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Abstract

Urban planning faces a critical challenge in
balancing city-wide infrastructure needs with
localized demographic preferences, particularly
in rapidly developing regions. Although exist-
ing approaches typically focus on top-down op-
timization or bottom-up community planning,
only some frameworks successfully integrate
both perspectives. Our methodology employs a
two-tier approach: First, a deterministic solver
optimizes basic infrastructure requirements in
the city region. Second, four specialized plan-
ning agents, each representing distinct sub-
regions, propose demographic-specific modifi-
cations to a master planner. The master planner
evaluates and integrates these proposals, ensur-
ing both efficiency and adaptability. We vali-
date our framework on a newly created dataset
of detailed region and sub-region maps from
three cities in India, focusing on areas undergo-
ing rapid urbanization. The results show that
it can improve planning efficiency, better ad-
dress local demographic needs, and scale for
real-world deployment. Our work also iden-
tifies key challenges, including the trade-off
between system efficiency and adaptability, as
well as the complexities of handling diverse
urban datasets. These insights contribute to a
broader understanding of how multi-agent sys-
tems can enhance large-scale urban planning.

1 Introduction

Urban planning is a critical challenge for rapidly
growing cities, requiring solutions that balance in-
frastructure, housing, transportation, and commu-
nity needs. Traditional top-down approaches often
lack adaptability to localized demands, limiting the
creation of inclusive urban environments. In devel-
oping regions, there is a growing need for planning
methods that integrate both large-scale infrastruc-
ture goals and neighborhood-specific perspectives,
while enabling efficient execution by industry stake-
holders (Arnstein, 1969; Forester, 1982).

India exemplifies the challenges of modern ur-
ban planning due to its demographic diversity, pop-
ulation density, and history of unplanned growth
(Ranjan, 2023). The coexistence of historic and
modern layouts leads to congestion, inadequate
green spaces, and uneven resource distribution. Ur-
banization has strained municipal authorities and
infrastructure providers, highlighting the need for
scalable, data-driven frameworks that meet both
regulatory and community priorities (Kumar and
Prakash, 2016).

Large Language Models (LLMs) present a
promising solution by simulating stakeholder per-
spectives—community members, policymakers,
and planners alike (Wang et al., 2024b). LLM-
driven decision-making can enhance workflows,
reduce manual effort, and support more adaptive
urban strategies. This is particularly relevant in
India’s diverse cities, where local priorities often
vary.

We introduce a hybrid urban planning frame-
work that leverages deterministic solvers and LLM-
driven agents (Wang et al., 2024a; Huang et al.,
2024) to address the challenges of planning in
rapidly urbanizing cities. Our proposed method
consists of two primary components: First, the
deterministic solver ensures an equitable distri-
bution of essential infrastructure city-wide. Sec-
ond, specialized LLM agents are designated to
represent four distinct sub-regions, incorporating
demographic-specific needs. A “master planner”
then evaluates and integrates these suggestions, en-
suring the final plan aligns with city-wide goals
while accommodating local preferences.

We evaluate our framework using data from
three rapidly urbanizing Indian cities. Our results
indicate that LLLM agents effectively capture com-
munity diversity, enabling infrastructure planning
that is both inclusive and efficient.

We tested our framework using data from three
fast-growing cities in India. The results show that
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Figure 1: Workflow of the proposed urban planning framework. Integrating Deterministic Optimization, Regional
Planner inputs, and Master Planner Coordination to achieve balanced and Area-Specific city layouts

our approach handles urban infrastructure needs
while considering local demographic needs. Us-
ing LLM agents can represent diverse community
needs, making urban planning more inclusive and
efficient.

2 Background and Related Work

Large Language Models (LLMs) have demon-
strated transformative potential in urban planning
by automating complex tasks and facilitating par-
ticipatory (Du et al., 2024) processes. Recent stud-
ies explore applying reasoning (Plaat et al., 2024)
and planning (Valmeekam et al., 2023) capabili-
ties in LLMs, such as GPT-4 (OpenAl et al., 2024)
or Llama3 (Grattafiori et al., 2024), for special-
ized urban applications. For example, UrbanGPT
(Li et al., 2024) integrates instruction-tuning and
specialized decoders to enhance spatio-temporal
forecasting, including traffic flow predictions.
One significant advancement in urban planning
is a participatory framework that leverages LLMs,
employing role-playing agents to emulate planners
and residents (Zhou et al., 2024). In this frame-
work, LLM-based agents collaboratively design
land-use plans that balance community interests
with expert constraints. The system includes an
LLM agent acting as the planner and numerous
agents representing residents with diverse profiles
and backgrounds. The planner begins by proposing
an initial land-use plan. Subsequently, a simulated
fishbowl discussion mechanism is employed: a sub-
set of residents actively discusses the plan while
others act as listeners. The planner then revises the
plan iteratively, incorporating resident feedback to
achieve a more balanced and inclusive outcome.
Building on this framework, we propose an opti-
mized approach that employs four regional agents
(Chen et al., 2023) utilizing collaborative ability

(Zhang et al., 2024) of LLMs, each representing
a specific focus area that provides suggestions to
a master planner. This master planner consoli-
dates their suggestions and revises the city plan
accordingly. By reducing the number of agents, our
method significantly decreases computational over-
head while maintaining robust decision-making.
Furthermore, our approach prioritizes meeting fun-
damental needs before addressing region-specific
demands, ensuring a more balanced and efficient
planning process than previous methods.

3 Methodology

Our proposed methodology uses a two-tier frame-
work for urban planning. In the first stage, a de-
terministic solver ensures that all residents have
access to essential services and green spaces. The
second stage introduces four region-specific plan-
ning agents, each advocating for the needs of their
respective areas to a master planner. The master
planner then evaluates these inputs and adjusts the
city layout to harmonize fundamental requirements
with demographic-specific needs. The overall struc-
ture of our pipeline is shown in Figure 1.

3.1 Deterministic Solver

The deterministic solver uses Genetic Algorithms
(GA) (Forrest, 1996; Mirjalili and Mirjalili, 2019)
to optimize urban layouts, ensuring equitable ac-
cess to essential services and green spaces. The
process begins with the original city plan, where
essential services such as hospitals, schools, and
businesses are assigned roles. To generate an ini-
tial configuration, a greedy solver creates an inter-
mediate state by iteratively assigning elements to
locations that maximize accessibility for residents.
This intermediate layout provides a near-optimal
starting point for the GA to refine further.



The GA uses two main steps: mutation and se-
lection. Mutation creates new layouts by randomly
swapping roles between locations, helping to ex-
plore different options and avoid premature con-
vergence. For example, if a school and a hospital
are swapped, it may improve service accessibility
in one area while reducing it in another. Selection
picks the best layouts using a tournament method.
This favors high-performing layouts while main-
taining diversity to explore alternative layouts.

Each layout’s fitness is evaluated using two met-
rics:

¢ Service Accessibility: Measures the availabil-
ity of schools, hospitals, and other essential
services within 500 meters of residences.

* Ecological Proximity: Evaluates access to
green spaces within 300 meters, reflecting ur-
ban livability and resident well-being.

The GA iteratively improves the layout across
successive generations by ranking layouts based
on fitness, retaining the top-performing configura-
tions, and generating new ones through mutation.
This process continues until fitness improvements
plateau or a predefined number of generations is
reached, indicating convergence.

The outputs of the deterministic solver include
an optimized urban layout that maximizes acces-
sibility to essential services and green spaces. De-
tailed formulation of the deterministic solver is
given in Appendix C.

Algorithm 1 Deterministic Urban Layout Opti-
mization
Input: Initial city layout Ly
Output: Intermediate layout L;,,;
1: P < InitializePopulation(Lg) > Using greedy
solver
for g = 1 to MaxGen do
EvaluateFitness(P)
P’ « TournamentSelection(P)
P < Mutate(P’) > Swap locations to
generate new layouts
if IsConverged(P) or g = MaxGen then
break
end if
end for
10: return BestLayout(P)

e

3.2 Regional Adaptation via Dual-Planners

To refine the deterministic solver’s output, we in-
troduce a dual-planner approach that balances city-
wide objectives with localized demographic needs.
The city is divided into four sub-regions, each man-
aged by a regional planner, an LLM tasked with ad-
vocating for its area-specific requirements. These
regional planners generate proposals tailored to
their assigned zone, which are then reviewed and
integrated by a master planner. The master plan-
ner then reviews these proposals, integrating them
into the city layout to balance local priorities with
city-wide objectives.

3.2.1

It operates with a city-wide perspective, maximiz-
ing accessibility and achieving a balanced distribu-
tion of facilities. It prevents clustering in central
areas and avoids over-dispersing facilities toward
city edges, ensuring even coverage across the urban
area.

Adhering to a minimal-change policy, the master
planner makes essential layout adjustments only
when necessary. These include reassigning vacant
land for high-priority facilities, adding essential
services in underserved areas, or swapping facility
types to maintain efficient resource distribution.
This strategy preserves the structural integrity of
the city while meeting the overarching goals of
urban planning.

Master Planner

3.2.2 Regional Planners

It complements the master planner by addressing
the sub-region’s specific demographic and func-
tional needs. Each regional planner is designated
to focus on one of four demographic roles: Indus-
trial, Educational, Commercial, and Residential,
chosen for their relevance to urban functionality.
Further details about the demographics is shown in
Appendix B .4.

4 Datasets

Our dataset consists of high-resolution thematic
maps, essential for precise analysis of existing ur-
ban layouts. These maps are sourced from Bhu-
van AMRUT 4K (Bhuvan, 2022) web services and
provide detailed classifications of urban land use,
including residential areas, government properties,
commercial zones, transportation networks, green
spaces, educational institutions, and other key in-
frastructure components.



Region | Metrics | Kanpur | Lucknow | Raipur
| ST Ss2  $3¥ S3 |[S1 Sz S3 S3 |[S1  S2 S3 S3
Service 0.791 0.892 0.801 0.916| 0.855 0.908 0.914 0.943| 0.783 0.922 0.886 0.948
Region-1 | Ecology 0.868 0.899 0.869 0.899 | 0.709 0.946 0.843 0.946 | 0.825 0.842 0.833 0.842
Satisfaction | 0.307 0.327 0.355 0.489 | 0.294 0.326 0.482 0.683| 0.372 0.377 0.488 0.615
Service 0.432 0.644 0.536 0.710| 0.749 0.860 0.822 0.895| 0.812 0.859 0.828 0.926
Region-2 | Ecology 0.840 0951 0.885 0.951| 0.627 0.656 0.634 0.656| 0.485 0.617 0.584 0.617
Satisfaction | 0.325 0.355 0.389 0.507 | 0.294 0.439 0.559 0.765| 0.510 0.495 0.555 0.653

Table 1: Performance metrics are presented for multiple cities across various planning stages within two distinct
geographic regions. The analysis spans four stages: Stage-1 (S1), the baseline configuration without optimization;
Stage-2 (S2), an optimized layout derived from a deterministic solver; Stage-3* (S3*), outcomes obtained through
Al-based planning; and Stage-3 (S3), the final integrated solution.

From the 238 available AMRUT city maps, we
selected Kanpur, Lucknow, and Raipur for evalu-
ation. These cities were chosen due to their diverse
urban characteristics: Kanpur as a prominent indus-
trial hub, Lucknow as an administrative and com-
mercial center, and Raipur as a rapidly expanding
urban region. Their unique planning challenges en-
sure that our framework is rigorously tested across
different urban typologies, demonstrating its adapt-
ability and effectiveness.

To extract the maps, we utilized the Bhuvan API,
manually specifying coordinates for each target
area. Subsequently, we applied connected com-
ponent analysis with optimized parameters to seg-
ment regions based on land-use types. This struc-
tured extraction method allows us to generate high-
resolution inputs for our hybrid planning model,
ensuring accurate and scalable urban development
analysis. Further details regarding the extraction
are given in Appendix D.

5 Evaluation

To assess the effectiveness of our proposed frame-
work, we use three key metrics: Service Accessibil-
ity, Ecological Coverage, and Resident Satisfaction.
Together, these metrics assess the accessibility of
public services, the availability of green spaces, and
the fulfillment of residents’ demographic-specific
needs, emphasizing the framework’s ability to cre-
ate accessible, ecologically balanced, and resident-
centric urban environments. These metrics are de-
tailed in Appendix B

6 Results

Our proposed method demonstrates consistent im-
provements across all evaluated regions, as re-
flected in the three key metrics Service Accessi-
bility, Ecological Coverage, and Resident Satisfac-

tion—throughout the planning stages. The Stage 1
represents the extracted baseline, identifying dispar-
ities in accessibility and sustainability, highlighting
the necessity for an integrated planning approach.
Stage 2 introduces the deterministic solver, leading
to notable gains in both Service Accessibility and
Ecological Coverage. This step ensures a more bal-
anced distribution of essential services and green
spaces, forming a strong foundation for livable
urban environments. In Stage 3, we incorporate
inputs from specialized regional planning agents,
with coordination by the master planner. This stage
further refines all metrics by addressing localized
demographic needs while maintaining city-wide
balance, resulting in a substantial increase in Res-
ident Satisfaction. To illustrate the necessity of
the deterministic solver in our pipeline, we also
evaluate Stage 3*, where the LLM-based planner
is applied directly to the baseline without the deter-
ministic solver to show the importance of usage of
Al based planning.

7 Conclusion

Our work presents a hybrid urban planning frame-
work that optimizes city-wide infrastructure with
localized demographic needs. By employing a
two-tier methodology consisting of a determin-
istic solver and region-specific planning agents,
our approach balances functional efficiency and
community-specific requirements. Our results on
diverse data from three rapidly urbanizing Indian
cities demonstrates notable improvements in Ser-
vice Accessibility, Ecological Coverage, and Resi-
dent Satisfaction across successive planning stages.
The results highlight the advantages of combin-
ing systematic optimization with adaptive regional
planning to create sustainable, inclusive, and liv-
able urban environments.



8 Limitations

As the number of regional planners increases, con-
flict resolution between sub-regions becomes more
complex, making it harder for the master planner
to integrate diverse preferences effectively. Ad-
ditionally, the computational demands of running
multiple LLM agents may limit scalability, particu-
larly for larger cities with many sub-regions. Fur-
thermore, the framework’s generalization ability
may be constrained, as its effectiveness could vary
across cities with different urban characteristics
or data quality. Additionally, due to the unavail-
ability of economic data for the regions, economic
factors were not incorporated into the planning or
evaluation processes, which may limit the compre-
hensiveness of the results.
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structural integrity and ecological balance while
adapting to the particular needs of different areas.
Due to financial constraints, all our results are eval-
uated for a single run.

B Evaluation Metrics

B.1 Service Accessibility

The Service Accessibility metric evaluates how ef-
ficiently essential services are distributed within
residential areas. It measures the proportion of es-
sential services (e.g., education, healthcare, work-
places, shopping, and recreation) accessible within
a 500-meter radius of resident’s homes, with values
ranging from O to 1, where higher values represent
better service accessibility.
The metric is computed as follows:

1. For each resident m, the minimum distance
d(m, j) to access a facility of type j is deter-
mined:

d(m,j) = 121§I}chMCDls(Lm’ P;;) (1)

where L, is the resident’s location, and P
denotes the k-th facility of type j.

2. The overall Service Accessibility metric ag-
gregates these values for all residents n,,, and
service types n;:

1 &1
Service — - 1 .
ervice -~ Z Y Z]l[d(m,]) < 500]
m=1 j=1

2
where I[d(m, j) < 500] is an indicator func-
tion, returning 1 if the distance is less than
500 meters and O otherwise.

B.2 Ecological Coverage

The Ecological Coverage metric measures the avail-
ability of parks and green spaces, which play a crit-
ical role in promoting the health and well-being
of urban residents. This metric evaluates the pro-
portion of residents who live within a 300-meter
radius of parks or open spaces, aligning with global
standards for urban green accessibility.

The metric calculation is as follows:

1. The Ecological Service Area (ESA) is defined
as the combined buffer zones extending 300
meters around each park or green space:

k
ESR = | | Buffer(Ppari, 300) (3
=1

where Py 1, Tepresents the k-th park or green
space.

2. The Ecological Coverage metric is computed
as the proportion of residents L,, located
within the ESA:

Nm

1
Ecological Coverage = — Z 1[L,, € ESA],

Nm
“4)
where 1[L,, € ESA] returns 1 if the resident
is within the buffer zone and 0 otherwise.

m=1

B.3 Satisfaction

The Satisfaction metric evaluates how effectively
the urban layout fulfills the specific needs of res-
idents in different demographic sub-regions. Un-
like the previous two metrics, this metric consid-
ers the unique requirements of each sub-region,
such as educational facilities in academic zones
or healthcare in posh neighborhoods, ensuring a
more customized urban planning approach. This
metric ranges from O to 1, with higher values in-
dicating a better alignment between urban layouts
and resident specific needs.

1. Each resident m in a sub-region is assigned
a set of prioritized needs .J,,,, representing
3-5 most critical land-use categories for that
demographic goal. The satisfaction level for
an individual resident m is calculated as:

Su=— 3 1ld(m.j) < 800, (5)

e
T jedm

where d(m, j) is the minimum distance from
the resident to a facility of type j, and
1[d(m, j) < 800] indicates whether this dis-
tance is within 800 meters.

2. The overall Satisfaction Metric is then com-
puted by aggregating the satisfaction values
across all residents n,,, in the region:

1 &
Satisfaction = — E S (6)
nom m=1

Together, the Service Accessibility, Ecological
Coverage, and Satisfaction metrics evaluate urban
layouts by balancing accessibility, environmental
sensitivity, and demographic inclusivity. These
metrics demonstrate our framework’s alignment
with the concept of a "15-minute city" (Moreno



et al., 2021), ensuring essential services and green
spaces are within walking or cycling distance,
fostering sustainable and resident-focused urban
spaces for rapidly urbanizing regions.

B.4 Demographics

¢ Industrial Zones: Prioritize factories, ware-
houses, and logistics hubs, optimizing work-
force accessibility and supply chain efficiency.

* Educational Zones: Ensure the strategic
placement of schools, universities, and stu-
dent housing to foster knowledge hubs.

* Commercial Zones: Designate spaces for of-
fices, retail hubs, and business infrastructure,
promoting economic activity.

Residential Zones: Optimize housing, com-
munity amenities, and daily services to en-
hance urban livability.

C Formulation of Deterministic Solver

Sp : Initial game state (mapping of regions to
roles, initially set to “None").

* P : Set of players, representing the non-
residential types to be assigned to regions.

¢ C: Centroids dictionary (coordinates of the
center of each region).

* L : Move limits dictionary, where L|[p| de-
notes the number of assignments allowed for

player p.

* Shnal : Final optimized game state after the
genetic algorithm process.

* r* : Region selected for assignment based on
the highest return value in the greedy phase.

* P : Population of layout configurations in the
genetic algorithm.

* N : Population size for the genetic algorithm.

e (G : Number of generations in the genetic al-
gorithm.

* k : Number of top layouts selected for the
next generation.

» S*: Layout with the highest fitness value after
the genetic algorithm optimization.

* calculate_return : Function used to calcu-
late the return value for assigning a region to a
player based on service and ecology metrics.

» fitness_function : Function that evaluates
the fitness of a layout based on service acces-
sibility and ecological proximity.

* mutate : Function that applies random swaps
to create new variations of a layout.

e initialize_population : Function that
generates the initial population for the genetic
algorithm using random swaps.

. Input:

* Initial game state Sy (mapping of regions
to roles).

* Players P (list of non-residential types
to assign).

* Centroids dictionary C (coordinates of
region centers).

* Move limits L (number of assignments
allowed for each player).

2. Phase 1: Greedy Assignment.

(a) Initialize the game state .S < Sp.
(b) While unassigned regions remain or
3 p € P such that Lp] > 0:
i. For each player p € P:

A. If L[p] = 0, continue to the next
player.

B. Find the region r* that max-
imizes the return value using
calculate_return.

C. Assign r* to p: S[r*] < p.

D. Decrease the move limit: L[p] <
Llp] - 1.

(c) Output intermediate layout Sgreedy-

3. Phase 2: Genetic Algorithm Optimization.

(a) Initialize population P of size N using
Sgreedy and random swaps.
(b) For each generationg € {1,2,...,G}:
i. Evaluate the fitness of each layout
S € P using fitness_function.
ii. Select the top k layouts to carry for-
ward.
iii. Mutate layouts to create N — k new
layouts and add to the next genera-
tion.



(c) Output the layout S* with the highest
fitness in P.

4. Output: Sgpy < S*, the layout maximizing
service accessibility and ecological proximity.

D Extraction of infomation from image

We used a predefined color legend (Table 2) to
extract information from the image to categorize
various land regions on a geographic map. Each
land-use type, such as Residential, Business, Edu-
cational, and others, was associated with a specific
color, enabling efficient map segmentation based
on these color codes. The map, as illustrated in
Figure 2, was first converted into the HSV (Hue,
Saturation, Value) color space, facilitating easier
color segmentation by defining precise color ranges
for each land type. This transformation allowed
for identifying pixels corresponding to specific re-
gions, effectively distinguishing different land-use
categories.

Original Image Annotated Image

Figure 2: Conversion of the original map image into the
annotated map image showcasing land-use categoriza-
tion through color-based segmentation

We then performed connected component anal-
ysis on the map to identify distinct regions. Each
identified region was labeled, and its area and cen-
troid were calculated. Only regions with a min-
imum area threshold were considered for further
analysis. For each valid region, a mask was gener-
ated, and relevant details, including the land type,
label, area, and centroid, were recorded. The data
was then organized into a structured format, mak-
ing it suitable for further urban planning, environ-
mental assessment, or other relevant applications.
This process enabled the efficient extraction and
categorization of land-use regions from the map,
supporting various spatial analysis tasks.

Colour | Type Structures

Residential Houses, Apart-
ments, Villas

State  Govt. | Government offices,

Property Emergency services
(e.g., police, fire sta-
tions)

Business Commercial build-
ings, Office spaces,
Retail stores

Public Utili- | Water  treatment

ties plants, Sewage
systems, Electricity
stations

Shops and | Markets, Grocery

Market stores, Shopping
malls

Educational | Schools, Universi-
ties, Libraries, Edu-
cational centers

Vacant Land | Open fields, Un-
used land

Park and | Public parks, Play-

Open Space | grounds, Green
spaces

Hospital Hospitals, Clinics,
Healthcare facili-
ties

Table 2: Pre-defined color legend for categorizing land-
use types, associating each color with specific structures
to support map segmentation and spatial analysis

E Sub-Region Extraction

A mask image representing predefined regions on
a map is utilized to filter and validate centroids of
land-use regions to extract sub-regions. The mask
image, as shown in Figure 3, is loaded in grayscale,
where white areas correspond to valid regions of
interest. The dimensions of the mask image are
verified to ensure proper alignment with the spatial
data. A function is then defined to check if a given
region’s centroid falls within the mask’s white area.
This is done by converting the centroid’s coordi-
nates to integers and checking if they lie within the
image boundaries and if the pixel at that location is
white (indicating a valid region).

The filtering process is applied to the centroids
of all regions in the dataset, and only those regions
whose centroids fall within the white area of the
mask are retained. This ensures that only relevant
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Figure 3: Utilization of mask images to validate cen-
troids of land-use regions, showing the original map and
corresponding masks defining valid sub-regions

regions located within predefined valid areas are
considered for further analysis or processing. The
result is a refined dataset containing only the re-
gions that meet the criteria, enabling more focused
and accurate urban or environmental assessments.
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