
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MATRYOSHKAKV: ADAPTIVE KV COMPRESSION
VIA TRAINABLE ORTHOGONAL PROJECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

KV cache has become a de facto technique for the inference of large language
models (LLMs), where tensors of shape (layer number, head number, sequence
length, feature dimension) are introduced to cache historical information for self-
attention. As the size of the model and data grows, the KV cache can quickly
become a bottleneck within the system in both storage and memory transfer. To
address this, prior studies usually focus on the first three axes of the cache tensors
for compression. This paper supplements them, focusing on the feature dimension
axis, by utilizing low-rank projection matrices to transform the cache features into
spaces with reduced dimensions. We begin by investigating the canonical orthogo-
nal projection method for data compression through principal component analysis
(PCA). We observe the issue with PCA projection where significant performance
degradation is observed at low compression rates. To bridge the gap, we propose
to directly tune the orthogonal projection matrices with a distillation objective
using an elaborate Matryoshka training strategy. After training, we adaptively
search for the optimal compression rates for various layers and heads given vary-
ing compression budgets. Compared to previous works, our method can easily
embrace pre-trained LLMs and hold a smooth tradeoff between performance and
compression rate. We empirically witness the high data efficiency of our training
procedure and find that our method can sustain over 90% performance with an
average KV cache compression rate of 60% (and up to 75% in certain extreme
scenarios) for popular LLMs like LLaMA2-7B-base and Mistral-7B-v0.3-base.

1 INTRODUCTION

Large language models (LLMs) like GPT-4 (OpenAI et al., 2024) and Claude3 (Enis & Hopkins,
2024) have shown great promise, finding applications in areas such as text generation (Brown et al.,
2020; Raffel et al., 2023), code completion (Rozière et al., 2024), and sentiment analysis (Zhang
et al., 2023a).The Key-Value (KV) cache, which is introduced to cache historical information for
self-attention, is essential for maintaining context and accelerating the inference of LLMs. How-
ever, as the size of the model and data continues to grow (Fu et al., 2024; Ding et al., 2024; Chen
et al., 2024), the KV cache can swiftly lead to system bottleneck in terms of storage and memory
transfer (Shi et al., 2024).

Considerable efforts have been devoted to addressing such an issue. Noting that the KV cache
contains tensors of shape (layer number, head number, sequence length, feature dimension), existing
works have investigated compressing the KV cache from the axes of layer number (Brandon et al.,
2024; Sun et al., 2024; Goldstein et al., 2024), head number (Ainslie et al., 2023; Shazeer, 2019; Yu
et al., 2024), and sequence length (Wang et al., 2024; Zhang et al., 2023b; Li et al., 2024; Xiao et al.,
2024). Conversely, the exploration of feature dimension for KV cache compression significantly lags
behind, partially because of the inherent difficulties of modifying a well-structured feature space.

This paper aims to tackle this with the help of curated low-rank projection matrices, e.g., both the
query and key are projected into the same lower-dimensional space wherein the inner product closely
approximates that in the original space. We first identify the necessity to guarantee the orthogonality
among the rows of such matrices, and hence attempt to take the principal components of the keys
or values in each layer to instantiate the projections, given the prevalence of Principal Component

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Head Index

0

5

10

15

20

25

30

La
ye

r I
nd

ex
Ke

y

ARC-C

0 5 10 15 20 25 30
Head Index

0

5

10

15

20

25

30

La
ye

r I
nd

ex

ARC-E

0 5 10 15 20 25 30
Head Index

0

5

10

15

20

25

30

La
ye

r I
nd

ex

WG

0 5 10 15 20 25 30
Head Index

0

5

10

15

20

25

30

La
ye

r I
nd

ex
Va

lu
e

0 5 10 15 20 25 30
Head Index

0

5

10

15

20

25

30

La
ye

r I
nd

ex

0 5 10 15 20 25 30
Head Index

0

5

10

15

20

25

30

La
ye

r I
nd

ex

Figure 1: Visualization of the feasible compression level for the keys and values in our Ma-
tryoshkaKV model distilled from the LLaMA2-7B-base model. We individually leverage samples
in ARC-challenge (ARC-C), ARC-easy (ARC-E) (Clark et al., 2018), and Winogrande (WG) (Sak-
aguchi et al., 2019) to determine the compression level. Lighter colors indicate higher compression
levels. As shown, our approach enables the use of various compression strategies for various tasks.

Analysis (PCA) for data compression. We observe that such projections can be seamlessly plugged
into pre-trained LLMs while retaining reliable generation quality at a moderate compression level.
Compared to the low-rank architectures of Multi-head Latent Attention (MLA) (DeepSeek-AI et al.,
2024), the PCA strategy is more approachable due to its training-free nature and also advocated by
Saxena et al. (2024). Yet, we note that the PCA projections suffer from quickly degraded perfor-
mance when further increasing the compression level. This is because, while the principal compo-
nents are optimal for recovering the keys or values in each individual layer, they may be suboptimal
for preserving the global outputs due to the non-linearity and compounding effects in LLM.

To bridge the gap, we propose to jointly adjust all orthogonal projection matrices incorporated into
the model with a knowledge distillation objective, enforcing the model output based on the projected
keys and values to remain close to the original one. The orthogonality constraint upon the projection
matrices is consistently enforced by a Cayley parameterization. Besides, we desire a hierarchy over
the columns of the projection matrices—as in PCA—so that we can smoothly trade-off between
compression level and performance. To this end, we introduce a Matryoshka training strategy—
compute the model output based on the first r columns of the matrices, where r is randomly sampled
from a predefined schedule such as {4, 8, 16, ...}, and ensure its closeness to the original output. In
practice, we sample various r for different layers, heads, and keys/values during training to disen-
tangle the projections in the model. Doing so enables the search for heterogeneous compression
rates for different projection matrices during inference and we develop a greedy algorithm for this.
Heterogeneous compression rates are displayed in Figure 1

Experiments on both continual pre-training (CPT) and supervised fine-tuning (SFT) exhibit the ef-
ficacy of our MatryoshkaKV approach. For the former, we opt to experiment on LLaMA2-7B-
base (Touvron et al., 2023) with the RedPajama dataset (Computer, 2023). To demonstrate compat-
ibility with Group Query Attention (GQA) (Ainslie et al., 2023), we also apply our approach to the
Mistral-v0.3-7B-base (Jiang et al., 2023) model. Moreover, we demonstrate that MatryoshkaKV is
compatible with other KV cache compression techniques on other axes H2O (Zhang et al., 2023b)
and KIVI (Liu et al., 2023). We observe that after rarely processing 200 million training tokens, Ma-
tryoshkaKV achieves a 37.5% compression rate while retaining over 90% of the original model’s
accuracy. In the SFT experiments, we train both MatryoshkaKV and LoRA (Hu et al., 2021) on
downstream tasks including OBQA (Mihaylov et al., 2018), GSM8K (Cobbe et al., 2021), etc. The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

results show that our MatryoshkaKV can utilize less than 40% cache while still achieving over 90%
accuracy derived from full cache utilization. We also perform extensive ablation studies to chase a
deep understanding of our approach.

2 RELATED WORK

KV Cache Eviction and Merging. KVMerger (Wang et al., 2024) and PyramidKV (Cai. et al.,
2024) introduce innovative approaches to reduce KV cache memory consumption along sequence
length dimension in long-context tasks. KVMerger merges KV by Gaussian weights and attention
score, while PyramidKV uses a layer-wise approach with recent tokens occupying more weights.
CLA (Brandon et al., 2024), YOCO (Sun et al., 2024), and GoldFinch (Goldstein et al., 2024),
among others, exploit inter-layer KV cache reuse by sharing KV heads across layers. This signifi-
cantly reduces the KV cache size along the head number dimension without compromising model
capacity. GQA (Ainslie et al., 2023), MQA (Shazeer, 2019), and HeadKV Yu et al. (2024), espe-
cially the last one, have demonstrated the effectiveness of compressing KV cache on the axis of head
number due to their low-rank properties.

KV cache Compression along the hidden size dimension. DeepSeekv2 (DeepSeek-AI et al.,
2024) employs MLA techniques to reduce the feature dimension of keys and values within the
attention mechanism, but this requires costly retraining from scratch. Concurrent advancements,
however, have addressed this limitation. Eigen-Attention (Saxena et al., 2024) and HeadKV (Yu
et al., 2024) achieve a 40% reduction in the KV cache sizes using orthogonal projections param-
eterized by the SVD of the Q, K, and V matrices derived from a subset of samples. To mitigate
performance degradation, LoRA (Hu et al., 2021) is employed to fine-tune model parameters. How-
ever, this compression approach on the axis of feature dimension results in a sharp decline in model
performance when using less than 60% cache budget. Furthermore, fine-tuning the base model with
LoRA may lead to catastrophic forgetting. In this paper, our method MatryoshkaKV circumvents
these risks and achieves higher compression rate by directly fine-tuning orthogonal projections.

3 PRELIMINARY

This section provides a review of the KV cache mechanism and elucidates the implementation of
PCA projection for KV cache compression.

3.1 KV CACHE

Consider the inference of an LLM p(·|x) with x as the prompt. It is a common practice to deploy the
KV cache technique to each self-attention head in the model to store the key and value states for the
present context, including both the prompt x and the tokens that have already been generated. Given
the KV cache for the context of length L − 1 and dimension d in each head, the model generates
a subsequent new token y with the attention states softmax(QK⊤/

√
d)V , where Q ∈ R1×d is the

query vector for y and K,V ∈ RL×d denote the concatenation of the KV cache and the KV vectors
for y. This way, the computational complexity for one decoding step is reduced fromO(L) toO(1).
However, the size of the KV cache can grow quickly w.r.t. that of the model and context, often
causing system bottlenecks in terms of both storage and memory transfer during the inference phase.
To address this, various KV cache compression techniques have been proposed, e.g., sharing the KV
headers across layers inside LLMs (Brandon et al., 2024; Sun et al., 2024; Goldstein et al., 2024),
merging heads that require caching KV (Yu et al., 2024; Ainslie et al., 2023), evicting or merging
redundant tokens (Xiao et al., 2024; Li et al., 2024; Cai. et al., 2024; Zhang et al., 2023b). This work
alternatively focuses on compressing the feature dimension d of the KV cache, exploring a novel
axis for KV cache compression that is compatible with existing methodologies.

3.2 TRAING-FREE DIMENSION REDUCTION VIA PCA

A simple way to reduce the dimension of the KV cache is finding some matrices to project K,V as
K ′, V ′ ∈ RL×r, (r < d). Then, we can only cache K ′ and V ′, reducing the storage and memory
transfer cost from O(d) to O(r). The rank r is desired to be adjustable based on the available

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

compression budget: when the budget is sufficient, caching full KV states helps prevent information
loss; in cases of limited budget, caching only the most essential information should be feasible.
To fulfill this, it is reasonable to introduce full-rank projection matrices U ∈ Rd×d and demand a
hierarchy over the columns of U so that the optimal r-rank cache can result from the first r columns
of U , denoted as Ur ∈ Rd×r. In practice, U should be distinct for K and V and vary across attention
heads and layers within the model, as these states commonly exhibit diverse distributions.

During the forward pass of the model, we should be able to recover the original K and V from
the reduced K ′ and V ′. A natural choice is using U⊤, the transposition of the projection matrices,
where UrU

⊤
r ≈ I needs to be satisfied. Given that r can vary from 1 to d, we identify that U should

be orthogonal matrices. It is known that the optimal orthogonal projections for compressing a set of
high-dimension vectors can be their principal components, so we suggest constructing U based on
the PCA results of the key or value states of a long sequence of tokens for each head separately.

Table 1 displays an empirical study of the efficacy of such training-free projections. As shown,
PCA projections exhibit reliable performance at moderate levels of compression budget. This is
remarkable because the PCA strategy does not need costly from-scratch training of the projection
matrices, in sharp contrast to the projection mechanisms used by MLA (DeepSeek-AI et al., 2024).
We note that PCA projection is also advocated by Saxena et al. (2024); refer to Appendix B for the
difference between our attempts and theirs regarding applying projections before or after RoPE (Su
et al., 2023) and whether performing fine-tuning.

Nevertheless, as the table displays, the PCA projections suffer from quickly degraded performance
when further increasing the compression level. This is because despite principal components being
optimal for key or value recovery in individual head layers, they may be inadequate for preserving
the final output due to the non-linearity and compounding effects of the attention mechanism.

4 METHODOLOGY

To address the aforementioned issue, we propose to jointly tune the orthogonal projection matrices
introduced to the LLM under an elaborate objective, to realize a more robust KV cache compres-
sion. The whole pipeline can be listed as follows: (1) Obtain the PCA initialization based on a small
subset of a general corpus. (2) Train our model on the corpus. (3) Search for the heterogeneous
compression levels for various heads with a small calibration dataset (5 - 10 samples) on the spe-
cific task. (4) Perform inference on that task given the identified compression levels. This section
provides the training and inference details of our approach.

4.1 MINIMIZE COMPRESSION LOSS BY KNOWLEDGE DISTILLATION

Recalling the objective for the compression is that the model outputs based on the compressed states
should stay close to the original one. This implies a knowledge distillation objective (Hinton et al.,
2015), which can be instantiated with the KL divergence:

LKD = DKL(p (·|x) ∥p′ (·|x)) (1)

where we abuse p′ to refer to the LLM equipped with low-rank projection matrices. As suggested
by the literature (Kou et al., 2024), we also incorporate a language modeling loss to p′ to prevent
the generated text from deviating from the context distribution of the dataset, thereby ensuring high-
quality generation. The tuning process involves only the update of U , which ensures that the model
performance under the full-rank KV cache is maintained.

Orthogonal constraint. We initialize the trainable orthogonal projections with the PCA ones due
to their effectiveness. To confine the evolution of the projection matrices within the orthogonal
matrix family throughout the tuning process, we employ Cayley parameterization to formulate the
orthogonal matrix. Specifically, there is U = (I +Q) (I −Q)

−1 with Q as a skew-symmetric
trainable matrix of size d × d. Considering that d is usually small (e.g., 64 or 128), the complexity
of performing such an orthogonal transformation during training is minimal.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Attention

Add & Norm

FFN

Add & Norm

KV cache

Matmul & Softmax

KV cache

�

Matmul & Softmax

Matmul

 A new
 linear layer

Mechanism of tradition attention using full-cache

Full dimension qkv states

Reduced dimension qkv states

Mechanism of our attention using reduced-cache

�

�

�

�

�� 푅표��

푅표����

��

�� 푅표��

푅표����

��

���

���

�’

�’

�’

Matmul & Reshape
� �’��

�’ ���
� � �’��

attention weights

attention weights
�

�

�

���

❄

❄

❄

❄

Figure 2: Vanilla KV cache vs. the proposed MatryoshkaKV. In particular, we introduce orthogonal
projection matrices to reduce the dimension of stored keys and values. We explicitly enforce a hier-
archy over the columns of projection matrices so as to concentrate the principal information on the
head dimensions and enable the adjustment of compression level according to resource constraints.
Algorithm 1: Greedy search for adaptive compression levels in our efficient LLM.
Input : An base LLM p (·) and an efficient LLM equipped with MatryoshkaKV projections

p′ (·), layer num L, attention head num H , full KV cache feature dimension d, a
prompt x, compression rate interval ∆r, target cache budget γ.

Output: Two tensors RK , RV ∈ RL×H specifying the heterogeneous key/value compression
rates for each head in each layer.

RK , RV ← d · 1L×H

repeat
RK

temp, R
V
temp ← RK , RV

for Every Layer-l in LLM do
for Every Attention Head-h do

RK
temp,l,h, R

V
temp,l,h ← RK

l,h −∆r,RV
l,h −∆r

εK
l,h ← DKL

(
p (·|x) ∥p′

(
·|x;RK

temp, R
V
))

εV
l,h ← DKL

(
p (·|x) ∥p′

(
·|x;RK , RV

temp

))
RK

temp,l,h, R
V
temp,l,h ← RK

l,h, R
V
l,h

Locate the index associated with the minimum value element in the joint error list [εK , εV].
Decrement the corresponding compression rate in [RK , RV] by ∆r.

until Budget
(
RK , RV

)
< γ;

return RK , RV

4.2 ACQUIRE HIERARCHICAL KV CACHE BY MATRYOSHKAKV TRAINING

The tuning process can destroy the hierarchical structures present in the orthogonal matrices inher-
ited from the PCA ones because there is no prioritization given to the columns of the matrices U
from the training objective. Consequently, we lose the flexibility to achieve a smooth transition
between the level of compression and maintenance of the original performance.

To tackle this challenge, we draw inspiration for Matryoshka representation learning (Kusupati
et al., 2022), introducing a Matryoshka strategy for training the projection matrices U . In par-
ticular, for each training iteration, we randomly sample r from a predefined schedule such as

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

{4, 8, 16, ..., d/4, d/2, d} and use the first r columns of U , i.e., Ur, to construct the model p′ for
training. Note that the keys and values at different heads and layers use separately sampled r to
avoid the entanglement of the compression effect. An illustrative explanation of this is given in
Figure 4, and our approach is then called MatryoshkaKV for short.

4.3 FIND HETEROGENEOUS COMPRESSION RATES FOR VARIOUS LAYERS & HEADS

The Matryoshka training strategy enables the search for heterogeneous compression rates for various
layers and heads in the model given a specific compression budget. Basically, we can first propose
a compression level for the projection matrix at a particular position, assessing the deviation of the
model output from the original on a predefined calibration dataset (measured by KL divergence), and
determining whether to accept the proposal based on a predefined tolerance threshold for the devia-
tion. Algorithm 1 exhibits a greedy algorithm for accelerating this based on accepting proposals in
parallel. Note that this greedy algorithm also applies to the PCA projections.

Discussion. The recent KV cache compression approach on sequence length aspect (Cai. et al.,
2024) also observes that compared to uniformly compressed KV cache using the same rate across
all layers (Li et al., 2024), employing a distinct compression rate for each layer results in improved
information utilization. Furthermore, as observed in (Wu et al., 2024), certain retrieval heads within
an LLM consistently attend to crucial information, regardless of contextual variations. The indis-
criminate compression rates of these heads can lead to significant performance degradation. These
both support the necessity of the proposed heterogeneous KV cache compression approach.

5 EXPERIMENTS

In this section, we conduct experiments on continual pre-training (CPT) and supervised fine-tuning
(SFT) scenarios to demonstrate that our MatryoshkaKV can not only preserve the foundation knowl-
edge of a base model but also be compatible with LoRA (Hu et al., 2021) for downstream tasks.
Ablation studies in Section 5.3 validate the efficacy of our proposed method.

5.1 CONTINUAL PRE-TRAINING

Setup. We select LLaMA2-7B-base (Touvron et al., 2023) and Mistral-v0.3-7B-base (Jiang et al.,
2023) as our base models. We conduct continual pre-training (Ke et al., 2023) using the RedPajama
dataset (Computer, 2023). To rapidly validate the effectiveness of our proposed method, we choose
a subset of this dataset following RedPajama-Data-1T-Sample. We adopt the Matryoshka training
strategy detailed in Section 4.2 and fine-tune MatryoshkaKV projections with knowledge distilla-
tion loss in Equation 1 and language modeling loss, applying a 1:3 weighting ratio between the two
losses. The projection rank rk and rv are randomly sampled from a predefined schedule set { i8d}

8
i=1

during training and are chosen dynamically with the greedy search for adaptive compression levels,
as detailed in Section 4.3 during inference. During the greedy search for adaptive compression
levels, we define the compression rate interval ∆r = d/8 where the head dimension d for each
attention head in LLaMA2-7B-base is 128. We use Opencompass (Contributors, 2023) to test per-
formance on several widely-used zero-shot benchmarks: PIQA (Bisk et al., 2019), ARC-challenge
(ARC-C) (Clark et al., 2018), ARC-easy (ARC-E) (Clark et al., 2018), WinoGrande (WG) (Sak-
aguchi et al., 2019), HellaSwag (HLSG) (Zellers et al., 2019), and CommonSenseQA (CSQA) (Tal-
mor et al., 2019). We compare our methods with Eigen-attention (donated as PCA) in Table 1
and ASVD (Yuan et al., 2024) in Table 6. Additionally, we combine our methods with H2O and
KIVI to demonstrate our method’s compatibility with KV cache compression techniques on other
axes. We use a new baseline, LongBench (Bai et al., 2024), to demonstrate that our MatryoshkaKV
can scale to relatively long contexts and achieve a higher compression ratio by concurrently using
MatryoshkaKV and H2O. Results are displayed in Table 4 and Table 5.

Results. We train with a total of 30 GPU× hours, processing just under 200 million tokens (20% of
the RedPajama sample 1T, or 0.02% of the full RedPajama dataset). Table 1 presents the results of
our experiments. In zero-shot tasks, our MatryoshkaKV cache substantially reduces the cache foot-
print with minimal impact on performance. Specifically, our method retains 93.10% of LLaMA2-
7B-base’s average accuracy and 92.63% of Mistral-v0.3-7B-base’s average accuracy, while utilizing
only 37.5% of the original cache size. For simpler tasks like PIQA, it achieves 88.71% and 92.00%

6

https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison between our MatryoshkaKV method (donated as MKV in the table) and PCA
projection. We use LLaMA2-7B-base and Mistral-v0.3-7B-base as our source models, and their per-
formance is used as a baseline. Accuracy on HellaSwag, ARC-challenge, ARC-easy, PIQA, Wino-
Grande, and CommonSenseQA is reported, with higher scores indicating superior performance, at
seven KV cache budgets. At the same budget, the higher average accuracy is underlined.

Model Budget Method HLSG ARCC ARCE PIQA WG CSQA Avg.

LLaMA2
7B-base

100.0%
Baseline 74.00 35.93 50.97 78.50 61.64 65.93 61.16

PCA 72.04 36.95 52.38 76.66 61.72 67.24 61.17
MKV 72.05 37.29 52.38 76.66 61.72 67.32 61.24

87.5% PCA 71.91 35.93 53.97 76.66 61.40 67.65 61.25
MKV 71.58 37.97 53.26 75.95 62.12 69.57 61.74

75.0% PCA 70.99 35.59 54.14 76.22 60.06 66.99 60.67
MKV 71.58 38.31 55.56 76.01 61.09 66.75 61.55

62.5% PCA 67.16 34.24 54.85 74.76 57.77 61.10 58.31
MKV 68.03 37.97 56.08 75.12 60.30 65.44 60.49

50.0% PCA 42.11 29.83 35.10 58.16 52.57 40.62 43.07
MKV 66.78 36.61 55.91 74.32 59.12 61.92 59.11

37.5% PCA 24.24 26.44 26.63 51.25 50.36 19.90 33.14
MKV 63.97 33.90 51.68 74.97 57.92 59.21 56.94

25.0% PCA 23.98 29.49 26.28 51.20 50.36 16.22 32.92
MKV 51.91 27.46 44.44 69.64 54.54 44.39 48.73

Mistral-v0.3
7B-base

100.0%
Baseline 75.50 42.03 63.14 80.25 65.43 70.68 66.17

PCA 75.46 42.03 62.96 80.25 65.35 70.27 66.05
MKV 75.44 42.03 62.96 80.25 65.51 70.27 66.08

87.5% PCA 73.46 42.71 63.32 79.54 63.93 70.76 65.92
MKV 75.63 42.03 64.37 79.71 65.51 70.35 66.27

75.0% PCA 70.75 37.63 61.73 78.18 62.59 68.47 63.23
MKV 75.29 43.39 63.14 79.54 64.96 69.12 65.90

62.5% PCA 63.48 34.24 55.73 75.90 60.77 62.24 58.73
MKV 74.23 40.34 62.96 79.33 64.25 68.63 64.96

50.0% PCA 28.12 22.71 28.40 58.16 49.64 22.85 34.98
MKV 73.32 38.98 62.08 79.16 61.88 67.08 63.75

37.5% PCA 25.04 22.03 28.04 53.86 49.25 21.21 33.24
MKV 70.40 35.93 58.91 77.91 60.30 64.29 61.29

25.0% PCA 24.91 26.10 25.40 52.67 48.30 19.74 32.85
MKV 59.21 25.42 48.68 73.83 54.30 45.13 51.10

of the base model’s performance with just a 25% cache budget. On more challenging tasks such
as ARC-C, a larger cache budget is required, with 50% needed to retain 90% of the base model’s
performance. By contrast, PCA projection shows a sharp performance drop when the cache bud-
get is reduced below 62.5%, achieving just 70.42% accuracy of LLaMA2-7B-base and 52.86% of
Mistral-v0.3-7B-base. These results underscore the superior efficiency of our approach compared
with PCA. We attribute PCA’s performance decline to suboptimal projection matrices, whereas our
method maintains closer alignment with the base model, thereby mitigating this degradation.

5.2 SUPERVISED FINE-TUNING

Setup. We use LLaMA2-7B-base (Touvron et al., 2023) as our base model and verify the efficacy
of our method on PIQA (Bisk et al., 2019), GSM8K (Cobbe et al., 2021), HellaSwag (Zellers et al.,
2019), and OpenbookQA (OBQA) (Mihaylov et al., 2018) datasets. We design a two-stage training
strategy to make Matryoshka training strategy compatible with LoRA (Hu et al., 2021) fine-tuning.
Specifically, LoRA is firstly used to adapt the base model to downstream tasks, following standard

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Accuracy of our Matryoshka method after SFT based on LLaMA2-7B-base on four down-
stream tasks: PIQA, GSM8K, HellaSwag, and OpenbookQA, at seven KV cache budgets. Degrada-
tion from baseline is shown in brackets.

Model Budget PIQA GSM8K HLSG OBQA Avg.

LLaMA2
7B-base

100.0 % 84.22 34.95 93.94 83.2 74.08 (-0.00%)
87.5 % 83.84 35.25 93.17 81.80 73.52 (-0.76%)
75.0 % 83.30 32.90 91.47 81.40 72.27 (-2.44%)
62.5 % 82.75 31.46 89.86 79.60 70.92 (-4.27%)
50.0 % 79.33 31.77 86.29 76.60 68.50 (-7.53%)
37.5 % 75.35 26.91 76.10 70.80 62.29 (-15.9%)
25.0 % 69.04 16.38 56.10 61.40 50.73 (-31.5%)

0
1.3

K
2.6

K
3.8

K
5.1

K
6.4

K
7.7

K

Num samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ev
al

 L
os

s

37.5%
50%
62.5%
100%

0
2.6

K
5.1

K
7.7

K
10

.2K
12

.8K
15

.4K
17

.9K
20

.5K
23

.0K
25

.6K
28

.2K

Num samples

0

1

2

3

4

5

6

7

8

Ev
al

 L
os

s

w/ PCA initialization
w/o PCA initialization

Figure 3: Evaluation loss of four budgets vs. the number of training samples during 1 epoch of
SFT on GSM8K (Left). Evaluation loss of models with and without PCA initialization, using a 50%
cache budget, vs. the number of training samples during 4 epochs of SFT on GSM8K (Right).

SFT practices (Naveed et al., 2024; Zhao et al., 2024). In the second stage, we jointly fine-tune
the MatryoshkaKV projections with the Matryoshka training strategy and the LoRA parameters.
Further discussion on the superiority of this recipe is detailed in Appendix C.

Results. We report accuracy on four zero-shot benchmarks at seven KV cache budgets in Table 2.
As shown, our method demonstrates notable performance in the SFT scenario. It achieves 92.47%
of the baseline’s average accuracy while utilizing only 50% of the KV cache budget. On simple
tasks like PIQA, our method retains 89.47% of the full-cache performance with a 37.5% cache
budget. However, for more complex tasks such as GSM8K, a 50% cache budget is necessary to
achieve comparable results. Furthermore, we report the evaluation loss at four budgets: 100%,
62.5%, 50%, and 37.5% during the second stage of SFT on GSM8K in Figure 3 (Left). It shows
our method simultaneously optimizes models under various KV cache budgets and maintains the
hierarchical structures present in the orthogonal matrices. These findings highlight the robustness of
our approach, delivering consistent performance across both CPT and SFT scenarios.

5.3 ABLATION STUDIES

We conduct ablation studies on various components of our method to verify their effectiveness.

W/o greedy search for adaptive compression levels. We evaluate our trained models without our
greedy search for adaptive compression levels. Figure 4 (Left) represents the average accuracy on
four datasets mentioned in Section 5.2 as the cache budget varies. For the exact numerical values,
please refer to Table 3 in Appendix D. To ensure that each head in the LLM plays its due role,
we set 25% as our minimum cache budget for each head. At a 37.5% cache budget, the average
accuracy improves by 1.92%, indicating the significance of our search algorithm for further KV
cache compression. Furthermore, our MatryoshkaKV demonstrates robustness even when applying

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cache Utilization

35

40

45

50

55

60

Av
g

Ac
cu

ra
cy

PCA w/ search algorithm
MKV W/ search algorithm
PCA w/o search algorithm
MKV w/o search algorithm

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cache Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Ac
cu

ra
cy

w/o Orthogonal Constraint
w/o Matryoshka Training
Our setting

Figure 4: Comparison between PCA and distilled MatryoshkaKV Projections after CPT with and
without greedy search for adaptive compression levels. We report average accuracy on datasets
mentioned in the experimental setup of Section 5.1 (Left). Comparison between with and without
Matryoshka training strategy and orthogonal constraint after SFT on GSM8K. We report the relative
accuracy compared with the LLaMA2-7B-base model fine-tuned with LoRA on GSM8K, utilizing
the full KV cache (Right).

a uniform compression rate across all layers and heads, in contrast to PCA projection, which fails to
handle this setting effectively.

W/o Matryoshka training strategy. As discussed in Section 4.2, we point out that the tuning pro-
cess w/o Matryoshka training strategy can destroy the hierarchical structures present in the orthogo-
nal matrices inherited from the PCA ones. To validate this, we train MatryoshkaKV projections with
a fixed KV cache budget of 50%. The result is displayed in Figure 4 (Right). We observe that fix-
ing the compression rate at 50% hinders the potential for further compression. Moreover, when the
budget exceeds 50%, the model’s performance does not improve significantly but even deteriorates,
indicating the hierarchical structure of projections is destroyed.

W/o orthogonal constraint. We investigate the necessity of imposing the orthogonal constraint
during training, with experimental results presented by Figure 4 (Right). After training without
orthogonal constraint on GSM8K, we observe that non-orthogonal projections achieve performance
comparable to orthogonal projections when the cache budget is less than 50%. However, when
utilizing a full KV cache budget, this model is unable to maintain the performance of the base model.
This is due to the non-orthogonality of the projection matrix, which prevents LLM from replicating
the attention mechanism of the base model. This phenomenon also validates our discussion in
previous Section 3.2.

W/o PCA initialization. To demonstrate the necessity of using PCA results to initialize projections,
we train an LLM equipped with randomly initialized orthogonal matrices on GSM8K and impose
orthogonal constraints. In Figure 3 (Right), we report the evaluation loss during the second stage
of SFT on GSM8K. Despite training for four epochs, randomly initialized orthogonal projections
consistently fail to converge to an optimal solution, and the text generated by our fine-tuned LLM
projection is composed of meaningless symbols. This highlights the critical importance of PCA
initialization.

5.4 HETEROGENEOUS COMPRESSION RATES VISUALIZATION

Figure 1 shows the heterogeneous compression levels across all attention heads inside our Ma-
tryoshkaKV LLM distilled from the LLaMA2-7B-base. We acquire these results by leveraging the
greedy search for adaptive compression levels on the ARC-C, ARC-E, and WinoGrande datasets.
We observe that shallower layers require larger KV cache budgets, while in deeper layers, only a
minority of specific heads require a relatively high budget. PyramidKV (Cai. et al., 2024) also
observes that the model aggregates information globally from all available content in lower layers,
indicating that KV cache inside lower layers can exert a substantial influence over the final output
and should be allocated at a relatively high budget. Therefore, allocating more cache in lower layers
and less in higher ones is superior to maintaining a uniform KV cache size across layers. Also,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

as Wu et al. (2024) point out, retrieval heads with high retrieval scores in LLaMA2-7B-base, are
much more important than other heads and should be preserved in KV cache compression. These
findings are consistent with our observations.

Moreover, we observe that keys can be more compressed than values. As shown by the heatmaps
in Appendix D, the compression of values affects downstream tasks more than keys. Specifically,
according to our greedy search for adaptive compression levels, for a 37.5% KV cache budget, the
optimized key cache budget is allocated 32.28%, and the value cache budget is allocated 42.72%.

6 CONCLUSION

In this study, we delve into how to compress the KV cache in LLMs by applying low-rank projec-
tion matrices to the feature dimension. We first investigate data compression using the canonical
orthogonal projection method through PCA. We observe significant performance degradation at a
relatively high compression rate, indicating that PCA projection is suboptimal for preserving global
outputs due to LLMs’ nonlinearity and compounding effects. To bridge the gap, we directly opti-
mize orthogonal projection matrices for KV cache compression in LLMs with a distillation objective
using an elaborate Matryoshka training strategy. After training, we show that adaptive compression
rates for different layers and heads ensure optimal performance compared to uniform compression
rates across all layers and heads in LLMs. Experimental results demonstrate significant performance
gains and flexibility in achieving desired compression rates compared to traditional PCA projection.

7 FUTURE WORK

Our further tuning with the Matryoshka training strategy optimizes orthogonal projections, enabling
efficient compression of the KV cache on the axis of the feature dimension. Having established the
compatibility of MatryoshkaKV cache with GQA, we intend to enhance its versatility by integrating
our feature compression techniques with contemporary token merging and eviction methods, such
as H2O (Zhang et al., 2023b) and StreamingLLM (Xiao et al., 2024). This integration aims to
optimize compression rates, especially for extended sequences, and ensure broader compatibility
with existing KV cache methodologies.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points, 2023. URL https://arxiv.org/abs/2305.13245.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, mul-
titask benchmark for long context understanding, 2024. URL https://arxiv.org/abs/
2308.14508.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention, 2024. URL https:
//arxiv.org/abs/2405.12981.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

10

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2405.12981
https://arxiv.org/abs/2405.12981
https://arxiv.org/abs/2005.14165

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Zefan Cai., Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling, 2024. URL https://arxiv.org/abs/2406.02069.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models, 2024. URL https://arxiv.
org/abs/2309.12307.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Together Computer. Redpajama: An open dataset for training large language models, October 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi
Dengr, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li,
Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao
Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai
Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue
Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming
Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou,
Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L.
Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q.
Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang
Chen, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai
Yu, Xinnan Song, Xinyi Zhou, Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui
Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao,
Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo, Yuchen Zhu, Yuduan Wang,
Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang You, Yuxuan Liu, Z. Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong Shao,
Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, and
Ziwei Xie. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
2024. URL https://arxiv.org/abs/2405.04434.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens, 2024.
URL https://arxiv.org/abs/2402.13753.

Maxim Enis and Mark Hopkins. From llm to nmt: Advancing low-resource machine translation
with claude, 2024. URL https://arxiv.org/abs/2404.13813.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context, 2024. URL https://arxiv.
org/abs/2402.10171.

Daniel Goldstein, Fares Obeid, Eric Alcaide, Guangyu Song, and Eugene Cheah. Goldfinch: High
performance rwkv/transformer hybrid with linear pre-fill and extreme kv-cache compression,
2024. URL https://arxiv.org/abs/2407.12077.

11

https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://github.com/togethercomputer/RedPajama-Data
https://github.com/open-compass/opencompass
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2402.13753
https://arxiv.org/abs/2404.13813
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2407.12077

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization, 2024. URL https://arxiv.org/abs/2401.18079.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual pre-
training of language models, 2023. URL https://arxiv.org/abs/2302.03241.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large language
models, 2024. URL https://arxiv.org/abs/2403.00835.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233–30249,
2022.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation, 2024. URL https://arxiv.org/abs/2404.14469.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: Plug-and-play 2bit kv cache quantization with streaming asymmetric
quantization. https://rgdoi.net/10.13140/RG.2.2.28167.37282, 2023. Unpub-
lished.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018. URL https://arxiv.
org/abs/1809.02789.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models, 2024. URL https://arxiv.org/abs/2307.06435.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun

12

https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2302.03241
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2404.14469
https://rgdoi.net/10.13140/RG.2.2.28167.37282
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2307.06435

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
low-rank space for kv cache compression, 2024. URL https://arxiv.org/abs/2408.
05646.

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019. URL https:
//arxiv.org/abs/1911.02150.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on
methods to optimize llm’ s kv-cache consumption, 2024. URL https://arxiv.org/abs/
2407.18003.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

13

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2408.05646
https://arxiv.org/abs/2408.05646
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2407.18003
https://arxiv.org/abs/2407.18003
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models,
2024. URL https://arxiv.org/abs/2405.05254.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge, 2019. URL https://arxiv.org/
abs/1811.00937.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks, 2024. URL https://arxiv.org/
abs/2407.08454.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mecha-
nistically explains long-context factuality, 2024. URL https://arxiv.org/abs/2404.
15574.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453.

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu. Effectively compress kv heads for llm,
2024. URL https://arxiv.org/abs/2406.07056.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models, 2024.
URL https://arxiv.org/abs/2312.05821.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan, and Lidong Bing. Sentiment analysis in
the era of large language models: A reality check, 2023a. URL https://arxiv.org/abs/
2305.15005.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models, 2023b. URL https:
//arxiv.org/abs/2306.14048.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2024. URL https://arxiv.org/abs/
2303.18223.

14

https://arxiv.org/abs/2405.05254
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2404.15574
https://arxiv.org/abs/2404.15574
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2406.07056
https://arxiv.org/abs/2312.05821
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2305.15005
https://arxiv.org/abs/2305.15005
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ERROR ANALYSIS

Consider in a decoder layer with key and value has same head dimension: d = dk/v , our orthogonal
projection UK , UV ∈ Rd×d , we donate the first r columns of orthogonal projection U as Ur and
the rest as U:,r:d, the error can be computed at a cache budget r/d as:

L (r) =
∥∥∥Attention(Q,K, V)WO − Attention(Q̃, K̃, Ṽ)WOV

∥∥∥2
F

=

∥∥∥∥∥Softmax
(
QK⊤
√
d

)
VWO − Softmax

(
Q̃K̃⊤
√
d

)
Ṽ UV⊤

r WO

∥∥∥∥∥
2

F

=

∥∥∥∥∥Softmax
(
QK⊤
√
d

)
V UV UV⊤WO − Softmax

(
Q̃K̃⊤
√
d

)
V UV

r UV⊤
r WO

∥∥∥∥∥
2

F

=

∥∥∥∥∥Softmax
(
QK⊤
√
d

)
V
(
UV
:,r:dU

V⊤
:,r:d + UV

r UV⊤
r

)
WO − Softmax

(
Q̃K̃⊤
√
d

)
V UV

r UV⊤
r WO

∥∥∥∥∥
2

F

=

∥∥∥∥∥
(

Softmax
(
QK⊤
√
d

)
− Softmax

(
Q̃K̃⊤
√
d

)
V UV

r UV⊤
r + Softmax

(
QK⊤
√
d

)
V UV

:,r:dU
V⊤
:,r:d

)∥∥∥∥∥
2

F

(2)

Consider the original parameter WO. By donating LQK = Softmax
(

QK⊤
√
d

)
− Softmax

(
Q̃K̃⊤
√
d

)
and A = Softmax

(
QK⊤
√
d

)
is a constant, we just need to minimize:

L (r) =
∥∥(LQKV UV

r UV⊤
r +AV UV

:,r:dU
V⊤
:,r:d

)∥∥2
F

=
∥∥LQK + (A− LQK)V UV

:,r:dU
V⊤
:,r:d

∥∥2
F

(3)

While PCA on value states minimizes
∥∥∥V UV

:,r:dU
V⊤
:,r:d

∥∥∥2
F

and PCA on query and key states minimizes

LQK = Softmax
(

QK⊤
√
d

)
− Softmax

(
Q̃K̃⊤
√
d

)
, these optimizations do not necessarily guarantee the

minimization of the global error L, showing the PCA projection is suboptimal and has the room to
be optimized to make the global error minimized.

The LLM itself has numerous layers, and each layer is nonlinear. Strictly speaking, the error is
the output of the last layer of the model after low-rank projection and that of the original model’s
last layer. Here, we only conduct an intuitive analysis of a certain layer. The optimal solution
of this optimization problem is complex and difficult to solve mathematically. So, we make these
orthogonal matrices trainable to get optimal results.

Theoretically, the optimal solution also changes with the variation of the input data distribution. It is
difficult for us to model the distribution of all corpora in the world. Therefore, to minimize the error
of the model after KV cache compression on most tasks as much as possible, we consider using a
data-driven approach for optimization to be a reasonable method.

To minimize L (r) =
∥∥∥Attention(Q,K, V)WO − Attention(Q̃, K̃, Ṽ)WOV

∥∥∥2
F

, we use KL-
Divergence as a proxy loss to let the distributions of the two models’ outputs close to each other. As
we have discussed in Section 3.2, to recover the original K and V from the reduced K ′ and V ′ when
using full-rank, the orthogonality of U should be guaranteed. Thus, our optimization objective can
be derived as:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

U∗ = argmin
U

∑
r∈M

DKL

(
p (·|x) ∥p′

(
·|x;UK

r , UV
r

))
s.t. DKL

(
p (·|x) ∥p′

(
·|x;UK

d , UV
d

))
= 0 (4)

where we abuse p′ to refer to the LLM equipped with low-rank projection matrices, andM is our
predefined schedule.

Our orthogonal constraints UU⊤ = I on U can guarantee DKL

(
p (·|x) ∥p′

(
·|x;UK

d , UV
d

))
= 0.

It is worth noticing that if we only use r < d columns to forward for KV cache compression, the
rest d − r columns, i.e. U:,r:d will not be updated. Thus, although experiments in Appendix G
demonstrate that our method is not sensitive to a predefined schedule, we point out that d ∈ M is a
must to guarantee all parameters of U to be trained.

B WEIGHT MERGING METHOD

Given that both WQ and WK , as well as our orthogonal projection, operate on hidden states, con-
solidating parameters evidently reduces computational time. However, many LLMs utilize RoPE Su
et al. (2023), introducing a relative position embedding between WQ and WK , which compli-
cates integrating the parameters with our unitary transform. This issue has been addressed in prior
works Saxena et al. (2024); Yu et al. (2024). The approach in Saxena et al. (2024) involves maintain-
ing the merged parameters and transforming the compressed dimension cache back to its original
dimensions for reapplication of RoPE. This does not reduce peak memory usage for attention and
necessitates RoPE for all past tokens. Alternatively, (Yu et al., 2024) compresses the key states
post-RoPE, which prohibits the merging of WQ/K and UK . However, as only a single new token
requires orthogonal transformation and dimensionality reduction during inference, the time increase
is merely slight as shown in (Yu et al., 2024). Consequently, our treatment of RoPE in the present
study is influenced by (Yu et al., 2024)’s methodology. The integration of the weight parameters of
WO and UV⊤, given RoPE has no impact on value states, the details of our weight merging methods
can be formulated as follows and in Figure 5

MSA(X) = Concat(head1, head2, . . . , headH)WO

= Concat(A1V1, A2V2, · · · , AhVH)WO

= Concat(A1V1U
V
1 UV⊤

1 , A2V2U
V
2 UV⊤

2 , · · · , AhVhU
V
HUV⊤

H)WO

= Concat(A1V1U
V
1 , A2V2U

V
2 , · · · , AHVHUV

H)
(
ŨV WO

)
= Concat(A1Ṽ1, A2Ṽ2, · · · , AH ṼH)WOV

where Ai = Softmax
(
QiK

⊤
i√

dk

)
is the attention weights of a given head in each layer

C TWO STAGE SFT

In this section, we provide a detailed discussion on our observations regarding fine-tuning with
LoRA and the orthogonal matrix. We elaborate on the issues stemming from calculating covariance
on a limited sample subset and performing spectral decomposition, which may lead to suboptimal
parameters. We hypothesize that larger gradients during training can arise from task-specific distri-
butions, such as in GSM8K, affecting the alignment of LoRA weights with the base model.

To mitigate these issues, our two-phase training approach involves initially training only the LoRA
weights to ensure adequate adaptation to downstream tasks. In the second phase, we introduce si-
multaneous training of the unitary transformation matrix and the LoRA weights, focusing on main-
taining performance while compressing the cache effectively. We also explore the impact of using

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 5: After obtaining an orthogonal matrix through training, we merge the parameters in this
way, reducing the number of matrix multiplications required during inference without incurring any
inference time overhead. Truncation can be achieved simply by removing the columns correspond-
ing to WOV , thereby reducing peak memory consumption.

separate learning rates for the LoRA and orthogonal matrix parameters to further investigate these
phenomena. Extensive experimental results are provided to support our findings.

D ABLATION STUDY ON GREEDY SEARCH FOR ADAPTIVE COMPRESSION
LEVELS

We present some experimental results using a uniform compression rate across all heads after CPT
and SFT in our MatryoshkaKV LLM.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: Accuracy of our distilled MatryoshkaKV Projections after CPT on six benchmarks w/o
greedy search for adaptive compression levels.

Model Budget Method HLSG ARC-C ARC-E PIQA WG CSQA Avg.

LLaMA2
7B-base

100.0%
baseline 74.00 35.93 50.97 78.50 61.64 65.93 61.16

PCA 72.04 36.95 52.38 76.66 61.72 67.24 61.17
MKV 72.05 37.29 52.38 76.66 61.72 67.32 61.24

87.5% PCA 30.28 23.73 30.34 58.05 51.30 22.60 36.05
MKV 72.22 35.93 52.20 76.28 62.12 65.27 60.67

75.0% PCA 25.47 27.80 27.51 52.67 49.72 20.56 33.96
MKV 70.98 34.58 55.20 76.77 61.56 63.64 60.46

62.5% PCA 24.22 28.81 27.51 51.58 50.28 21.29 33.95
MKV 69.22 37.29 55.73 75.22 59.35 64.21 60.17

50.0% PCA 24.04 28.47 25.22 52.29 50.67 20.72 33.57
MKV 66.62 34.24 52.91 75.46 58.41 62.00 58.27

37.5% PCA 24.08 28.47 25.40 50.76 49.49 18.35 32.76
MKV 62.38 32.20 50.26 73.34 56.67 55.28 55.02

25.0% PCA 23.98 29.49 26.28 51.20 50.36 16.22 32.92
MKV 51.91 27.46 44.44 69.64 54.54 44.39 48.73

Mistral-v0.3
7B-base

100.0%
baseline 75.50 42.03 63.14 80.25 65.43 70.68 66.17

PCA 75.46 42.03 62.96 80.25 65.35 70.27 66.05
MKV 75.44 42.03 62.96 80.25 65.51 70.27 66.08

87.5% PCA 37.09 22.03 34.57 59.85 53.67 33.99 40.20
MKV 77.01 42.37 62.43 80.09 65.51 70.52 66.32

75.0% PCA 30.58 20.68 30.86 58.92 51.14 24.65 36.14
MKV 75.55 40.34 63.49 80.47 64.48 70.60 65.82

62.5% PCA 28.91 21.69 26.46 56.58 51.14 21.70 34.41
MKV 73.95 38.98 62.61 79.22 64.40 68.39 64.59

50.0% PCA 27.40 23.73 26.28 55.01 50.43 22.77 34.27
MKV 71.65 36.95 60.85 78.40 62.19 66.91 62.83

37.5% PCA 25.77 21.69 24.34 53.70 49.57 21.46 32.76
MKV 68.63 33.56 56.26 77.48 59.83 62.16 59.65

25.0% PCA 24.91 26.10 25.40 52.67 48.30 19.74 32.85
MKV 59.21 25.42 48.68 73.83 54.30 45.13 51.10

Figure 6: Two-phase SFT on PIQA. Figure 7: Two-phase SFT on GSM8K.

E COMPATIBILITY WITH OTHER KV CACHE COMPRESSION TECHNIQUES

To demonstrate the orthogonality and compatibility of our method with existing KV cache compres-
sion techniques, we conduct extensive experiments utilizing MatryoshkaKV in conjunction with
these methods. Based on the classification outlined in Section 2, we integrate MatryoshkaKV
with prominent techniques such as KIVI (Hooper et al., 2024) for KV quantization, H2O (Zhang
et al., 2023b), and GQA (Ainslie et al., 2023) for KV cache eviction and merging. We apply Ma-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 8: Two-phase SFT on HellaSwag. Figure 9: Two-phase SFT on OBQA.

tryoshkaKV to Mistral-v0.3-7B-base in Section 5.1, demonstrating its enhanced compression capa-
bility in synergy with GQA (Ainslie et al., 2023).

Combination with H2O. Furthermore, we combine our methods with H2O. We first evaluate H2O
and our MatryoshkaKV on datasets mentioned in 5.1, our results are listed in Table.

To demonstrate improved compression rates in long contexts, we select LongBench (Bai et al., 2024)
and calculate perplexity under different cache budget settings of two orthogonal KV compression
techniques. The results are displayed in Table 4.

According to the results, by concurrently using MatryoshkaKV and H2O, the perplexity on long
contexts increases by merely 1.02 at 10% KV cache budget. Additionally, if we compress by 50%
on both the sequence length and feature dimension axes (with an actual cache usage rate of 25%),
we can achieve an average accuracy of 55.85 on 6 benchmarks, which is 91.32% of the baseline.

Combination with KIVI. In addition to integrating with H2O, we also explore the combination of
our methods with KIVI (Liu et al., 2023), a KV cache compression technique based on 2-bit cache
quantization. Similar to the previous approach, we conduct evaluations on the datasets described in
Section 5.1. The results of this combination are presented in Table 5 and analyzed in detail. The
results show that our MatryohskaKV can be easily combined with KV quantization techniques and
achieve a higher compression rate.

F COMPARISONS WITH MORE BASELINES

We introduce an additional baseline, ASVD(Yuan et al., 2024), which has been developed to address
the low-rank characteristics of LLM parameters. This approach performs simultaneous compres-
sion of both the KV cache and the model parameters, allowing for efficient utilization of memory
resources. ASVD provides checkpoints for three specific cache budgets: 85%, 90%, and 95%. In
our experiments, we compare our MatryoshkaKV against ASVD under these budgets to evaluate
performance and efficiency. The results of these comparisons are detailed in Table 6, where we
present the performance metrics for our method alongside those obtained using ASVD.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: Results of Combination of Distilled MatryoshkaKV Projections and H2O across Seven
Benchmarks. We use uniform compression levels for inference here for simplicity. The first and
second columns indicate the individual compression rates along two axes. If H2O uses 20% cache
on the sequence length axis and MatryoshkaKV uses 50% cache on the feature dimension axis, the
overall cache utilization is 10%.

H2O MKV LongBench HLSG ARC-C ARC-E PIQA WG CSQA Avg.

100 %

100% 4.17 72.05 37.29 52.38 76.66 61.72 67.32 61.24

87.5% 4.44 72.22 35.93 52.20 76.28 62.12 65.27 60.67

75.0% 4.57 70.98 34.58 55.20 76.77 61.56 63.64 60.46

62.5% 4.70 69.22 37.29 55.73 75.22 59.35 64.21 60.17

50.0% 4.93 66.62 34.24 52.91 75.46 58.41 62.00 58.27

37.5% 5.47 62.38 32.20 50.26 73.34 56.67 55.28 55.02

25.0% 7.66 51.91 27.46 44.44 69.64 54.54 44.39 48.73

75 %

100% 4.18 70.71 36.61 52.38 76.55 60.54 66.50 60.55

87.5% 4.44 71.42 35.25 53.09 76.33 59.91 64.62 60.74

75.0% 4.57 70.31 34.34 54.14 76.39 59.27 62.90 59.94

62.5% 4.70 68.47 36.27 54.32 75.41 58.48 63.96 59.89

50.0% 4.94 66.00 32.54 51.50 75.63 57.30 61.43 57.46

37.5% 5.47 61.50 32.88 49.21 73.01 55.09 55.12 54.63

25.0% 7.67 51.32 27.80 44.09 69.37 53.59 44.55 48.47

50 %

100% 4.20 68.72 33.22 52.20 76.12 56.67 64.78 58.62

87.5% 4.46 67.89 34.58 51.85 76.28 55.88 62.00 58.13

75.0% 4.59 66.01 35.59 53.79 75.41 54.54 62.00 58.05

62.5% 4.73 63.59 34.92 51.32 75.68 55.25 60.52 57.04

50.0% 4.96 61.33 36.10 50.74 73.67 55.57 57.67 55.85

37.5% 5.50 59.26 29.83 49.91 73.61 53.04 54.14 53.29

25.0% 7.71 49.44 26.44 41.80 68.72 52.96 43.24 46.94

20 %

100% 4.40 61.55 25.76 41.27 73.29 53.28 47.01 49.98

87.5% 4.65 61.36 30.51 39.86 73.72 52.09 49.06 50.94

75.0% 4.79 60.29 28.47 38.62 72.75 53.12 50.45 50.62

62.5% 4.93 58.77 26.78 39.86 70.84 52.72 49.30 50.58

50.0% 5.19 56.39 26.78 38.10 71.22 51.62 49.16 49.66

37.5% 5.74 52.12 23.39 34.22 68.50 52.17 41.44 44.82

25.0% 8.01 43.22 21.02 31.92 63.93 51.38 33.09 40.75

We evaluate the inference speed of our LLM equipped with MatryoshkaKV and compare it to the
LLaMA2-7B-base model. Specifically, these evaluations were conducted during the inference pro-
cess with a batch size of 32. Our current implementation consumes a slightly faster time than the
baseline full-KV model.

This is because we have not performed system-level optimizations for memory copy and sparse
computations involved in our KV mechanism.

G EXPERIMENTS ON VARIOUS HYPER-PARAMTERS

In Section 5.1, during the training process, we initially predefine the schedule set as { i8d}
8
i=1. Sub-

sequently, we modify the schedule set to { i4d}
4
i=1 while keeping other hyper-parameters unchanged.

Then, we evaluate the accuracy using the same benchmarks. The results are listed in Table 8:

The final results of our MatryoshkaKV are not very sensitive to the schedule choice.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 5: Results of Combination of Distilled MatryoshkaKV Projections and KIVI (2bit KV cache
quantization) on Six Benchmarks. We use uniform compression levels for inference here for sim-
plicity.

Model Budget Method HLSG ARC-C ARC-E PIQA WG CSQA Avg.

LLaMA2
7B-base

100.0% MKV 70.89 36.95 53.26 76.39 61.56 67.08 60.98
MKV+KIVI 69.76 35.93 51.98 76.55 61.48 66.26 60.49

87.5% MKV 70.87 36.95 51.15 76.17 61.80 64.95 60.47
MKV+KIVI 70.45 36.61 50.79 76.44 61.01 64.13 59.91

75.0% MKV 69.30 33.90 54.67 75.90 61.09 63.23 60.08
MKV+KIVI 68.62 32.20 54.85 76.06 60.30 63.23 59.68

62.5% MKV 67.25 36.27 53.62 75.52 59.27 64.46 59.39
MKV+KIVI 66.56 35.25 51.68 75.41 59.43 61.59 58.33

50.0% MKV 65.08 33.56 52.03 74.81 57.54 60.36 56.98
MKV+KIVI 63.25 32.54 51.15 74.43 57.38 59.46 56.35

37.5% MKV 61.02 29.83 49.21 73.45 55.64 55.36 54.09
MKV+KIVI 57.11 28.81 48.85 71.71 55.64 50.37 52.08

25.0% MKV 50.61 25.76 45.33 69.64 54.30 43.90 47.96
MKV+KIVI 48.12 27.80 42.86 67.85 53.59 40.54 46.78

Table 6: Comparison between our MatryoshkaKV and baseline ASVD. We use uniform compression
levels for inference here for simplicity.

Model Budget Method HLSG ARC-C ARC-E PIQA WG CSQA Avg.

LLaMA2
7B-base

100.0% baseline 74.00 35.93 50.97 78.50 61.64 65.93 61.16

95% ASVD 71.12 36.95 52.20 76.28 62.35 66.67 60.92
MKV 72.59 36.27 53.09 76.44 62.43 66.75 61.25

90% ASVD 70.45 34.92 52.03 75.63 61.72 64.70 60.06
MKV 72.30 36.61 54.50 76.50 62.90 65.93 62.03

85% ASVD 67.23 35.93 50.26 74.86 60.38 62.16 59.29
MKV 72.33 35.93 53.26 76.33 61.80 64.78 61.13

Table 7: Tokens per second at different percentages.

LLaMA2 100% 87.5% 75% 62.5% 50% 37.5% 25%

Tokens per second 33.65 34.12 34.08 34.90 35.27 36.42 36.75 37.22

Table 8: Accuracy of our MatryoshkaKV after CPT on six benchmarks. We use uniform com-
pression levels for inference here for simplicity. Different hyper-parameters are compared. In the
table we donate the schedule { i8d}

8
i=1 asM2, and the schedule { i4d}

4
i=1 asM1. We use uniform

compression levels for inference here for simplicity.

Model Budget Method HLSG ARC-C ARC-E PIQA WG CSQA Avg.

LLaMA2
7B-base

100.0% M1 72.03 36.61 52.56 76.71 61.64 67.16 62.07
M2 72.05 37.29 52.38 76.66 61.72 67.32 61.24

87.5% M1 72.03 37.29 53.09 76.28 62.75 65.77 62.18
M2 72.22 35.93 52.20 76.28 62.12 65.27 60.67

75.0% M1 70.79 34.92 53.62 76.88 60.54 65.03 61.31
M2 70.98 34.58 55.20 76.77 61.56 63.64 60.46

62.5% M1 69.03 32.88 52.91 74.86 59.19 64.54 59.69
M2 69.22 37.29 55.73 75.22 59.35 64.21 60.17

50.0% M1 66.34 32.88 53.09 74.97 58.25 62.49 58.59
M2 66.62 34.24 52.91 75.46 58.41 62.00 58.27

37.5% M1 61.55 31.19 49.91 73.83 56.27 52.09 53.78
M2 62.38 32.20 50.26 73.34 56.67 55.28 55.02

25.0% M1 50.91 26.10 44.97 68.39 52.72 38.33 46.38
M2 51.91 27.46 44.44 69.64 54.54 44.39 48.73

21

	Introduction
	Related Work
	Preliminary
	KV Cache
	Traing-free Dimension Reduction Via PCA

	Methodology
	Minimize Compression Loss by Knowledge Distillation
	Acquire Hierarchical KV Cache by MatryoshkaKV Training
	Find Heterogeneous Compression Rates for Various Layers & Heads

	Experiments
	Continual Pre-training
	Supervised Fine-tuning
	Ablation Studies
	Heterogeneous Compression Rates Visualization

	Conclusion
	Future work
	Error Analysis
	weight merging method
	Two stage SFT
	Ablation Study On Greedy Search For Adaptive Compression Levels
	Compatibility With Other KV Cache Compression Techniques
	Comparisons With More Baselines
	Experiments On Various Hyper-paramters

