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ABSTRACT
To understand the societal impacts of adapting urban transport
networks, we must consider their impacts on mobility patterns.
Expanding transport networks can worsen congestion, as seen in
the Braess Paradox, where adding a route increases travel times.
Traditional game-theoretic models often assume rational agents,
but real-world behavior is dynamic and influenced by exploration
and learning. Moreover, socioeconomic factors such as income
can affect exploration rates, leading to disparities in travel times
and access. To investigate these issues, we model agents as rein-
forcement learners and study how disparities in exploration rates
impact fairness and efficiency in a toy problem. Our findings re-
veal that unequal exploration rates can disproportionately harm
less explorative groups. Network interventions targeting efficiency
can worsen inequities, even when they do not affect the price of
anarchy. We highlight the need to account for disparities emerging
from individuals’ adaptation, when designing transport systems.
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1 INTRODUCTION
Transport networks are critical drivers of economic growth and so-
cial mobility, yet optimizing their efficiency and inclusivity remains
challenging. Expanding infrastructure may lead to unintended con-
sequences, as shown by the Braess’s Paradox, where adding new
routes increases congestion [8]. When designed for efficiency, trans-
port networks can result in uneven benefits [27]. Understanding
how transport infrastructure affects mobility is essential to devise
efficient and fair solutions. Fairness in transport is important, as it
contributes to more equitable and sustainable cities [33].

Game theory provides a powerful framework for analyzing and
understanding the decision-making behavior of citizens within
transport systems, and its consequences on the system. By formaliz-
ing scenarios where individual choices (e.g. route selection) conflict
with collective outcomes, it explains phenomena like the Braess’s
paradox and suggests tools to address them [2]. Although game the-
oretical analysis often involves simple toy scenarios — such as the
4-node network considered in the Braess’s paradox or the setting
in this paper — their insights have been translated to real-world
observations. For example, empirical studies confirm the relevance
of such simple models in real-world case studies: the insight offered
by the Braess’s paradox, suggesting that removing transport lines
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can surprisingly improve travel time, was reported in specific street
closures in Boston, NYC, London [43] and Seoul [2].

Mobility patterns in networks are often modelled as congestion
games, a type of strategic game where players compete for limited
resources, such as road space. In these games, nodes represent lo-
cations and edges represent connections with limited capacity that
must be shared among commuters. Traditional analyses of conges-
tion games assume agents that maximize their individual utility by
adopting optimal strategies under complete information. However,
real-world behavior is more dynamic [9, 11, 21, 38]. In this paper,
we are investigating environments in which behavior is shaped
by learning mechanisms [3, 5, 18, 37]. For example, commuters
often rely on trial-and-error learning—exploring different routes,
observing travel times, and adjusting their behavior accordingly.
This process aligns closely with reinforcement learning (RL), where
agents balance exploration (trying new strategies) and exploitation
(using known strategies to maximize utility) [40].

Experimental studies demonstrate that simple reinforcement
learning (RL) mechanisms can effectively reproduce observed real-
world route choices [4, 38]. Furthermore, modeling commuter be-
havior through learning dynamics has been shown to alleviate some
of the inefficiencies traditionally associated with full-information
strategic agents [9, 42]. In particular, if we assume that commuters
adaptively optimize their travel times using learning mechanisms,
many of the classical assumptions underpinning selfish routing
models no longer hold. This suggests that incorporating realistic
learning behaviors into traffic models can lead to more accurate and
potentially more efficient predictions of system-level outcomes.

Such models further reveal that exploration can cause oscilla-
tions between Nash equilibria and socially optimal strategies [9].
We explore whether these effects can be amplified in heteroge-
neous populations. Empirical evidence has shown that wealthier
individuals, who can tolerate greater risk, tend to exhibit more
exploratory behavior [7, 19]. For instance, the authors of [19] find
that residents of low-income neighborhoods are significantly less
exploratory in their activities, effectively living within constrained
environments. Similarly, research in psychology has shown that
individuals from high-resource environments demonstrate greater
behavioral variance, with a higher tolerance for uncertainty and
risk [7].

These findings suggest that exploration rates can serve as a
proxy for resource capacity: individuals with more resources are
better positioned to search and consider alternatives. Conversely,
resource-limited agents are more likely to be trapped in inefficient
outcomes due to tighter constraints on time, mobility, and finances.



Differences in individuals’ behaviors can worsen inequalities intro-
duced by transportation extensions. Considering such sources of
heterogeneity in transportation design remains underexplored.

In this paper, we study how disparities in exploration behav-
ior affect fairness and efficiency in urban transport networks. We
model mobility as a congestion game in a stylized network model
with reinforcement-learning agents. Agents representing individu-
als belonging to different demographic groups can differ in their
exploration rates, simulating differences in adaptability and capac-
ity to test different routing options. Our experiments demonstrate
that interventions —such as adding a new route—can widen dispar-
ities between more and less exploratory groups. These inequities
can emerge even when standard efficiency metrics like the Price of
Anarchy remain unchanged. In contrast, more balanced exploration
behaviors lead to fairer and more robust outcomes.

These findings highlight the importance of accounting for learn-
ing dynamics and behavioral heterogeneity when assessing the
societal impacts of transport policy. We propose a new lens for
mobility planning—one that considers not only how infrastructure
is used, but how people learn to use it. Our model offers a proof
of concept for how differences in exploration behavior can drive
unequal access to the benefits of new infrastructure. To support
reproducibility, we release our code 1.

2 RELATEDWORK
Our work relates to two themes in congestion games: learning
dynamics within these games and the fairness of outcomes.

2.1 Reinforcement Learning in Congestion
Games

Deviations from the standard rational commuter behavior approach
have been studied under models such as prospect theory, which
considers traveler-centric decision-making under uncertainty [14,
15]. Recent papers have revealed non-Nash convergence and even
chaotic behavior. For instance, online learning algorithms such as
Multiplicative Weights Update [13] and Follow-the-Regularized-
Leader [5] demonstrate how deviations from Nash equilibrium can
occur under specific learning dynamics. Learning automata have
been used as well [17]

Reinforcement Learning is increasingly used to model travel
choice behavior in multiple congestion games [1]. Examples in-
clude studies on how commuters adapt over time through learning
dynamics [4, 11], the impact of memory [41], as well as the impact
of tolls in congestion games [32].

Analyzing the effects of exploration in congestion games through
Reinforcement Learning, and in particular, multi-agent Q-learning
hasn’t been explored thoroughly. Some efforts have achieved this
in a parallel road network, showing that the total social cost varies
with different exploration rates [26]. In particular, they show that
with sufficiently small exploration, the system will converge to the
inefficient equilibrium. Others investigate the effect of exploration
on a system’s convergence between Nash equilibrium and the so-
cial optimum [9]. However, while they assume a homogeneous
population with a uniform exploration rate, in reality, commuters
have disparate access to and tolerance to exploration. Here, we
1GitHub: https://github.com/dimichai/fairness-braess

build upon this work and extend this by modeling two distinct
populations with varying exploration rates, allowing for a richer
analysis of strategic behavior and its implications for equilibrium
outcomes, as well as fairness.

2.2 Fairness in Congestion Games
The challenge of avoiding Braess’s Paradox assuming selfish agents
has been extensively studied, with efforts focused on network de-
sign [24, 34, 36].

Our work contributes to this literature by examining fairness
considerations in congestion games, an aspect previously explored
primarily in centrally coordinated settings. For example, through
the lens of taxation in balancing fairness and efficiency [22], while
Pedroso et al. investigated the impact of artificial currency-based
pricing mechanisms [31]. Censi et al. proposed a karma-based ap-
proach to achieving fairness [12]. Additionally, Oesterle et al. in-
troduced the Double Braess’s Paradox in a multi-resource setting
with two sources and two destinations, evaluating action-restriction
mechanisms as a fairness intervention [30]. Further studies have
considered fairness in weighted congestion games, such as [23],
who explored mechanisms to reduce disparities in agent outcomes.

Using agent-based frameworks, Belov et al. studied a five-edge
Braess paradox network, analyzing the impact of various micro-
level parameters on efficiency and fairness [3]. Likewise, Levy et
al. explored fairness in travel times between two routes through
the lens of exploration but assumed a uniform exploration rate,
demonstrating how exploration itself can shape fairness [26].

Our approach examines fairness as an emergent property in a
multi-agent system. We define fairness as the disparity in average
travel time to the destination across different sources, influenced
by varying exploration rates. Our model assumes learning agents
who adapt their behavior through reinforcement learning. This
framework is designed to capture disparities in exploratory behav-
ior described in the introduction, particularly those arising from
differences in income levels.

Unlike previous studies, our work explicitly models two distinct
populations with varying exploration capacities. This distinction
enables a more nuanced analysis of fairness, shedding light on its
interaction with strategic behavior and resource access. Further-
more, our approach allows us to examine the impact of network
interventions in different exploration scenarios, providing insights
into potential mechanisms for mitigating inequality.

3 PRELIMINARIES
We define congestion games, Nash equilibrium, price of anarchy
and fairness.

3.1 Congestion Games
We use the standard definition of a congestion game [36]. Let 𝐺 =

(𝑉 , 𝐸) be a directed graph, where 𝑉 is the set of nodes and 𝐸 is the
set of edges. Let N be the set of players, where each player 𝑖 ∈ N
is associated with a source node 𝑠𝑖 ∈ 𝑉 and a common destination
node 𝑑 ∈ 𝑉 .

Each edge 𝑒 ∈ 𝐸 is associated with a latency function 𝑓𝑒 : N →
R≥0, where 𝑓𝑒 (𝑥) represents the latency experienced when 𝑥 play-
ers use edge 𝑒 . We assume the following properties:



Nonnegativity: 𝑓𝑒 (𝑥) ≥ 0 for all 𝑥 ∈ N.
Continuity and Monotonicity: Each 𝑓𝑒 is continuous and non-

decreasing in 𝑥 [35].
Polynomial-time Evaluation: Each 𝑓𝑒 (𝑥) can be evaluated in

polynomial time [23].
Each player 𝑖 chooses a strategy 𝑎𝑖 from a strategy set A𝑖 ,

consisting of all paths from 𝑠𝑖 to 𝑑 . A strategy profile is denoted
𝑎 = (𝑎1, 𝑎2, . . . , 𝑎 |N | ). The edge load 𝑥𝑒 (𝑎) denotes the number of
players whose paths use edge 𝑒 under profile 𝑎. We denote strategy
sets by A to align with terminology introduced later in the paper,
where we incorporate a reinforcement learning (RL) mechanism
for strategy selection. In this context, strategies correspond directly
to RL actions, with a one-to-one mapping between each strategy
and its associated action.

The social cost is defined as:

𝐶 (𝑎) =
∑︁
𝑒∈𝐸

𝑓𝑒
(
𝑥𝑒 (𝑎)

)
· 𝑥𝑒 (𝑎) . (1)

3.2 Nash Equilibrium
In congestion games, players are self-interested and aim tominimize
their own cost. Let 𝑐𝑖 (𝑎𝑖 , 𝑎−𝑖 ) denote the latency incurred by player
𝑖 under profile 𝑎 = (𝑎𝑖 , 𝑎−𝑖 ). A profile 𝑎NE is a Nash equilibrium if
no player can improve their cost by unilaterally deviating:

∀𝑖 ∈ N , ∀𝑎′𝑖 ∈ A𝑖 : 𝑐𝑖 (𝑎NE𝑖 , 𝑎NE−𝑖 ) ≤ 𝑐𝑖 (𝑎′𝑖 , 𝑎
NE
−𝑖 ) . (2)

Congestion games are potential games and always admit at least
one pure-strategy Nash equilibrium [28, 29].

3.3 Social Optimum and Price of Anarchy
The social optimum is the strategy profile 𝑎★ that minimizes the
total social cost:

𝑎★ = argmin
𝑎

𝐶 (𝑎) . (3)

The Price of Anarchy (PoA) quantifies the inefficiency of Nash
equilibria compared to the social optimum. It is the ratio of the
worst-case Nash equilibrium cost to the social optimum:

PoA =
max𝑎∈NE𝐶 (𝑎)

𝐶 (𝑎★) ≥ 1. (4)

The PoA measures how much worse the system performs under
selfish behavior, compared to optimal coordination.

3.4 Fairness
We assess fairness using the notion of source disparity, defined as
the difference in average cost between groups of players originating
from different sources. This definition aligns with group-level fair-
ness metrics, which aim to achieve an egalitarian outcome across
groups. Specifically, it requires that no group is systematically disad-
vantaged on average. In the context of artificial intelligence fairness,
this corresponds to the group fairness criterion of independence,
where the outcome—here, the incurred cost—should be statistically
independent of an agent’s starting source. [10]. Let N1 and N2 de-
note the subsets of players starting at sources 𝑠1 and 𝑠2, respectively,
with cardinalities |N1 | = 𝑁1 and |N2 | = 𝑁2.

AvgCost(𝑠 𝑗 ) =
1
𝑁 𝑗

∑︁
𝑖∈N𝑗

𝑐𝑖 , 𝑗 ∈ {1, 2}. (5)
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Figure 1: A Braess Paradox game with two sources nodes (𝐴1
&𝐴2) connecting to a single destination node 𝐵. Due to urban
segregation, we assume that different demographic groups
in a city will start in different source nodes. We examine two
interventions: I𝐴1𝐴2 and I𝐶𝐷 .

Source disparity is then:

SD(𝑠1, 𝑠2) = AvgCost(𝑠1) − AvgCost(𝑠2) . (6)

A positive SD indicates an advantage for 𝑠2, negative SD favors
𝑠1, and zero SD implies perfect fairness. Note that social optimum
is not directly correlated with fairness, as one regards the total cost
of the game, and the other the differences between agents starting
in different nodes. In fact, optimal routing is not necessarily fair
[35].

4 A TWO-SOURCE BRAESS PARADOX GAME
The Braess Paradox is a counterintuitive phenomenonwhere adding
a new edge can increase the overall social cost, contrary to the intu-
itive expectation that infrastructure expansion reduces congestion.
This paradox arises because self-interested agents disrupt the sys-
tem’s equilibrium, converging to a less efficient state [8].

In this paper, we introduce a modified version of the classical
Braess paradox game, focusing on a two-source, one-destination
network, as illustrated in Figure 1. Such networks are common in
real cities, which often develop around a central area, with sur-
rounding districts having multiple routes leading to it. We analyze
two distinct instances of this game: (1) the network with the addi-
tion of a direct connection between nodes 𝐶 → 𝐷 (Braess Paradox
case), and (2) the additional intervention of the direct connection
𝐴1 → 𝐴2.

In this setting, 𝑁1 number of players start from source 𝐴1 and
𝑁2 players start from source 𝐴2, with a common destination 𝐵.
This network models a typical urban traffic system where most
commuters move toward a central location but start from different
points and face different costs, depending on their routes.

The latency functions 𝑓𝑒 (𝑥) for each edge 𝑒 ∈ 𝐸 depend on the
number of players 𝑥 using the edge and are defined as follows:
for edges 𝐴1 → 𝐶 and 𝐶 → 𝐵, the latency is 𝑓𝑒 (𝑥) = 𝑥/𝑁1; for
edges 𝐴2 → 𝐷 and 𝐷 → 𝐵, the latency is 𝑓𝑒 (𝑥) = 𝑥/𝑁2; for edges
𝐴1 → 𝐴2 and 𝐴2 → 𝐴1, the latency is a constant 𝑓𝑒 (𝑥) = 1. In



Scenario NE SO PoA SD
(0) No Intervention 1.5 1.5 1.0 0.0
(1) ICD 2.0 1.5 1.33 0.0
(2) {ICD, IA1, A2} 2.0 1.5 1.33 0.0

Table 1: An overview of the equilibria of the two-source game
scenarios, assuming no learning. We report total cost (travel
time) at the Nash Equilibrium (NE), Social Optimal solution
(SO), Price of Anarchy (PoA, Eq. 4) and Source Disparity (SD,
Eq. 6).

the scenarios we analyze, additional fast lanes are introduced: a
blue dashed edge 𝐴1 → 𝐴2 and a red dashed edge 𝐶 → 𝐷 , both of
which have flow 𝑓𝑒 (𝑥) = 0.

The social cost of the game is defined as follows:

𝐶 =
∑︁
𝑒∈𝐸

𝑥𝑒 · 𝑓𝑒 (𝑥𝑒 ) =

𝑥𝐴1→𝐶
𝑥𝐴1→𝐶

𝑁1
+ 𝑥𝐴2→𝐶

𝑥𝐴2→𝐶

𝑁2
+

𝑥𝐷→𝐵
𝑥𝐷→𝐵

𝑁1 + 𝑁2
+ 1 𝑥𝐴2→𝐷 + 1 𝑥𝐴1→𝐷 + 1 𝑥𝐶→𝐵

(7)

This game is designed to induce the Braess paradox within a
two-source network. In the baseline case without interventions,
players from sources 𝐴1 and 𝐴2 each have two available strategies,
routes 𝐶 → 𝐵 (Up) and 𝐷 → 𝐵 (Down), and converge to a socially
optimal state. However, the addition of the fast lane 𝐶 → 𝐷 intro-
duces a third strategy, 𝐶 → 𝐷 → 𝐵 (Cross), for all players. This
intervention changes the Nash equilibrium (NE), causing all players
to select the new strategy (Cross), increasing the total cost and the
price of anarchy. We analyze the impact of Scenario 2, when an
additional intervention is being introduced, assuming exploratory
agents in the population. In Scenario 2, agents in source 𝐴2 still
have the same strategies to choose from. However, agents in source
𝐴1 gain three more strategies: 𝐴1 → 𝐴2 → 𝐶 → 𝐵 (Down-Up),
𝐴1 → 𝐴2 → 𝐷 → 𝐵 (Down-Down), and𝐴1 → 𝐴2 → 𝐶 → 𝐷 → 𝐵

(Down-Cross). The Nash equilibrium still remains the same as in
Scenario 1 (all agents Cross).

It is important to note that, in this context, the interventions are
not required to satisfy the fairness constraints as previously defined
[23]. In fact, intervention 𝐼𝐴1𝐴2 deliberately introduces an asymme-
try by providing group A1 with more strategic options than group
A2. This design is intentional: our goal is to examine the effects of
expansions that favors one group in environments with exploratory,
learning agents. As shown in Table 1, this intervention does not
alter the Nash equilibrium or introduce inherent unfairness, assum-
ing agents are rational, self-interested, and with full information
about the network and payoffs. We focus on intervention 𝐼𝐴1𝐴2 due
to the symmetry of the game; equivalent conclusions would follow
from introducing 𝐼𝐴2𝐴1 instead.

5 LEARNING DYNAMICS
In practice, humans often deviate from exact Nash equilibrium
strategies, as they typically lack complete information about which
strategies yield specific payoffs from the outset [6, 25]. Instead,

they explore various options and gradually learn to favor those that
maximize their satisfaction [9].

To investigate these effects—particularly the impact of hetero-
geneous exploration—in the two-source Braess paradox game, we
develop a learning framework in which agents repeatedly play the
game and adapt their strategies through Reinforcement Learning
(RL).

Importantly, we employ RL not as a tool for optimization, but
as a framework to simulate the adaptive behaviors of agents inter-
acting within complex environments. This approach enables us to
explore emergent dynamics and offer explanatory insights into ob-
served behavioral patterns. Our perspective aligns with the broader
descriptive agenda in multi-agent learning, which emphasizes mod-
eling learning processes that mirror how real-world agents, such
as humans, adapt in social contexts [39].

Specifically, we adopt Q-learning, a model-free reinforcement
learning algorithm, to capture some simple properties of human
learning such as trial-and-error adaptation, habit formation and
bounded rationality. This choice is grounded in the observation
that commuters often lack comprehensive or accurate models of
how their actions influence congestion dynamics. Instead, they rely
on repeated experience to guide future choices. Model-free learn-
ing allows us to study emergent behaviors under simple, reactive
update rules, without assuming agents possess detailed planning
capabilities or perfect knowledge of system dynamics. Finally, we
also use Q-Learning to better align with recent literature aiming to
model learning behavior in congestion games [9].

5.1 Q-Learning Framework
Let the game be played over 𝑇 discrete time steps, indexed by
𝑡 = 0, 1, 2, . . . ,𝑇 − 1. Each agent 𝑖 ∈ 𝑁 seeks to minimize their expe-
rienced travel time (latency) by iteratively updating their strategy
based on observed outcomes.

Action Space Each agent 𝑖 selects a strategy (route) 𝑎𝑖 ∈ A(𝑠)𝑖 ,
where A(𝑠)𝑖 is the set of available strategies for agent 𝑖 , starting in
source 𝑠 . In the two-source Braess base network:

A(𝐴1)𝑖 = A(𝐴2)𝑖 = {Up, Down}.

In Scenario 1 — intervention 𝐼𝐶𝐷 :

A(𝐴1)𝑖 = A(𝐴2)𝑖 = {Up, Down, Cross}.

In Scenario 2 — interventions {𝐼𝐶𝐷 , 𝐼𝐴1𝐴2}:

A(𝐴1)𝑖 = {Up, Down, Cross, Down-Up,
Down-Down, Down-Cross},

A(𝐴2)𝑖 = {Up, Down, Cross}.

Note that in Scenario 2, agents starting in source 𝐴1 have three
more strategies than agents starting in source 𝐴2.

Q-Values The Q-value 𝑄 (𝑖, 𝑎𝑖 ) represents agent 𝑖’s estimate of
the cumulative latency for selecting strategy 𝑎𝑖 . These values are
updated iteratively to reflect the observed latency for each strategy.
We create two Q-tables, one for each source, with rows representing
agents and columns representing strategies. Therefore, for Scenario
1, 𝑄𝐴1, 𝑄𝐴2 ∈ R |𝑁1 |×3 and for Scenario 2, 𝑄𝐴1 ∈ R |𝑁1 |×6, 𝑄𝐴2 ∈
R |𝑁1 |×3.



Learning At each time step 𝑡 , the Q-value for an agent 𝑖 is
updated as:

𝑄𝑠𝑖 (𝑖, 𝑎𝑖 ) = 𝑄𝑠𝑖 (𝑖, 𝑎𝑖 ) + 𝛼
[
𝑟𝑖 (𝑡) +𝛾 max

𝑎′
𝑄𝑠′

𝑖
(𝑖, 𝑎′) −𝑄𝑠𝑖 (𝑖, 𝑎𝑖 )

]
, (8)

where 𝛼 ∈ (0, 1] is the learning rate, and 𝑟𝑖 (𝑡) is the observed
latency for the chosen strategy𝑎𝑖 at time 𝑡 . Specifically, the observed
latency is calculated as follows:

𝑟𝑖 (𝑡) =
∑︁

𝑒∈𝑃𝑖 (𝑡 )
𝑓𝑒
(
𝑥𝑒 (𝑡)

)
, (9)

where 𝑃𝑖 (𝑡): the path (sequence of edges) that correspond to the
selected strategy (action) of agent 𝑖 at time 𝑡 .

Note that here we omit the state, as the game is stateless and
rewards are observed immediately. The observed latency 𝑟𝑖 (𝑡) is
determined by the congestion on the edges, 𝑓𝑒 (𝑥). During the learn-
ing process, observed latencies are represented as negative values.
As a result, the maximization function incentivizes actions that
minimize the expected latency.

Exploration vs. Exploitation To balance exploration (trying
new strategies) and exploitation (using the best-known strategy),
each agent follows an 𝜖-greedy policy. At time 𝑡 , agent 𝑖 selects a
strategy 𝑎𝑖 (𝑡) as:

𝑎𝑖 (𝑡) =
{
random action from A𝑖 , with probability 𝜖,
argmax𝑎∈A𝑖

𝑄𝑠𝑖 (𝑖, 𝑎), with probability 1 − 𝜖.

Here, 𝜖 is the exploration rate, which determines how often an agent
will explore. To investigate the effects of disparate exploration rates,
we define two distinct rates, 𝜖𝐴1 and 𝜖𝐴2 for agents starting in 𝐴1
and 𝐴2 respectively.

Convergence At each step, agents collectively contribute to
network congestion. The latency experienced by any individual
agent depends not only on their own strategy choices but also on
the aggregate behavior of the population. Each agent estimates the
expected value of selecting a given strategy based on the cumulative
experience gathered over time. With sufficient sampling, ongoing
exploration, and continued learning, agents’ value estimates for
each strategy converge to some approximated values. However,
these do not necessarily correspond to a Nash Equilibrium (NE);
convergence is shaped by factors such as the learning rate, explo-
ration level, and the environment’s structural properties [9]. In
this paper, we assume a constant exploration rate throughout the
duration of the game to reflect realistic human behavior — such
as the inherent stochasticity in commuter route choices, driven
by exploration of new modes. Unlike traditional reinforcement
learning aimed at optimization, our focus here is on describing and
understanding emergent phenomena in a population of learning
agents.

5.2 Experimental Setup
We ran the experiments with |N | = 200 agents, evenly divided
between two sources (𝑁1 = 𝑁2 = 100). Each agent’s Q-values
were initialized uniformly at random within the interval [0, 1]. Our
goal is to assess the impact of differing exploration rates between
sources on the game’s dynamics. To isolate this effect, we fixed the
learning rate at 𝛼 = 0.01 for all experiments, following [9]. While
the learning rate influences both convergence and convergence

speed, we refer readers to [9] for a detailed analysis. Here, we
focus specifically on the effects of exploration rate heterogeneity
within the population. Each experiment was run for 10,000 steps
and repeated 40 times with different random seeds. Performance
was measured by averaging metrics over the final 2,000 steps to
reduce the influence of transient exploration.

6 RESULTS
In this section we report the results obtained when two different
interventions (𝐼𝐶𝐷 and 𝐼𝐴1𝐴2) are introduced in the network. From
the onset we note that, as in the original Braess’s paradox, our aug-
mented network – with two source nodes instead of one – induces
selfish agents to split equally, with a total social cost equal to the
social optimum and with a price of anarchy of 1. From this baseline
result, we focus on scenarios (1) and (2), where 𝐼𝐶𝐷 and 𝐼𝐴1𝐴2 are
introduced, respectively. We assume that agents learn, over time, to
select different routes, according to Q-Learning. Agents can differ
in their starting node and exploration rates.

6.1 Scenario 1 — Intervention 𝐼𝐶𝐷

Equal exploration leads to efficient and fair outcomes: We first
focus on Scenario 1, investigating learning dynamics and equilibria
in the game under varying exploration rates. We assume that agents
in both sources have an equal exploration rate (𝜖). In Figure 2 (top)
we observe that, with sufficient exploration, the learning agents do
not approach the Nash Equilibrium (NE). Instead, agents oscillate
between the Social Optimum (SO) and the NE, depending on the
value of 𝜖 . As 𝜖 increases, agents converge toward a state close
to the SO where the Price of Anarchy (PoA) approaches 1. These
findings align with the recently identified influence of exploration
rates on game equilibria (notably in the classic Braess’s paradox)
[9].

As illustrated in Figure 2 (bottom), under equal exploration rates
starting in different source nodes does not result into systematic
advantages. Fairness fluctuates due to the dynamics of the learning
process and stochasticity introduced by exploration andmulti-agent
routing, but overall, fairness is maintained across the two sources.
This observation is crucial before addressing Scenario 2, which
involves additional interventions and disparities in resources and
exploration rates.

Disparity in exploration leads to unfair outcomes: Rather
than being an inherent network property, unfairness arises when
agents have disparity in exploration. In Figure 3, we present heat
maps that illustrate the price of anarchy (PoA) and source dispar-
ity for various combinations of exploration rates between the two
sources. First, we observe that increasing the exploration rate con-
sistently reduces PoA. This trend can be seen along the diagonal of
Figure 3 (top). Even when there is a disparity in exploration rates,
higher average exploration across the system improves efficiency
and lowers the price of anarchy. However, as shown in Figure 3
(bottom), disparities in exploration rates result in unfairness in the
average travel times experienced by agents from different sources.
Specifically, when 𝜖𝐴1 > 𝜖𝐴2, agents in 𝐴1 explore more often and
the source disparity is negative, indicating that agents from 𝐴2
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Figure 2: Price of Anarchy and source disparity for Inter-
vention 𝐼𝐶𝐷 , for different exploration rates. Higher 𝜖 leads
to lower price of anarchy, without significantly increasing
the source disparity. Source disparity (Eq. 6) is the difference
between average costs of individuals starting in two different
source nodes.

experience longer average travel times. This trend is symmetrically
reversed when 𝜖𝐴2 > 𝜖𝐴1.

6.2 Scenario 2 — Adding Intervention 𝐼𝐴1𝐴2
We now examine the effects of adding intervention 𝐼𝐴1𝐴2. This in-
tervention grants agents from source 𝐴1 three additional strategies.
However, under selfish routing without exploration, neither the
Nash Equilibrium nor the Socially Optimal configurations change
(Table 1), as𝐴1 agents lack an incentive to adopt the new strategies.

Figure 4 illustrates the impacts on price of anarchy (top) and
source disparity (bottom), as functions of exploration 𝜖 . We com-
pare Scenario 1 (intervention 𝐼𝐶𝐷 , red) with Scenario 2 (both 𝐼𝐶𝐷
and 𝐼𝐴1𝐴2, blue). As we can observe, adding 𝐼𝐴1𝐴2 leads to similar
maximum PoA, however the resulting source disparity is remark-
ably different. We use this intervention as a proof-of-concept to
highlight that even if two interventions result in similar PoA, they
might result in drastically different source-based costs and inequal-
ity.

Introducing 𝐼𝐴1𝐴2 increases inefficiency and unfairness:
Introducing 𝐼𝐴1𝐴2 raises the price of anarchy across all exploration
rates, indicating a systemic increase in inefficiency. It also amplifies
disparity, with 𝐴2 agents experiencing longer travel times than 𝐴1.
However, at high exploration (𝜖 > 0.5), this unfairness diminishes
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Figure 3: Heatmap showing the relationship between PoA
and source disparity for intervention I𝐶𝐷 under varying ex-
ploration rates for agents starting in source node 𝐴1 (𝜖1) or
𝐴2 (𝜖2). Higher exploration rates reduce PoA, while an ex-
ploration advantage for one source increases its travel time
advantaged and total unfairness.

as 𝐴1 agents take suboptimal routes, inadvertently reducing con-
gestion and balancing travel times. The price of anarchy peaks as 𝜖
increases from 0 to 0.1, consistent with prior findings [9]. Beyond
this range, higher exploration rates reduce inefficiency.

Comparing the two interventions, 𝐼𝐶𝐷 causes a steeper rise in the
price of anarchy within 0 ≤ 𝜖 ≤ 0.1 but outperforms 𝐼𝐴1𝐴2 at higher
exploration levels. For 0.6 ≤ 𝜖 ≤ 1.0, both interventions approach
the social optimum, though 𝐼𝐶𝐷 remains the more efficient option,
while 𝐼𝐴1𝐴2 plateaus.

Disparity in exploration rates can amplify or alleviate
unfairness: To better understand how exploration disparity affects
the price of anarchy and fairness, we conducted experiments where
the total exploration rate remained constant while varying the ratio
between 𝜖𝐴1 and 𝜖𝐴2. Figure 5 presents the results for two scenarios:
a total exploration rate of 0.2 (top) and 0.6 (bottom).
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Figure 4: The impact of interventions on PoA and SD under
constant, equal exploration rates. Introducing intervention
I𝐴1𝐴2, gives 𝐴1 a strategic advantage by increasing its avail-
able routes, altering network efficiency and fairness dynam-
ics. On the other hand, introducing connection I𝐶𝐷 has a
limited effect on disparity (as already concluded in Fig. 2).
The observed levels of efficiency and fairness are contingent
on agents’ exploration rate. Importantly, we observe that
while I𝐶𝐷 and I𝐴1𝐴2 lead to similar values of (max) PoA, they
result in drastically different levels of disparity.

In the low-exploration scenario (top), greater exploration by
𝐴1 leads to unfairness, both before and after intervention 𝐼𝐴1𝐴2.
𝐼𝐴1𝐴2 disproportionately benefits 𝐴1 when its exploration rate is
up to five times that of 𝐴2 or even when it is halved relative to 𝐴2.
Fairness is restored when 𝐴2 explores at least three times more
than 𝐴1. This contrasts with Scenario 1, where equal exploration
rates yield equal outcomes.

In the high-exploration scenario (bottom), counterintuitively,
unfairness peaks when both sources explore equally. As 𝐴1 ex-
plores more relative to 𝐴2, fairness improves. This occurs because
increased exploration by 𝐴1 disperses traffic, reducing congestion
on key routes for 𝐴2 (e.g., CD and DB). Meanwhile, 𝐴2’s lower ex-
ploration allows it to capitalize on the less-congested Crossing path.
When both explore equally, however, 𝐴1 consistently clogs routes
that disproportionately penalize 𝐴2 (e.g., A2C). Notably, when 𝐴1
explores five times more than𝐴2, the proportion of𝐴2 agents using
DB and A2C decreases by 16%.
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Figure 5: The effect of exploration disparity on fairness, for a
population with an average exploration rate of 0.2 (top) and
0.6 (bottom). The ratio 𝜖𝐴1/𝜖𝐴2 represents the relative explo-
ration rates of 𝐴1 and 𝐴2. At low base exploration, higher
exploration for 𝐴1 leads to a travel-time advantage for 𝐴1,
even without 𝐼𝐴1𝐴2. However, at high base exploration, 𝐼𝐴1𝐴2
can counteract this disparity.

Figure 6 shows how the price of anarchy and source disparity
evolve as exploration shifts between sources. A greater exploration
advantage for 𝐴2 reduces the price of anarchy, as 𝐴2 avoids con-
gested routes while 𝐴1 exploits them, leading to more efficient
network utilization.

These findings suggest that even when 𝐴1 has a strategic advan-
tage, increasing exploration resources for 𝐴2 reduces overall ineffi-
ciency and unfairness by expanding its routing options. Ultimately,
exploration allocation plays a crucial role in infrastructure-induced
inequality.

7 CONCLUSION
We investigated the impact of exploration on network congestion
and fairness in a Braess’s Paradox game, where agents from two
sources share a common destination. Our findings demonstrate
that exploration influences both the price of anarchy and fairness.
Specifically, an exploration rate advantage leads to unfairness to-
wards those who explore less. We also examine the consequences
of interventions, showing that they can yield either benefits or
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Figure 6: A detailed examination of how intervention I𝐴1𝐴2
affects PoA and fairness in a population of highly-exlorative
agents. Arrows indicate shifts from 𝐴1’s advantage to 𝐴2’s
advantage in exploration rate. Before the intervention in-
troducing connection I𝐴1𝐴2, exploration disparities did not
affect PoA. After intervention, an exploration advantage for
𝐴2 improves efficiency and fairness, while equal exploration
rates produce the worst fairness outcomes.

unintended harms. Finally, we showed that if exploration disparity
exists, accessibility interventions might not be enough to alleviate
unfairness.

This paper contributes to the ongoing research on fair transport
network design, by emphasizing the importance of considering new
sources of heterogeneity that dictate mobility behavior. Our anal-
ysis highlights the interplay between individual exploration and
systemic fairness. Our results suggest that interventions aimed at
mitigating congestion should also account for the heterogeneity in
agents’ learning dynamics, as overlooking disparities in exploration
may reinforce inequities rather than resolve them.

To isolate the role of exploration, we focused on a symmetri-
cal network in which, under rational conditions, optimal and fair
routing coincide. In this setting, unfairness arises solely through
exploratory behavior. Future work could extend this analysis to
asymmetric networks where, even with fully rational agents, a
trade-off exists between optimal and fair routing—as demonstrated
in [35]. Furthermore, it would be much relevant to consider alter-
native learning algorithms, inspired in psychology and economics
literature, such as Roth-Erev learning [20] or model-based algo-
rithms [16]. Investigating how such inequities might be mitigated
in the presence of learning agents remains an important direction
for research.
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