
Predictive Pipelined Decoding:
A Compute-Latency Trade-off for Exact LLM Decoding

Seongjun Yang * 1 Gibbeum Lee * 1 Jaewoong Cho 1 Dimitris Papailiopoulos 1 2 Kangwook Lee 1 2

Abstract

This paper presents “Predictive Pipelined Decod-
ing (PPD),” an approach that speeds up greedy de-
coding in Large Language Models (LLMs) while
maintaining the exact same output as the original
decoding. Unlike conventional strategies, PPD
employs additional compute resources to paral-
lelize the initiation of subsequent token decoding
during the current token decoding. This inno-
vative method reduces decoding latency and re-
shapes the understanding of trade-offs in LLM
decoding strategies. We have developed a theo-
retical framework that allows us to analyze the
trade-off between computation and latency. Us-
ing this framework, we can analytically estimate
the potential reduction in latency associated with
our proposed method, achieved through the as-
sessment of the match rate, represented as pcorrect.
The results demonstrate that the use of extra com-
putational resources has the potential to accelerate
LLM greedy decoding.

1. Introduction
The recent advances in LLMs, especially transformers
(Vaswani et al., 2017), have brought a breakthrough to the
domain of natural language processing. The notable genera-
tive language models include GPT-3 (Brown et al., 2020),
GPT-4 (OpenAI, 2023), PaLM (Chowdhery et al., 2022),
LaMDA (Thoppilan et al., 2022), OPT (Zhang et al., 2022),
and LLaMA (Touvron et al., 2023). The power of LLMs is
primarily driven by their enormous scale, often involving
hundreds of billions of parameters (Hoffmann et al., 2022).
However, the considerable size of these models can present
challenges in practical applications where immediate re-
sponses are crucial (Kasai et al., 2020).

*Equal contribution 1KRAFTON 2Department of Electrical
and Computer Engineering, University of Wisconsin-Madison.
Correspondence to: Kangwook Lee <kw1jjang@gmail.com>.

Work presented at the ES-FoMo Workshop at ICML 2023, Hon-
olulu, Hawaii, USA. Copyright 2023 by the author(s).

Generative transformers usually create text sequences using
auto-regressive decoding. After passing through all layers
of the transformer, each token is generated using the hidden
representation from the final layer of the transformer (Kim
et al., 2023a). Some studies (Schuster et al., 2022; Tang
et al., 2023), however, suggest that it is not necessary to
pass through all layers, but similar results can be obtained
using a sub-network of the transformer’s layers. Still, these
methods do not always ensure the same output as when all
transformer layers are utilized.

In this paper, we introduce Predictive Pipelined Decoding
(PPD), a new approach that lowers latency by utilizing ad-
ditional compute resources, while keeping the exact same
decoding results, as illustrated in Figure 1. Our methodol-
ogy is motivated by early-exiting, specifically as described
by (Schuster et al., 2022). Early-exiting allows the genera-
tion process to exit before reaching the final layer, enabling
predictions to be made earlier in the process. PPD shares
similarities with early exit strategies as it also utilizes in-
termediate representations to make early predictions on the
next token. However, PPD distinguishes itself by continuing
the current token decoding without exiting. In other words,
the main process remains focused on the current token while
other subprocesses early start the generation process with
predicted next token(s).

PPD accelerates decoding by parallelizing processes, each
of which begins decoding from the top-k token predictions
of the specific transformer layer. Simultaneously, the main
process continues to compute the output of the final layer
and predicts the next token. By aligning the results with the
next token prediction from the final layer, we can maintain
the original decoding result.

To assess the potential benefits of our method, we conduct an
analysis to determine the extent of latency reduction and the
associated compute resource costs. Also, we measure the
match rate, the probability that the early top-k predictions
match the top-1 prediction from the final layer, with the
commonly utilized dataset in NLP such as SQUAD 1.1
(Rajpurkar et al., 2016), WMT EN-FR (Bojar et al., 2015),
and CNN/DM (Hermann et al., 2015). We could estimate the
potential savings in latency and the corresponding compute
resources based on the match rate. However, it is essential

1

Predictive Pipelined Decoding: A Compute-Latency Trade-off for Exact LLM Decoding

: TL for main process

Conventional Decoding

She
went

loves

1st

half

2nd

half

loves
hates

her

A

B

B

C

C

…

short
cat

her

: Attention

: TL for sub-process

She →

PPD

Unit time

She →
Top-3

predictions
: sending the result

to the main process

→ loves → herloves → her → → dog

A B C

: sub-processes

: main process → dog
→ loves → her

went →
loves →
hate →

short →

her →
cat →

Figure 1. An overview of the proposed method. In a scenario where three words are generated from a pre-trained transformer decoder
with d layers, “She” is fed as an input for the decoder. PPD forecasts the next token at an intermediate transformer layer, such as the
top-3 tokens from the d/2-th layer. PPD simultaneously launches three sub-processes, each feeding a predicted token into the model,
while the main process continues to forward the intermediate output to the final layer. Once the main process is complete, PPD verifies if
any predicted tokens match the main process’s final output. If a match is found, this method reduces decoding latency, yielding results
equivalent to those of conventional decoding methods. “TL” stands for transformer layers.

to mention that we have not implemented the algorithm, and
this work is purely providing a performance modeling and
analysis. We believe that once properly implemented, the
predicted latency reduction can be realized, but we leave it
to the future work.

In summary, our contributions are: (1) a framework, which
we call PPD, that boosts the speed of the decoding, (2) a
theoretical analysis of latency savings versus computing
resource costs, and (3) an empirical measurement of match
rate to estimate how effective PPD would be in an actual
situation.

2. Related Work
Various strategies have been proposed to improve the infer-
ence speed of large-scale transformer models. These include
employing model pruning techniques (Fan et al., 2019; Gale
et al., 2019; Michel et al., 2019; Voita et al., 2019; Sanh
et al., 2020; Kurtic et al., 2022; Kwon et al., 2022; Campos
& Zhai, 2023); implementing knowledge distillation meth-
ods to downsize the models (Jiao et al., 2019; Sanh et al.,
2019); and adopting quantization procedures (Zafrir et al.,
2019; Shen et al., 2020; Zadeh et al., 2020; Kim et al., 2021;
Dettmers et al., 2022; Wu et al., 2022; Yao et al., 2022;
Frantar et al., 2022). However, these approaches do not
necessarily guarantee the original inference quality since
they do not have a mechanism that verifies the validity of
the generated token.

Our research is inspired by early-exiting approaches (Liu
et al., 2021; Schuster et al., 2021; Sun et al., 2022; Xin
et al., 2021; Yin et al., 2021; Schuster et al., 2022) that
utilize only the initial segments of transformer layers for
inference, rather than the entire network. Especially, Schus-
ter et al. (2022) implements an early-exiting approach for
decoder-only models in which one can select the layer to

exit and check the confidence measure of each token using
a threshold function. However, the approach could not be
as exact as conventional decoding due to its dependency on
a threshold-based confidence measure.

Similarly, with the goal of reducing the inference time of
transformers while preserving the original inference qual-
ity, numerous studies (Stern et al., 2018; Kim et al., 2023b;
Chen et al., 2023; Leviathan et al., 2023) have utilized two
language models which are one smaller and one larger. The
smaller model rapidly generates output, while the larger
model verifies its validity. Despite the potential speed ad-
vantage, this method might not consistently match the exact
output of larger models, resulting in discrepancies since the
larger model relies on the smaller model’s confidence score.

3. Predictive Pipelined Decoding
We introduce Predictive Pipelined Decoding (PPD), a low-
latency decoding method that leverages multiple compute
resources. PPD utilizes an intermediate output of a trans-
former to predict the next token, which is typically produced
by the final layer’s output. This allows PPD to start the
forward propagation of the next sequence earlier than the
conventional decoding. Despite this early start, the original
forward propagation continues uninterrupted up to the final
layer. This parallel approach accelerates the conventional
greedy decoding process while ensuring the same decoding
result.

In the following, we elaborate on the process of PPD. This
method predicts the next token early at an intermediate trans-
former layer. PPD employ an intermediate hidden represen-
tation h, e.g., d

2 -th layer’s output, to estimate the probability
p(x|h) of the next token. This is done by applying a lan-
guage modeling classifier and a softmax activation to the

2

Predictive Pipelined Decoding: A Compute-Latency Trade-off for Exact LLM Decoding

hidden representation. Subsequently, PPD identifies the
top-k candidate tokens with regard to p(x|h) and initiates
k parallel sub-processes. Each sub-process then inputs the
selected token into the transformer. In parallel, the main
process continues to forward the intermediate output up to
the final layer.

Once the main process completes the forward propagation
to the final layer, PPD checks if the decoded next token from
the final output matches any of the top-k next token candi-
dates previously predicted from the intermediate output. If a
match is found, PPD only continues the forward propagation
associated with the matching token, disregarding the results
from other processes. In cases where no matches are found,
all results from sub-processes are disregarded, and PPD pro-
ceeds with the output from the final layer. This approach
enables us to achieve decoding results identical to those
of the original method while improving latency efficiency.
Figure 1 provides an overview of the proposed method. For
subsequent rounds, the main process repeatedly employs the
output from the intermediate layer of sub-processes. The
algorithm description is provided in Algorithm 1.

4. Theoretical Analysis
4.1. Model
For fixed k, PPD makes an early next-token prediction at
the d̄-th intermediate layer out of the total d layers in a trans-
former, and we model that one of the top-k early predictions
will match the actual top-1 at the final layer with probability
0 < pcorrect < 1. Furthermore, we model that these events
are independent of all the others. We define a sequence
of consecutively generated tokens as a run. PPD begins
a run and continues until all early predictions no longer
match the final prediction, at which point all sub-processes
are disregarded. Counting from the beginning of the gen-
erated text, we denote the i-th run’s length by Xi, where
Xi ≥ 1. Note that Xi ∼ Geom(1 − pcorrect) except for
the last run, where Geom denotes a geometric distribution,
and E[Xi] = 1/(1 − pcorrect). Assume that the length of
the text to be generated is ℓ tokens, where ℓ ≥ 1. Then,
we have

∑N
i=1 Xi = ℓ, where N is a random variable that

denotes the number of runs required to completely generate
ℓ tokens. We assume an equal amount of computational
time is required for each layer of the transformer, which is
mainly due to the majority of layers being composed of the
same self-attention and feed-forward network. We refer to
this consistent time requirement for one layer as one ‘time
unit’. Consequently, forwarding through d layers of the
transformer would demand d time units.

4.2. Latency Analysis
Before we show our exact analysis, we first present an ap-
proximate analysis for ℓ ≫ 1. Also, for simplicity, let
us assume d̄ = d

2 , i.e., we make an early prediction after

Algorithm 1 Predictive Pipelined Decoding (PPD)
1: Input: the maximum number of tokens ℓ, the number of

transformer decoder layers d, the intermediate layer number
d̄ ≥ 0.5d, the number of compute units k + 1, the start token
x0

2: Launch Process 0
3: Initialize:

t← 0
eps flag (early prediction success flag)← False

4: while t < ℓ or xt ̸= EOS do
5: for PID (Process ID) = 0 do
6: if eps flag = False then
7: Start forwarding from the 1st layer with xt

8: else
9: Start forwarding from (d− d̄+ 1)-th layer with h

(0)

d−d̄

10: end if
11: Compute the output of the d̄-th layer h(0)

d̄

12: Estimate the next token distribution p̂(xt+1|h(0)

d̄
)

13: Select the top-k tokens x̂(1)
t+1, . . . , x̂

(k)
t+1 from p̂.

14: eps flag← False
15: if t = 0 then
16: Replicate process 0 to generate processes 1 to k
17: end if
18: end for
19: for PID = 0, 1, ..., k in parallel do
20: if PID = 0 then
21: xt+1 ← argmaxxt+1 p̂(xt+1|h(0)

d)
22: else
23: Compute h

(PID)

d−d̄
with x̂

(PID)
t+1

24: if x̂(PID)
t+1 = xt+1 then

25: h
(0)

d−d̄
← h

(PID)

d−d̄

26: eps flag← True
27: end if
28: end if
29: end for
30: t← t+ 1
31: end while

processing through the middle layer.

Let us first find the expression for N . Since ℓ ≫ 1, we also
have N ≫ 1. Thus, we have ℓ = N · X1+X2+···+XN

N ≈
N E[X1], where the last approximation is derived from the
law of large numbers, with the assumption that Xis are i.i.d.

Now, we compute the expected latency to generate ℓ tokens
with PPD. Recall that for a run of length X , it takes d +

(X − 1)d2 = d(X+1)
2 time units to generate the run. Thus,

the total time to generate the ℓ tokens is

N∑
i=1

d(Xi + 1)

2
=

d(
∑N

i=1 Xi +N)

2
=

d(ℓ+N)

2
. (1)

By dividing the total latency by ℓ, we get the per-token
latency:

d(ℓ+N)

2ℓ
=

d(1 +N/ℓ)

2
≈ d(1 + 1/E[X1])

2

= d
(
1− pcorrect

2

)
. (2)

3

Predictive Pipelined Decoding: A Compute-Latency Trade-off for Exact LLM Decoding

This reveals an intuitive relationship between the per-token
latency and the probability of successful early token pre-
diction. If pcorrect is close to 1, then the per-token latency
becomes 0.5d, while if pcorrect is close to 0, then the average
per-token latency remains as d.

To run PPD with a fixed choice of k, one needs k + 1
compute resources. However, at the beginning of each run,
only one compute resource is used. Thus, to compute the
average compute resources required for running PPD, we
need the following calculation. For a run of length X , the
first d

2 time units requires one compute resource, while
the remaining Xd

2 time units use k + 1 compute resources.
Therefore, the total compute resources spent for the run of
length X is (k+1)dX+d

2 , and the total compute resources
spent for the entire text generation is

N∑
i=1

(k + 1)dXi + d

2
=

(k + 1)dℓ+ dN

2
. (3)

By dividing the total compute resources by the total gener-
ation time, we get the average compute resources per time
unit:

(k+1)dℓ+dN
2

d(ℓ+N)
2

≈ (k + 1) + 1/E[X1]

1 + 1/E[X1]
=

k + 2− pcorrect

2− pcorrect
. (4)

If pcorrect is close to 1, then the average compute resources
per time unit becomes k + 1. Note that this makes sense
since when pcorrect is 1, one can generate the whole text in
one run, and hence all k + 1 compute units will be used
almost all the time. If pcorrect is close to 0, then the average
compute units per time unit becomes k+2

2 . This also makes
sense as if the early prediction is always wrong, the run
length is always 1. For the first half unit time, we use one
compute unit. For the second half unit time, we use k + 1
compute units. Thus, on average, we use k+2

2 compute units
throughout the generation.

Recall that the above analysis was approximate, assuming
ℓ ≫ 1 and d̄ = d

2 . The following theorem gives the exact
analysis without the assumption, when d̄ is greater than or
equal to 0.5d.

Theorem 4.1 (Latency-compute trade-off with PPD). Given
pcorrect, k, and for fixed ℓ, if PPD makes an early prediction
at the d̄-th intermediate layer out of the total d layers (d̄ ≥
d
2), then the expected latency to generate a sequence of ℓ
tokens is

dℓ− (d− d̄)(ℓ− 1)pcorrect,

and the expected total compute units is

dℓ− (d− d̄)(ℓ− 1)pcorrect + k(d− d̄)ℓ.

Proof. The proof is in Appendix D.
Conventional decoding requires dℓ time units to generate
ℓ tokens. However, in PPD, there is an expectation that a

Layers
dataset top-k trained 10 20 30 35 37

SQUAD

1
N 5.88% 38.90% 62.90% 79.77% 88.01%
Y 15.45% 52.81% 72.34% 87.68% 91.67%

3
N 9.25% 54.04% 77.92% 92.64% 97.67%
Y 23.48% 68.37% 87.49% 97.33% 98.91%

5
N 11.04% 60.15% 83.84% 95.85% 99.08%
Y 27.90% 74.15% 92.29% 98.81% 99.62%

WMT

1
N 2.40% 21.63% 39.69% 68.64% 78.15%
Y 11.06% 29.17% 48.20% 74.84% 82.69%

3
N 4.38% 31.69% 61.71% 85.03% 93.53%
Y 14.83% 41.14% 68.50% 89.84% 95.48%

5
N 5.57% 37.13% 68.84% 89.54% 96.41%
Y 16.82% 47.84% 75.46% 93.36% 97.67%

CNN/DM

1
N 7.23% 32.08% 53.07% 68.90% 78.82%
Y 19.02% 43.65% 61.45% 78.46% 84.42%

3
N 12.84% 46.36% 68.14% 85.07% 93.81%
Y 27.57% 60.60% 78.55% 93.07% 96.62%

5
N 15.21% 52.51% 74.22% 90.04% 96.88%
Y 31.33% 67.33% 84.83% 96.06% 98.40%

Table 1. The result of p̂correct from Vicuna-13B. The match rate,
p̂correct, represents the probability where one of the top-k predic-
tions from the intermediate layer matches the top-1 prediction from
the final layer. In the “trained” column, the letter “N” signifies that
the language modeling classifier, which is trained specifically for
the final layer, tests across all layers. Conversely, the letter “Y”
represents the classifier individually trained for each layer.

proportion of (ℓ− 1)pcorrect tokens accurately match the pre-
dictions made at the intermediate layer. For these instances,
parallel pre-computations up to the (d− d̄)-th layer result
in time savings. Consequently, it allows PPD to reduce the
expected latency by (d− d̄)(ℓ− 1)pcorrect time units.

To achieve these savings, PPD employs one computational
unit dedicated to the main process for dℓ − (d − d̄)(ℓ −
1)pcorrect time units. In addition, PPD allocates k compu-
tational units for each of the ℓ tokens to pre-compute the
output of the (d− d̄)-th layer along with the predictions.

4.3. Simulations
Experimental Setup In order to theoretically estimate the
potential improvements in decoding latency in real-world
NLP tasks, we examine the match rate, denoted by p̂correct.
This match rate is empirically estimated across multiple
token geration processes by verifying if any of the top-k
predicted tokens from the intermediate layer match the top-1
token from the final layer.

We test the NLP tasks on three benchmark datasets: SQUAD
1.1 (Rajpurkar et al., 2016), WMT EN-FR (Bojar et al.,
2015), and CNN/DM (Hermann et al., 2015). We use their
respective test datasets for evaluations. The model for the
test is Vicuna-13B (Chiang et al., 2023), a transformer with a
total of 40 layers. We specifically probe the early prediction
at the 15th, 20th, 30th, 35th, and 37th layers to derive the
match rate (see Table 1).

4

Predictive Pipelined Decoding: A Compute-Latency Trade-off for Exact LLM Decoding

1 2 3 4 5 6
Average compute resources per time unit

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Pe

r t
ok

en
 la

te
nc

y

 34% latency reduction
 3.2x compute resources

k=5k=3k=1

(1.561, 0.892)

(4.973, 0.629)

Trade-off Curve
Conventional decoding
SQUAD
SQUAD + tr
WMT
WMT + tr
CNN/DM
CNN/DM + tr

Figure 2. Theoretical trade-off curve of average compute re-
sources per time unit and per token latency. The curve graph is
derived from Equation (2) and (4). For example, with k = 3 and
while performing the SQUAD task with a trained classifier, latency
can be reduced by 34% at the expense of using 3.2 times more
computational resources. This is demonstrated using Vicuna-13B,
a model with 40 layers, where the intermediate layer is set to d/2.
The notation “tr” indicates that the language modeling classifier
has been individually trained for each transformer decoder layer.

Furthermore, our analysis includes two different utilization
of the language modeling classifier for estimating the dis-
tribution of tokens over vocabulary. The first employs the
common classifier across all layers, trained specifically for
the final layer, and the second uses the classifier trained
uniquely for each layer. An in-depth explanation of the
experimental setup can be found in Appendix B.

Result Table 1 reveals that the accuracy of token prediction
enhances with an increase in both the top-k and layer values.
Indeed, the p̂correct can be represented with the term k as you
can see in Section 4.2. Additionally, the overall performance
shows improvement when the language modeling classifier
is individually trained for each layer. However, it is critical
to note that as the number of layers increases, the method
starts to resemble the vanilla approach, implying a potential
loss in latency benefits. Nevertheless, it becomes clear that
training the classifier with an increase in top-k values, or
computational resources, can effectively contribute to reduc-
ing latency. Further results based on the token positions can
be found in Appendix C.

Figure 2 shows the theoretical results of the trade-off be-
tween latency and computational resources from Equation
(2) and (4). The figure, which represents theoretical estima-
tions rather than empirical data, sets the intermediate layer
at 20, using p̂correct values from Table 1 for scatter plots.
With normalized latency and computational resources of
the original decoding, we observe latency per token vary-
ing from 0.629 (SQUAD+“tr”, k=5) to 0.892 (WMT, k=1).
These findings suggest a speed improvement between 10.8%
and 37.1%, whilst maintaining output quality equivalent to
the original decoding. It is crucial to note, however, that
this speed increase requires more computational resources,
escalating by 1.561 to nearly 4.973 times the original us-

age. Additionally, we present the trade-off graph between
average compute resource per token and latency per token
in Figure 4.

5. Limitations
While our method has the potential for latency improve-
ments, this comes at the cost of increased computational
requirements. To reduce the computation costs, future re-
search should focus on better utilization of GPU resources.
It is also crucial to consider other factors that impact la-
tency, such as GPU synchronization, data transfer overhead,
and communication and memory management overhead, as
highlighted in Kim et al. (2023a). The scope of our current
work specifically targets greedy decoding, yet it is worth
acknowledging that other decoding algorithms (Holtzman
et al., 2019; Radford et al., 2019; Wang et al., 2022) have
demonstrated superior performance. Thus, future endeav-
ors intend to extend our methodology to other decoding
methods.

6. Conclusion
We introduced PPD, a method aimed at reducing the decod-
ing latency while maintaining the original decoding result
of LLM. Based on our theoretical analysis and empirical
measurements, we identified the potential of PPD to reduce
latency. Furthermore, we demonstrated that training the lan-
guage modeling classifier for an intermediate transformer
layer can effectively enhance early prediction accuracy, po-
tentially leading to further reductions in latency.

References
Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Huck,

M., Hokamp, C., Koehn, P., Logacheva, V., Monz, C.,
Negri, M., Post, M., Scarton, C., Specia, L., and Turchi,
M. Findings of the 2015 workshop on statistical ma-
chine translation. In Proceedings of the Tenth Workshop
on Statistical Machine Translation, pp. 1–46, Lisbon,
Portugal, September 2015. Association for Computa-
tional Linguistics. doi: 10.18653/v1/W15-3001. URL
https://aclanthology.org/W15-3001.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Campos, D. and Zhai, C. To asymmetry and beyond:
Structured pruning of sequence to sequence models
for improved inference efficiency. arXiv preprint
arXiv:2304.02721, 2023.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model

5

https://aclanthology.org/W15-3001

Predictive Pipelined Decoding: A Compute-Latency Trade-off for Exact LLM Decoding

decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang,
H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E.,
Stoica, I., and Xing, E. P. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality,
March 2023. URL https://lmsys.org/blog/
2023-03-30-vicuna/.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Fan, A., Grave, E., and Joulin, A. Reducing transformer
depth on demand with structured dropout. arXiv preprint
arXiv:1909.11556, 2019.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt,
L., Kay, W., Suleyman, M., and Blunsom, P. Teaching
machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The
curious case of neural text degeneration. arXiv preprint
arXiv:1904.09751, 2019.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li,
L., Wang, F., and Liu, Q. Tinybert: Distilling bert
for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

Kasai, J., Pappas, N., Peng, H., Cross, J., and Smith,
N. A. Deep encoder, shallow decoder: Reevaluating
non-autoregressive machine translation. arXiv preprint
arXiv:2006.10369, 2020.

Kim, S., Gholami, A., Yao, Z., Mahoney, M. W., and
Keutzer, K. I-bert: Integer-only bert quantization. In
International conference on machine learning, pp. 5506–
5518. PMLR, 2021.

Kim, S., Hooper, C., Wattanawong, T., Kang, M., Yan, R.,
Genc, H., Dinh, G., Huang, Q., Keutzer, K., Mahoney,
M. W., et al. Full stack optimization of transformer infer-
ence: a survey. arXiv preprint arXiv:2302.14017, 2023a.

Kim, S., Mangalam, K., Malik, J., Mahoney, M. W., Gho-
lami, A., and Keutzer, K. Big little transformer decoder.
arXiv preprint arXiv:2302.07863, 2023b.

Kurtic, E., Campos, D., Nguyen, T., Frantar, E., Kurtz, M.,
Fineran, B., Goin, M., and Alistarh, D. The optimal bert
surgeon: Scalable and accurate second-order pruning for
large language models. arXiv preprint arXiv:2203.07259,
2022.

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer,
K., and Gholami, A. A fast post-training pruning frame-
work for transformers. arXiv preprint arXiv:2204.09656,
2022.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding, 2023.

Liu, Y., Meng, F., Zhou, J., Chen, Y., and Xu, J. Faster depth-
adaptive transformers. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 13424–
13432, 2021.

Michel, P., Levy, O., and Neubig, G. Are sixteen heads
really better than one? Advances in neural information
processing systems, 32, 2019.

OpenAI. Gpt-4 technical report, 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ questions for machine comprehension of text.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2383–
2392, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1264.
URL https://aclanthology.org/D16-1264.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019.

Sanh, V., Wolf, T., and Rush, A. Movement pruning: Adap-
tive sparsity by fine-tuning. Advances in Neural Informa-
tion Processing Systems, 33:20378–20389, 2020.

6

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/D16-1264

Predictive Pipelined Decoding: A Compute-Latency Trade-off for Exact LLM Decoding

Schuster, T., Fisch, A., Jaakkola, T., and Barzilay, R. Con-
sistent accelerated inference via confident adaptive trans-
formers. arXiv preprint arXiv:2104.08803, 2021.

Schuster, T., Fisch, A., Gupta, J., Dehghani, M., Bahri, D.,
Tran, V., Tay, Y., and Metzler, D. Confident adaptive
language modeling. Advances in Neural Information
Processing Systems, 35:17456–17472, 2022.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A.,
Mahoney, M. W., and Keutzer, K. Q-bert: Hessian based
ultra low precision quantization of bert. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pp. 8815–8821, 2020.

Stern, M., Shazeer, N., and Uszkoreit, J. Blockwise parallel
decoding for deep autoregressive models. Advances in
Neural Information Processing Systems, 31, 2018.

Sun, T., Liu, X., Zhu, W., Geng, Z., Wu, L., He, Y., Ni, Y.,
Xie, G., Huang, X., and Qiu, X. A simple hash-based
early exiting approach for language understanding and
generation. arXiv preprint arXiv:2203.01670, 2022.

Tang, S., Wang, Y., Kong, Z., Zhang, T., Li, Y., Ding, C.,
Wang, Y., Liang, Y., and Xu, D. You need multiple
exiting: Dynamic early exiting for accelerating unified
vision language model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 10781–10791, 2023.

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kul-
shreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L.,
Du, Y., et al. Lamda: Language models for dialog appli-
cations. arXiv preprint arXiv:2201.08239, 2022.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I.
Analyzing multi-head self-attention: Specialized heads
do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E.,
and Zhou, D. Self-consistency improves chain of
thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,

M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jer-
nite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame,
M., Lhoest, Q., and Rush, A. M. Transformers: State-
of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp.
38–45, Online, October 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos.6.

Wu, X., Yao, Z., Zhang, M., Li, C., and He, Y. Extreme
compression for pre-trained transformers made simple
and efficient. arXiv preprint arXiv:2206.01859, 2022.

Xin, J., Tang, R., Yu, Y., and Lin, J. Berxit: Early exiting for
bert with better fine-tuning and extension to regression.
In Proceedings of the 16th conference of the European
chapter of the association for computational linguistics:
Main Volume, pp. 91–104, 2021.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li,
C., and He, Y. Zeroquant: Efficient and affordable post-
training quantization for large-scale transformers. Ad-
vances in Neural Information Processing Systems, 35:
27168–27183, 2022.

Yin, H., Vahdat, A., Alvarez, J., Mallya, A., Kautz, J., and
Molchanov, P. Adavit: Adaptive tokens for efficient
vision transformer. arXiv preprint arXiv:2112.07658,
2021.

Zadeh, A. H., Edo, I., Awad, O. M., and Moshovos, A.
Gobo: Quantizing attention-based nlp models for low la-
tency and energy efficient inference. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pp. 811–824. IEEE, 2020.

Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat, M.
Q8bert: Quantized 8bit bert. In 2019 Fifth Workshop
on Energy Efficient Machine Learning and Cognitive
Computing-NeurIPS Edition (EMC2-NIPS), pp. 36–39.
IEEE, 2019.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

7

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Predictive Pipelined Decoding: A Compute-Latency Trade-off for Exact LLM Decoding

A. Datasets
SQUAD 1.1 (Rajpurkar et al., 2016) is a Question Answering dataset which has 10,570 test pairs. WMT15 FR-EN (Bojar
et al., 2015) is a machine translation dataset that includes 1,500 test pairs of English to French translations. CNN/DM
(Hermann et al., 2015) is a dataset for text summarization which has 11,487 test pairs. For these datasets, we set the token
length for text generation at 16 for SQUAD 1.1, and 128 for both the WMT EN-FR and CNN/DM.

B. Experiment Setting
We measured match rate, p̂correct, based on Vicuna-13B (Chiang et al., 2023) which was fine-tuned using the LLaMA
(Touvron et al., 2023) on user-shared dialogues collected from the website ShareGPT. To the best of our knowledge,
Chiang et al. (2023) is claimed to be the best performance among the open-source models available. Also, we conduct our
experiments using the Huggingface Transformers library (Wolf et al., 2020).

For the language modeling classifier training of each layer in the Vicuna-13B model, we utilize the ShareGPT dataset used
in fine-tuning. We freeze all model parameters except for the language modeling classifier. Training is conducted using 8
A100 GPUs, and the hyperparameters for the training can be found in Table 2. Additionally, please refer to Table 3 for the
prompts we use in our evaluation.

Hyperparameter Value
Number of Epochs 3

Learning Rate 0.00002
Batch Size 128
Optimizer AdamW

Loss Function Cross-Entropy
Max Sequence Length 2048

Warmup ratio 0.04
Weight Decay 0.0

Table 2. Training Hyperparameters

Prompt

SQUAD

We have provided context information below.
———————
{context}
———————
Given this information, please answer the question: {question}
Assistant:

WMT EN-FR

Instruction: Translate English sentence into French.
English: Sounds like a typical rugby club to me.
French: Ça m’a l’air d’être un club de rugby typique. #
English: At an English university, perhaps...
French: Dans une université anglaise, peut-être... #
English: {source sentence}
French:

CNN/DM

Article
{context}

Summarize the article
Assistant:

Table 3. Prompts used for the test. The terms “context”, “question”, and “source sentence” represent the data inputs for each task.

8

Predictive Pipelined Decoding: A Compute-Latency Trade-off for Exact LLM Decoding

C. Additional Results
In this section, we present the results of token prediction for the generated tokens in three text generation tasks, based
on their respective positions. The corresponding findings can be observed in Tables 4 to 6. For the sake of clarity, token
prediction was represented by grouping 2 tokens together for SQUAD, and by grouping 16 tokens together for WMT EN-FR
and CNN/DM. Within the three tables, the “N” notation signifies evaluation using the pretrained lanage modeling classifier
of Vicuna-13B, while “Y” indicates evaluation with the trained language modeling classifier for each layer. Overall, the
analysis of the results reveals a consistent pattern of token prediction across various token positions when utilizing the same
layer, k, and language modeling classifier.

D. Proof of Theorem 4.1

Unit time

: sending the result
to the main process

: sub-processes

: main process

Figure 3. The given figure represents the total per-token latency and usage of compute resources when the run’s length X and sub-processes
k are both equal to 3. The total per-token latency will be calculated as d+ 2d̄. Over the entirety of a unit time, four compute resources are
engaged for a duration of 3(d− d̄). The remaining time makes use of just one compute resource.

Proof. For a run of length X , the time required to generate the run TX is given by

TX = d+ (X − 1)d̄.

Therefore, the total per-token latency is

N∑
i=1

TXi =

N∑
i=1

d+ (Xi − 1)d̄

= d̄

N∑
i=1

Xi + (d− d̄)N

= d̄ℓ+ (d− d̄)N.

To compute the expected value of this quantity without assuming ℓ,N ≫ 1, we first need to identify the distribution of N .
Note that the expectation here is over different instances of sequence generations. Since N is the number of runs, N − 1 is
the number of times early predictions fail. Thus, N − 1 = Bin(ℓ− 1, 1− pcorrect). Hence, N = 1 + Bin(ℓ− 1, 1− pcorrect).
Thus, E[N] = 1 + (ℓ− 1)(1− pcorrect) = ℓ− (ℓ− 1)pcorrect. With this, we have

E
[
d̄ℓ+ (d− d̄)N

]
= d̄ℓ+ (d− d̄)E [N] = d̄ℓ+ (d− d̄)ℓ− (d− d̄)(ℓ− 1)pcorrect

= dℓ− (d− d̄)(ℓ− 1)pcorrect.

For a run of length X , the (d− d̄)X time units require k + 1 compute resources while the remaining TX − (d− d̄)X time
unit requires one compute resource. Therefore, the total compute resources spent for the run of length X are

TX − (d− d̄)X + (k + 1)(d− d̄)X = d+ (X − 1)d̄− (d− d̄)X + (k + 1)(d− d̄)X

= d̄X + d− d̄+ k(d− d̄)X

= (d̄+ k(d− d̄))X + (d− d̄),

9

Predictive Pipelined Decoding: A Compute-Latency Trade-off for Exact LLM Decoding

and the total compute resources spent for the entire text generation is

N∑
i=1

(d̄+ k(d− d̄))Xi + (d− d̄) = (d̄+ k(d− d̄))ℓ+ (d− d̄)N. (5)

By computing the expected value of it, we have

E
[
(d̄+ k(d− d̄))ℓ+ (d− d̄)N

]
= (d̄+ k(d− d̄))ℓ+ (d− d̄)E [N]

= (d̄+ k(d− d̄))ℓ+ (d− d̄)(ℓ− (ℓ− 1)pcorrect)

= (d̄+ (k + 1)(d− d̄))ℓ− (d− d̄)(ℓ− 1)pcorrect

= (d+ k(d− d̄))ℓ− (d− d̄)(ℓ− 1)pcorrect

= dℓ− (d− d̄)(ℓ− 1)pcorrect + k(d− d̄)ℓ.

E. Additional Trade-off Graph
We illustrate the trade-off between latency and compute resources per token. The “compute resources per token” is calculated
by multiplication of equation (2) and (4). We set d̄ = d

2 for the following equation.

Average compute resources per token ≈ 2 + k − pcorrect

2
. (6)

1 2 3 4 5 6
Average compute resources per token

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
r t

ok
en

 la
te

nc
y

k=5k=3k=1

Trade-off Curve

Conventional decoding
SQUAD
SQUAD + tr
WMT
WMT + tr
CNN/DM
CNN/DM + tr

Figure 4. Theoretical trade-off curve of compute resources per token and latency for each task at the d/2 layer. In this figure, we plot
the graph in terms of average computer resources per token.

10

Predictive Pipelined Decoding: A Compute-Latency Trade-off for Exact LLM Decoding

Token position
d̄ K Trained 1−2 3−4 5−6 7−8 9−10 11−12 13−14 15−16 Total

10 layers

1
N 0.80% 7.29% 6.02% 5.66% 5.93% 6.62% 7.02% 7.66% 5.88%
Y 3.06% 16.79% 16.76% 15.45% 16.58% 17.72% 17.98% 19.28% 15.45%

3
N 1.43% 11.74% 9.31% 9.23% 9.70% 10.53% 10.61% 11.40% 9.25%
Y 13.52% 25.17% 24.14% 23.20% 24.40% 25.35% 25.38% 26.69% 23.48%

5
N 1.91% 14.34% 11.11% 11.11% 11.70% 12.38% 12.52% 13.25% 11.04%
Y 23.42% 29.57% 27.36% 27.04% 27.87% 28.92% 28.85% 30.14% 27.90%

20 layers

1
N 19.56% 43.20% 44.55% 43.36% 41.81% 40.36% 39.31% 39.04% 38.90%
Y 37.54% 56.01% 56.53% 55.93% 54.96% 53.92% 53.69% 53.93% 52.81%

3
N 30.15% 60.79% 60.86% 59.67% 57.75% 55.23% 54.35% 53.52% 54.04%
Y 51.10% 72.95% 72.39% 71.82% 71.24% 69.80% 68.60% 69.06% 68.37%

5
N 36.47% 67.80% 66.63% 65.79% 63.89% 61.24% 59.86% 59.51% 60.15%
Y 57.37% 79.05% 78.03% 77.62% 76.92% 75.63% 74.05% 74.53% 74.15%

30 layers

1
N 55.05% 70.19% 66.48% 66.25% 64.72% 61.70% 60.42% 58.39% 62.90%
Y 65.36% 78.73% 76.79% 74.30% 73.76% 71.01% 69.65% 69.09% 72.34%

3
N 71.66% 85.21% 81.68% 80.46% 79.86% 76.47% 74.84% 73.15% 77.92%
Y 84.03% 92.37% 91.04% 88.73% 88.43% 86.06% 85.05% 84.20% 87.49%

5
N 78.84% 90.15% 87.94% 86.12% 85.43% 82.22% 80.77% 79.30% 83.84%
Y 91.12% 95.70% 94.90% 93.41% 92.62% 90.85% 90.27% 89.43% 92.29%

35 layers

1
N 73.73% 85.51% 82.93% 81.13% 80.75% 78.99% 78.10% 76.98% 79.77%
Y 82.74% 91.32% 90.70% 88.20% 88.25% 87.39% 86.96% 85.89% 87.68%

3
N 90.03% 96.02% 94.68% 93.48% 93.48% 92.01% 91.32% 90.10% 92.64%
Y 96.26% 98.58% 98.32% 97.88% 97.65% 97.11% 96.70% 96.11% 97.33%

5
N 94.64% 98.12% 97.40% 96.54% 96.20% 95.27% 94.64% 94.01% 95.85%
Y 98.55% 99.44% 99.38% 99.19% 98.87% 98.71% 98.37% 97.98% 98.81%

37 layers

1
N 82.12% 91.66% 90.79% 88.70% 88.90% 87.89% 87.58% 86.44% 88.01%
Y 87.70% 94.28% 93.73% 91.95% 92.28% 91.66% 91.29% 90.50% 91.67%

3
N 96.84% 98.86% 98.57% 98.09% 98.02% 97.55% 97.04% 96.37% 97.67%
Y 98.56% 99.47% 99.35% 99.19% 99.12% 98.91% 98.58% 98.07% 98.91%

5
N 99.04% 99.62% 99.53% 99.30% 99.17% 99.03% 98.71% 98.28% 99.08%
Y 99.56% 99.81% 99.84% 99.77% 99.70% 99.62% 99.44% 99.21% 99.62%

Table 4. The token prediction results for each token position in SQUAD. d̄ means intermediate transformer layer.

11

Predictive Pipelined Decoding: A Compute-Latency Trade-off for Exact LLM Decoding

Token position
d̄ K Trained 1−16 17−32 33−48 49−64 65−80 81−96 97−112 113−128 Total

10 layers

1
N 1.45% 2.01% 2.35% 2.12% 2.35% 2.66% 2.93% 3.30% 2.40%
Y 3.60% 8.08% 9.60% 10.80% 12.02% 13.42% 14.92% 16.08% 11.06%

3
N 2.65% 3.74% 4.33% 4.35% 4.40% 4.74% 5.20% 5.60% 4.38%
Y 5.53% 11.08% 13.33% 14.33% 15.86% 17.89% 19.75% 20.90% 14.83%

5
N 3.54% 4.82% 5.50% 5.59% 5.58% 6.03% 6.51% 7.00% 5.57%
Y 6.73% 13.00% 15.05% 15.92% 17.84% 20.24% 22.38% 23.43% 16.82%

20 layers

1
N 11.55% 16.65% 17.45% 20.37% 22.60% 25.95% 28.40% 30.08% 21.63%
Y 13.60% 21.05% 24.03% 28.37% 31.07% 35.65% 38.65% 40.95% 29.17%

3
N 17.87% 24.17% 25.78% 29.95% 33.10% 38.50% 41.23% 42.89% 31.69%
Y 22.08% 30.01% 33.97% 39.87% 43.90% 50.11% 53.63% 55.55% 41.14%

5
N 22.33% 28.84% 30.29% 34.92% 39.20% 44.41% 47.65% 49.44% 37.13%
Y 27.49% 36.51% 40.65% 46.85% 51.28% 57.24% 60.45% 62.28% 47.84%

30 layers

1
N 28.97% 32.49% 33.22% 38.12% 40.79% 45.30% 47.90% 50.70% 39.69%
Y 32.79% 39.03% 40.70% 46.02% 50.68% 55.72% 58.84% 61.83% 48.20%

3
N 48.05% 53.57% 55.64% 60.53% 64.22% 67.84% 70.70% 73.16% 61.71%
Y 52.70% 59.63% 62.35% 66.78% 72.00% 75.52% 78.53% 80.46% 68.50%

5
N 56.83% 61.02% 62.43% 66.80% 71.14% 75.01% 77.78% 79.71% 68.84%
Y 61.77% 67.57% 69.71% 73.43% 78.43% 81.90% 84.68% 86.21% 75.46%

35 layers

1
N 59.78% 60.45% 62.65% 66.26% 71.51% 73.71% 76.38% 78.43% 68.64%
Y 64.29% 66.23% 69.20% 73.04% 77.93% 80.60% 82.96% 84.49% 74.84%

3
N 79.89% 79.73% 80.28% 82.90% 86.58% 89.11% 90.45% 91.33% 85.03%
Y 83.93% 86.30% 86.48% 88.28% 91.11% 93.23% 94.40% 94.97% 89.84%

5
N 85.90% 86.35% 85.90% 87.53% 90.48% 92.51% 93.58% 94.05% 89.54%
Y 89.22% 91.40% 90.74% 92.10% 94.12% 95.72% 96.65% 96.90% 93.36%

37 layers

1
N 73.90% 71.87% 72.45% 75.47% 80.09% 81.95% 84.05% 85.42% 78.15%
Y 77.30% 76.32% 77.35% 80.82% 84.78% 86.85% 88.49% 89.58% 82.69%

3
N 91.86% 91.50% 91.50% 92.25% 93.83% 95.14% 95.84% 96.34% 93.53%
Y 93.66% 94.02% 93.89% 94.69% 95.87% 96.79% 97.31% 97.64% 95.48%

5
N 95.60% 95.69% 95.01% 95.56% 96.51% 97.23% 97.76% 97.90% 96.41%
Y 96.69% 97.14% 96.75% 97.15% 97.81% 98.29% 98.66% 98.88% 97.67%

Table 5. The token prediction results for each token position in WMT EN-FR. d̄ means intermediate transformer layer.

12

Predictive Pipelined Decoding: A Compute-Latency Trade-off for Exact LLM Decoding

Token position
d̄ K Trained 1−16 17−32 33−48 49−64 65−80 81−96 97−112 113−128 Total

10 layers

1
N 0.85% 7.42% 7.43% 7.99% 8.26% 8.64% 8.71% 8.54% 7.23%
Y 15.32% 17.20% 17.80% 18.56% 19.27% 20.29% 21.43% 22.27% 19.02%

3
N 12.75% 11.97% 12.01% 12.94% 13.25% 13.50% 13.33% 13.01% 12.84%
Y 21.92% 25.55% 26.63% 27.63% 28.43% 29.43% 30.18% 30.78% 27.57%

5
N 14.82% 14.31% 14.44% 15.46% 15.73% 16.05% 15.68% 15.21% 15.21%
Y 24.98% 29.34% 30.45% 31.61% 32.41% 33.36% 33.99% 34.53% 31.33%

20 layers

1
N 33.34% 33.67% 31.85% 31.87% 31.46% 31.64% 31.50% 31.29% 32.08%
Y 42.24% 44.45% 43.03% 43.09% 43.16% 43.75% 44.50% 45.01% 43.65%

3
N 47.68% 48.47% 46.01% 46.23% 45.82% 45.96% 45.64% 45.03% 46.36%
Y 60.46% 61.38% 59.67% 59.98% 60.19% 60.76% 61.13% 61.25% 60.60%

5
N 54.27% 54.68% 52.17% 52.40% 52.01% 52.06% 51.71% 50.80% 52.51%
Y 67.83% 68.02% 66.35% 66.72% 66.88% 67.52% 67.71% 67.63% 67.33%

30 layers

1
N 57.17% 54.63% 52.49% 52.79% 52.35% 52.10% 51.86% 51.15% 53.07%
Y 63.01% 62.35% 60.84% 61.26% 61.17% 61.15% 61.14% 60.68% 61.45%

3
N 70.92% 69.59% 67.80% 68.27% 68.06% 67.64% 67.01% 65.81% 68.14%
Y 78.99% 79.32% 78.63% 78.98% 78.85% 78.58% 77.97% 77.05% 78.55%

5
N 76.21% 75.51% 74.03% 74.51% 74.39% 74.05% 73.18% 71.88% 74.22%
Y 84.95% 85.47% 85.31% 85.40% 85.32% 84.94% 84.10% 83.16% 84.83%

35 layers

1
N 70.56% 70.11% 68.56% 68.49% 68.45% 68.41% 68.40% 68.20% 68.90%
Y 78.70% 79.48% 78.51% 78.44% 78.23% 78.27% 78.14% 77.92% 78.46%

3
N 85.92% 85.89% 85.16% 85.10% 85.00% 84.95% 84.61% 83.95% 85.07%
Y 93.22% 93.69% 93.52% 93.44% 93.28% 93.02% 92.60% 91.80% 93.07%

5
N 90.46% 90.66% 90.32% 90.27% 90.14% 89.99% 89.67% 88.83% 90.04%
Y 96.33% 96.56% 96.49% 96.41% 96.24% 95.99% 95.59% 94.82% 96.06%

37 layers

1
N 79.38% 79.84% 78.79% 78.44% 78.36% 78.41% 78.57% 78.78% 78.82%
Y 84.51% 85.32% 84.51% 84.30% 84.14% 84.12% 84.17% 84.27% 84.42%

3
N 93.72% 94.31% 94.07% 93.97% 93.78% 93.79% 93.57% 93.28% 93.81%
Y 96.71% 97.02% 96.94% 96.85% 96.74% 96.52% 96.26% 95.91% 96.62%

5
N 96.96% 97.20% 97.15% 97.13% 97.04% 96.88% 96.58% 96.12% 96.88%
Y 98.64% 98.66% 98.60% 98.59% 98.50% 98.33% 98.11% 97.77% 98.40%

Table 6. The token prediction results for each token position in CNN/DM. d̄ means intermediate transformer layer.

13

