X = Y line. All values are computed at the end of training.
The tasks considered include image classification benchmarks, namely CIFAR10, CIFAR-100, Tiny-
ImageNet, and text classification tasks from the GLUE benchmark (e.g., MNLI (Williams et al., 2018),
AGNews (Zhang et al., 2015). See Appendix C.1 for details on the experimental hyperparameters.
Many additional plots are presented in §C.2.1.

Distilled students tend to underfit hard samples. Our main finding is that in most of our cases, the
student underfits a subset of points (i.e., Y ≤ X in the scatter plot) that are typically hard for the
teacher (i.e., for small values of X). We note that this pattern is particularly strong on test data, and
appears in the test data even in certain exceptions where it does not appear in the training data (see
§C.2.1, e.g., CIFAR-10 plots Fig 7). We also note that in the language datasets, typically there is high
deviation for harder points, involving both underfitting and overfitting, along with low deviation for
easier points (i.e., large X), typically involving only overfitting (as can be seen in AGNews Fig 1
and in §C.2.1 Fig 8, Fig 9). These patterns however break down for cross-architecture distillation in
language datasets. See §C.2.1 for a discussion of the exceptions.

Why is underfitting good? To better understand this, consider the setting where we perform
distillation when a portion of CIFAR100 one-hot labels are mislabeled. In Fig 1a and Fig 2, we
observe that the mislabeled points the student underfits the teacher’s probabilities on all mislabeled
points, implying that the student somehow denoises the data. This forms the core of our intuition for
why underfitting can be helpful. As an aside, we note that even though the student denoises a portion
of the data, this may not be reflected in the overall accuracy numbers when the student is smaller
(Table 2). This brings out the subtlety that smaller student models can go beyond a larger teacher in
ways that are not apparent through mere accuracy on the whole dataset. We provide a more formal
view of the underfitting in §4.1 where we present distillation as a form of regularization. Having
said that, we must note that underfitting may not always correspond to improved generalization (cf.
§C.2.1, Table 2), just like regularization of any form may not always be helpful.

Evolution of teacher-student deviations. While we have looked at deviations between the final
probabilities learned by the models, it is also instructive to look at how these deviations evolve
as student training progresses. Concretely, in Fig 3a (and §C.2.3 Fig 13) we present a series of
scatter plots for CIFAR100 (and Tiny-Imagenet) settings where the X axis is always fixed to be
the final (logit-transformed) teacher probabilities while the Y axis corresponds to snapshots of the
distillation-trained and the one-hot trained model at various instances. Here, we find significant
differences between the scatter plots early on during training. In particular, the distilled model has
converged much faster to its final values than the one-hot model. We also see from the left-most
snapshot that the student has prioritized its easier points (i.e., points with large X are close to the
X = Y line), while for the one-hot model, the easiest points are not as prioritized (i.e., points with
large X are farther from X = Y compared to other points).

3.2 WHICH DEVIATIONS MATTER: THE EFFECT OF LOSS SWITCHING
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(a) One-hot and self-distillation. (b) Loss-switching to distillation/one-hot at 15k steps.

Figure 3: Evolution of teacher-student logit plots over various steps of training for CIFAR100
ResNet56 self-distillation setup: On the left, we present plots for one-hot training (top) and dis-
tillation (bottom). There is a stark difference in the plots early on during training (at 1.9k steps):
the student has converged to the X = Y line much faster, fitting “easier” points more substantially.
On the right, we present similar plots for experiments from Section 3.2, with the loss switched to
distillation (top) and one-hot (bottom) at 15k steps. From the last two plots in each, we find that
switching to distillation “unlearns” hard points, while switching to one-hot “fixes” the underfitting.

Motivation. Prior works suggest that student-teacher deviations in the very initial part of training
are critical for why distillation helps: it conditions the network into a more favorable representation
Allen-Zhu & Li (2020) or basin early on (Jha et al., 2020), or induces faster convergence (Phuong &
Lampert, 2019) or perhaps, induces a favorable learning order (as is suggested by our own experiment
in Fig 3a). However, in this section, we question whether initial phase deviations are critical at all.

Experiment design. To test the relevance of early-phase deviations, we conduct late distillation
experiments where we train a network with one-hot loss for a fair part (say, half) of training, and then
switch to distillation loss (gradually). If distillation relied crucially on early phase deviations, late
distillation on a one-hot-pretrained network should not result in substantial improvements.

Observations. We make three key observations here. First, from Figures 4 (and Sec C.2.3 Fig 14),
we observe that replacing the first 1/4th of training with one-hot is able to recover all of distillation’s
gains in our CIFAR100 and TinyImagenet settings; replacing the first 1/2 of training, recovers a
signifcant fraction of the gains. This happens despite the fact that when we switch to distillation, we
have a much smaller learning rate (due to our chosen schedule, see Sec C.1). This implies that early
phase deviations are not a necessary requirement for distillation to help.

Conversely, we also switch from distillation to one-hot in Fig 1b and Fig 16. Here we find that
switching to one-hot undoes the gains that distillation has achieved thus far, given a sufficiently long
one-hot training. This suggests an inherent destructive effect in one-hot training that we formalize in
Sec 4.2. We provide a more nuanced discussion of these experiments in Sec C.2.3 (and Fig 15).

Our final observation concerns the underfitting behavior in Section 3.1. In particular, even though
early-phase one-hot training has already fit all examples, we find that subsequent distillation “unlearns”
the harder examples to force the typical underfitting behavior (See Fig 3b, top). Conversely, switching
to one-hot fixes the underfitting already induced by an initial distillation phase. We argue that this
reinforces the relevance of the underfitting of the final probabilities to the working of distillation.

4 FORMALIZING STUDENT-TEACHER DEVIATIONS: TWO PERSPECTIVES

To understand the above empirical observations regarding underfitting and loss-switching, and their
connections to the benefits of distillation, we provide two complementary perspectives of distillation:
an eigenspace perspective and a gradient-space view. These perspectives also aim to provide key
clarifications about existing intuition in literature, and paint a more coherent picture of disjoint threads
of theoretical research.
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Figure 4: Results of loss-switching: We report the performance of the teacher, one-hot student
(Standalone; same as teacher in self-distillation), and distilled student (denoted by KD upto T steps
where T ) and late-distilled student (denoted by KD from Tswitch step). We find that switching to
distillation in the middle can recover large fractions of the gains of regular distillation.

4.1 THE EIGENSPACE VIEW: DISTILLATION AS A REGULARIZER

The underfitting of hard points possibly suggests that distillation induces a form of regularization that
deprioritizes certain complex features. Indeed, Mobahi et al. (2020) have proven that self-distillation
acts as a form of sparsifier that focuses on simpler basis functions while ignoring more complex ones.
However, their result is agnostic to the biases of gradient descent.

We bridge the gap between this intuition and practice, by showing that a similar sparsification
effect emerges under gradient descent training of linear models, thanks to the inherent bias of
gradient descent in converging at varied rates along various eigendirections. Concretely, we analyze a
continuous-flow gradient descent model on a linear regression setting with early-stopping, a typical
design choice in distillation practice (Dong et al., 2019; Cho & Hariharan, 2019; Ji & Zhu, 2020).
Consider an n× p dataset X (where n is the number of samples, p the number of parameters) with
target labels y. Assume that the Gram matrix XX> is invertible. Note that this setting includes
overparameterized scenarios (p > n) such as when X corresponds to the linearized (NTK) features
of neural networks (Jacot et al., 2018; Lee et al., 2019). Then, a standard calculation reveals that the
weights learned at time t under gradient descent on the loss (1/2) · ‖X− y‖2 can be written as:

β(t) = X>(XX>)−1A(t)y where A(t) := I− e−tXX> . (3)

Intuitively, A is a “sparsifying” matrix that skews down the weight assigned to an eigendirection of
eigenvalue λ by the value 1− e−λt. As t→∞ this factor goes to 1 for all directions, thus becoming
irrelevant; but for any finite t > 0, the topmost direction would have a larger factor than the rest, thus
producing some sort of sparsification. Our argument is that, while standard gradient-descent already
has an implicit sparsification effect, distillation further amplifies the sparsification effect. Consider
a setting where the teacher is trained to time T te. Through a simple calculation, the weights of the
student model can be written as:

β̃(t̃) = X>(XX>)−1Ã(t̃)y where Ã(t̃) := A(t)A(T te). (4)

Akin to Mobahi et al. (2020), one can argue that the sparsifier Ã corresponding to the student is more
skewed towards the top eigenvectors than the teacher. More formally:

Theorem 4.1. Let αk(t), α̃k(t) be the eigenvalues of the k’th top eigendirection in A(t) and Ã(t)
respectively. Let λk be the corresponding eigenvalue of the Gram matrix XX>. For any two
indices k1 < k2 such that λk1 > λk2 (assuming such a pair exists), and for any α?k1 ∈ (0, 1) (a
required “convergence lower bound” on the higher eigenvector), there exists a choice of distillation
hyperparameters T te, t̃ such that (a) α̃k1(t̃) ≥ α?k1 , and (b) for any choice of time t for the standalone
early-stopped model satisfying αk1(t) ≥ α?k1 , the components along the lower eigenvectors satisfy:

α̃k2(t̃)︸ ︷︷ ︸
Student’s component

along lower eigenvector

< αk2(t).︸ ︷︷ ︸
Teacher’s component

along lower eigenvector

(5)

The result says that the student relies less on the bottom eigendirections than the teacher if we compare
them at any instant when they have both converged equally well along the top eigendirections (i.e.,
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they have sufficiently fit the “nice” directions). Crucially, this implies that the student traverses a
different part of the parameter space, thus capturing a different bias than the teacher. In Sec C.4, we
empirically verify that the student indeed amplifies the sparsification bias of the teacher, in a more
general non-linear setting involving cross-entropy loss and a neural network.

Connection to underfitting. The connection between how distillation amplifies regularization and
the underfitting in §3.1 is best verified through our experiments on noisy CIFAR100 experiments
from Fig 1a and Fig 2. First, it is well-known (Li et al., 2020; Dong et al., 2019; Arpit et al., 2017;
Kalimeris et al., 2019) that the inherent bias of early-stopped gradient-descent fits noisy subset of
the data more slowly than the clean data because noisy labels correspond to bottom eigendirections.
This is indeed the case since mislabeled points come lowest in terms of teacher probabilities (small
X values). But our insights is that the student exaggerates this effect by assigning further lower
probabilities to the mislabeled data (Y < X). This exaggeration must be the manifestation of how
distillation amplifies the sparsification in the eigenspace.

4.2 THE GRADIENT-SPACE VIEW: DISTILLATION AS A GRADIENT DENOISER

While the previous perspective gives us an abstract theory of how distillation can induce regularization,
it may not be obvious when this regularization can be helpful besides in settings with label noise. In
fact, if ignoring the bottom eigenvectors led to ignoring non-noisy “tail” datapoints, this can even be
hurtful (Feldman, 2019). Below, we formalize how distillation can help by extending a line of work
analyzing distillation on noisy datasets with class similarities (Menon et al., 2021; Dao et al., 2021;
Ren et al., 2022). But crucially, we show how distillation can help by denoising even in a perfectly
classifiable dataset with class similarities, and no explicit label noise.

A concrete example. To make our discussion easier, consider a concrete K-class classification
dataset, where the ith datapoint’s features can be written as aK-“channel” input xi = (x

(i)
1 , . . . ,x

(i)
K )

where each channel x(i)
k ∈ RD is D-dimensional. Assuming a uniform distribution over K classes,

given a label y, we generate xy from a Gaussian N (0, I/D) truncated to the support xy · µ?yi = τ
for a pre-defined τ > 0 and a “ground truth” class vector µ?k. We also assume that for point xi, we
pick a non-target “similar” class zi for which we pick xzi from a Gaussian N (0, I/D) truncated
to the support xzi · µ?zi = τ/2. All other co-ordinates are zero for xi. We consider a simplified
linear architecture whose K-dimensional output is of the form f(x) = (w1 · x1, . . . ,wK · xK)
where the k’th node acts only on the k’th channel. Observe that this is a perfectly classifiable dataset
with deterministic labels since if we set the model weights to be wk = µ?k, we obtain that for the
corresponding logits f?, argmaxk f

?
k (x) = y?. In other words, the ground truth probabilities are

one-hot, which can be recovered by computing softmax({α · fk(x)}Kk=1) as α→∞. Thus, it may
seem that training on the one-hot loss is the wisest choice in this setting.

However, we show that distillation’s gradients (a) are more optimal than one-hot gradients and also
(b) more optimal than the teacher’s weights themselves. To formalize this, let cos-sim(·, ·) denote the
cosine-similarity between two vectors. Then:
Theorem 4.2. (informal; see Thm B.4) Consider a student whose weights satisfy wk = αµ?k.
Consider an imperfect teacher with weights such that ‖wte

k ‖ = αte
k and cos-sim(wte

k ,µ
?
k)· ≥ 1− ε.

Let vk be the one-hot update on node k of the student, and ṽk the distillation update, both under
cross-entropy loss. Then, for α� αte and αte ≤ O( 1τ logK), and sufficiently large τ,D:

cos-sim(ṽk,µ
?
k)︸ ︷︷ ︸

Quality of distillation update

> max
(

cos-sim(vk,µ
?
k)︸ ︷︷ ︸

Quality of one-hot update

, cos-sim(wte
k ,µ

?
k)︸ ︷︷ ︸

Quality of teacher weights

)
(6)

There are three salient aspects to this result. First, this demonstrates that one-hot gradients can be
inherently sub-optimal at any timestep in training even if the model is initialized at an optimal solution.
Conversely, distillation can help improve these gradients even if the teacher is imperfect. Finally,
distillation gradients can themselves be “more perfect” than the imperfect teacher, thus formalizing
how the student can go beyond the teacher.

To understand the intuition behind this result, imagine that at some point of training, we have
recovered a good f such that f ≈ α · f? (for some finite scaling factor α). Now as we train longer,
we ideally hope that (a) α continues increasing towards ∞ to recover the one-hot ground truth
probabilities, and (b) the approximation of the ground truth logits continues to hold throughout.
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This is however not the case with the one-hot updates. Consider any point (x, y) where f?k (x) is
high for some k 6= y i.e., the point has similarities to a non-target class. On such a point, the ideal
dynamics of increasing α requires that we increase the logit on the non-target node fk(x). But the
one-hot update would attempt to suppress this logit, since the target probability for this node is 0. We
argue that this is a destructive gradient since it directs the model in the opposite direction of the ideal
dynamics. Notably, this manifests despite the lack of inherent label noise in the training set.

Distillation on the other hand, can flip the sign of these gradients (assuming the teacher is early-
stopped), thus denoising the gradients — even if there is no explicit noise in the data. Notably, this
sign-flipping provides a “fresh example” for the non-target node k, which is a privilege unavailable
to the teacher. This is crucial to prove that the student is more denoised than the the teacher.

Connection to loss-switching. The gradient-space view gives us a way to make sense of the findings
in §3.2. In particular, this tells us why each gradient in itself may be constructive (in the case of
distillation) or destructive (in the case of one-hot). Thus, switching to distillation (or one-hot) even in
the middle of training can still be helpful (or hurtful), given sufficient time after the switch.

4.3 UNIFYING THE TWO PERSPECTIVES

We now discuss how various themes in existing distillation theory can be understood within both of
the above perspectives. Through this, we hope to piece together a more coherent and unified picture
of the two lines of work we build upon: Mobahi et al. (2020) and Menon et al. (2021).

Dark knowledge and denoising. Distillation is said to benefit by implicitly introducing “dark knowl-
edge” in the form of new information absent in the observed labels of the original datasets (Hinton
et al., 2015). In both views, we can view dark knowledge as a form of recovering denoised features:

(i) In the gradient-space view, the dark knowledge comes from the non-target logits, which allows
us to denoise the gradients during distillation.

(ii) In the eigenspace view, we posit that the new information corresponds to knowledge of the top
eigenvector(s) of the data. Crucially, these eigenvectors are independent of labels and thereby
independent of any label noise; hence these eigenvectors correspond to “denoised” features in the
data, which distillation more readily relies on.

On the gap between early-stopping and distillation. In both our views, we see a subtle distinction
between early-stopping and distillation:

(i) In the eigenspace perspective, although both induce a similar sparsification effect, distillation
amplifies this effect.

(ii) In the gradient-space view, early-stopping would reduce the overall magnitude of destructive
gradients accumulated by the teacher. But distillation amplifies this effect further by altogether
flipping the sign of these gradients.

Lack of fidelity in probabilities. We can understand the underfitting phenomenon from both views:

(i) Recall that in the eigenspace view, the student’s underfitting of teacher’s probabilities can be seen
as a consequence of ignoring the lower eigenvectors.

(ii) In the gradient-space view, the harder points of the teacher would have high similarity to other
classes. Subsequently, under the one-hot loss, these points would experience heavy destructive
gradients on the non-target logits. Since distillation would no longer suppress the non-target
probabilities, those probabilities would increase, while the target probability would be underfit.

5 RELATION TO EXISTING WORK

Distillation as a probability matching process. Distillation has been touted to be a process that
benefits from matching the teacher’s probabilities (Hinton et al., 2015). Indeed, many distillation
algorithms have been designed in a way to more aggressively match the student and teacher func-
tions (Czarnecki et al., 2017; Beyer et al., 2022). Theoretical analyses too rely on explaining the
benefits of distillation based on a student that obediently matches the teacher’s probabilities (Menon
et al., 2021). However, as Stanton et al. (2021) demonstrate, an exact matching of probabilities can
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be anti-correlated with performance improvements. Our work builds on this nuance as to why we
may desire that the student deviate from the teacher.

Understanding distillation via class similarities. A long-standing intuitive explanation for why
distillation helps is that the teacher’s probabilities contain “dark knowledge” about class similar-
ities (Hinton et al., 2015; Müller et al., 2019), which is the idea we formalize in §4.2. Several
works (Menon et al., 2021; Dao et al., 2021; Ren et al., 2022; Zhou et al., 2021) have formalized this
by assuming that the ground truth class memberships are inherently soft, and so the observed one-hot
labels are “noisy”. They argue that distillation reduces the student model’s variance (in an abstract
non-gradient-descent setting), assuming the student exactly matches the teacher. We demonstrate
a novel form of denoising even in the absence of noisy labels (via a completely different technical
argument). We also show how the student can outperform the teacher under gradient descent.

Alternative theories of distillation. Some works (Furlanello et al., 2018; Yuan et al., 2020; Tang
et al., 2020) have argued that the “class similarity” hypothesis cannot be the sole explanation, because
distillation can help even if the student is only taught information about the target probabilities (e.g.,
by smoothing out all non-target probabilities). This has resulted in various alternative hypothesis
such as faster convergence (Phuong & Lampert, 2019; Rahbar et al., 2020; Ji & Zhu, 2020) (which
we question in §3.2), feature learning (Allen-Zhu & Li, 2020) (which would not apply in our
linear settings), and regularization, either in the sense of Mobahi et al. (2020) or in the sense of
instance-specific label smoothing (Zhang & Sabuncu, 2020; Yuan et al., 2020; Tang et al., 2020). Our
eigenspace perspective in §4.1 falls under this umbrella. Finally, we also refer the reader to Lopez-Paz
et al. (2016); Kaplun et al. (2022) who theoretically study distillation in orthogonal settings.

Early-stopping and knowledge distillation. Early-stopping has received much attention in the
context of distillation (Liu et al., 2020; Ren et al., 2022; Dong et al., 2019; Cho & Hariharan, 2019;
Ji & Zhu, 2020). We closely build on Dong et al. (2019), who argue how early-stopping a gradient-
descent-trained teacher can automatically denoise the labels due to regularization in the eigenspace.
However, neither Dong et al. (2019) nor any of the other works provide a formal argument for why
distillation can outperform the teacher. Note that Mobahi et al. (2020) claim early-stopping has
a densification rather than a sparsification effect; but this holds only in their non-gradient-descent
setting where the function is picked from a Hilbert space with `2 regularization.

Empirical studies of distillation. Our study crucially builds on observations from (Stanton et al.,
2021; Lukasik et al., 2021) demonstrating student-teacher deviations in an aggregated sense than a
sample-wise sense sense. Other studies (Abnar et al., 2020; Ojha et al., 2022) investigate in what ways
the student is similar to the teacher, beyond in terms of class probabilities e.g., out-of-distribution
behavior, calibration, and so on. Deng & Zhang (2021) show how a smaller student can outperform
the teacher if it was allowed better match the teacher on more data, which is orthogonal to our setting.

6 CONCLUSION

We empirically find that a distilled student tends to underfit points that the teacher finds hard. We
also find that student-teacher deviations that occur in the initial phase of training are not critical
for the success of distillation. We then formalized how deviations arise and can help the student.
Specifically, in the context of gradient descent, distillation can act as a regularizer in eigenspace
and can denoise gradients even in the absence of explicit label noise. Overall, our work provides a
concrete argument for why certain deviations between the student and teacher are good, contrary to
conventional understanding of distillation. We also bridge key gaps between theory and practice, and
unify disjoint lines of work following Mobahi et al. (2020) and Menon et al. (2021).

There are several directions for future work. One question is whether we can study more practical
distillation setups, such as in semi-supervised setups (Cotter et al., 2021). It would also be insightful
to extend our eigenspace view in to multi-layered models where the eigenspace regularization effect
may “compound” across layers. Another interesting direction is whether we can build on the gradient
space view to design teacher-free training techniques that suppress “destructive” non-target gradients
in one-hot training. Arguably, the most important implication is on current attempts to bridge the gap
between student and teacher performance. Perhaps, these attempts would benefit from encouraging
some carefully-designed gaps in the teacher and student probabilities.
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A LIMITATIONS

We highlight a few key limitations to our results that may be relevant for future work to look at:

1. While we show underfitting across many datasets, we do not establish when this form of
underfitting can help in situations besides label noise. Indeed, we find that, in our language
datasets, underfitting can occur even in the absence of any improvement in generalization.
Future work may explore more sophisticated measures of student-teacher deviation that
correlates with the gains of distillation. We highlight further caveats of our empirical results
in Sec C.2.1.

2. Both our formalizations are based on linear models. On the one hand, this implies that our
results are general and fundamental in that they are not unique to neural network training.
On the other, this means our result may not capture other interesting effects in the context
of distillation (such as that of feature-learing as in Allen-Zhu & Li (2020)). Indeed, we
hypothesize that the eigenspace regularization effect may compound across multiple layers
of a neural network. This is an open direction for future work.

3. While our gradient-space view suggests why switching to one-hot can hurt, it does not
explain why switching to one-hot for a very short amount of time increases the performance
— even beyond distillation — in the case of ResNet50 self-distillation (cf. Sec C.2.3
Fig 16 and Fig 15). Analyzing this nuanced effect of distillation-to-one-hot switching is an
interesting question for future work.

B EIGENSPACE VIEW

Below, we provide the proof for the sparsity levels of an early-stopped teacher and early-stopped
student.

Proof. (of Theorem 4.1) For the early-stopped model, we need 1− e−λk1 t ≥ α?k1 . For any value of t
that satisfies this, we can lower bound αk2(t) as:

αk2(t) = 1− e−λk2 t (7)

= 1−
(
e−λk1 t

)λk2
λk1 (8)

≥ 1−
(
1− α?k1

)λk2
λk1 . (9)

Now, recall that we need to show that there exists a set of distillation hyperparameters t̃, T te that satisfy
our required bounds. We will show that such a set of hyperparameters exist under the simplification
that T te = t̃. Thus, for the student model, we need (1 − e−λk1 t̃)(1 − e−λk1 t) ≥ α?k1 . To achieve
the largest skew, we should choose the smallest t̃, which is achieved when (1 − e−λk1 t̃)2 = α?k1 .
Plugging this into the expression for α̃k2(t̃), we get:

α̃k2(t̃) = (1− e−λk2 t̃)2 (10)

=

(
1−

(
e−λk1 t̃

)λk2
λk1

)2

(11)

=

(
1− (1−

√
α?k1)

λk2
λk1

)2

. (12)

For simplicity, let us define the fraction κ :=
λk2
λk1

. Putting the above two sets of equation together,
we have:
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αk2(t)− α̃k2(t̃) ≤ 1−
(
1− α?k1

)f − (1− (1−
√
α?k1)

f
)2

(13)

≤ 1−
(
1− α?k1

)f − 1− ((1−
√
α?k1)

2)f + 2(1−
√
α?k1)

f (14)

≤ 2(1−
√
α?k1)

f − ((1−
√
α?k1)

2)f −
(
1− α?k1

)f
(15)

≤ 2− (1−
√
α?k1)

(
(1−

√
α?k1))

f −
(
1−

√
α?k1

)f)
≤ 0 (16)

The last step follows from the power means inequality: we have that since f < 1,(
(1−
√
α?k1

))f+(1+
√
α?k1

))f

2

)f
is at most

(
(1−
√
α?k1

))+(1+
√
α?k1

))

2

)
= 1.

B.1 GRADIENT-SPACE VIEW

In this section, we prove Theorem 4.2 where we analyzed the quality of one-hot and distillation
gradients in a setting with class similarity and zero label noise. We first recall the setting below.

Setting. We consider aK-class classification dataset, where the ith datapoint’s features can be written
as a K-“channel” input xi = (x

(i)
1 , . . . ,x

(i)
K ) where each channel x(i)

k ∈ RD is D-dimensional.
Assuming a uniform distribution over K classes, given a label y, we generate xy from a Gaussian
N (0, I/D) truncated to the support xy · µ?yi = τ for τ > 0 and for a pre-defined class vector µ?k.
We also assume that for point xi, we pick a non-target “similar” class zi for which we pick xzi
from a Gaussian N (0, I/D) truncated to the support xzi · µ?zi = τ/2. All other co-ordinates are
set to zero. We consider a simplified linear architecture whose K-dimensional output is of the form
f(x) = (w1 · x1, . . . ,wK · xK) where the k’th node acts only on the k’th channel.

Notations: Throughout the rest of the discussion, we fix some node k, and define S+ = {(x, y) ∈
S|y = k} and S− = {(x, y) ∈ S|y 6= k, z = k}. Intuitively, S+ is the subset of samples that provide
“constructive” gradients for node k under the one-hot loss, while S− is the subset that provides
“destructive” gradients under the one-hot loss (i.e., gradients in the opposite direction of optimality).
With an abuse of notation, we will write x ∈ S to denote an x such that (x, y) ∈ S.

We will use pte to denote a perfect teacher’s probabilities, and qte to denote an imperfect teacher’s
probabilities. For any channel k, and for any vector w ∈ RD of weights/gradients corresponding
to that channel, we will use w‖ to denote the projection w‖ = (w · µ?k)µk, and w⊥ to denote the
orthogonal vector, w‖ = w − (w · µ?k)µk.

Also recall that αte denotes the “scale” of the teacher’s logits — think of this as a proxy for how
long the teacher has been run to minimize one-hot loss. Similarly, α denotes the scale of the student
model’s logits. We now state some simplifying assumptions.

Assumption B.1. We make the following simplifying assumptions:

1. We assume that we have a training dataset S such that S = mK. The dataset is balanced
in that for every k, |S+| = |S−| = m.

2. We assume ‖µ?k‖ = 1.

3. We assume εte < 1 and τ > 1.

4. We assume 4αteτεte ≤ 1.

In Lemma B.1, we show that as long as both the teacher and the student are not trained for too long
(and thus their scales αte and α are low), the (perfect) teacher’s supervision is “constructive” on
node k for all points in S− and S+. This is crucial for us to show that distillation is able to denoise
the one-hot gradients (which are destructive on S−). In the subsequent Lemma B.2, we bound the
difference in supervision of a perfect and imperfect teacher. Using this, we can show that despite
imperfection, the supervision of the teacher can be constructive for node k on both S− and S+.
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Lemma B.1. Assuming αteτ ≤ log(K − 2) and αte − α ≥ 2
τ log

3
1−κ , then for any x ∈ S+ ∪ S−,

pte
k(x)−pk(x)
pte
k(x)

≥ κ.

Proof. If the point belongs to S−, then:

pk(x) =
eατ/2

eατ + eατ/2 +K − 2
and pte

k (x) =
eα

teτ/2

eαteτ + eαteτ/2 +K − 2
. (17)

Then, the ratio is :

pk(x)

pte
k (x)

=
eα

teτ/2 + 1 + (K − 2)e−α
teτ/2

eατ/2 + 1 + (K − 2)e−ατ/2
. (18)

Since αteτ ≤ log(K − 2), we can upper-bound the first two terms in the numerator by the last term.
Hence,

pk(x)

pte
k (x)

≤ 3(K − 2)e−α
teτ/2

(K − 2)e−ατ/2
≤ 3e(α−α

te) τ2 ≤ 1− κ. (19)

If the point belongs to S+, then:

pk(x) =
eατ

eατ + eατ/2 +K − 2
and pte

k (x) =
eα

teτ

eαteτ + eαteτ/2 +K − 2
. (20)

The ratio is

pk(x)

pte
k (x)

=
1 + e−α

teτ/2 + (K − 2)e−α
teτ

1 + e−ατ/2 + (K − 2)e−ατ

Again, we can upper-bound each term in the denominator by the last term.

pk(x)

pte
k (x)

≥ 3(K − 2)e−α
teτ

(K − 2)e−ατ
≤ 1− κ.

Lemma B.2. Consider a perfect teacher model with weights αteµ?k and corresponding probabilities
pte(·). Consider an εte-imperfect teacher model with weights wk such that ‖wk‖ = αte and
‖w⊥k ‖

2

‖w‖k‖2
≤ εte. Let the corresponding probabilities be given by qte(·).

Assuming 4αteτεte ≤ 1, on any x ∈ S+ ∪ S−,

|pte
k (x)− qte

k (x)| ≤ 12αteτ ·
√
εte · pte

k (x). (21)

Proof. We have ‖w⊥‖2 ≤ (αte)2 εte

1+εte and ‖w‖‖2 ≥ (αte)2 1
1+εte .

We have

wk · xk = ‖w‖‖ · (xk · µ?k) +w⊥ · x⊥k . (22)

We have ‖w‖‖ ≤ αte and ‖w‖‖ ≥ αte 1√
1+εte ≥ αte(1 − εte). We also have |xk · µ?k| ≤ τ . Next,

‖w⊥‖ ≤ αte
√

εte

1+εte ≤ αte
√
εte. Finally, limD→∞ ‖x⊥k ‖ ≤ 1. Putting these together, we get:

|wk · xk − αte(xk · µ?k)| ≤ αteτεte + αte
√
εte ≤ 2αteτ

√
εte. (23)

Here, we’ve assumed εte < 1 and τ > 1.
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The above gives us a bound on the differences in the logits. But to bound the probabilities themselves,
note that due to the structure of the softmax, both the numerator and the denominator can either
grow or diminish by a factor of e2α

teτ
√
εte . Thus, e4α

teτ
√
εte ≥ qte

k (x)

pte
k(x)

≥ e−4α
teτ
√
εte . We have

e−4α
teτ
√
εte ≥ 1− 4αteτ

√
εte.

Also, given that 4αteτεte ≤ 1, e4α
teτεte ≤ 1 + e · 4αteτεte. Rearranging this gives us our final

inequality.

First, we prove a simpler statement assuming that the teacher is perfect. We will build on this proof
for an imperfect teacher.
Lemma B.3. Consider a student model with weights wk = αµ?k such that α ≤ 1

τ log(K − 2).
Let uk denote the one-hot gradients on this model under the cross-entropy loss on the dataset S.
Consider an perfect teacher model with weights wk such that wk = αteµ?k. Assume the teacher
model is early-stopped in that αte ≤ 1

τ log(K − 2).

Assuming αte ≥ 1
τ log 3, let κ > 0 denote the level of early-stopping in the student, such that

αte − α ≥ 2
τ log

3
1−κ . Let ũk denote the gradient under distillation loss with this teacher on the

above student model.

Assume that the simplifying assumptions of Assumption B.1 hold. Then,

lim
D→∞

‖u‖k‖2

‖u⊥k ‖2
≤ mτ2

(
1− e−ατ

9

)
︸ ︷︷ ︸

Upper-bound on quality of one-hot gradients

≤ mτ2
(
1 + κ2

)
≤ lim
D→∞

‖ũ‖k‖2

‖ũ⊥k ‖2︸ ︷︷ ︸
Lower-bound on quality of distillation gradients

. (24)

Proof. We have assumed |S+| = |S−| = m. Note that for all x in S+, pk(x) = p+ for some
constant p+ > 0. Similarly, for all x in S−, pk(x) = p− for some constant p+ > 0.

Recall that the gradient descent update on node k be written as uk = u
‖
k + u⊥k , where u⊥k · µ?k = 0.

The one-hot gradient at node k can be written as:

uk =
∑
x∈S+

(1− pk(x))xk −
∑
x∈S−

pk(x)xk︸ ︷︷ ︸
destructive gradients

(25)

= (1− p+)
∑
x∈S+

xk − p−

∑
x∈S−

xk

 . (26)

We project the sum total of all these gradients along µ?k to get

‖u‖k‖ = uk · µ?k = mτ ((1− p+)− p−) .

Next, we want to compute the total magnitude of all the gradients orthogonal to µ?k, namely ‖u⊥k ‖.
Note that the projection of any sample x orthogonal to µ?k is essentially a D − 1 multivariate zero-
mean Gaussian with variance 1/D along each direction. Thus, the projection of u⊥k along each of
these D − 1 directions is a zero-mean Gaussian with variance equal to m

D

(
(1− p+)2 + p2−

)
. Thus

‖u⊥k ‖2 is the sum of squared of D − 1 of these random variables. Therefore,

lim
D→∞

‖u⊥k ‖ = m
(
(1− p+)2 + p2−

)
.

Thus, the ratio can be written as:

17



Under review as a conference paper at ICLR 2023

lim
D→∞

‖u‖k‖2

‖u⊥k ‖2
=
m2τ2 ((1− p+)− p−)2

m
(
(1− p+)2 + p2−

) ≤ mτ2
(
1− 2(1− p+)p−

(1− p+)2 + p2−

)
(27)

≤ mτ2
(
1−

(
p−
p+

)2
)
. (28)

We can lower bound p−/p+ using Eq 17 and Eq 20 as:

p−
p+

=
1 + (K − 2)e−ατ + e−ατ/2

1 + (K − 2)e−ατ/2 + eατ/2
≥ (K − 2)e−ατ

3(K − 2)e−ατ/2
≥ e−ατ/2

3
, (29)

where we use ατ ≤ log(K − 2) to upper bound each of the denominator terms by (K − 2)e−ατ/2.

Plugging this back, we get the following bound on the quality of one-hot gradients:

lim
D→∞

‖u‖k‖2

‖u⊥k ‖2
≤ mτ2

(
1− e−ατ

9

)
. (30)

Now let pte
+ and pte

− denote the probabilities of a perfect teacher. We can apply an identical argument
for distillation to bound the ratio of the gradients as:

lim
D→∞

‖ũ‖‖2

‖ũ⊥‖2
:=

m2τ2((pte
+ − p+) + (pte

− − p−))
m((pte

+ − p+)2 + (pte
− − p−)2)

≥ mτ2
(
1 + 2

(pte
+ − p+)(pte

− − p−)
(pte

+ − p+)2 + (pte
− − p−)2

)
(31)

≥ mτ2
(
1 + 2

κ2pte
+p

te
−

(pte
+)

2 + (pte
−)

2

)
≥ mτ2(1 + κ2), (32)

where in the second line we’ve used Lemma B.1 to lower-bound the teacher-student probability gap,
subsequently followed by the AM-GM inequality. Here, we have used the fact that pte

− − p− > 0, or
in other words, that the gradients from S− are constructive.

We are now ready to state and prove our main theorem:
Theorem B.4. Consider a student model with weights wk = αµ?k such that α ≤ 1

τ log(K − 2). Let
uk denote the one-hot gradients on this model under the cross-entropy loss on the dataset S.

Consider an imperfect teacher model with weights wk such that ‖wk‖ = αte and ‖w
⊥
k ‖

2

‖w‖k‖2
≤ εte where

εte > 1
mτ2 . Assume the teacher model is early-stopped in that αte ≤ 1

τ log(K − 2).

Assuming αte ≥ 1
τ log 3, let κ > 0 denote the level of early-stopping in the student, such that

αte − α ≥ 2
τ log

3
1−κ . Let ũk denote the gradient under distillation loss with this teacher on the

above student model.

Assume that the simplifying assumptions of Assumption B.1 hold. Then, for a sufficiently large τ ,
there exists values of α, κ such that α ∈ [0, αte] such that κ3 ≥ 192αteτ

√
mεte and so we have for

any class k that:

lim
D→∞

‖u‖k‖2

‖u⊥k ‖2
≤ mτ2

(
1− e−ατ

9

)
︸ ︷︷ ︸

Upper-bound on quality of one-hot gradients

≤ mτ2
(
1 +

κ2

2

)
≤ lim
D→∞

‖ũ‖k‖2

‖ũ⊥k ‖2︸ ︷︷ ︸
Lower-bound on quality of distillation gradients

. (33)
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Furthermore, the quality of the teacher weights can be upper bounded by the quality of distillation
gradients as :

1

εte
≤ mτ2

(
1 +

κ2

2

)
≤ lim
D→∞

‖ũ‖k‖2

‖ũ⊥k ‖2︸ ︷︷ ︸
Lower-bound on quality of distillation gradients

. (34)

Proof. We will now extend the proof of Lemma B.3 to an imperfect teacher with probabilities
qte(x). For convenience, let us assume that for x ∈ S+ |pte

k (x) − qte
k (x)| ≤ γ+ and x ∈ S−,

|pte
k (x)− qte

k (x)| ≤ γ− for some constants γ+ and γ−. We can say that:

‖ũ‖‖2 = τ2

 ∑
x∈S−∪S+

qte
k (x)− pk(x)

2

≥ m2τ2
(
(pte

+ − p+) + (pte
− − p−)− γ+ − γ−

)2
.

(35)

If we have γ− ≤ ε′

2 κp
te
− for some ε′, from Lemma B.1, we have γ− ≤ ε′

2 κ(p
te
− − p−). We can make

a similar claim for γ+. Thus,

‖ũ‖‖2 ≥ m2τ2
(
(pte

+ − p+) + (pte
− − p−)

)2(
1− ε′

2

)2

(36)

≥ m2τ2
(
(pte

+ − p+) + (pte
− − p−)

)2
(1− ε′) (37)

(38)

As for the orthogonal gradient term, recall that ‖u⊥k ‖2 is essentially the summation of D − 1 squared
random variables. With a perfect teacher, we could write each of the D − 1 variables as a sum of
m Gaussians each scaled by a constant probability (pte

+ − p+) and (pte
− − p−) independent of the

sample x. However, with the imperfect teacher, the probabilities are themselves random variables
dependent on the draw of x. So we first bound the gap between this norm and the norm under the
perfect teacher.

Without loss of generality, let us denote the D − 1 dimensions of xk that is orthogonal to µk
? as

xk,1, xk,2, . . . , xk,D−1. Then,

lim
D→∞

‖ũ⊥‖2 ≤ lim
D→∞

D−1∑
j=1

 ∑
x∈S+∪S−

(pte
k (x)− pk(x))xk,j

2

(39)

≤ lim
D→∞

D−1∑
j=1

 ∑
x∈S+∪S−

(qte
k (x)− pk(x))xk,j + xk,j (p

te
k (x)− qte

k (x))︸ ︷︷ ︸
≤γ+ or≤γ−


2

(40)

≤ lim
D→∞

D−1∑
j=1

 ∑
x∈S+∪S−

(pte
k (x)− pk(x))xk,j

2

︸ ︷︷ ︸
≤m((pte

+−p+)2+(pte
−−p−)2)

(41)

+ lim
D→∞

D−1∑
j=1

∑
x∈S+

γ+|xk,j |+
∑
x∪S−

γ−|xk,j |

2

︸ ︷︷ ︸
Aj

(42)
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+ lim
D→∞

2

D−1∑
j=1

∑
x∈S+∪S−

(pte
k (x)− pk(x))|xk,j |

∑
x∈S+

γ+|xk,j |+
∑
x∈S−

γ−|xk,j |


︸ ︷︷ ︸

Bj

(43)
(44)

For each j, Aj is the squared of the sum of the absolute value m Gaussians with variance γ2
+

D and

another m with variance γ2
−
D . The means of these variables are γ+

√
1
D

2
π and γ−

√
D

2
π respectively.

The expectation of Aj is the squared sum of the means and the sum of the variances of all these

variables, equalling m(γ2
++γ2

−)

D + m2
(
γ+

√
D

2
π + γ−

√
1
D

2
π

)2
. The second term can be upper

bounded bym2
(
γ2
+

D +
γ2
−
D

)
. Therefore, we can conclude that limD→∞

∑D−1
j=1 Aj ≤ 3m2(γ2++γ2−).

For each j, Bj can be expanded into (2m)2 terms. The expected value of each of these terms can be
bounded in the form of (pte

k (x)−pk(x))
(γ+
D

)
or (pte

k (x)−pk(x))
(γ−
D

)
. Thus, the expected value of

Bj is m
(γ−
D + γ+

D

)∑
x(p

te
k (x)− pk(x)). Let limD→∞Bj = m (γ− + γ+)

∑
x(p

te
k (x)− pk(x))

Now, if we have that
√
mγ− ≤ ε′

4 κp
te
− and

√
mγ+ ≤ ε′

4 κp
te
+, for some ε′ we have:

lim
D→∞

‖ũ⊥‖2 ≤ m((pte
+ − p+)2 + (pte

− − p−)2) (45)

+ 3m
(ε′)2

16

(
(κpte

+)
2 + (κpte

−)
2
)
+m

ε′

4
(κpte

+ + κpte
−)(p

te
+ − p+) + (pte

− − p−)) (46)

(47)

In the second term, we can upper bound (κpte
+)

2 + (κpte
−)

2 by ((pte
+ − p+)2 + (pte

− − p−)2) using
Lemma B.1. In the third term, we can similarly upper bound κpte

+ and κpte
− followed by an AM-GM

inequality to upper-bound by 2((pte
+ − p+)2 + (pte

− − p−)2) . Therefore,

lim
D→∞

‖ũ⊥‖2 ≤ m((pte
+ − p+)2 + (pte

− − p−)2)
(
1 + 3

(ε′)2

16
+
ε′

4

)
(48)

≤ m((pte
+ − p+)2 + (pte

− − p−)2) (1 + ε′) . (49)
(50)

Then, we have that for our imperfect teacher:

lim
D→∞

‖ũ‖‖2

‖ũ⊥‖2
≥ mτ2(1 + κ2)

(1− ε′)
(1 + ε′)

≥ m(1 + κ2)(1− ε′)2

≥ mτ2(1 + κ2)(1− 2ε′) ≥ mτ2(1 + κ2 − 4ε′) ≥ m
(
1 +

κ2

2

)
.

The last step follows if we have ε′ ≤ κ2

8 . Plugging this back in our required inequality of the form
√
mγ− ≤ ε′

4 κp
te
−, we need

√
mγ− ≤ κ3

16p
te
− and similarly for γ+. From Lemma B.2, this means we

need κ3 ≥ 192αteτ
√
mεte.

Now, we need to make sure that there are possible values of α for which the above lower-bound on κ
can be realized. Note that κ can only attain values of 1− 3e−(α

te−α) τ2 for various values of α. This
follows from the statement of Lemma B.1. Thus, we want 1− 3e−(α

te−α) τ2 >
(
192αteτ

√
mεte

)
for

there to be any values of α to achieve our lower-bound on κ. Furthermore, we have that ε = c
mτ2 for

some c > 1. Thus, we need 1− 3e−(α
te−α) τ2 >

(
192αte√c

)
to have feasible solutions for α. This is

possible as long as τ is sufficiently large.
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Parameter CIFAR10* Tiny-ImageNet

Weight decay 10−4 5 · 10−4

Batch size 1024 128

Epochs 450 200

Peak learning rate 1.0 0.1

Learning rate warmup epochs 15 5

Learning rate decay factor 0.1 0.1

Learning rate decay epochs 200, 300, 400 75, 135

Nesterov momentum 0.9 0.9

Distillation weight 1.0 1.0

Distillation temperature 4.0 4.0

Gradual loss switch window 1k steps 10k steps

Table 1: Summary of training settings.

C EXPERIMENTS AND PLOTS

C.1 DETAILS OF EXPERIMENTAL SETUP

We present details on relevant hyper-parameters for our experiments.

Model architectures. For all image datasets (CIFAR10, CIFAR100, Tiny-ImageNet), we use ResNet-
v2 (He et al., 2016a) and MobileNet-v2 (Sandler et al., 2018), models. Specifically, for CIFAR, we
consider the CIFAR ResNet-{56, 20} family and MobileNet-v2 architectures; for Tiny-ImageNet, we
consider the ResNet-{50, 18} family and MobileNet-v2 architectures; For all ResNet models, we
employ standard augmentations as per He et al. (2016b).

For all text datasets (MNLI, AGNews, QQP, IMDB), we fine-tune a pre-trained RoBERTa (Liu et al.,
2019) model. We consider a combinations of cross-architecture- and self-distillation with RoBERTa
-Base, -Medium and -Small architectures.

Training settings. We train using minibatch SGD applied to the softmax cross-entropy loss. For all
image datasets, we follow the settings in Table 1.

For all text datasets, we use a batch size of 64, and train for 25000 steps. We use a peak learning
rate of 10−5, with 1000 warmup steps, decayed linearly. For the distillation experiments, we use a
distillation weight of 1.0. We use temperature τ = 2.0 for MNLI, τ = 16.0 for IMDB, τ = 1.0 for
QQP, and τ = 1.0 for AGNews.

C.2 ADDITIONAL RESULTS

C.2.1 SCATTER PLOTS OF PROBABILITIES

In this section, we present additional scatter plots of the teacher-student logit-transformed probabil-
ities for the class corresponding to the teacher’s top prediction: Fig 5 (for CIFAR100), Fig 6 (for
TinyImagenet), Fig 7 (for CIFAR10), Fig 8 (for MNLI and AGNews), Fig 9 (for self-distillation on
QQP, IMDB and AGNews) and Fig 10 (for cross-architecture distillation on language datasets). We
find underfitting of the hard points in a majority of the cases, with a few notable exceptions and
caveats:

1. For MobileNet self-distillation on CIFAR100, and for a majority of the CIFAR10 experi-
ments, we find no underfitting of the harder points on the training dataset. However, we
do find underfitting of the harder points on the test dataset. Interestingly, we also find an
underfitting of easier points in the training dataset.

2. In the language datasets, we generally find the plots to be different in pattern from the image
datasets. In particular we find that, for harder points, there is both significant underfitting
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Dataset Teacher Student Train accuracy Test accuracy
Teacher Student (OH) Student (DIST) Teacher Student (OH) Student (DIST)

CIFAR10 ResNet-56 ResNet-56 100.00 100.00 100.00 93.72 93.72 93.9
ResNet-56 ResNet-20 100.00 99.95 99.60 93.72 91.83 92.94
ResNet-56 MobileNet-v2-1.0 100.00 100.00 99.96 93.72 85.11 87.81
MobileNet-v2-1.0 MobileNet-v2-1.0 100.00 100.00 100.00 85.11 85.11 86.76

CIFAR100 ResNet-56 ResNet-56 99.97 99.97 97.01 72.52 72.52 74.55
ResNet-56 ResNet-20 99.97 94.31 84.48 72.52 67.52 70.87
MobileNet-v2-1.0 MobileNet-v2-1.0 99.97 99.97 99.96 54.32 54.32 56.32
ResNet-56 MobileNet-v2-1.0 99.97 99.97 99.56 72.52 54.32 62.4

CIFAR100 noise ResNet-56 ResNet-56 99.9 99.9 95.6 69.8 69.8 72.7

ResNet-56 ResNet-20 99.9 91.4 82.8 69.8 64.9 69.2

Tiny-ImageNet ResNet-50 ResNet-50 98.62 98.62 94.84 66 66 66.44
ResNet-50 ResNet-18 98.62 93.51 91.09 66 62.78 63.98
ResNet-50 MobileNet-v2-1.0 98.62 89.34 87.90 66 62.75 63.97
MobileNet-v2-1.0 MobileNet-v2-1.0 89.34 89.34 82.26 62.75 62.75 63.28

MNLI RoBERTa-Base RoBERTa-Small 92.9 72.1 72.6 87.4 69.9 70.3

MNLI RoBERTa-Small RoBERTa-Small 72.1 72.1 71.0 69.9 69.9 69.9

MNLI RoBERTa-Medium RoBERTa-Medium 88.2 88.2 85.6 83.8 83.8 83.5

IMDB RoBERTa-Small RoBERTa-Small 100.0 100.0 99.1 90.4 90.4 91.0

QQP RoBERTa-Small RoBERTa-Small 85.0 85.0 83.2 83.5 83.5 82.5

QQP RoBERTa-Medium RoBERTa-Medium 92.3 92.3 90.5 89.7 89.7 89.0

AGNews RoBERTa-Small RoBERTa-Small 96.5 96.5 95.9 93.8 93.8 93.9

AGNews RoBERTa-Medium RoBERTa-Medium 98.6 98.6 97.9 94.6 94.6 94.6

Table 2: Summary of train and test performance of various distillation settings.

Figure 5: Teacher-student logit plots for CIFAR100 experiments: We report plots for various
distillation settings involving ResNet56, ResNet20 and MobileNet-v2. We find underfitting of the
hard points in the training set in all but the MobileNet self-distillation setting. Nevertheless, even in
the MobileNet self-distillation setting, we find significant underfitting in the test dataset.

and overfitting. For easier points, there is less deviation, and if any, the deviation is from
overfitting. We interpret this as the regularization from distillation inducing less precision
on the harder points, rather than an underfitting per se.

3. Our patterns generally break down in the cross-architecture settings of language datasets
(with the exception of a couple of settings). We suspect that this may be because certain
cross-architecture effects dominate over the underfitting, which is a much more subtle effect.

4. The underfitting we observe in the language datasets are not always associated with an
improvement in the student’s generalization. e.g., we find no improvement in AGNews,
and a decrease in generalization in QQP (see Table 2). (Note that we didn’t finetune
hyperparameters in these settings to make distillation work.)
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Figure 6: Teacher-student logit plots for Tiny-Imagenet experiments: We report plots for various
distillation settings involving ResNet50, ResNet18 and MobileNet-v2. We find underfitting of the
hard points in all the settings. We also find overfitting of the easier points when the student is a
ResNet.

Figure 7: Teacher-student logit plots for CIFAR10 experiments: We report plots for various
distillation settings involving ResNet56, ResNet20 and MobileNet-v2. We find that the underfitting
phenomenon is almost non-existent in the training set (except for ResNet50 to ResNet20 distillation).
However the phenomenon is prominent in the test dataset.

C.2.2 TEACHER’S PREDICTED CLASS VS. GROUND TRUTH CLASS

Recall that in all our scatter plots we have looked at the probabilities of the teacher and the student on
the teacher’s predicted class i.e., (pte

yte(x), p
st
yte(x)) where yte .

= argmaxy′∈[K] p
te
y′(x). Another natu-

ral alternative would have been to look at the probabilities for the ground truth class, (pte
y?(x), p

st
y?(x))

where y? is the ground truth label. We chose to look at yte however, because we are interested in the
“shortcomings” of the distillation procedure where the student only has access to teacher probabilities
and not ground truth labels.

Nevertheless, one may still be curious as to what the probabilities for the ground truth class look like.
First, we note that the plots look almost identical for the training dataset owing to the fact that the
teacher model typically fits the data to zero training error (we skip these plots to avoid redundancy).
However, we find stark differences in the test dataset as shown in Fig 11. In particular, we see that the
underfitting phenomenon is no longer prominent, and almost non-existent in many of our settings.
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(a) Self-distillation in MNLI (b) Cross-architecture distillation in MNLI and
AGNews

Figure 8: Teacher-student logit plots for MNLI and AGNews experiments: We report plots for
various distillation settings involving RoBERTa models. On the left, in the self-distillation settings
on MNLI, we find significant underfitting of hard points (and also overfitting), while easy points
are completely overfit. On the right, we report cross-architecture ( Base to Medium) distillation for
MNLI and AGNews. Here the plots are not as typical of our other plots. Neverthless, we observe
significant underfitting and overfitting of hard points, and overfitting of the extremely easy points.
We interpret this as distillation reducing its “precision” on the harder points (perhaps by ignoring
lower eigenvectors that provide finer precision).

Figure 9: Teacher-student logit plots for self-distillation in language datasets (QQP, IMDB,
AGNews): We report plots for various self-distillation settings involving RoBERTa models. As in
the other language dataset settings, we find both significant underfitting and overfitting for harder
points (indicating lack of precision), and with more precision for easier points (typically with more
overfitting).

This is surprising as this suggests that the student somehow matches the probabilities on the ground
truth class despite not knowing what the ground truth class is. This also tells us the mechanism by
which the student manages to correct some of the teacher’s labels: by reducing the probability of
non-ground-truth classes rather than increasing the probability of the ground truth class. Indeed, in
Fig 12, we verify this to be the case. We dissect the test data plots into four parts depending on which
of the teacher and student model gets the label right. We consistently find that the points that the
student gets right but the teacher not, fall in the underfit set of points.
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Figure 10: Teacher-student logit plots for cross-architecture distillation in language datasets
(AGNews, QQP, IMDB, MNLI): We report plots for various cross-architecture distillation settings
involving RoBERTa models. While we find significant student-teacher deviations in these settings,
our typical patterns do not apply here. We believe that effects due to “cross-architecture gaps” may
have likely drowned out the underfitting patterns, which is a more subtle phenomenon that shines in
self-distillation settings.

Interestingly, the underfit set of points is roughly equivalent to the set of all points where at least
one of the models is incorrect This suggests that in its attempt to underfit some of the points, the
student can get some incorrect, potentially points which are inherently fuzzy (e.g., they are similar
to multiple classes). Theorem 4.2 suggests that the student would use these points to improve its
features, thereby increasing accuracy on other points that are not inherently as fuzzy.

Finally, we note that previous work (Lukasik et al., 2021) has examined deviations on ground truth
class probabilities albeit in an aggregated sense (at a class-level rather than at a sample-level). While
they find that the student tends to have lower ground truth probability than the teacher on problems
with label imbalance, they do not find any such difference on standard datasets without imbalance.
This is in alignment with what we find above.

C.2.3 THE EFFECT OF LOSS SWITCHING

We provide additional results on loss-switching in this section. Fig 14 presents the accuracy values
under a one-hot-to-distillation switch. Fig 15 presents the accuracy values under a distillation-to-one-
hot switch. Fig 13 presents student-teacher scatter plots over the course of training under all the four
methods (with and without loss switches). Fig 16 presents the trajectory of accuracies for ResNet50
on TinyImagenet under all the four settings.

It is worth noting a nuance in this story. First, switching to one-hot typically preserves the gains
of distillation if it is not run for too long — and in the rare case of ResNet50 self-distillation on
TinyImagenet even outperforms distillation — which supports earlier findings (Cho & Hariharan,
2019; Zhou et al., 2020; Jafari et al., 2021) that advocate a soft final switch to one-hot training.
Overall, this seems to suggest that, the early phase of distillation may be a sufficient requirement to
gain all the benefits of distillation (even if our earlier experiments suggest that they are not necessary).
However, we consistently find that switching to and training with one-hot for a sufficiently long time
deteriorates the gains made by distillation (Fig 1b, (Fig 16).

C.3 ABLATIONS

Here, we conduct two experiments showing that the underfitting phenomenon holds under other
conditions, specifically (a) longer training of the student and (b) smaller batch sizes and learning rate.

Longer training: In Fig 17 (left two images), we conduct experiments where we run knowledge
distillation with the ResNet-56 student on CIFAR100 for 2.3× longer (50k steps instead of 21.6k
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Figure 11: Scatter plots for ground truth class: Unlike in other plots where we report the proba-
bilities for the class predicted by the teacher, here we focus on the ground truth class. Recall that
the X-axis corresponds to the teacher, the Y -axis to the student, and all the probabilities are log-
transformed. Surprisingly, we observe a much more subdued underfitting here, with the phenomenon
completely disappearing in many situations. This suggests that the student magically preserves the
ground-truth probabilities despite no knowledge of what the ground-truth class is, while underfitting
on the teacher’s predicted class.

steps overall) and with the ResNet-50 student on TinyImagenet for about 2× longer (300k steps over
instead of roughly 150k steps). We find the resulting plots to continue to have the same underfitting
as the earlier plots. It is worth noting that in contrast, in a linear setting, it is reasonable to expect the
underfitting to disappear after sufficiently long training. Therefore, the persistent underfitting in the
non-linear setting is remarkable and suggests one of two possibilities:

• The underfitting is persistent simply because the student is not trained sufficiently long
enough i.e., perhaps, when trained 10× longer, the network might end up fitting the teacher
probabilities perfectly.

• The network has reached a local optimum of the knowledge distillation loss and can never fit
the teacher perfectly. This may suggest an added regularization effect in distillation, besides
the eigenspace regularization that introduces the hard-point-underfitting in the first place.
This unknown regularization effect may perhaps disappear if the learning rate was even
smaller or if the student network was larger than the teacher network, allowing to reach
higher precision.

Smaller batch size/learning rate: Finally, in Fig 17 (right image), we also verify that in the
CIFAR100 setting if we set peak learning rate to 0.1 (rather than 1.0) and batch size to 128 (rather
than 1024), our observations still hold.

C.3.1 SCATTER PLOT FOR OTHER METRICS

In the main paper, recall that we look at student-teacher deviations via scatter plots of the probabilities
of either models on the teacher’s top class, after applying a logit transformation. It is natural to ask
what these plots would look like under other variations. We explore this in Fig 18 for the CIFAR100
ResNet-56 self-distillation setting.
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(a) CIFAR100 MobileNet-v2 self-distillation

(b) CIFAR100 ResNet56 self-distillation

(c) TinyImageNet ResNet50 self-distillation

Figure 12: Dissecting the underfit points: Across a few settings on TinyImagenet and CIFAR100,
we separate the teacher-student scatter plots of logit-transformed probabilities into four subsets:
subsets where both models’s top prediction is correct (titled as Both), where only the student gets
correct (Only_student), where only the teacher gets correct (Only_teacher), where neither get
correct (Neither). We consistently find that the student’s “underfit” points are points where at least
one of the models go wrong.

(a) One-hot and self-distillation. (b) Loss-switching to distillation/one-hot at 100k steps.

Figure 13: Evolution of logit-logit plots over various steps of training for TinyImageNet
ResNet50 self-distillation setup: On the left, we present plots for one-hot training (top) and distil-
lation (bottom). Like in the case of CIFAR100, we again see a significant deviation between the
standalone and student plots early on during training. At step 12.5k, we see that the standalone model
has prioritized fitting some of the harder points close to x = y line. The student has however fit easier
points more substantially. On the right, we present similar plots for experiments from Section 3.2,
with the loss switched to distillation (top) and one-hot (bottom) at 100k steps. From the last two
visualized plots in each, observe that switching to distillation introduces (a) underfitting of hard
points and overfitting of easier points, (b) while switching to one-hot curiously undoes both of this.
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Figure 14: Accuracies under late distillation for CIFAR100 and TinyImageNet: We report the
final accuracies for various distillation settings under ResNet56, ResNet20 and MobileNet-v2, with
the loss switched to distillation in the middle of training. Observe that replacing the initial fourth/fifth
of the training has zero effect on the distillation loss suggesting that deviations in the initial phase of
training is not a crucial factor behind the success of distillation. Note that for MobileNet architectures,
the loss-switch caused instability, which explains the strong dip in accuracy, even going below the
one-hot model (top right).

Figure 15: Accuracies under late one-hot for CIFAR100 and TinyImageNet: We report the final
accuracies for various distillation-to-one-hot settings under ResNet56, ResNet20 and MobileNet-v2,
with the loss switched to one-hot in the middle of training. Here, surprisingly, we find that in a
majority of cases, switching to one-hot preserves the gains of distillation, and may even result an
increase in accuracy, echoing the findings of (Zhang & Sabuncu, 2020; Yuan et al., 2020; Tang et al.,
2020). However, in Fig 16, we find that these gains are subsequently destroyed by a longer one-hot
training.

For quick reference, in the top row of Fig 18, we first show the standard logit-transformed probabilities
plot where we find the underfitting phenomenon. In the second figure, we then directly plot the
probabilities instead of applying the logit transformation on top of it. We find that the underfitting
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Figure 16: Trajectory of test accuracy for loss-switching over longer periods of time: We grad-
ually change the loss for our self-distillation settings in CIFAR100 and TinyImagenet and extend
training for a longer period of time. We find that in all cases, while switching to distillation gains in
accuracy, switching to one-hot actively deteriorates the accuracy gains made by knowledge distillation.
However, we note that for the Tiny-Imagenet, there is a small window of time for which there is
a significant increase in accuracy under a switch to one-hot – this is later destroyed with longer
training. Nevertheless, the overall finding here reinforces the intuition that the one-hot loss results in
destructive gradients as discussed in Section 4.2.

Figure 17: Underfitting holds for longer runs and for smaller batch sizes: For the self-distillation
setting in CIFAR100 and TinyImagenet (left two figures), we find that the student underfits teacher’s
hard points even after an extended period of training (roughly 2× longer). On the right, we find in
the CIFAR100 setting that underfitting occurs even for smaller batch sizes.

phenomenon does not prominently stand out here (although visible upon scrutiny, if we examine
below the X = Y line for X ≈ 0). This illegibility is because small probability values tend to
concentrate around 0; the logit transform however helps magnify the behavior of small probability
values. For the third plot, we provide a scatter plot of entropy values of the teacher and student
probability values to determine if the student distinctively deviates in terms of entropy from the
teacher. It is not clear what characteristic behavior appears in this plot.

In the bottom plots, on the Y axis we plot the KL-divergence of the student’s probability from the
teacher’s probability. Along the X axis we plot the same quantities as in the top row’s three plots.
Here, we observe interesting behavior across the board: the KL-divergence of the student tends to be
higher on teacher’s harder points, where “hard points” can be interpreted as either points where its
top probability is low, or points where the teacher is “confused” enough to have high entropy.
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Figure 18: Scatter plots for various metrics: While in the main paper we presented scatter plots
of logit-transformed probabilities, here we present scatter plots for various metrics, including the
probabilities themselves, entropy of the probabilities, and the KL divergence of the student prob-
abilities from the teacher. We find that the KL-divergence plots capture similar intuition as our
logit-transformed probability plots. On the other hand, directly plotting the probabilities themselves
is not as visually informative.

C.4 VERIFYING THE EIGENSPACE VIEW EMPIRICALLY

In this section, we demonstrate the eigenspace view from Sec 4.1 in practice even in situations where
our theoretical assumptions do not hold good. We go beyond our theoretical assumptions in the
following ways:

1. We consider two self-distillation settings: first, a linear random features model trained on a
noisy version of the MNIST dataset and next a 2-layer multi-layer perceptron (MLP) model
trained on a subset of the MNIST dataset.

2. Both are trained with the cross-entropy loss (and not the squared error loss as used in our
theory).

3. We consider a multi-class problem and so the output is not a single scalar value.

4. We use a finite learning rate with minibatches and Adam.

We provide exact details of these two settings at the end of the section

Observations. In short, we first observe in Fig 19 that in both these settings, the harder points
of the teacher are underfit as usual. At the same time, we observe in Fig 20 and Fig 21 that the
convergence rate of the student is much faster along the top eigendirections, when compared to the
teacher (explained shortly). We show train-test accuracy plots in Fig 22.

To verify our eigenspace view theory, we show 2D projections of the trajectory of the teacher and
student along two eigendirections picked at random (with the higher eigendirection one plotted along
the X axis). The final solution found is marked by a ‘?’, (typically at the top-right of the plot).

Here, we observe that the teacher already has an implicit bias towards converging faster along the
top eigendirection (as is well-known). This can be inferred from the fact that the trajectories move
quickly along the X axis towards its final X axis value, before making progress along the Y axis. 1

But more interestingly, we find that for the student, the bias in this trajectory is more exaggerated; the
student converges faster towards the final X value of the teacher than the rate at which teacher gets
there. In doing so, the student covers a completely different part of parameter space never traversed

1Intuitively, when this bias is extreme, the trajectory would reach its final X axis value first with no
displacement along the Y axis, and only then progress along the Y axis. Instead, we see a softer form of this
bias, where the trajectory takes a “convex” shape.
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Figure 19: Probability scatter plots verifying the eigenspace theory: We observe the underfitting
of hard points. The left plot above corresponds to the linear random features model trained on
a noisy MNIST dataset, and the right corresponds to a 2-layer MLP trained on a noisy MNIST
dataset. We demonstrate that the student underfits the hard points in our two MNIST settings, while
simultaneously in Fig 20 and Fig 21 we observe that our theoretical predictions for eigenspace
convergence holds true.

by the teacher. In this sense, the bias of distillation is an exaggerated but non-identical version of the
bias of standard gradient descent.

In the linear setting, we find this bias to hold in all of the 15 different random pairs of eigendirections,
while in the MLP setting this holds in all but two of the 15 different random pairs of eigendirections.
Note that these eigendirections are picked at random from the set of all directions and not cherry
picked. Specifically, the top direction is sampled at random from the top 15 directions (without
replacement), and the bottom from the directions with indices in [20, 60] (without replacement).

To compute the eigendirections, in the case of the random features setting, we compute the directions
of the random-features-transformed data. We then project the weight matrix W along the eigendirec-
tion v, and then take the `2 norm ‖W>v‖2 to compute the projection. Note that in the theory, we
dealt with a model with a scalar-valued output, and so W>v would have been a scalar. In the case of
the 2-layer MLP, we directly compute the eigendirections of the input data. We then take the first
layer matrix W and compute the projection similarly.

Takeaway. We find that distillation leads to an exaggerated bias in terms of the rate of convergence
along various eigendirections. This happens even in a setting trained with cross-entropy loss, and with
a non-linear neural network, going beyond our theoretical assumptions. Thus, our insights from the
linear regression setting in Sec 4.1 apply to a wider range of settings. We also find that underfitting
happens in these settings, reinforcing the connection between the eigenspace regularization effect
and underfitting.

Other details. For the random features setting, we train on a subset of 128 datapoints with 5000
ReLU random features. The training data has 0.25 probability of a mislabeling. We use a batch size
of 16 and learning rate of 0.001. Both teacher and student are trained for 40 epochs, and the student
with a temperature of 5.

In the MNIST setting, we use a 2-layer MLP with 1000 hidden units trained on a subset of 128
datapoints with no label noise. We use a batch size of 16 and learning rate of 0.0001. Both teacher
and student are trained for 20 epochs; the distillation loss uses a temperature of 4. All other details
are identical to the previous setting.

C.5 VERIFYING THE GRADIENT SPACE VIEW IN PRACTICE

We now demonstrate that the conclusions of Theorem 4.2 indeed hold good empirically (even in a
settings where our theoretical assumptions don’t exactly hold e.g., we will use mini-batch instead of
full-batch). To do this, we build a synthetic perfectly classifiable dataset (very similar to that used in
Theorem 4.2) with class similarities encoded at the logit level. We then show that distillation helps in
better aligning the weights of that dataset, thus verifying that it has experienced “denoised” gradients.
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Figure 20: Eigenspace convergence plots verifying the eigenspace theory for NoisyMNIST-
RandomFeatures setting: In all these plots, the X axis corresponds to the top eigenvector and
the Y axis to the bottom eigenvector (see Sec C.4 for how they are randomly picked). Each plot
shows the trajectory projected onto the two eigendirections with the ? corresponding to the final
parameters. In all cases we find that both the student and the teacher converge faster to their final
X value, than to their Y value showing that both have a bias towards higher eigendirections. But
importantly, this bias is exaggerated for the student in all cases, proving our main theoretical claim in
Sec 4.1 in a more general setting with multi-class cross-entropy loss, finite learning rate etc.,

Dataset details. We consider a K-class classification dataset (K = 10) where the ith datapoint’s
features can be written as a K-“channel” input xi = (x

(i)
1 , . . . ,x

(i)
K ) where each channel x(i)

k ∈ RD
is D-dimensional (D = 100). For each k, we pick a global “ground truth” class vector µ?k sampled
from the D-dimensional normal distribution. Assuming a uniform distribution over K classes, given
a label y, we generate yth channel input xy as xy = αµ?y + (1− α)zy, where α = 0.01 and zy is
uniformly sampled from the D-dimensional unit hypersphere truncated to xy · µ?y > 0. Here, the
αµ?y is added so as to provide sufficient non-zero margin for the points from the decision boundary.

Next, we also set the co-ordinates corresponding to a few other classes. We first randomly pick 3
other classes meant to be “similar non-target” classes. Then for each such class k, we set xk =
β(αµ?k + (1− α)zk) where α and zk are sampled as before, and β is a random value rescaled Beta
distribution with parameters a = 4 and b = 1 rescaled by a multiplicative factor equal to 0.8·(xy ·µ?y).
This scaling factor ensures that xk · µ?y is smaller than the ground truth margin xy · µ?y), and so the
dataset remains linearly separable.

Besides the target class and the 3 non-target similar classes, all other co-ordinates are set to be zero
for x.

Training details. For training, we consider a linear classifier that has K output nodes, each drawing
input from the corresponding D dimensions of its class. We use Adam with a learning rate of 0.1,
with batch size 128, and 512 training datapoints. We train both teacher and student for 10 epochs,
and the student with temperature 5.

Observations. In this setting, although both the teacher and student have high accuracy, the self-
distilled student outperforms the teacher by about 0.7% (see Fig 23 left).

Next, we compute the number of (x, k) pairs in the training set whose gradients have the correct
sign under either loss. For each point x and each node k, we check whether xk · µ?k > 0 if and only
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Figure 21: Eigenspace convergence plots verifying the eigenspace theory for MNIST-MLP set-
ting : In all but two cases , we find that the student converges faster to the final X value of the teacher
than it does along the Y axis. This demonstrates our main theoretical claim in Sec 4.1 in a neural
network setting.

Figure 22: Test/train accuracies for MNIST settings for Sec C.4: In X axis, we plot the training
accuracy, and in the Y axis the test accuracy, computed at various points of time in the trajectory.
We note that in the linear case (left), there is little difference in the accuracies of the student and the
teacher, likely because this is a very simple setting where ignoring the lower eigendirections (as seen
in Fig 20 to distillation) has little effect. But for the MLP setting (right), we find that the student
achieves higher test accuracies than the teacher for a given training accuracy. This is evidence that
the student uses “better” directions (i.e., top eigendirections) to fit the data.

if the target probability under the given loss is non-zero. This can verify our key proof idea that
distillation denoises the gradients even in the absence of explicit noise in the dataset. According
to this computation, we find that for one-hot loss, only 73.22% of such pairs have the right sign of
gradient, while for distillation this is 97.77%, thus verifying that distillation is indeed able to denoise.

Inspired by the formulation in Theorem 4.2, we then analyze the cos-similarity between the weights
learned for each class, and its corresponding class vector. We find in Fig 23 middle that the student
has a better alignment than the teacher, despite the fact that the student is trained with the teacher’s
logits (and no extra information is given). This proves the main result of Theorem 4.2. Thus, even in
a perfectly classifiable dataset, we are able to make the student outperform the teacher because of
class similarities at the logit level.

33



Under review as a conference paper at ICLR 2023

Figure 23: Plots verifying the gradient space view in a synthetic dataset: On the left, we show
the trajectory of test and train accuracies for the teacher and student, demonstrating that distillation
indeed helps in our non-noisy, perfectly-classifiable dataset. In the middle, for each class, we plot the
cos-similarity of the weights with the ground truth class mean. We find that the student consistently
has higher alignment with the ground truths than the teacher; this demonstrates that distillation has
the ability to denoise the gradients (and outperform the teacher). In the right, we report logit-logit
scatter plots demonstrating the hard-point-underfitting effect. Specifically here, easier points are
overfit, while harder ones are more likely to be underfit.

Notably, we also observe the underfitting phenomenon in this setting (see Fig 23 right). This suggests
that the underfitting phenomenon is indeed connected to how distillation denoises gradients in the
presence of class similarities.
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