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Abstract001

Existing speech-to-speech translation (S2ST)002
models fall into two camps: they either lever-003
age text as an intermediate step or require hun-004
dreds of hours of parallel speech data. Both005
approaches are incompatible with textless lan-006
guages or language pairs with limited parallel007
data. We present a framework for training text-008
less S2ST models that require just dozens of009
hours of parallel speech data. We first pretrain010
a model on large-scale monolingual speech011
data, finetune it with a small amount of parallel012
speech data (20-60 hours), and lastly train with013
unsupervised backtranslation objective. We014
train and evaluate our models for English-to-015
German, German-to-English and Marathi-to-016
English translation on three different domains017
(European Parliament, Common Voice, and All018
India Radio) with single-speaker synthesized019
speech. Evaluated using the ASR-BLEU met-020
ric, our models achieve reasonable performance021
on all three domains, with some being within022
1-2 points of our higher-resourced topline.023

1 Introduction024

Speech-to-speech translation (S2ST) system maps025

input speech in the source language to output026

speech in the target language. In many ways,027

S2ST represents the “holy grail” of translation028

as it enables natural, real-time, spoken commu-029

nication. S2ST has a rich history, from cascaded030

systems combining Automatic Speech Recogni-031

tion (ASR), Machine Translation (MT), and Text032

To Speech (TTS) technologies (Nakamura et al.,033

2006) to recently proposed neural end-to-end sys-034

tems (Lee et al., 2022a; Seamless Communication035

et al., 2023) that directly map from input source036

language speech to output target language speech.037

S2ST systems (Jia et al., 2019; Lee et al., 2022a,b;038

Jia et al., 2021; Duquenne et al., 2022; Seam-039

less Communication et al., 2023) have benefited040

from model and data scaling, leveraging increasing041

amounts of parallel speech and/or text data across042

languages. Yet, this is feasible only for a fraction of 043

the world’s 7000 languages (Lewis et al., 2016); the 044

majority of world languages have low-resource or 045

no parallel translation data available (Haddow et al., 046

2022). Furthermore, thousands of languages are 047

primarily spoken without standardized writing sys- 048

tems (about 3000 languages in Ethnologue (Lewis 049

et al., 2016) have no reported writing system), ne- 050

cessitating textless language processing. 051

Recent work on textless speech translation (Lee 052

et al., 2022b; Kim et al., 2023) requires large 053

amounts of parallel speech data, which is expen- 054

sive to collect and makes these approaches diffi- 055

cult to adapt for low-resource speech translation. 056

On the other hand, other ‘unsupervised S2ST’ ap- 057

proaches (Wang et al., 2022a; Fu et al., 2023; Nach- 058

mani et al., 2023) do not need any parallel speech 059

data at all, and instead rely on unsupervised cross- 060

lingual learning using large amounts of monolin- 061

gual speech and text datasets. However, they either 062

train cascaded models that have intermediate text 063

outputs or end-to-end models that use text supervi- 064

sion during training. As a result, they are difficult 065

to adapt for textless languages that are spoken, have 066

non-standard orthographies or poor ASR systems. 067

In this work, we adapt the unsupervised S2ST 068

pipeline to work in a fully textless manner for the 069

first time. We formulate fully textless S2ST as a 070

unit-to-unit machine translation problem that re- 071

quires a much more modest amount (dozens of 072

hours) of parallel speech training data. We be- 073

gin by pretraining an encoder-decoder unit lan- 074

guage model over self-supervised speech units us- 075

ing monolingual speech data, followed by finetun- 076

ing it for S2ST on a low-resource parallel dataset 077

and finally performing unsupervised backtransla- 078

tion to further improve performance. Figure 1 illus- 079

trates our method, comparing it to previous work. 080

Modelling real speech data with speech unit se- 081

quences poses challenges, such as inherent unit 082

sequence noise and ambiguity, that are orthogonal 083
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Model 
Category

Textless High-
Resource S2ST

(Lee et. al. 2022,
Duquenne et. al. 2022)

Speech 
Encoder

Text-based 
Unsupervised S2ST

(Wang et.al. 2022,
Fu et. al. 2023)

Textless Low-
Resource S2ST

(Ours)

Speech-to-Unit 
Encoder (HuBERT)

Mel-spectrogram 
Feature Extractor

Unsupervised 
ASR

<en>  2 3 8 23 9 
45 53 3 …

<en> this is a 
great figure!

Input
Representation

Source Speech

Translation
Model

Spectro Encoder

Unit Decoder

Text Encoder

Text Decoder

Unit Encoder

Unit Decoder

Output
Representation

<mr>  4 8 44 23 
21 44 56 ...

<mr> ह" एक उ&म 
आकृती आहे!

<mr>  4 8 44 23 
21 44 56 ...

Speech 
Vocoder

Unit Vocoder
(HiFiGAN)

Unsupervised TTS

Parallel 
Training Data

Thousands
of hours

Target Speech

None

😵💫

🥳

20-60 hours 🥳

Is it
Textless?

✅

❌

✅
Unit Vocoder

(HiFiGAN)

Figure 1: Overview of speech-to-speech translation systems. We compare our formulation to two relevant lines of
work. We present the first textless speech-to-speech system that does not require a large parallel training dataset.

to our research questions. Thus, for simplicity, we084

use single-speaker synthesized speech data to train085

and evaluate our models, following early S2ST086

work (Jia et al., 2019).087

We train two English ↔ German S2ST models088

in the European Parliament (Iranzo-Sánchez et al.,089

2019) and Common Voice (Ardila et al., 2020)090

domains and two English ↔ Marathi S2ST mod-091

els in the European Parliament (Iranzo-Sánchez092

et al., 2019) and All India Radio (Bhogale et al.,093

2022) domains, and evaluate the en→de, de→en094

and mr→en translation directions. We find that095

with just 20 hrs of parallel en→de and de→en data096

and 60 hrs of parallel en→mr and mr→en data,097

our models achievable reasonable performance on098

all three domains, within 1-2 ASR-BLEU of our099

high-resource supervised topline for the European100

Parliament domain for the de→en and mr→en di-101

rections. We will release code and model weights102

at the time of publication.103

2 Methods104

Unsupervised S2ST (Fu et al., 2023) has tackled105

the problem of text-based low-resource S2ST by106

representing input and output speech as text se-107

quences and unsupervisedly training a cascaded108

UASR-UMT-TTS pipeline. To adapt this for text-109

less languages, we represent the input and output110

speech utterances as discrete, self-supervised unit111

sequences rather than text sequences. Instead of112

ASR, we use a speech-to-unit encoder (S2U) and113

instead of TTS, we use a unit-to-speech vocoder114

(U2S) largely based on prior work (Hsu et al.,115

2021; Polyak et al., 2021). To train the transla-116

tion model, instead of text-based MT, we train a117

unit encoder-decoder (U2U) S2ST model using118

our three-step Pretrain-Finetune-Backtranslate ap- 119

proach illustrated in Figure 2 adapted from the 120

unsupervised MT literature (Lample et al., 2018). 121

We now describe each of these components below. 122

2.1 Speech-to-unit Encoder (S2U) 123

Past work (Hsu et al., 2021; Chung et al., 2021) has 124

explored learning self-supervised discrete speech 125

representations i.e. units. The learned units pre- 126

serve much of the input signal’s semantic informa- 127

tion (Pasad et al., 2021) Critically, text transcrip- 128

tions are not necessary to discover these units. It 129

is common to train autoregressive language mod- 130

els (Lakhotia et al., 2021; Borsos et al., 2022) over 131

these units, enabling NLP tasks to be performed 132

on spoken language without needing to transcribe 133

speech waveforms into text. 134

We base our speech-to-unit encoder on Hu- 135

BERT (Hsu et al., 2021). As proposed by HuBERT, 136

we train a k-means clustering model over embed- 137

dings at an intermediate layer, choosing the layer 138

on the basis of the units’ PNMI score, a phone-unit 139

mutual information metric. We map each embed- 140

ding to its nearest k-means cluster center and apply 141

run-length encoding (Lee et al., 2022b). We train a 142

shared English-German k-means model and a sep- 143

arate Marathi one. We also tried XLSR (Conneau 144

et al., 2020) and Indic-wav2vec (Javed et al., 2021), 145

but decided on HuBERT on the basis of its units’ 146

high PNMI score. We describe training the cluster- 147

ing model and the evaluation of the speech-to-unit 148

encoder in Section 4.1. 149

2.2 Unit Encoder-Decoder (U2U) 150

We train our unit encoder-decoder S2ST model 151

using a Pretrain-Finetune-Backtranslate approach 152
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Denoising Pretraining Loss
Uses monolingual data

<L1> 2 _ 23 _ 53 …

Unit 
Encoder

Unit 
Decoder

<L2> 2 32 84 23 91 45 53 …

2 32 84 23 91 45 53 …. <L1> 2 32 84 23 91 …

Unit Encoder-
Decoder

decode
<L2> 42 88 44 23 …

Loss

copy after 
every update

<L1> 2 42 84 23 12 …

Supervised Finetuning Loss
Uses parallel translation data

<L1> 21 31 22 1 5 …

Unit 
Encoder

Unit 
Decoder

<L2> 42 58 92 56 67 1 …

42 58 92 56 67 1 …

Round-trip Consistency Loss
Uses monolingual data

Unit Encoder-
Decoder

Figure 2: Training a unit-based encoder-decoder model for S2ST. The first Pretrain step trains on large-scale
monolingual speech data using a denoising pretraining loss. The second Finetune step trains on low-resource
parallel speech translation data using a supervised finetuning loss. The third Backtranslate step trains using the
round-trip consistency loss (on monolingual data) and supervised finetuning replay (on parallel data).

(Figure 2). We describe our approach here and153

provide implementation details in Section 4.2.154

Pretrain We initialize with mBART-50 (Liu155

et al., 2020) (a text encoder-decoder model), reini-156

tializing the input/output embedding layers for157

our new unit vocab. Unit sequences do not ex-158

ist in the mBART-50 text token space. However,159

since units can be treated as text tokens, just with160

a different vocabulary, we can easily adapt the161

training pipeline to train on unit sequences rather162

than text sequences. We pretrain using their de-163

noising objective: given a unit sequence dataset164

D and a noising function g(·) (we use one that165

samples contiguous spans and masks them until a166

fixed ratio of tokens are masked), the decoder is167

trained to generate the original sequence X given168

encoder input g(X), optimizing model weights θ169

as argminθ
∑

X∈D − log Pr(X|g(X); θ).170

We train two bilingual unit LMs, one for English-171

German, and one for English-Marathi. They are172

trained on unit sequences, derived from monolin-173

gual speech corpora in the three languages, gen-174

erated by the respective S2U encoder (shared for175

English-German and separate for Marathi). We176

train one Sentencepiece (Kudo and Richardson,177

2018) BPE tokenizer per LM.178

Finetune We perform supervised training on the179

pretrained unit LM using a small parallel S2ST cor-180

pus, where the input is a spoken utterance in the181

source language, and the target is a translated ver-182

sion spoken in the target language. During this fine-183

tuning process, we use the standard cross-entropy184

loss of the decoder generating the target unit se-185

quence, when the ground truth source unit sequence186

is provided to the encoder.187

Backtranslate Finally, we perform unsupervised188

backtranslation (Lample et al., 2018) on our fine-189

tuned model. We follow the standard recipes used190

in unsupervised text backtranslation, with minor191

modifications to stabilize training in the speech 192

domain. We briefly describe this procedure which 193

trains the model to reconstruct a unit sequence from 194

a model-generated synthetic translation of the same 195

unit sequence using a round-trip translation con- 196

sistency loss (visualized in Figure 2). We start 197

with the initial model M (the ‘backward’ model) 198

and make a copy of it, calling it M′ (the ‘forward’ 199

model). Then, for every training step, we run: 200

1. Get two batches of utterances in the two lan- 201

guages, B1 and B2. 202

2. Use M′ to translate B1 to translations B′
1, and 203

B2 to translations B′
2; this step is inference 204

only and no gradient updates occur. 205

3. Given B′
1, B

′
2 as input respectively, com- 206

pute the decoder cross-entropy loss for the 207

model M to reconstruct the original utter- 208

ances B1, B2. Using this loss, perform a gra- 209

dient update on M’s parameters. 210

4. Copy the updated parameters of M to M′. 211

The above corresponds to online backtranslation, 212

where the ‘forward’ model M′ (generating the syn- 213

thetic translation) is the same as the ‘backward’ 214

model M (used to compute the cross-entropy loss). 215

We also explored offline backtranslation, which 216

updates the forward model every epoch, but did 217

not see much difference in performance. Unlike in 218

unsupervised text backtranslation, the training was 219

unstable in both settings. To resolve this, we mix in 220

some supervised data (used in the finetuning step) 221

with online backtranslation during this last stage, 222

which stabilizes learning and shows gains. 223

2.3 Unit-to-speech Vocoder (U2S) 224

We adapt prior work (Polyak et al., 2021) on speech 225

resynthesis from discrete units to build our unit- 226

to-speech vocoder1; please refer to this work for 227

1https://github.com/facebookresearch/
speech-resynthesis/tree/main/examples/speech_
to_speech_translation
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Model Name Languages Pretrain Finetune Backtranslate Evaluation

MdeEP
de,en

VP (777h) + EP-ST (20h) VP (777h) EP-ST (9h) en↔de
MdeCV EP (5381h) CVSS (20h) CV (382h) CVSS (15h) de→en

MmrEP
mr,en

VP (529h) + S-EP-ST (60hr) VP (529h) + S-EP-ST (9h) mr→en
MmrShr Shr (1000h) S-Shr-ST (60hr) Shr (1000h) S-Shr-ST (10h) mr→en

Table 1: Model configurations. For each dataset, we mark their duration in parentheses. Abbreviations: VP =
Voxpopuli, EP = Europarl, EP-ST = Europarl-ST, CV = CommonVoice, Shr = Shrutilipi, S-EP-ST = Synth-Europarl-
ST, S-Shr-ST = Synth-Shrutilipi-ST.

details of their approach. Given a dataset consist-228

ing of speech waveforms and their corresponding229

unit sequences generated by the S2U encoder, the230

model trains two submodules; a duration prediction231

module and a HiFi-GAN (Kong et al., 2020) that232

converts unit sequences back to speech waveforms.233

We train separate U2S vocoders for each language234

(English, German, Marathi).235

3 Experimental Setup236

3.1 Datasets237

Table 1 summarizes datasets used in our work. Du-238

rations reported for parallel translation datasets cor-239

respond to durations of the source speech. More240

dataset details are in Table 4 of Appendix A.241

English-German For pretraining, we use the242

union of the transcribed set of Voxpopuli (Wang243

et al., 2021) and randomly-sampled subsets of the244

Europarl v3 (Koehn, 2005) train set that we call245

Europarl-small and Europarl-mid (statistics in Ta-246

ble 4 of Appendix A), collected from European247

Parliament recordings. For finetuning, we use two248

datasets: (1) randomly-sampled 20-hr (10-hr per249

translation direction i.e. en→de and de→en) sub-250

set of the Europarl-ST (Iranzo-Sánchez et al., 2019)251

train set and (2) randomly-sampled 20-hr (10-hr per252

translation direction) subset of the CVSS (Jia et al.,253

2022) train set. For the last backtranslation step,254

we use Voxpopuli and Common Voice 4 (Ardila255

et al., 2020) data for the round-trip consistency256

loss. Common Voice and CVSS are collected us-257

ing the Mozilla Common Voice project and consist258

of recordings of crowd-sourced workers reading259

out sentences primarily derived from Wikipedia;260

they do not belong to the European Parliament do-261

main. For evaluation, we use Europarl-ST (Iranzo-262

Sánchez et al., 2019) (for both de→en and en→de)263

and CVSS (Jia et al., 2022) (for de→en) test sets.264

English-Marathi For pretraining, we use the265

union of the Shrutilipi (Bhogale et al., 2022)266

Marathi dataset, collected from All India Radio 267

broadcasts and the English transcribed Voxpop- 268

uli set. We were unable to find domain-matched 269

speech translation datasets for Marathi-English. 270

Thus, we synthetically generate parallel datasets 271

by translating the source language utterance to tar- 272

get language utterance using the Google Translate 273

API2. An author of this paper, who speaks both 274

Marathi and English, manually checked a few ut- 275

terances and found the translations to be of high 276

quality. We construct two such datasets, each con- 277

sisting of train and test sets: (1) Synth-Europarl-ST: 278

translating the English side of the English-German 279

Europarl-ST train and test sets to Marathi. (2) 280

Synth-Shrutilipi-ST: translating 100-hr and 10-hr 281

subsets of the Shrutilipi dataset to English, creating 282

a train and test set respectively. 283

For finetuning, we randomly sampled 60-hr (30- 284

hr per translation direction) subsets of the train 285

sets of these two datasets. We empirically found 286

that we need more data in English-Marathi com- 287

pared to English-German, which we hypothesize 288

is due to greater language and domain dissimi- 289

larities. For the backtranslation step, we use the 290

union of Voxpopuli and Shrutilipi datasets for the 291

round-trip consistency loss. For evaluation, we use 292

the test sets of these Synth-Europarl-ST (where 293

Marathi is translated from English), and Synth- 294

Shrutilipi-ST datasets, (where English is translated 295

from Marathi). We only evaluate the mr→en trans- 296

lation direction for both. None of the targets in 297

the test sets of either dataset have been seen during 298

pretraining, making them suitable for use. 299

3.2 Model Configurations 300

Table 1 describes training and evaluation datasets 301

for each of our four models. MdeEP is trained 302

and evaluated entirely within the European Parlia- 303

ment domain: it is pretrained on the union of Vox- 304

2https://cloud.google.com/translate/docs/
advanced/batch-translation

4

https://cloud.google.com/translate/docs/advanced/batch-translation
https://cloud.google.com/translate/docs/advanced/batch-translation


populi and Europarl v3, finetuned on Europarl-ST,305

backtranslated with Voxpopuli, and evaluated on306

Europarl-ST. MdeCV uses the same pretraining, but307

is finetuned on CVSS, backtranslated with Com-308

mon Voice 4.0, and evaluated on CVSS. Common309

Voice and CVSS consist of crowd-sourced speech310

recordings reading aloud sentences primarily de-311

rived from Wikipedia, which differ from the Euro-312

pean Parliament domain. MmrEP and MmrShr are313

both pretrained and backtranslated with the union314

of Voxpopuli and Shrutilipi i.e. English European315

Parliament data and Marathi All India Radio data.316

MmrEP is finetuned and evaluated on the European317

Parliament domain using Synth-Europarl-ST while318

MmrShr is finetuned and evaluated on the All India319

Radio domain using Synth-Shrutilipi-ST. All four320

models are thus finetuned and evaluated with the321

same dataset’s train and test sets.322

3.3 Generating Synthetic Speech Data323

We use single-speaker synthesized speech data324

for both training and evaluation, following early325

S2ST work (Jia et al., 2019). All of our training326

datasets have ground truth transcripts; thus, we327

use TTS models to regenerate the speech from328

them and use the synthesized speech. We use329

Coqui-AI’s TTS software for English and Ger-330

man.3 These are VITS (Kim et al., 2021) mod-331

els, trained on LJSpeech (Ito and Johnson, 2017)332

and Thorsten (Müller and Kreutz); each have 24333

hrs of clean read speech. We use IndicTTS (Ku-334

mar et al., 2023) for Marathi; this is a Fast-335

Pitch (Łańcucki, 2021) model trained on the In-336

dicTTS Database (Baby et al., 2016) that contains337

around 3 hrs of clean read speech.338

4 Model Implementation339

4.1 Speech-to-Unit Encoder (S2U)340

To choose the speech encoder model and embed-341

ding layer, we compare the unit-phoneme PNMI342

scores of different choices. We decide upon using343

HuBERT (Hsu et al., 2021) embeddings, with a344

shared English-German k-means model (with 200345

clusters) and a standalone Marathi k-means model346

(with 100 clusters). We use the 6th HuBERT layer347

for English and German and the 8th HuBERT layer348

for Marathi; more details in Appendix D.349

3We use the en/ljspeech/vits model for English and
de/thorsten/vits model for German. https://github.
com/coqui-ai/TTS)

4.2 Unit Encoder-Decoder (U2U) 350

Preprocessing We train one Sentencepiece BPE 351

tokenizer per LM on speech units with a 10000- 352

size vocab, using Voxpopuli for English-German 353

and Voxpopuli plus Shrutilipi for English-Marathi. 354

Pretrain Both LMs are initialized with 355

mbart-large-50 (Liu et al., 2020); we reini- 356

tialize input/output embedding layers. The 357

noising function g is similar to mBART; until 358

35% masked tokens, we sample a span length l 359

from a mean-λ Poisson distribution and replace 360

a random contiguous sequence of length l with 361

a MASK token. For English-German model, we 362

pretrain it in several stages with increasing task 363

difficulty. We first train on Voxpopuli for 900k 364

steps with lambda=2. Then, we train on Voxpopuli 365

plus Europarl-small for 5400k steps (2700k with 366

lambda=2 and 2700k with lambda=8). We finally 367

train on Voxpopuli plus Europarl-mid for 2700k 368

steps. For English-Marathi, we train on Voxpopuli 369

plus Shrutilipi with lambda=2 for 900k steps. 370

For both LMs, the LR scheduler starts with 1e-7, 371

linearly warms up to 1e-5, and then exponentially 372

decays to 1e-6. We train on 4 GPUs. We use 373

batches of 3125 tokens per language for English- 374

German and 6250 tokens per language for English- 375

Marathi, with equal token amounts per language. 376

Finetune We use label smoothing, dropout of 0.2 377

and a learning rate of 3e-5. We train for 40 epochs 378

with a total batch size of 3748 tokens on 4 GPUs. 379

We finetune all parameters of the models except 380

for MdeEP, for which we finetune only the last 5 381

layers of both encoder and decoder as it shows 382

performance gains. 383

Backtranslate When sampling forward transla- 384

tions, we use nucleus sampling (Holtzman et al., 385

2019) with top-p value of 0.9 and the temperature 386

of 0.5. We use label smoothing of 0.2, learning rate 387

of 3e-5 and train for 3 epochs with a total batch 388

size of 3748 tokens on 4 GPUs. 389

4.3 Unit-to-Speech Vocoder (U2S) 390

A separate vocoder is trained for each language, 391

mapping from the unit vocabulary (size 200 for 392

English-German, size 100 for Marathi) to speech 393

clips at 16kHz, trained on the (speech, unit se- 394

quence) pairs generated by the S2U encoder, 395

largely following Polyak et al. (2021). We evaluate 396

S2U+U2S jointly by computing resynthesis WER; 397

details about model and evaluation in Appendix E. 398
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ASR-BLEU ↑

Europarl-ST CVSS

Model Parallel #hrs de→en en→de de→en

Topline models
Text-based Parallel-Low-Resource S2ST

a⃝ ASR → MT → TTS (Section 5.2) 20h 23.7 21.3 -
b⃝ UASR → UMT → UTTS (Fu et al., 2023) 0h - - 14.7

Textless Parallel-High-Resource S2ST

c⃝ Bilingual S2S (Duquenne et al., 2022) ≈2600h 16.3 10.1 -
d⃝ Multilingual UTUT (Kim et al., 2023) 650h 4 15.8 9.8 -
e⃝ Pretrain + Full Finetune (Ours) 110h|180h 12.0 13.4 13.6

Textless Parallel-Low-Resource S2ST

f⃝ Pretrain + Finetune (Ours) 20h 7.8 6.8 5.8
g⃝ + Backtranslate (Ours) 20h 10.0 8.3 7.7

Ablations
h⃝ Text mBART + Finetune 20h 1.0 0.3 -
i⃝ + Backtranslate 20h 1.3 0.4 -

j⃝ Pretrain + Backtranslate 0h 0.4 0.1 -

k⃝ Pretrain + Finetune + Backtranslate w/o replay 20h 4.3 4.0 -

Table 2: English-German S2ST evaluation using ASR-BLEU on Europarl-ST (Iranzo-Sánchez et al., 2019) and
CVSS (Jia et al., 2022) test sets; higher is better. Topline models use more resources by either needing high-resource
parallel data or being text-based (Section 5). The Parallel #hrs column denotes the size of parallel translation
training data. In h⃝ it denotes that 110h of EP-ST data and 180h of CVSS data is used to train two separate toplines.

5 Results399

5.1 Evaluation Setup400

We evaluate the semantics of the speech translation401

(i.e. whether it preserves the input speech402

meaning) and leave non-content aspects like403

naturalness to future work. We use the ASR-BLEU404

metric following prior work (Lee et al., 2022a,b):405

the BLEU between the ASR transcript of the406

hypothesis speech translation and the ground truth407

text translation. We use SacreBLEU’s default408

parameters. We evaluate the de→en, en→de and409

mr→en language directions. We opted to not410

evaluate the en→mr direction due to poor Marathi411

ASR models that resulted in excessively noisy412

ASR-BLEU scores. We generate translations from413

our models using beam search decoding with a414

beam size of 10. When evaluating on Europarl-ST415

dataset, we use wav2vec2.0 based ASR models416

with greedy decoding (Huggingface models417

facebook/wav2vec2-large-960h-lv60-self,418

jonatasgrosman/wav2vec2-xls-r-1b-german)419

used by prior S2ST work on Europarl-ST420

(Duquenne et al. (2022); Wang et al. (2022b) and 421

others). When evaluating on CVSS dataset, we 422

use a medium-sized Whisper ASR model used by 423

prior S2ST work on CVSS (Fu et al., 2023). When 424

evaluating Marathi-English translation, we use 425

facebook/wav2vec2-large-960h-lv60-self. 426

5.2 Comparison Systems 427

We categorize S2ST models based on whether they 428

leverage text as an intermediate step or not (text- 429

based or textless) and how much parallel translation 430

data they use (parallel-high-resource or parallel- 431

low-resource). Our models belong to the textless, 432

parallel-low-resource setting. Due to the lack of 433

baselines in this setting, we instead contrast our 434

models with existing topline models trained with 435

more resources, which serve as upper bounds: 436

Text-based Parallel-Low-Resource S2ST mod- 437

els: a⃝ is a cascaded ASR → MT → TTS system 438

where the MT model is text mBART finetuned 439

on the transcripts of the 20-hr low-resource par- 440

allel speech data used by our models. We use the 441

ASR systems used for computing ASR-BLEU (Sec- 442
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ASR-BLEU ↑

EP-ST Shr-ST
Model Par. #hrs mr→en

Topline models
Textless Par.-High-Res.

l⃝Full FT (Ours) 125|176h 10.9 17.8

Textless Par.-Low-Res.

m⃝Pretrain + FT (Ours) 60h 8.3 9.6
n⃝+ BackT (Ours) 60h 9.2 10.0

Table 3: Marathi-English S2ST evaluation using ASR-
BLEU on Synth-Europarl-ST and Synth-Shrutilipi-ST
test sets; higher is better. The Par. #hrs column denotes
the size of parallel training data. In o⃝ it denotes that
125h of Synth-Europarl-ST data and 176h of Synth-
Shrutilipi-ST data is used to train two separate toplines.

tion 5.1) and the TTS systems used for generating443

our data (Section 3.3). b⃝ (Fu et al., 2023) uses a444

cascaded unsupervised ASR - unsupervised MT -445

unsupervised TTS model that is trained on large446

amounts of monolingual speech and text data.447

Textless Parallel-High-Resource S2ST mod-448

els: c⃝ is a bilingual S2ST model trained on a large,449

mined SpeechMatrix dataset (≈ 2600 hrs of source450

speech for the en→de and the de→en directions451

combined) by (Duquenne et al., 2022). d⃝ (Kim452

et al., 2023) is a multilingual S2ST model trained453

on 650h of parallel aligned English-German Vox-454

populi data, and about 12k hours of parallel aligned455

data in 18 other X-to-English language pairs. e⃝456

and l⃝ are our pretrained unit LMs fine-tuned on457

more data than our parallel-low-resource models i.e.458

the Europarl-ST train set (110 hours), the CVSS459

train set (180 hours), the Synth-Europarl-ST train460

set (125h) and the Synth-Shrutilipi-ST train set461

(176h) using the same hyperparameters as our four462

parallel-low-resource models.463

Our Textless Parallel-Low-Resource S2ST464

models consist of four models trained on different465

domains: MdeEP,MdeCV,MmrEP and MmrShr as466

described in Section 3.2. We evaluate each model467

with its in-domain evaluation data, i.e., MdeEP468

model on Europarl-ST, MdeCV model on CVSS,469

MmrEP on Synth-Europarl-ST, and the MmrShr470

model on Synth-Shrutilipi-ST. f⃝ and m⃝ report471

the model performance after our pretraining and472

finetuning steps. g⃝ and n⃝ report the model per-473

formance after performing backtranslation.474

5.3 Main Results 475

We present results for the English-German pair in 476

Table 2 and the English-Marathi pair in Table 3. 477

We first observe that the text-based parallel-low- 478

resource S2ST topline models ( a⃝- b⃝) trained with 479

at most 20 hrs of parallel data outperform the best 480

textless S2ST topline models trained with far more 481

parallel speech data ( c⃝- e⃝). This underscores the 482

inherent task difficulty of learning purely texless 483

S2ST models in the speech domain, even with ac- 484

cess to far more training data. 485

Next, we discuss our textless parallel-low- 486

resource models (rows f⃝, g⃝, m⃝ and n⃝). Rows f⃝ 487

and m⃝ show that our models, given only 20 hr of 488

parallel data (for English-German) and 60 hr of par- 489

allel data (for English-Marathi), learn S2ST models 490

with reasonable BLEU scores which consistently 491

improve post-backtranslation in rows g⃝ and n⃝. 492

Our de→en Europarl-ST and the mr→en Synth- 493

Europarl-ST models are even within 1-2 BLEU of 494

our supervised toplines e⃝ and l⃝ despite being 495

trained on much less data. Another observation 496

is regarding domain effects: the gap between our 497

textless low-resource models and the textless high- 498

resource toplines is smaller for European Parlia- 499

ment domain as compared to the Common Voice 500

and All India Radio domains, likely due to pretrain- 501

finetune domain mismatch (During pretraining, the 502

models only ever see European Parliament domain 503

English data). Finally, a qualitative analysis, based 504

on manually looking at example outputs in Ap- 505

pendix G shows that our models mostly preserve 506

the semantics of the input utterance, but often make 507

grammatical and language modelling mistakes. 508

Overall, while some of our models show encour- 509

aging results in the European Parliament domain, 510

close to supervised toplines, they underperform 511

text-based and textless high-resource toplines. 512

5.4 Ablations 513

We perform ablations on the MdeEP model. 514

Ablating pretraining Our LM is initialized from 515

the text mBART checkpoint, and then trained on 516

a unit-based denoising objective. Without this pre- 517

training (i.e., finetuning and backtranslating with 518

the base mBART checkpoint), as seen in rows h⃝ 519

and i⃝, we obtain very low ASR-BLEUs less than 520

2 points. These results suggest that unit LM pre- 521

4In addition to 650h of parallel German-English data,
UTUT is trained on X-to-English translation data from 18
other languages, totalling ≈ 12000 hours of parallel data.
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training is essential in order to learn good S2ST522

systems in parallel-low-resource settings.523

Ablating finetuning We finetune the pretrained524

unit LM with te backtranslation round-trip consis-525

tency loss without first finetuning with parallel data.526

The result, j⃝, shows that this does not work, with527

near-zero BLEU scores. This suggest some amount528

of parallel speech is necessary.529

Ablating replay in backtranslation We have530

already seen that adding backtranslation after fine-531

tuning boosts performance by 1-2 BLEU; compare532

row f⃝ to g⃝ or row m⃝ to n⃝. We replay the su-533

pervised low-resource parallel finetuning data dur-534

ing backtranslation to stabilize training. We ablate535

training with this replay by running the backtrans-536

lation step with just the round-trip consistency loss.537

The result, row k⃝, shows that the performance538

worsens compared to the initialization of row f⃝.539

With replay, however, we get the results in row g⃝,540

which improve upon the initialization.541

6 Related Work542

6.1 Speech-to-Speech Translation (S2ST)543

While cascaded S2ST models (Nakamura et al.,544

2006; Wahlster, 2000) with intermediate text trans-545

lations have existed for a long time, end-to-end546

S2ST models start with Jia et al. (2019), a model547

that directly translates source language speech548

waveforms to speech waveforms in the target lan-549

guage. Several S2ST models (Jia et al., 2019, 2021;550

Lee et al., 2022a; Inaguma et al., 2022) are text-551

based i.e. they use textual supervision to stabilize552

training or improve performance, while other S2ST553

models (Lee et al., 2022b; Li et al., 2022; Kim et al.,554

2023; Zhu et al., 2023) are textless, usually by rep-555

resenting speech using self-supervised speech units.556

Most S2ST models require large training datasets557

of parallel speech translation data.558

In order to reduce this dependency on parallel559

data, unsupervised S2ST systems (Wang et al.,560

2022b; Fu et al., 2023; Nachmani et al., 2023)561

that do not use any parallel data at all have been562

recently proposed. However, none of them are563

textless; they either train cascaded S2ST models564

(ASR→MT→TTS) using unsupervised ASR (Liu565

et al., 2022b), unsupervised MT (Liu et al., 2020)566

and unsupervised TTS (Liu et al., 2022a), or use567

text during training (Nachmani et al., 2023). Thus,568

the crucial cross-lingual translation component569

is learned over text tokens, limiting applicability570

to spoken languages. Our textless, parallel-low- 571

resource S2ST model aims to bridge these camps. 572

6.2 Textless and Unit-Based NLP 573

While we tackle textless S2ST, textless speech pro- 574

cessing has studied in other tasks such as spoken 575

language modeling (Borsos et al., 2022; Lakho- 576

tia et al., 2021; Hassid et al., 2024), emotion 577

conversion (Kreuk et al., 2021), image-speech re- 578

trieval (Harwath et al., 2016; Peng and Harwath, 579

2022), spoken question answering (Lin et al., 2022) 580

and speech evaluation (Chen et al., 2022; Besacier 581

et al., 2023). Furthermore, progress in several other 582

speech tasks like TTS (Wang et al., 2023) that in- 583

volve both speech and text has been achieved by us- 584

ing powerful self-supervised units (semantic units 585

like HuBERT (Hsu et al., 2021) and acoustic units 586

like EnCodec (Défossez et al., 2022)). 587

7 Conclusion 588

We present the first textless low-resource speech- 589

to-speech translation system, capable of learning 590

from dozens of hours of parallel translation data, 591

built by pretraining, finetuning, and backtranslat- 592

ing a language model over self-supervised speech 593

unit sequences rather than text. We demonstrate 594

its efficacy on 2 language pairs (English-German 595

and English-Marathi) across 3 different domains. 596

While our models achieve a decent translation per- 597

formance, close to supervised toplines in some 598

cases, they still underperform models trained on far 599

more data or models that make use of text data, im- 600

plying that several challenges still remain to make 601

these models highly performant. However, our 602

approach holds great promise for modelling low- 603

resource, primarily spoken languages. We hypoth- 604

esize, based on similar findings for text machine 605

translation, that scaling our approach to a larger 606

unit LM pretrained on more data will improve per- 607

formance and may unlock unsupervised textless 608

S2ST akin to unsupervised text MT (Liu et al., 609

2020). Future work can investigate use of better 610

S2U unit encoders for training better unit LMs, and 611

training unit LMs on a larger set of languages. 612

Limitations 613

Textless S2ST models, including ours, still lag in 614

performance behind their text-based counterparts. 615

Therefore, while they work for all languages in the- 616

ory, they are currently useful only for fully textless 617

languages and should not be used in cases where 618

8



text data is readily available. Strong open-source619

pretrained multilingual unit language models are as620

yet unavailable; as a consequence, the unit LMs we621

use via our own pretraining have been trained on622

our limited compute budget and cannot yet benefit623

from the scale of modern text-based LLMs. Our624

models are trained and evaluated on synthesized625

single-speaker data, following early S2ST work.626

They do not fully generalize to real speech data627

that has noise and unseen speakers.628
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Module Dataset Duration Lang

S2U Encoder: Pretraining Librispeech 960h en

S2U Encoder: k-means Clustering Librispeech, MLS 48h, 48h en, de
Shrutilipi 100h mr

U2U Pretraining

Voxpopuli 529h, 248h en, de
Europarl-small 811h, 975h en, de
Europarl-mid 2463h, 2918h en, de

Shrutilipi 1000h mr

U2U Finetuning (Toplines)

Europarl-ST 83h,27h en→de, de→en
CVSS 91h,88h en→de, de→en

Synth-EP-ST 83h,42h en→mr, mr→en
Synth-Shr-ST 76h,100h en→mr, mr→en

U2U Finetuning (Low-Resource)

Europarl-ST 10h,10h en→de, de→en
CVSS 10h,10h en→de, de→en

Synth-EP-ST 30h,30h en→mr, mr→en
Synth-Shr-ST 30h,30h en→mr, mr→en

U2U Backtranslation
Voxpopuli 529h, 248h en, de

Common Voice 294h, 89h en, de
Shrutilipi 1000h mr

U2S Vocoder Voxpopuli 529h, 248h en, de
Shrutilipi 1000h mr

Evaluation

Europarl-ST 3h,6h en→de, de→en
CVSS 15h de→en

Synth-EP-ST 9h mr→en
Synth-Shr-ST 10h mr→en

Table 4: Summary of datasets used to develop our system, with datasets used by base pretrained models colored red.
Datasets in the U2U Finetune and U2U Evaluation sections are parallel translation datasets, and we report duration
statistics for both translation directions separately, the duration being that of the source speech.

Model Test Set ASR-BLEU ↑

short med long all

Row g⃝ EP-ST de→en 10.1 10.6 9.5 10.0
Row g⃝ EP-ST en→de 9.6 9.0 7.7 8.3
Row g⃝ CVSS de→en 6.5 8.3 7.7 7.7
Row n⃝ S-EP-ST mr→en 10.9 10.1 8.0 9.2
Row n⃝ S-Shr-ST mr→en 10.9 13.0 8.0 10.0

Table 5: S2ST evaluation using ASR-BLEU, broken
down by test set lengths (short, medium, long) as well
as the overall ASR-BLEU (all).

subset in Table 5. We see that the model does bet-938

ter on short/medium utterances as compared to long939

utterances. The performance of the long utterances940

is within 1 BLEU point of the overall performance.941

D S2U Encoder Ablations942

We decide (a) which speech encoder model to use,943

(b) whether to learn separate per-language k-means944

models or a joint k-means model and (c) which945

encoder layer to take embeddings from, based on946

the average Pointwise Normalized Mutual Informa-947

tion (PNMI) between unit sequences and phoneme 948

sequences extracted from the same datasets, fol- 949

lowing Hsu et al. (2021). Our best configuration 950

uses a single Marathi k-means model and a shared 951

English-German k-means model. We find that this 952

works better than training three individual models 953

or a single model, which we hypothesize is due to 954

language similarities. 955

To obtain the phoneme sequences for English 956

and German, we use English and German phone- 957

mizers from the Montreal Forced Aligner5. For 958

Marathi, we use a Kaldi-based ASR model trained 959

on Shrutilipi data. To train the k-means models, we 960

use ≈ 50 hrs of speech data from each language, ob- 961

tained from a random subset of Librispeech (Panay- 962

otov et al., 2015) for English, MLS (Pratap et al., 963

2020) for German, and Shrutilipi (Bhogale et al., 964

2022) for Marathi. 965

First, we describe our ablations for English- 966

German. We experiment with different base 967

speech models (HuBERT (Hsu et al., 2021) vs. 968

XLSR (Conneau et al., 2020)), layer indices, num- 969

5https://montreal-forced-aligner.readthedocs.
io/en/latest/
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(a) HuBERT vs. XLSR evaluated on German data (b) HuBERT vs. XLSR evaluated on English data

(c) 100 monolingual vs. 200 mixed units, evaluated on
German data

(d) 100 monolingual vs. 200 mixed units, evaluated on
English data

Figure 3: PNMI vs. layer index, comparing different clustering settings for English and German. Higher is better.

Figure 4: PNMI with HuBERT and Indic wav2vec2.0
evaluated on Shrutilipi, computed for different layer
indices, for Marathi. Higher is better.

ber of clusters (100 vs. 200) and types of cluster-970

ings (one clustering for both languages jointly v.s.971

separate clusterings) and choose the configuration972

that achieves the highest Pointwise Normalized973

Mutual Information (PNMI). We report PNMI re-974

sults for these English-German configurations in975

Figure 3.976

For Marathi, we experiment with differ-977

ent base speech models (HuBERT vs Indic-978

wav2vec2.0 (Javed et al., 2021)) and layer indices. 979

We fix the number of clusters at 100. We choose 980

the configuration that achieves the highest PNMI. 981

We report PNMI results for these Marathi configu- 982

rations in Figure 4. 983

E U2S Modelling and Evaluation 984

Using the unit sequences for the Voxpopuli 985

(English and German) and Shrutilipi (Marathi) 986

datasets, generated from our S2U encoder, we train 987

vocoders to generate the speech from these unit 988

sequences. We train across 4 GPUs with a learning 989

rate of 2e− 4 with a batch size of 128 (for en-de) 990

and 240 (for mr) and train for 60k updates; other 991

hyperparameters follow Polyak et al. (2021). As a 992

sanity check, we evaluate S2U and U2S by com- 993

puting the resynthesis WER, which measures how 994

well passing a given speech signal through S2U 995

and U2S preserves the content of the input speech 996

signal. 997

We compute the resynthesis WER as follows: 998

(1) pass input speech to the S2U encoder and gen- 999

erate the unit sequence, (2) pass the generated 1000

unit sequence to our U2S vocoder to synthesize 1001
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Method en VP de VP en LJS

Ground Truth 4.89 8.44 3.80
(Lee et al., 2022a) 10.56 - 7.69

Ours 8.53 19.46 6.72

Table 6: S2U + U2S resynthesis performance; WER
computed between resynthesized speech transcribed by
ASR model and ground truth transcripts. Lower WER
is better. We also include the ground-truth speech WER
as a lower bound. VP = Voxpopuli, LJS = LJSpeech

speech, (3) transcribe the synthesized speech using1002

ASR (4) compute the Word Error Rate between1003

the transcript and the ground truth transcript of1004

the input speech. To account for the errors from1005

ASR, we compute the WER between the ASR tran-1006

script of the input speech utterance (‘ground-truth’1007

speech) and the ground truth transcript as a lower1008

bound. We use test sets from English and Ger-1009

man Voxpopuli (Wang et al., 2021) and English1010

LJSpeech (Ito and Johnson, 2017) with our syn-1011

thetic single-speaker speech. Table 6 presents these1012

results. We find that the resynthesis WERs are1013

fairly good for English, and worse for German.1014

Based on qualitative analysis of the German input1015

speech (which is already single-speaker synthetic1016

speech) and resynthesized speech (passed through1017

S2U and U2S), we find that the input speech itself1018

makes stress and pronunciation errors, driving up1019

the Ground Truth WER, which further cascades1020

into the model resynthesis WER. We still use this1021

model because it is the best we could build with1022

existing tools.1023

F Text-based, Parallel-High-Resource1024

S2T/S2ST models1025

For completeness, we describe existing text-based,1026

parallel-high-resource models in the literature and1027

showcase their results in Table 7. These mod-1028

els date to 2021 and underperform the text-based1029

parallel-low-resource models in our main results1030

(Table 2) but outperform textless parallel-high-1031

resource models. Rows o⃝- q⃝ are S2T models1032

while r⃝ is an S2ST model. o⃝ (Iranzo-Sánchez1033

et al., 2019) is an ASR-MT cascade model whose1034

MT component is trained on a large-scale text trans-1035

lation dataset OPUS (Tiedemann, 2012). p⃝ and1036

q⃝ are Transformer-based models from Wang et al.1037

(2021) trained on the union of Europarl-ST and1038

CVSS (total duration 226h) with q⃝ being addi-1039

tionally trained on ≈300h of Voxpopuli aligned 1040

speech translation data. r⃝ is the Translatotron 1041

2 (Jia et al., 2021), a spectrogram-to-spectrogram 1042

encoder-synthesizer model trained with text su- 1043

pervision for the decoder with 120h of German- 1044

English data and about 360h of aligned data in 3 1045

other X-to-English language pairs. 1046

G Example Outputs 1047

We present example outputs from our models. First, 1048

we showcase 10 cherry-picked examples, 2 ex- 1049

amples from each evaluated language pair and 1050

domain in Table 8. Our best models, the post- 1051

backtranslation models (rows g⃝ and n⃝ in Tables 2 1052

and 3) perform well on these examples. We present 1053

the ground-truth transcripts of the source and target 1054

utterances, the ASR transcript of the target utter- 1055

ance predicted by the pre-backtranslation finetuned 1056

models (rows f⃝ and m⃝ in Tables 2 and 3) and 1057

the ASR transcript of the target utterance predicted 1058

by our best models, the post-backtranslation mod- 1059

els. We can observe that our post-backtranslation 1060

models are able to nearly perfectly translate these 1061

cherry-picked examples, which can be categorized 1062

into examples with (a) no mistakes (rows 1, 5, 7, 1063

9), (b) valid replacements that largely preserve sen- 1064

tence meaning (rows 2, 4, 8) and (c) minor pro- 1065

nunciation errors (rows 6, 10). On the other hand, 1066

predictions from the finetuned model are overall 1067

worse, categorized into (a) no mistakes (row 1), (b) 1068

valid meaning-preserving replacements (row 2), (c) 1069

large meaning changes (row 3, 4, 7, 9, 10) and (d) 1070

incoherent output (row 5, 6, 8). 1071

We also sample 5 randomly-picked examples, 1072

one from each setting to again compare our pre- 1073

backtranslation finetuned models and our best post- 1074

backtranslation models in Table 9. The examples 1075

show that the models are getting several of the 1076

words and semantics right, but often mistranslate 1077

certain words and make egregious grammatical and 1078

language modelling mistakes. We can see that our 1079

post-backtranslation model is overall better than 1080

the finetuned model for English-German in row (1), 1081

(2), worse in row (3), and performs similarly for 1082

rows (4) and (5). 1083
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ASR-BLEU ↑

Europarl-ST CVSS

Model Parallel #hrs de→en en→de de→en

o⃝ Cascaded ASR-MT (Iranzo-Sánchez et al., 2019) N/A 21.3 22.4 -
p⃝ E2E S2T (Wang et al., 2021) 226h 17.5 - -
q⃝ E2E S2T w/ Voxpop-Aligned (Wang et al., 2021) ≈500h 18.8 - -
r⃝ Translatotron 2 (Jia et al., 2021) 120h - - 19.7

Table 7: English-German translation evaluation using BLEU for topline S2T models (rows o⃝- q⃝) and ASR-BLEU
for S2ST model, row r⃝ on Europarl-ST (Iranzo-Sánchez et al., 2019) test set; higher is better. The Parallel #hrs
column denotes the size of parallel translation training data.

Source Utterance Target Utterance (Gold) Prediction from finetuned
model

Prediction from post-
backtranslation model

en→de (Europarl-ST)
(1) you can take initiatives sie können initiativen ergreifen sie können initiativen ergreifen sie können initiativen ergreifen

(2) madam president i supported this
report

frau präsidentin ich habe diesen
bericht unterstützt

frau präsidentin ich unterstütze
diesen bericht

frau präsidentin ich habe diesen
bericht gestimmt

de→en (Europarl-ST)
(3) ich denke da sind wir auf dem

richtigen weg
i think we are on the right track
here

i think we should be aware of this i think we are on the right track

(4) ich denke es ist klar dass die
bürger und bürgerinnen der eu-
ropäischen union diese steuer
wollen und ich denke dass
es eine große verantwortung ist

i think it is clear that the
citizens of the european
union want this tax and
i think we have a great
responsibility here

i think that it is clear that the citi-
zens of the european union want
to do with these tasks and to do
with the european union what it
wants to do

i think it is clear that the cit-
izens of the european union
want to be taxed and i think
it is a major responsibility

de→en (CVSS)
(5) stellst du die musik bitte auf zim-

merlautstärke albert rief seine
mutter

are you turning the volume down
to room volume albert his mother
screamed

are you turning the music albert
towards its mountain rock

are you turning the volume down
to room volume albert his mother
screamed

(6) los angeles liegt an der westküste los angeles is located on the west
coast

loosen hot air line at the west
coast

rose angeles is located on the
west coast

mr→en (S-EP-ST)
(7) yA kArZA\m� �� mF yA ah-

vAlAQyA bAj� n� mt d�U fkt
nAhF

for these reasons i cannot vote in
favour of this report

for this reason i am in favour of
the report

for these reasons i cannot vote in
favour of this report

(8) t� aADFc
s� DAErt k�l� g�l� aAh� pr\t�

aAZKF kAm krZ� aAv[yk
aAh�

it has already been modified but
more work needs to be done

it is improving barrowness im-
proving but it must be forgotten

it has already
made improvements but more
work needs to be done

mr→en (S-Shr-ST)
(9) p\c�cA�Fs vqA
vrQyA svA�nF

lsFkrZ av[y kzn ]yA
all those above forty five years
must get vaccinated

more than forty five years of vac-
cination papers

all those above forty five years
must get vaccinated

(10) t� kAl m�\b{it bAtmFdArA\fF

bolt hot�

he was talking to reporters in
mumbai yesterday

he was talking to reporters in
mabay to day

he was talking to reporters in
mumba yesterday

Table 8: Cherry-picked examples picked for our best S2ST models (the post-backtranslation models), reporting
predictions for both finetuned and post-backtranslation models. We manually annotate the differences between
the gold utterance and the prediction from the post-backtranslation model, align them to the source utterance and
underline the differences.
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Source Utterance Target Utterance (Gold) Prediction from finetuned
model

Prediction from post-
backtranslation model

en→de (Europarl-ST)
(1) goods and cargo have been de-

layed or not transported at all and
businesses both large and small
have been affected

waren und güterlieferungen
wurden verschoben oder ganz
gestoppt und sowohl kleine als
auch große unternehmen sind
betroffen

kosovo und konsum wurden zer-
stört oder wurden nicht erwähnt
oder angemessen sein können

günstige und kunden wurden im
vorle von kmos nicht erwähnt
oder noch nicht erwähnt von
allen unternehmen großen un-
ternehmen

de→en (Europarl-ST)
(2) wir sollten hier nicht mit zweier-

lei maß messen
we must not apply double stan-
dards here

we should not do so with these
matters

we should not be here with the
two sides

de→en (CVSS)
(3) ihr schalldeckel trägt herabhän-

gende quasten und ist mit einem
pelikan bekrönt

their sounding board has loose
hanging tassels and is crowned
with a pelican

year study teacher however re-
maining costs and an ice and hob-
bies

child dictatorial territorial castes
and is managed by a pellikov

mr→en (S-EP-ST)
(4) n{sEg
k s\sADn� aAEZ

EnsgA
c� s\r"Z kr�yA-
sAWF aApSyAlA pyA
vrZ
s\r"ZAQyA "�/At s\vAdAcF
aAv[yktA aAh�

we need dialogue in the field of
environmental protection in order
to conserve natural resources and
nature

in order to protect natural re-
sources and defense quality basis
we need a clear signal of environ-
mental protection

we need collectively in the area
of protection resources for natu-
ral resources and jobs

mr→en (S-Shr-ST)
(5) m�\b{i aAEZ upngrA\m@y�

g�SyA kAhF EdvsA\t jordAr
pAUs JASyAm� �\ sAt m� Hy
tlAvA\QyA pA�yAt l"ZFy
vAY JASyAn\ m�\b{ilA p� YFl
bArA mEhn� pAZF p� rvWA
s� r�FtpZ� hoU fkZAr aAh�

heavy rains in mumbai and its
suburbs in the last few days have
significantly increased the wa-
ter level in the seven main lakes
ensuring smooth water supply
to mumbai for the next twelve
months

in the last few days ero people
who have done in mumba mum-
bai soon reins have done in the
last few days in the last few days
mumbai

in mumba and opportunities of
mumba and mumba who have
received water in seventeen t h
needs water in the last few days
by the water in the mumbai

Table 9: Randomly sampled examples comparing our finetuned and post-backtranslation models.
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