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Abstract001

Urban planning faces a critical challenge in002
balancing city-wide infrastructure needs with003
localized demographic preferences, particularly004
in rapidly developing regions. Although exist-005
ing approaches typically focus on top-down op-006
timization or bottom-up community planning,007
only some frameworks successfully integrate008
both perspectives. Our methodology employs a009
two-tier approach: First, a deterministic solver010
optimizes basic infrastructure requirements in011
the city region. Second, four specialized plan-012
ning agents, each representing distinct sub-013
regions, propose demographic-specific modifi-014
cations to a master planner. The master planner015
evaluates and integrates these proposals, ensur-016
ing both efficiency and adaptability. We vali-017
date our framework on a newly created dataset018
of detailed region and sub-region maps from019
three cities in India, focusing on areas undergo-020
ing rapid urbanization. The results show that021
it can improve planning efficiency, better ad-022
dress local demographic needs, and scale for023
real-world deployment. Our work also iden-024
tifies key challenges, including the trade-off025
between system efficiency and adaptability, as026
well as the complexities of handling diverse027
urban datasets. These insights contribute to a028
broader understanding of how multi-agent sys-029
tems can enhance large-scale urban planning.030

1 Introduction031

Urban planning is a critical challenge for rapidly032

growing cities, requiring solutions that balance in-033

frastructure, housing, transportation, and commu-034

nity needs. Traditional top-down approaches often035

lack adaptability to localized demands, limiting the036

creation of inclusive urban environments. In devel-037

oping regions, there is a growing need for planning038

methods that integrate both large-scale infrastruc-039

ture goals and neighborhood-specific perspectives,040

while enabling efficient execution by industry stake-041

holders (Arnstein, 1969; Forester, 1982).042

India exemplifies the challenges of modern ur- 043

ban planning due to its demographic diversity, pop- 044

ulation density, and history of unplanned growth 045

(Ranjan, 2023). The coexistence of historic and 046

modern layouts leads to congestion, inadequate 047

green spaces, and uneven resource distribution. Ur- 048

banization has strained municipal authorities and 049

infrastructure providers, highlighting the need for 050

scalable, data-driven frameworks that meet both 051

regulatory and community priorities (Kumar and 052

Prakash, 2016). 053

Large Language Models (LLMs) present a 054

promising solution by simulating stakeholder per- 055

spectives—community members, policymakers, 056

and planners alike (Wang et al., 2024b). LLM- 057

driven decision-making can enhance workflows, 058

reduce manual effort, and support more adaptive 059

urban strategies. This is particularly relevant in 060

India’s diverse cities, where local priorities often 061

vary. 062

We introduce a hybrid urban planning frame- 063

work that leverages deterministic solvers and LLM- 064

driven agents (Wang et al., 2024a; Huang et al., 065

2024) to address the challenges of planning in 066

rapidly urbanizing cities. Our proposed method 067

consists of two primary components: First, the 068

deterministic solver ensures an equitable distri- 069

bution of essential infrastructure city-wide. Sec- 070

ond, specialized LLM agents are designated to 071

represent four distinct sub-regions, incorporating 072

demographic-specific needs. A “master planner” 073

then evaluates and integrates these suggestions, en- 074

suring the final plan aligns with city-wide goals 075

while accommodating local preferences. 076

We evaluate our framework using data from 077

three rapidly urbanizing Indian cities. Our results 078

indicate that LLM agents effectively capture com- 079

munity diversity, enabling infrastructure planning 080

that is both inclusive and efficient. 081

We tested our framework using data from three 082

fast-growing cities in India. The results show that 083

1



Initial Plan

Hospital < 500m

Education <500m


Parks <500m

......

Residential

Planned Map

After changes made 
to the output of 

deterministic solver 
based on 

suggestions of 
regional planner.

Commercial

Master Planner
Takes suggestions 
from the regional 

planners and make 
changes to the city 

plan.

Deterministic Solver

Relocates non-
residential 
buildings to 
maximise :


-Ecology Metric

-Service Metric

Industrial

Suggestions

Each regional 
planner give 

their demands 
to the main 

planner.

Education

Figure 1: Workflow of the proposed urban planning framework. Integrating Deterministic Optimization, Regional
Planner inputs, and Master Planner Coordination to achieve balanced and Area-Specific city layouts

our approach handles urban infrastructure needs084

while considering local demographic needs. Us-085

ing LLM agents can represent diverse community086

needs, making urban planning more inclusive and087

efficient.088

2 Background and Related Work089

Large Language Models (LLMs) have demon-090

strated transformative potential in urban planning091

by automating complex tasks and facilitating par-092

ticipatory (Du et al., 2024) processes. Recent stud-093

ies explore applying reasoning (Plaat et al., 2024)094

and planning (Valmeekam et al., 2023) capabili-095

ties in LLMs, such as GPT-4 (OpenAI et al., 2024)096

or Llama3 (Grattafiori et al., 2024), for special-097

ized urban applications. For example, UrbanGPT098

(Li et al., 2024) integrates instruction-tuning and099

specialized decoders to enhance spatio-temporal100

forecasting, including traffic flow predictions.101

One significant advancement in urban planning102

is a participatory framework that leverages LLMs,103

employing role-playing agents to emulate planners104

and residents (Zhou et al., 2024). In this frame-105

work, LLM-based agents collaboratively design106

land-use plans that balance community interests107

with expert constraints. The system includes an108

LLM agent acting as the planner and numerous109

agents representing residents with diverse profiles110

and backgrounds. The planner begins by proposing111

an initial land-use plan. Subsequently, a simulated112

fishbowl discussion mechanism is employed: a sub-113

set of residents actively discusses the plan while114

others act as listeners. The planner then revises the115

plan iteratively, incorporating resident feedback to116

achieve a more balanced and inclusive outcome.117

Building on this framework, we propose an opti-118

mized approach that employs four regional agents119

(Chen et al., 2023) utilizing collaborative ability120

(Zhang et al., 2024) of LLMs, each representing 121

a specific focus area that provides suggestions to 122

a master planner. This master planner consoli- 123

dates their suggestions and revises the city plan 124

accordingly. By reducing the number of agents, our 125

method significantly decreases computational over- 126

head while maintaining robust decision-making. 127

Furthermore, our approach prioritizes meeting fun- 128

damental needs before addressing region-specific 129

demands, ensuring a more balanced and efficient 130

planning process than previous methods. 131

3 Methodology 132

Our proposed methodology uses a two-tier frame- 133

work for urban planning. In the first stage, a de- 134

terministic solver ensures that all residents have 135

access to essential services and green spaces. The 136

second stage introduces four region-specific plan- 137

ning agents, each advocating for the needs of their 138

respective areas to a master planner. The master 139

planner then evaluates these inputs and adjusts the 140

city layout to harmonize fundamental requirements 141

with demographic-specific needs. The overall struc- 142

ture of our pipeline is shown in Figure 1. 143

3.1 Deterministic Solver 144

The deterministic solver uses Genetic Algorithms 145

(GA) (Forrest, 1996; Mirjalili and Mirjalili, 2019) 146

to optimize urban layouts, ensuring equitable ac- 147

cess to essential services and green spaces. The 148

process begins with the original city plan, where 149

essential services such as hospitals, schools, and 150

businesses are assigned roles. To generate an ini- 151

tial configuration, a greedy solver creates an inter- 152

mediate state by iteratively assigning elements to 153

locations that maximize accessibility for residents. 154

This intermediate layout provides a near-optimal 155

starting point for the GA to refine further. 156
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The GA uses two main steps: mutation and se-157

lection. Mutation creates new layouts by randomly158

swapping roles between locations, helping to ex-159

plore different options and avoid premature con-160

vergence. For example, if a school and a hospital161

are swapped, it may improve service accessibility162

in one area while reducing it in another. Selection163

picks the best layouts using a tournament method.164

This favors high-performing layouts while main-165

taining diversity to explore alternative layouts.166

Each layout’s fitness is evaluated using two met-167

rics:168

• Service Accessibility: Measures the availabil-169

ity of schools, hospitals, and other essential170

services within 500 meters of residences.171

• Ecological Proximity: Evaluates access to172

green spaces within 300 meters, reflecting ur-173

ban livability and resident well-being.174

The GA iteratively improves the layout across175

successive generations by ranking layouts based176

on fitness, retaining the top-performing configura-177

tions, and generating new ones through mutation.178

This process continues until fitness improvements179

plateau or a predefined number of generations is180

reached, indicating convergence.181

The outputs of the deterministic solver include182

an optimized urban layout that maximizes acces-183

sibility to essential services and green spaces. De-184

tailed formulation of the deterministic solver is185

given in Appendix C.186

Algorithm 1 Deterministic Urban Layout Opti-
mization
Input: Initial city layout L0

Output: Intermediate layout Lint

1: P ← InitializePopulation(L0) ▷ Using greedy
solver

2: for g = 1 to MaxGen do
3: EvaluateFitness(P )
4: P ′ ← TournamentSelection(P )
5: P ←Mutate(P ′) ▷ Swap locations to

generate new layouts
6: if IsConverged(P ) or g = MaxGen then
7: break
8: end if
9: end for

10: return BestLayout(P )

3.2 Regional Adaptation via Dual-Planners 187

To refine the deterministic solver’s output, we in- 188

troduce a dual-planner approach that balances city- 189

wide objectives with localized demographic needs. 190

The city is divided into four sub-regions, each man- 191

aged by a regional planner, an LLM tasked with ad- 192

vocating for its area-specific requirements. These 193

regional planners generate proposals tailored to 194

their assigned zone, which are then reviewed and 195

integrated by a master planner. The master plan- 196

ner then reviews these proposals, integrating them 197

into the city layout to balance local priorities with 198

city-wide objectives. 199

3.2.1 Master Planner 200

It operates with a city-wide perspective, maximiz- 201

ing accessibility and achieving a balanced distribu- 202

tion of facilities. It prevents clustering in central 203

areas and avoids over-dispersing facilities toward 204

city edges, ensuring even coverage across the urban 205

area. 206

Adhering to a minimal-change policy, the master 207

planner makes essential layout adjustments only 208

when necessary. These include reassigning vacant 209

land for high-priority facilities, adding essential 210

services in underserved areas, or swapping facility 211

types to maintain efficient resource distribution. 212

This strategy preserves the structural integrity of 213

the city while meeting the overarching goals of 214

urban planning. 215

3.2.2 Regional Planners 216

It complements the master planner by addressing 217

the sub-region’s specific demographic and func- 218

tional needs. Each regional planner is designated 219

to focus on one of four demographic roles: Indus- 220

trial, Educational, Commercial, and Residential, 221

chosen for their relevance to urban functionality. 222

Further details about the demographics is shown in 223

Appendix B.4. 224

4 Datasets 225

Our dataset consists of high-resolution thematic 226

maps, essential for precise analysis of existing ur- 227

ban layouts. These maps are sourced from Bhu- 228

van AMRUT 4K (Bhuvan, 2022) web services and 229

provide detailed classifications of urban land use, 230

including residential areas, government properties, 231

commercial zones, transportation networks, green 232

spaces, educational institutions, and other key in- 233

frastructure components. 234
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Region Metrics Kanpur Lucknow Raipur

S1 S2 S3∗ S3 S1 S2 S3∗ S3 S1 S2 S3∗ S3

Region-1
Service 0.791 0.892 0.801 0.916 0.855 0.908 0.914 0.943 0.783 0.922 0.886 0.948
Ecology 0.868 0.899 0.869 0.899 0.709 0.946 0.843 0.946 0.825 0.842 0.833 0.842
Satisfaction 0.307 0.327 0.355 0.489 0.294 0.326 0.482 0.683 0.372 0.377 0.488 0.615

Region-2
Service 0.432 0.644 0.536 0.710 0.749 0.860 0.822 0.895 0.812 0.859 0.828 0.926
Ecology 0.840 0.951 0.885 0.951 0.627 0.656 0.634 0.656 0.485 0.617 0.584 0.617
Satisfaction 0.325 0.355 0.389 0.507 0.294 0.439 0.559 0.765 0.510 0.495 0.555 0.653

Table 1: Performance metrics are presented for multiple cities across various planning stages within two distinct
geographic regions. The analysis spans four stages: Stage-1 (S1), the baseline configuration without optimization;
Stage-2 (S2), an optimized layout derived from a deterministic solver; Stage-3∗ (S3∗), outcomes obtained through
AI-based planning; and Stage-3 (S3), the final integrated solution.

From the 238 available AMRUT city maps, we235

selected Kanpur, Lucknow, and Raipur for evalu-236

ation. These cities were chosen due to their diverse237

urban characteristics: Kanpur as a prominent indus-238

trial hub, Lucknow as an administrative and com-239

mercial center, and Raipur as a rapidly expanding240

urban region. Their unique planning challenges en-241

sure that our framework is rigorously tested across242

different urban typologies, demonstrating its adapt-243

ability and effectiveness.244

To extract the maps, we utilized the Bhuvan API,245

manually specifying coordinates for each target246

area. Subsequently, we applied connected com-247

ponent analysis with optimized parameters to seg-248

ment regions based on land-use types. This struc-249

tured extraction method allows us to generate high-250

resolution inputs for our hybrid planning model,251

ensuring accurate and scalable urban development252

analysis. Further details regarding the extraction253

are given in Appendix D.254

5 Evaluation255

To assess the effectiveness of our proposed frame-256

work, we use three key metrics: Service Accessibil-257

ity, Ecological Coverage, and Resident Satisfaction.258

Together, these metrics assess the accessibility of259

public services, the availability of green spaces, and260

the fulfillment of residents’ demographic-specific261

needs, emphasizing the framework’s ability to cre-262

ate accessible, ecologically balanced, and resident-263

centric urban environments. These metrics are de-264

tailed in Appendix B265

6 Results266

Our proposed method demonstrates consistent im-267

provements across all evaluated regions, as re-268

flected in the three key metrics Service Accessi-269

bility, Ecological Coverage, and Resident Satisfac-270

tion—throughout the planning stages. The Stage 1 271

represents the extracted baseline, identifying dispar- 272

ities in accessibility and sustainability, highlighting 273

the necessity for an integrated planning approach. 274

Stage 2 introduces the deterministic solver, leading 275

to notable gains in both Service Accessibility and 276

Ecological Coverage. This step ensures a more bal- 277

anced distribution of essential services and green 278

spaces, forming a strong foundation for livable 279

urban environments. In Stage 3, we incorporate 280

inputs from specialized regional planning agents, 281

with coordination by the master planner. This stage 282

further refines all metrics by addressing localized 283

demographic needs while maintaining city-wide 284

balance, resulting in a substantial increase in Res- 285

ident Satisfaction. To illustrate the necessity of 286

the deterministic solver in our pipeline, we also 287

evaluate Stage 3∗, where the LLM-based planner 288

is applied directly to the baseline without the deter- 289

ministic solver to show the importance of usage of 290

AI based planning. 291

7 Conclusion 292

Our work presents a hybrid urban planning frame- 293

work that optimizes city-wide infrastructure with 294

localized demographic needs. By employing a 295

two-tier methodology consisting of a determin- 296

istic solver and region-specific planning agents, 297

our approach balances functional efficiency and 298

community-specific requirements. Our results on 299

diverse data from three rapidly urbanizing Indian 300

cities demonstrates notable improvements in Ser- 301

vice Accessibility, Ecological Coverage, and Resi- 302

dent Satisfaction across successive planning stages. 303

The results highlight the advantages of combin- 304

ing systematic optimization with adaptive regional 305

planning to create sustainable, inclusive, and liv- 306

able urban environments. 307
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8 Limitations308

As the number of regional planners increases, con-309

flict resolution between sub-regions becomes more310

complex, making it harder for the master planner311

to integrate diverse preferences effectively. Ad-312

ditionally, the computational demands of running313

multiple LLM agents may limit scalability, particu-314

larly for larger cities with many sub-regions. Fur-315

thermore, the framework’s generalization ability316

may be constrained, as its effectiveness could vary317

across cities with different urban characteristics318

or data quality. Additionally, due to the unavail-319

ability of economic data for the regions, economic320

factors were not incorporated into the planning or321

evaluation processes, which may limit the compre-322

hensiveness of the results.323
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structural integrity and ecological balance while408

adapting to the particular needs of different areas.409

Due to financial constraints, all our results are eval-410

uated for a single run.411

B Evaluation Metrics412

B.1 Service Accessibility413

The Service Accessibility metric evaluates how ef-414

ficiently essential services are distributed within415

residential areas. It measures the proportion of es-416

sential services (e.g., education, healthcare, work-417

places, shopping, and recreation) accessible within418

a 500-meter radius of resident’s homes, with values419

ranging from 0 to 1, where higher values represent420

better service accessibility.421

The metric is computed as follows:422

1. For each resident m, the minimum distance423

d(m, j) to access a facility of type j is deter-424

mined:425

d(m, j) = min
1≤i≤kj

EucDis(Lm, Pj,i) (1)426

where Lm is the resident’s location, and Pj,k427

denotes the k-th facility of type j.428

2. The overall Service Accessibility metric ag-429

gregates these values for all residents nm and430

service types nj :431

Service =
1

nm

nm∑
m=1

1

nj

nj∑
j=1

1[d(m, j) < 500]

(2)432

where I[d(m, j) < 500] is an indicator func-433

tion, returning 1 if the distance is less than434

500 meters and 0 otherwise.435

B.2 Ecological Coverage436

The Ecological Coverage metric measures the avail-437

ability of parks and green spaces, which play a crit-438

ical role in promoting the health and well-being439

of urban residents. This metric evaluates the pro-440

portion of residents who live within a 300-meter441

radius of parks or open spaces, aligning with global442

standards for urban green accessibility.443

The metric calculation is as follows:444

1. The Ecological Service Area (ESA) is defined445

as the combined buffer zones extending 300446

meters around each park or green space:447

ESR =

k⋃
i=1

Buffer(Ppark,i, 300) (3)448

where Ppark,k represents the k-th park or green 449

space. 450

2. The Ecological Coverage metric is computed 451

as the proportion of residents Lm located 452

within the ESA: 453

Ecological Coverage =
1

nm

nm∑
m=1

1[Lm ∈ ESA],

(4) 454

where 1[Lm ∈ ESA] returns 1 if the resident 455

is within the buffer zone and 0 otherwise. 456

B.3 Satisfaction 457

The Satisfaction metric evaluates how effectively 458

the urban layout fulfills the specific needs of res- 459

idents in different demographic sub-regions. Un- 460

like the previous two metrics, this metric consid- 461

ers the unique requirements of each sub-region, 462

such as educational facilities in academic zones 463

or healthcare in posh neighborhoods, ensuring a 464

more customized urban planning approach. This 465

metric ranges from 0 to 1, with higher values in- 466

dicating a better alignment between urban layouts 467

and resident specific needs. 468

1. Each resident m in a sub-region is assigned 469

a set of prioritized needs Jm, representing 470

3-5 most critical land-use categories for that 471

demographic goal. The satisfaction level for 472

an individual resident m is calculated as: 473

Sm =
1

nj

∑
j∈Jm

1[d(m, j) < 800], (5) 474

where d(m, j) is the minimum distance from 475

the resident to a facility of type j, and 476

1[d(m, j) < 800] indicates whether this dis- 477

tance is within 800 meters. 478

2. The overall Satisfaction Metric is then com- 479

puted by aggregating the satisfaction values 480

across all residents nm in the region: 481

Satisfaction =
1

nm

nm∑
m=1

Sm (6) 482

Together, the Service Accessibility, Ecological 483

Coverage, and Satisfaction metrics evaluate urban 484

layouts by balancing accessibility, environmental 485

sensitivity, and demographic inclusivity. These 486

metrics demonstrate our framework’s alignment 487

with the concept of a "15-minute city" (Moreno 488
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et al., 2021), ensuring essential services and green489

spaces are within walking or cycling distance,490

fostering sustainable and resident-focused urban491

spaces for rapidly urbanizing regions.492

B.4 Demographics493

• Industrial Zones: Prioritize factories, ware-494

houses, and logistics hubs, optimizing work-495

force accessibility and supply chain efficiency.496

• Educational Zones: Ensure the strategic497

placement of schools, universities, and stu-498

dent housing to foster knowledge hubs.499

• Commercial Zones: Designate spaces for of-500

fices, retail hubs, and business infrastructure,501

promoting economic activity.502

• Residential Zones: Optimize housing, com-503

munity amenities, and daily services to en-504

hance urban livability.505

C Formulation of Deterministic Solver506

• S0 : Initial game state (mapping of regions to507

roles, initially set to “None").508

• P : Set of players, representing the non-509

residential types to be assigned to regions.510

• C : Centroids dictionary (coordinates of the511

center of each region).512

• L : Move limits dictionary, where L[p] de-513

notes the number of assignments allowed for514

player p.515

• Sfinal : Final optimized game state after the516

genetic algorithm process.517

• r∗ : Region selected for assignment based on518

the highest return value in the greedy phase.519

• P : Population of layout configurations in the520

genetic algorithm.521

• N : Population size for the genetic algorithm.522

• G : Number of generations in the genetic al-523

gorithm.524

• k : Number of top layouts selected for the525

next generation.526

• S∗ : Layout with the highest fitness value after527

the genetic algorithm optimization.528

• calculate_return : Function used to calcu- 529

late the return value for assigning a region to a 530

player based on service and ecology metrics. 531

• fitness_function : Function that evaluates 532

the fitness of a layout based on service acces- 533

sibility and ecological proximity. 534

• mutate : Function that applies random swaps 535

to create new variations of a layout. 536

• initialize_population : Function that 537

generates the initial population for the genetic 538

algorithm using random swaps. 539

1. Input: 540

• Initial game state S0 (mapping of regions 541

to roles). 542

• Players P (list of non-residential types 543

to assign). 544

• Centroids dictionary C (coordinates of 545

region centers). 546

• Move limits L (number of assignments 547

allowed for each player). 548

2. Phase 1: Greedy Assignment. 549

(a) Initialize the game state S ← S0. 550

(b) While unassigned regions remain or 551

∃ p ∈ P such that L[p] > 0: 552

i. For each player p ∈ P : 553

A. If L[p] = 0, continue to the next 554

player. 555

B. Find the region r∗ that max- 556

imizes the return value using 557

calculate_return. 558

C. Assign r∗ to p: S[r∗]← p. 559

D. Decrease the move limit: L[p]← 560

L[p]− 1. 561

(c) Output intermediate layout Sgreedy. 562

3. Phase 2: Genetic Algorithm Optimization. 563

(a) Initialize population P of size N using 564

Sgreedy and random swaps. 565

(b) For each generation g ∈ {1, 2, . . . , G}: 566

i. Evaluate the fitness of each layout 567

S ∈ P using fitness_function. 568

ii. Select the top k layouts to carry for- 569

ward. 570

iii. Mutate layouts to create N − k new 571

layouts and add to the next genera- 572

tion. 573
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(c) Output the layout S∗ with the highest574

fitness in P .575

4. Output: Sfinal ← S∗, the layout maximizing576

service accessibility and ecological proximity.577

D Extraction of infomation from image578

We used a predefined color legend (Table 2) to579

extract information from the image to categorize580

various land regions on a geographic map. Each581

land-use type, such as Residential, Business, Edu-582

cational, and others, was associated with a specific583

color, enabling efficient map segmentation based584

on these color codes. The map, as illustrated in585

Figure 2, was first converted into the HSV (Hue,586

Saturation, Value) color space, facilitating easier587

color segmentation by defining precise color ranges588

for each land type. This transformation allowed589

for identifying pixels corresponding to specific re-590

gions, effectively distinguishing different land-use591

categories.

Original Image Annotated Image

Figure 2: Conversion of the original map image into the
annotated map image showcasing land-use categoriza-
tion through color-based segmentation

592

We then performed connected component anal-593

ysis on the map to identify distinct regions. Each594

identified region was labeled, and its area and cen-595

troid were calculated. Only regions with a min-596

imum area threshold were considered for further597

analysis. For each valid region, a mask was gener-598

ated, and relevant details, including the land type,599

label, area, and centroid, were recorded. The data600

was then organized into a structured format, mak-601

ing it suitable for further urban planning, environ-602

mental assessment, or other relevant applications.603

This process enabled the efficient extraction and604

categorization of land-use regions from the map,605

supporting various spatial analysis tasks.606

Colour Type Structures
Residential Houses, Apart-

ments, Villas
State Govt.
Property

Government offices,
Emergency services
(e.g., police, fire sta-
tions)

Business Commercial build-
ings, Office spaces,
Retail stores

Public Utili-
ties

Water treatment
plants, Sewage
systems, Electricity
stations

Shops and
Market

Markets, Grocery
stores, Shopping
malls

Educational Schools, Universi-
ties, Libraries, Edu-
cational centers

Vacant Land Open fields, Un-
used land

Park and
Open Space

Public parks, Play-
grounds, Green
spaces

Hospital Hospitals, Clinics,
Healthcare facili-
ties

Table 2: Pre-defined color legend for categorizing land-
use types, associating each color with specific structures
to support map segmentation and spatial analysis

E Sub-Region Extraction 607

A mask image representing predefined regions on 608

a map is utilized to filter and validate centroids of 609

land-use regions to extract sub-regions. The mask 610

image, as shown in Figure 3, is loaded in grayscale, 611

where white areas correspond to valid regions of 612

interest. The dimensions of the mask image are 613

verified to ensure proper alignment with the spatial 614

data. A function is then defined to check if a given 615

region’s centroid falls within the mask’s white area. 616

This is done by converting the centroid’s coordi- 617

nates to integers and checking if they lie within the 618

image boundaries and if the pixel at that location is 619

white (indicating a valid region). 620

The filtering process is applied to the centroids 621

of all regions in the dataset, and only those regions 622

whose centroids fall within the white area of the 623

mask are retained. This ensures that only relevant 624
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Mask 1 Mask 2

Mask 3Mask 4

Figure 3: Utilization of mask images to validate cen-
troids of land-use regions, showing the original map and
corresponding masks defining valid sub-regions

regions located within predefined valid areas are625

considered for further analysis or processing. The626

result is a refined dataset containing only the re-627

gions that meet the criteria, enabling more focused628

and accurate urban or environmental assessments.629
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