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Abstract

The weighted Euclidean norm ∥x∥w of a vec-
tor x ∈ Rd with weights w ∈ Rd is the Eu-
clidean norm where the contribution of each
dimension is scaled by a given weight. Ap-
proaches to dimensionality reduction that satisfy
the Johnson–Lindenstrauss (JL) lemma can be
easily adapted to the weighted Euclidean distance
if weights are known and fixed: it suffices to
scale each dimension of the input vectors accord-
ing to the weights, and then apply any standard
approach. However, this is not the case when
weights are unknown during the dimensionality
reduction or might dynamically change. In this
paper, we address this issue by providing a linear
function that maps vectors into a smaller complex
vector space and allows to retrieve a JL-like es-
timate for the weighted Euclidean distance once
weights are revealed. Our results are based on
the decomposition of the complex dimensional-
ity reduction into several Rademacher chaos ran-
dom variables, which are studied using novel con-
centration inequalities for sums of independent
Rademacher chaoses.

1. Introduction
The weighted Euclidean distance between two vectors is a
Euclidean distance where the contribution of each dimen-
sion is scaled by a given weight representing the relevance
of the dimension. Specifically, given a vector x ∈ Rd and a
weight vector w ∈ Rd (with wi ≥ 0 for all i ∈ {1, . . . d}),
the weighted norm of x with weights w is defined as

∥x∥w =
√∑d

i=1 w
2
i x

2
i . The weighted Euclidean distance

between two vectors x, y is then defined as ∥x− y∥w.
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The weighted Euclidean distance is a frequently used primi-
tive in several learning tasks for improving output quality, as
weights can capture the estimated relevance of a feature on
the output (Niño-Adan et al., 2021). In the context of LLMs,
attention scores are used to weight the relative importance of
each component in a sequence relative to the other elements
in that sequence (Vaswani et al., 2017), while weighted low-
rank approximation is used to compress models by taking
into account the importance of parameters (Hsu et al., 2022;
Woodruff & Yasuda, 2024). In recommendation systems,
weights can improve the accuracy of prediction since it can
enhance the role of relevant products while reducing the
impacts of irrelevant products (Wang et al., 2015; Gu et al.,
2016; Yu et al., 2003). Text k-NN classifiers use weights
for taking into account the distribution of the terms across
classes estimated from training data (Moreo et al., 2020;
Bhattacharya et al., 2017). Most algorithmic methods sup-
porting these applications assume that weights are known
and fixed. However, weights might change over time or
be not known at preprocessing time, a setting that we here-
inafter refer to as “dynamic weights”. Examples include
nearest neighbor methods (Indyk & Motwani, 1998) for
classification or recommender systems (Baumgärtner et al.,
2022), where the relative importance of features might de-
pend on the type of query at hand. Weights might be esti-
mated on highly dynamic datasets that require a frequent
update of the parameters (e.g., (Banihashem et al., 2024)).
Moreover, weights might be user dependent and it might be
too expensive to construct indexes for each possible set of
weights, as in the aforementioned case of recommendation
systems. For this reason, recent works have been addressing
dynamic settings, such as for weighted Euclidean distance
for the near neighbor search problem (Lei et al., 2019; Hu
& Li, 2021).

The goal of this paper is to investigate the impact of dy-
namically weighted distance in dimensionality reduction
techniques. Dimensionality reduction methods map high-
dimensional vectors into a space with lower dimensionality,
while keeping some information on the original vectors; the
low-dimension vectors reduce communication and storage
costs and mitigate the curse of dimensionality in the running
time. A well-known result on dimensionality reduction is
provided by the Johnson–Lindenstrauss (JL) lemma (John-
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son & Lindenstrauss, 1984): given a set X of n vectors in
Rd, there exists a linear map g(·) that approximately main-
tains pairwise squared Euclidean distances; that is, for any
x, y ∈ X , we have that | ∥x− y∥22 − ∥g(x)− g(y)∥22 | ≤
ε ∥x− y∥22.

The JL lemma holds even with weighted Euclidean dis-
tance if weights are known beforehand. Consider one
of the several linear maps g(x) satisfying the JL lemma,
for instance g(x) = Ax where A is the Achlioptas’ ma-
trix (Achlioptas, 2003) (i.e., each element is a random value
in {−1, 1}). If all input vectors in X are scaled accord-
ing to the given weights w as x′ = w ⊙ x, with ⊙ denot-
ing component-wise multiplication, the map g(x′) gives
| ∥x− y∥2w − ∥g(x′)− g(y′)∥22 | ≤ ε ∥x− y∥2w, where x′

is the scaled version of the input vector x ∈ X . However,
this method cannot be applied if weights are known only
after the dimensionality reduction step, or if weights could
dynamically change. Note that naively storing the origi-
nal vectors and scaling them once weights are provided
would defeat the purpose of using dimensionality reduc-
tion. Therefore, one would need to find a dimensionality
reduction technique that can reduce vectors obliviously to
the weights, and then retrieve (an estimate of) the weighted
norm once the weights are available based solely on the
reduced vectors.

In fact, we observe that there is a simple, but fundamentally
flawed, solution to this problem. Indeed, it is enough to ob-
serve that the weighted norm is the scalar product between
the vector (x⊙x) and (w⊙w). Then, applying the JL dimen-
sionality reduction to the vector (x⊙ x) yields the reduced
vector g′(x) = A(x⊙x), whereA is a n×k random matrix
with entries in {−1, 1}. Then recalling the results of JL for
scalar products, e.g. as shown in (Kaban, 2015), we have
that g′(x) · g′(w) is an estimator of ∥x∥2w that can be com-
puted from the reduced vector g′(x) once the weights are
revealed. In particular taking k = O(ε−2 ln(δ−1)) yields,
with probability at least 1− δ,

|g′(x) · g′(w)− ∥x∥2w | < ε ∥x∥24 ∥w∥
2
4 . (1)

However, the function g′(·) is not linear and it cannot be
used for estimating pairwise weighted distances in a set of
vectors, severely limiting the applicability of the method.

Indeed, the prime application of the linearity of JL maps
is reducing the time complexity of pairwise distance com-
putations (Cunningham & Ghahramani, 2015), which has
applications in clustering (Makarychev et al., 2019) and
nearest neighbor search (Indyk & Motwani, 1998; Ghalib
et al., 2020), e.g. for recommender systems and classifica-
tion. Other examples include compressed sensing (Upad-
hyay, 2015), which relies on sparse linear measurements
to recover an unknown signal. Finally, the linearity of JL
has been exploited to reduce the computational complexity

of least square regression (Yang et al., 2015) and low-rank
matrix approximation (Ghojogh et al., 2021; Cunningham
& Ghahramani, 2015).

Dimensionality reduction under Euclidean distance with
dynamic weights can be formalized by the following prob-
lem: 1) each vector x ∈ X is mapped into a smaller vector
with a linear function g(·), obliviously of weights; 2) when
weights w are provided, a function ρ(g(x), w) is applied to
a compressed vector g(x) to obtain an unbiased estimate of
∥x∥2w. To solve the problem we have to provide function
g(x) to map vectors into the smaller space, and function
ρ(g(x), w) to recover the weighted norm. To the best of our
knowledge, no previous works have addressed this problem.

1.1. Our results

In this paper, we provide the first solution to dimensionality
reduction with dynamic weights. We map vectors in X into
a low dimensional complex vector space with a linear map
g(x) : Rd → Ck, for a suitable value k > 0. The map is
done before the weights are revealed and it is hence indepen-
dent of weights. More specifically, we let g(x) = Ax/

√
k

where matrix A is a complex k × d random matrix, where
each entry is an independently and identically distributed
random variable over {+1,−1,+i,−i}, where i is the imag-
inary unit (i.e., i2 = −1). Once the weight vector w is
known, we apply a suitable function to the low-dimensional
vectors in {g(x) : x ∈ X} that allows us to estimate the
squared weighted Euclidean norms and the pairwise dis-
tances for any pair of vectors in X . Let h(g(x), w) =
g(x) ⊙ g(x) ⊙ ((A ⊙ A)(w ⊙ w)) with ⊙ denoting the
element-wise multiplication. Then, our unbiased estimate
of ∥x∥2w is given by ρ(g(x), w) = Re

(∑k
i=1 h(g(x), w)i

)
,

where the subscript ·i denotes the i-th entry of a vector, and
Re (·) is the real part. Note that computing ρ(·, ·) does not
require access to the original vector x.

In the paper, we will show that the expected value of
ρ(g(x), w) is ∥x∥2w and provide upper bounds on the er-
ror. The following theorem, which is the main result of our
paper, states that ρ(g(x), w) provides a bounded additive
error to the weighted norm, akin to the ones obtained for dot
products under random projections (Kaban, 2015). More-
over, when the vector and weights at hand are such that
the quantity ∥x∥22 ∥w∥

2
4 / ∥x∥

2
w is bounded by some term ∆,

one can obtain a multiplicative approximation guarantee as
in the JL lemma.

Theorem 1.1. Let ε, δ > 0. Let ∆ be a suitable parameter
and k ≥ Ω

(
max

{
∆2 ln(8/δ)

ε2 , ∆ ln(8/δ)2

ε

})
. Then there

exists a linear function g(x) : Rd → Ck and an estimator
ρ(g(x), w) : Ck × Rd → R such that for any given x,w ∈
Rd, with probability at least 1− δ,

|ρ(g(x), w)− ∥x∥2w | < ε ∥w∥24 ∥x∥
2
2 /∆.
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In particular, if ∥x∥22 ∥w∥
2
4 / ∥x∥

2
w ≤ ∆, we get, with prob-

ability at least 1− δ,

|ρ(g(x), w)− ∥x∥2w | < ε ∥x∥2w .

We observe that the linearity of g(·) allows us to esti-
mate pairwise weighted Euclidean distances using the com-
pressed vectors, as ρ(g(x)− g(y), w) = ρ(g(x− y), w) is
a unbiased estimator of ∥x− y∥2w.

We then extend, in Section 4.4, the previous result by show-
ing that when the vectors x and w are near-uniformly dis-
tributed, we can lower the dimensionality of the reduced vec-
tors to cmax

{(
∆
ε

)
ln (8/δ)

1/2
,
(
∆
ε

)2/3
ln (8/δ)

4/3
}

, and
still obtain the same guarantees. The approach uses a sparse
block matrix consisting of L submatrices of size k × d/L,
where each submatrix is generated as the aforementioned
complex matrix A.

The analysis of the aforementioned results leverages the
decomposition of the complex dimensionality reduction into
several Rademacher chaos random variables, i.e., sums of
products of Rademacher random variables (see Section 2.3
for a formal definition). To do so, we develop a novel
upper bound to tail probabilities for sums of independent
Rademacher chaoses, which can be of independent interest.

Specifically, we have the following concentration result,
which builds on a novel application of Bonami’s hyper-
contractive inequality (Blei & Janson, 2004) to arbitrary
Rademacher chaoses, and a recent concentration result for
sums of independent sub-Weibull random variables (Kuchib-
hotla & Chakrabortty, 2022).

Theorem 1.2. Let S and {Si}i=1,...,k be k+1 independent
and identically distributed Rademacher chaoses of order
γ′. Let W (S) be the Euclidean norm of the coefficients in
S. Then ∀γ ≥ 3 such that γ′ ≤ γ, there exist constants
c1(γ), c2(γ) depending only on γ such that

Pr

[∣∣∣∣∣
k∑
i=1

Si

∣∣∣∣∣ > W (S)
(
c1(γ)

√
k
√
t+ c2(γ)t

γ/2
)]

≤ 2e−t.

1.2. Related work

Recently, (Lei et al., 2019; Hu & Li, 2021) have studied the
r-near neighbor search problem under weighted distance
with weights provided at query time: given a set S of n
vectors, construct a data structure that, for any query vector
x and weight vector w, returns a vector y in S such that
∥x− y∥w ≤ r. The papers leverage an asymmetric Local-
ity Sensitive Hashing approach that uses a dimensionality
expansion (from Rd to R2d) built with trigonometric func-
tions. The result in (Lei et al., 2019) focuses on the weighted
Euclidean distance, while the one in (Hu & Li, 2021) on the
weighted Manhattan distance.

In (Har-Peled & Mahabadi, 2017), the authors have pro-
posed a variant of the nearest neighbor search problem al-
lowing for some coordinates of the dataset to be arbitrarily
corrupted or unknown. The goal is to preprocess the in-
put set such that, given a query point q, it is possible to
efficiently find a point x ∈ S such that the distance of the
query q to the point x is minimized when removing the
noisiest k coordinates (i.e., coordinates are chosen so that
deleting them from both vectors minimizes their distance).
The paper provides a (1 + ε)-approximation to the optimal
solution. We observe that in this work the coordinates to be
removed are selected by the maximization procedure, and
not specified in input.

Complex numbers have been used for approximately com-
puting the permanent of a matrix (Chien et al., 2003), and
in data streams to approximately count the number of occur-
rences of a given subgraph in a graph (Kane et al., 2012). A
use of complex numbers similar to our case can be found
in (Kane et al., 2011), where they estimate the p norm in a
streaming setting, with 0 < p < 2.

The JL lemma has been proved to provide tight bounds
(Larsen & Nelson, 2016; 2017), and has been used for sev-
eral applications, including differential privacy (Blocki et al.,
2012) and clustering (Makarychev et al., 2019).

Finally, Kaski et al. (2025) very recently addressed the prob-
lem of developing a generalization of JL for multi-linear
dot products, which encompasses weighted norms. Their
approach relies on non-independent matrices rather than
complex numbers to achieve unbiasedness and only consid-
ers the case of general vectors. On the other hand, since we
focus on the weighted norm, we develop an enhanced tech-
nique for near-uniform vectors, which yields better results.

1.3. Outline of the paper

In Section 2, we provide a formal background on the con-
cepts we use throughout the paper. In Section 3, we derive
the first tail bounds on sums of independent Rademacher
chaoses. Our proof starts by generalizing the results of
Bonami’s hypercontractive inequality (Blei & Janson, 2004)
to arbitrary Rademacher chaoses, which is then used to
obtain an expression for the Orlicz norm of Rademacher
chaoses. Using recent results based on such Orlicz norms
(Kuchibhotla & Chakrabortty, 2022), we then prove the con-
centration result. In Section 4, we prove our main result
(Theorem 1.1) and an improvement (Theorem 4.6) under the
hypothesis of near-uniform vectors. Our proof is achieved
by decomposing the estimator ρ(g(x), w) into Rademacher
chaoses and applying our novel concentration bounds.

All the formal proofs of lemmas and theorems, if not present
in the main paper, are reported in the appendix.
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2. Preliminaries
We now provide an overview of the concepts and techniques
used to prove our results.

2.1. Basic concepts

Given a value p > 0, the p-norm of a vector x ∈ Rd

is defined as ∥x∥p =
(∑d

i=1 |xi|p
)1/p

. Given a weight

vector w in Rd+, the weighted p-norm of x is ∥x∥w,p =(∑d
i=1 w

p
i |xi|p

)1/p
. When p = 2, we get the Euclidean

norm and we simply denote the weighted norms of x as
∥x∥w.

We state some commonly known inequalities that will be
used in the subsequent sections.

Lemma 2.1 (Cauchy-Schwarz ineq.). For any x, y ∈ Rd,(∑d
i=1 xiyi

)2
≤
(∑d

i=1 x
2
i

)(∑d
i=1 y

2
i

)
= ∥x∥22 ∥y∥

2
2 .

Lemma 2.2 (Monotonicity of p-norm). For any x ∈ Rd
and any 0 < p < q < +∞, we have ∥x∥q ≤ ∥x∥p .
Lemma 2.3. For any p, q ≥ 1 and any x, y ∈ Rd, we have∑d
i=1 |xi|p|yi|q ≤ ∥x∥p2 ∥y∥

q
2 .

2.2. Johnson-Lindenstrauss (JL) lemma

Let X = {x1, . . . xn} be a set of n vectors in d > 0
dimensions. For any ε > 0, the Johnson-Lindenstrauss
lemma (Johnson & Lindenstrauss, 1984) claims that, if k =
Ω
(
ε−2 log n

)
, there exists a linear function g : Rd → Rk

that maintains pairwise distances up to a multiplicative error
ε with high probability. That is, for any x, y ∈ X , we have

(1− ε) ∥x− y∥22 ≤ ∥g(x)− g(y)∥22 ≤ (1 + ε) ∥x− y∥22 .

Equivalently, the JL lemma claims the existence of a linear
map that approximately maintains Euclidean norms. There
are several constructions for g(·), for instance, those in
(Achlioptas, 2003). Let g(x) = Ax for a suitable k·dmatrix;
if k = Θ

(
ε−2 log n

)
and each entry of A is an independent

and even distributed Rademacher random variable {−1, 1},
then A satisfies the JL lemma with high probability. The
property holds even if an entry of A is 0 with probability
2/3 and in {−1, 1} otherwise.

2.3. Rademacher chaos

We introduce here some results on Rademacher chaos. Let
Iγ,n ⊆ {1, . . . n}γ , and let I ′γ,n = {(i1, . . . , iγ) : ij ∈
{1, . . . n}, ij ̸= ik if j ̸= k} be a set of ordered sequences
of γ distinct values from {1, . . . , n}; when n is clear from
the context, we drop the subscript n.

Let X1, . . . Xn be n independent Rademacher random vari-
ables. Then, a Rademacher chaos S of order γ, with coeffi-

cients a(i1,...iγ) ∈ R, is defined as:

S =
∑

(i1,...iγ)∈I′γ,n

a(i1,...iγ)Xi1 . . . Xiγ .

The q-norm of the random variable S is defined as ∥S∥q =
E [|S|q]1/q . We define a function W on the set of all
Rademacher chaoses as W (S) =

√∑
i∈I′γ,n

a2(i1,...,iγ), i.e.

the Euclidean norm of the coefficients.

Bonami’s hypercontractive inequality (Blei & Janson, 2004)
provides a bound for ∥S∥q when the sum is taken over se-
quences (i1, . . . , iγ) such that i1 < i2 < · · · < iγ , possibly
after a renaming of the indexes.
Theorem 2.4 ((Blei & Janson, 2004)). Let
S be a Rademacher chaos of the form S =∑

1≤i1<···<iγ≤n a(i1,...iγ)Xi1 . . . Xiγ . Then, ∥S∥q ≤
(q − 1)γ/2 ∥S∥2 = (q − 1)γ/2W (S).

Note that in general, for Rademacher chaoses with sums
over I ′γ,n, Bonami’s hypercontractive inequality does not
hold. In Section 3.1 we show how to generalize the result to
arbitrary Rademacher chaoses.

2.4. Orlicz norms and sub-Weibull random variables

We introduce some results on the concentration of sums of
independent heavy-tailed distributions. We recall the defini-
tion of Orlicz norms for random variables (Kuchibhotla &
Chakrabortty, 2022).
Definition 2.5. Let g : [0,∞) → [0,∞) be a non-
decreasing function with g(0) = 0. The g-Orlicz
norm of a real-valued random variable X is ∥X∥g =
inf {η > 0 : E [g(|X|/η)] ≤ 1} .

Note that, if g is not convex, the function ∥·∥g on the space
of real-valued random variables is not a norm. This property
though is not needed in the following derivations.

Two well-known spacial cases of g are ψ2 = exp(x2)− 1
and ψ1 = exp(x)− 1. When a random variable has a finite
ψ2-Orlicz norm it is called sub-Gaussian and when it has
a finite ψ1-Orlicz norm it is called sub-exponential. The
following definition (Kuchibhotla & Chakrabortty, 2022)
generalizes such random variables.
Definition 2.6. A random variable X is said to be sub-
Weibull of order α > 0 if ∥X∥ψα

< ∞ where ψα(x) =
exp(xα)− 1.

The following theorem, proved in (Kuchibhotla &
Chakrabortty, 2022) (Theorem 3.1), states a concentration
result for sums of independent sub-Weibull random vari-
ables. We report a bound for heavy-tailed (α < 1) variables.
Theorem 2.7 ((Kuchibhotla & Chakrabortty, 2022)). Let
X1, . . . , Xk be i.i.d. mean zero random variables with
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∥Xi∥ψα
<∞ for some α ∈ (0, 1). Then

Pr

[∣∣∣∣∣
k∑
i=1

Xi

∣∣∣∣∣ ≥ Cα ∥X1∥ψα

(√
k
√
t+ 22/α−1/2t1/α

)]≤ 2e−t

with Cα = 8
√
2e97/24(2π)1/4(e2/e/α)1/α.

3. Concentration of sums of Rademacher
chaoses

In this section, we provide the first concentration results for
sums of independent Rademacher chaoses.

3.1. Tail bounds and Orlicz norms of arbitrary
Rademacher chaoses

We generalize the bound given by Bonami’s inequality for
arbitrary Rademacher chaoses. Let Gγ be the set of per-
mutations over γ elements, i.e. Gγ = Sym({1, . . . , γ}).
Then, ∀σ ∈ Gγ , let Iσγ,n = {(i1, . . . , iγ) : ij ∈
{1, . . . n}, iσ(j) < iσ(k) if j < k}. Then we can express

S =
∑

(i1,...iγ)∈I′γ,n

a(i1,...iγ)Xi1 . . . Xiγ

=
∑
σ∈Gγ

∑
i∈Iσγ,n

a(i1,...iγ)Xi1 . . . Xiγ =
∑
σ∈Gγ

Sσ

Intuitively, we can decompose the chaos S into a collection
of chaoses Sσ: in each Sσ, tuples can be sorted using per-
mutation σ and then Bonami’s inequality can be applied.
Indeed, Bonami’s hypercontractive inequality (Blei & Jan-
son, 2004) implies that, ∀σ ∀q ≥ 2,

∥Sσ∥q ≤ (q − 1)γ/2 ∥Sσ∥2

= (q − 1)γ/2

 ∑
(i1,...iγ)∈Iσγ,n

a2(i1,...iγ)

1/2

.

Using this decomposition, we obtain a bound on the q-norm
of a general Rademacher chaos.
Lemma 3.1. Let S =

∑
σ∈Gγ

Sσ be a Rademacher chaos
of order γ ≥ 2. Then, ∥S∥q ≤ (q − 1)γ/2

√
γ!W (S)

We then have the following concentration result.
Lemma 3.2. Let S be a Rademacher chaos of order γ ≥ 2.
Then for any γ′ ≥ γ and t > 0, we have:

Pr [|S| > t] ≤ e2 exp
(
−(e

√
γ!W (S))−

2/γ′
t
2/γ′
)
.

Proof sketch. We obtain the bound by applying Markov’s
inequality and Lemma 3.1 to obtain

Pr [|S| > t] ≤ E [|S|q] t−q = ∥S∥qq t−q,
and set q appropriately.

Finally, we can exploit the previous concentration result
to provide an upper bound on the ψα-Orlicz norm for a
Rademacher chaos.

Lemma 3.3. Let S be a Rademacher chaos of order γ ≥ 2.
Let α ≤ 2/γ and ψα = exp(xα)− 1. Then

∥S∥ψα
≤ e(e2 + 1)

1/α
√
γ!W (S).

Proof. From the definition of Orlicz norm we have
∥S∥ψα

= inf {η > 0 : E [ψα(|S|/η)] ≤ 1} . Then, apply-
ing Lemma 3.2 with γ′ = 2/α ≥ γ, we get

E [ψ(|S|/η)] =
∫ ∞

0

Pr [ψ(|S|/η) > x] dx

=

∫ ∞

0

Pr
[
|S| > η(ln(x+ 1)

1/α)
]
dx

≤ e2
∫ ∞

0

exp
(
−
(
e
√
γ!W (S)

)−α
ηα ln(x+1)

)
dx

= e2
∫ ∞

0

(x+ 1)
−
(

η
e
√

γ!W (S)

)α

dx

=
e2(

η
e
√
γ!W (S)

)α
− 1

.

Then, if η ≥ e(e2 + 1)1/α
√
γ!W (S), we have that

E [ψ(|S|/η)] ≤ 1. Therefore, we have that ∥S∥ψα
≤

e(e2 + 1)1/α
√
γ!W (S).

3.2. Proof of Theorem 1.2

Having obtained a bound on the Orlicz norm for a
Rademacher chaos, we can now prove the first of our main
results, a concentration inequality for sums of independent
Rademacher chaoses.

Theorem 1.2. Let S and {Si}i=1,...,k be k+1 independent
and identically distributed Rademacher chaoses of order
γ′. Then ∀γ ≥ 3 such that γ′ ≤ γ, there exist constants
c1(γ), c2(γ) depending only on γ such that

Pr

[∣∣∣∣∣
k∑
i=1

Si

∣∣∣∣∣ > W (S)
(
c1(γ)

√
k
√
t+ c2(γ)t

γ/2
)]

≤ 2e−t.

Proof. By setting α = 2/γ ≤ 2/γ′ in Lemma 3.3, we
get that ∥S∥ψ2/γ

≤ e(e2 + 1)γ/2
√
γ′!W (S) ≤ e(e2 +

1)γ/2
√
γ!W (S). Then, by defining c1(γ) = e(e2 +

1)γ/2
√
γ!C2/γ and c2(γ) = e(e2 + 1)γ/22γ−1/2

√
γ!C2/γ , we

get:

Pr

[∣∣∣∣∣
k∑
i=1

Si

∣∣∣∣∣ > W (S)
(
c1(γ)

√
k
√
t+ c2(γ)t

γ/2
)]

≤ Pr

[∣∣∣∣∣
k∑
i=1

Si

∣∣∣∣∣ > C2/γ ∥S∥ψ(2/γ)

(√
k
√
t+ 2γ−

1/2t
γ/2

)]
.
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Since E [Si] = 0 for any Rademacher chaos and by applying
Theorem 2.7 with α = 2/γ, we have that the right term of
the previous inequality can be upper bounded as:

Pr

[∣∣∣∣∣
k∑
i=1

Si

∣∣∣∣∣ > C2/γ ∥S∥ψ(2/γ)

(√
k
√
t+ 2γ−

1/2t
γ/2

)]
≤ 2e−t.

The theorem then follows.

The above theorem provides the first tail bound for sums of
independent Rademacher chaoses. The following corollary
rephrases the tail bound by splitting it into a sub-Gaussian
tail for small deviations and a heavy tail for large deviations.

Corollary 3.4. Let {Si}i=1,...,k be a sequence of k inde-
pendent and identically distributed Rademacher chaoses
of order γ′. Then ∀γ ≥ 3 such that γ′ ≤ γ, there exist
constants c1(γ), c2(γ) depending only on γ such that

Pr

[∣∣∣∣∣
k∑
i=1

Si

∣∣∣∣∣ > t

]
≤

2 exp
(
− 1

4c1(γ)2W (S)2
t2

k

)
if (†)

2exp
(
−
(

t
2c2(γ)W (S)

)2/γ)
otherwise

with (†) the event: t < 2
(
c1(γ)

γ

c2(γ)

) 1
γ−1

W (S)k
γ

2γ−2

4. Complex dimensionality reduction
In this section, we analyze the properties of the dimension-
ality reduction onto the complex vector space described
in the introduction. We recall that A ∈ Ck×d denotes a
random matrix where each entry in an independent and
identically distributed random variable in {1,−1, i,−i},
and we define g(x) = Ax/

√
k for any x ∈ Rd. Let

h(g(x), w) = g(x) ⊙ g(x) ⊙ ((A ⊙ A)(w ⊙ w)) and
ρ(g(x), w) = Re

(∑k
i=1 h(g(x), w)i

)
be our estimate of

∥x∥2w, where ⊙ represents the element-wise multiplication.
Although ρ(g(x), w) is expressed as a function of x, it is
computed from the reduced vector g(x).

4.1. Results in expectation

We first show that the expected value of our estimator
ρ(g(x), w) corresponds to the weighted norm.

Theorem 4.1. For any x,w ∈ Rd, we have that
E[ρ(g(x), w)] = ∥x∥2w.

Proof. By the definition of h(g(x), w), for any i ∈
{1, . . . k} we get:

h(g(x), w)i = k−1

 d∑
j=1

Ai,jxj

2 d∑
j=1

A2
i,jw

2
j


= k−1

∑
(j1,j2,j3)∈I3,d

Ai,j1Ai,j2A
2
i,j3xj1xj2w

2
j3

Consider now the expectation of the term
E
[
Ai,j1Ai,j2A

2
i,j3

]
for a given value i. Since

E [Ai,j ] = E
[
A2
i,j

]
= E

[
A3
i,j

]
= 0 for any i, j

and the terms in A are independent, we have that
E
[
Ai,j1Ai,j2A

2
i,j3

]
= 1 if j1 = j2 = j3, and 0 otherwise.

Then, we get:

E [h(g(x), w)i] = k−1
∑

j1,j2,j3∈I3,d

E
[
Ai,j1Ai,j2A

2
i,j3

]
xj1xj2w

2
j3

= k−1
d∑
j=1

x2jw
2
j = ∥x∥2w /k

The theorem then follows from the linearity of the sum and
of the Re (·) function.

4.2. Results in high probability

We now prove, using as the main tool the newly developed
Theorem 1.2, that the estimator for the weighted norm is
concentrated around its mean with high probability. In
particular, the concentration depends on k, the output space
dimension. The concentration bounds then allow to choose
k depending on the desired accuracy of the estimate.

Since the results of Theorem 1.2 apply only to
pairwise distinct indices, we split ρ(g(x), w) =∑k
i=1 Re

(
hi(g(x), w)

2
)

into 4 sums, each over a set of
pairwise distinct indices, and bound each term individu-
ally. Here we assume that Iγ,d = {1, . . . , d}γ and I ′γ,d =

{(j1, . . . , jγ) ∈ Iγ,d : jp ̸= jq ∀p, q ∈ {1, . . . γ}, p ̸=
q}.

k ·ρ(g(x), w) =
k∑
i=1

∑
j1,j2,j3∈I3,d

Re
(
Ai,j1Ai,j2A

2
i,j3

)
xj1xj2w

2
j3

=

k∑
i=1

∑
j1,j2,j3∈I′3,d

Re
(
Ai,j1Ai,j2A

2
i,j3

)
xj1xj2w

2
j3

+ 2
k∑
i=1

∑
j1,j2∈I′2,d

Re
(
Ai,j1A

3
i,j2

)
xj1xj2w

2
j2

+

k∑
i=1

∑
j1,j2∈I′2,d

Re
(
A2
i,j1A

2
i,j2

)
x2j1w

2
j2

+
k∑
i=1

d∑
j=1

w2
jx

2
j

= H1 +H2 +H3 + k ∥x∥2w
Remark. It might be tempting to simply use a Khintchine-
like inequality (Haagerup & Musat, 2007), such as in Kane
et al. (2011, Lemma 4), to directly estimate k ·ρ(g(x), w)
using Aj1Aj2A

2
j3

as the random variables and xj1xj2w
2
j3

as their respective weights. This will however fail because
the random variables are not independent. For this reason,
we resort to Theorem 1.2 and Bonami’s hypercontractive
inequality to bound the tails of the Rademacher chaos.
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Note that each Ai,j can be written as s(1− r+ i(1+ r))/2,
with s and r independent Rademacher random variables.

We then bound the tail probabilities of the individual
terms Hℓ, ℓ = 1, 2, 3 by expanding them into sums of
Rademacher chaoses and using Theorem 1.2.

In particular, we decompose each Hℓ as a sum of k inde-
pendent terms Hℓ,i, and we show that W (Hℓ,i)

2, for any
i ∈ {1, . . . k}, can be upper bounded by ∥w∥24 ∥x∥

2
2.

We report such bounds in the Appendix, and provide here
a bound on H = H1 + H2 + H3, which is obtained via
a union bound over the three terms. In what follows, let
c1 and c2 be the constants of Theorem 1.2 for γ = 4, and
consequently F (t) = c1

√
k
√
t+ c2t

2.

Lemma 4.2. We have that Pr
[
|H| > 4 ∥w∥24 ∥x∥

2
2 F (t)

]
≤

8e−t.

We can now use the previous concentration result for H to
obtain a tail probability bound for the error |ρ(g(x), w)−
∥x∥2w | incurred by the estimator.

Lemma 4.3. For any given x,w ∈ Rd, we have

Pr
[
|ρ(g(x), w)− ∥x∥2w | > t

]
≤


8 exp

(
−k 1

(c18∥w∥24∥x∥
2
2)

2 t
2

)
if (†)

8 exp

(
−
√
k 1√

c28∥w∥24∥x∥
2
2

√
t

)
otherwise

with (†) the event: t < c
4/3
1 c

−1/3
2 8 ∥w∥24 ∥x∥

2
2 k

−1/3.

We then prove our main result, Theorem 1.1.In particular,
we obtain an additive error bound akin to the ones obtained
for dot products under random projections (Kaban, 2015),
which can be then refined to a multiplicative error by rescal-
ing the accuracy parameter ε.

Theorem 1.1. Let ε, δ > 0. Let ∆ be a suitable parameter
and k ≥ Ω

(
max

{
∆2 ln(8/δ)

ε2 , ∆ ln(8/δ)2

ε

})
. Then there

exists a linear function g(x) : Rd → Ck and an estimator
ρ(g(x), w) : Ck × Rd → R such that for any given x,w ∈
Rd, with probability at least 1− δ,

|ρ(g(x), w)− ∥x∥2w | < ε ∥w∥24 ∥x∥
2
2 /∆.

In particular, if ∥x∥22 ∥w∥
2
4 / ∥x∥

2
w ≤ ∆, we get, with prob-

ability at least 1− δ,

|ρ(g(x), w)− ∥x∥2w | < ε ∥x∥2w .

Proof sketch. We set t = ε ∥w∥24 ∥x∥
2
2 /∆. For the Gaus-

sian tail case of the bound described by Lemma 4.3, we take
k = c∆2ε−2 ln(8/δ).

Instead, for the long tail part of the bound described by
Lemma 4.3, we take k = c∆ ln(8/δ)2

ε . Both cases yield

Pr
[
|ρ(g(x), w)− ∥x∥2w | > t

]
≤ δ.

As the failure probability decreases by k, taking
k ≥ max

{
c218

2 ∆2 ln(8/δ)
ε2 , c28

∆ ln(8/δ)2

ε

}
completes the

proof.

Finally, we restate the above theorem to prove that the pro-
posed reduction maintains pairwise distances in a set S of
n vectors and for a set of weights W with a bounded rel-
ative error. We remark that, thanks to the linearity of g,
ρ(g(x − y), w) can be computed from the reduced vector
g(x) and g(y) as ρ(g(x− y), w) = ρ(g(x)− g(y), w).

Corollary 4.4. Let X = {x1, . . . , xn}, xi ∈ Rd be a
dataset of n vectors. Let W ⊂ Rd be the set of the weights
of interest, with |W | = O (n). For any given ε > 0

and k > cmax
{
∆2 ln(8n)

ε2 , ∆ ln(8n)2

ε

}
where c is a uni-

versal constant, we have with high probability that, for any
x, y ∈ S and w ∈W :∣∣ρ(g(x− y), w)− ∥x− y∥2w

∣∣ < ε ∥w∥24 ∥x− y∥22 /∆.

Proof. It suffices to apply Theorem 1.1 with x′ = x−y and
δ = 1/(|W |n2). The claim follows by a union bound.

4.3. Discussion of results

We briefly discuss our results. We note that obtaining a mul-
tiplicative error guarantee on the estimate of the weighted
norm ∥x∥2w using the dimensionality reduction given in
Equation 1, which does not maintain linearity and therefore
cannot be used to estimate weighted distances, requires the
quantity (∥x∥24 ∥w∥

2
4)/ ∥x∥

2
w to be bounded. In particular,

if k = Θ((∆/ε)2) and maxx,w(∥x∥24 ∥w∥
2
4)/ ∥x∥

2
w ≤ ∆,

one obtains a ε multiplicative error guarantee. This bound-
edness requirement is intuitively required by the fact that
the vectors x ⊙ x and w ⊙ w could be orthogonal, and
∥x∥2w could therefore be 0. Similar results are obtained for
estimating dot products under JL projections (Kaban, 2015).

According to Theorem 1.1, our novel complex dimen-
sionality reduction technique, which instead guarantees
linearity on x and can therefore be applied to compute
weighted distances (see Corollary 4.4), has a similar bound-
edness requirement. Indeed, if k = Θ((∆/ε)2) and
maxx,w(∥x∥22 ∥w∥

2
4)/ ∥x∥

2
w ≤ ∆, one obtains a ε multi-

plicative error guarantee. The dependence on the 2-norm
instead of the 4-norm of x slightly weakens the results. In-
deed, we note that ∥x∥22 ≥ ∥x∥24 (Lemma 2.2), and therefore
our multiplicative error guarantee is uniformly worse than
the non-linear method given by Equation 1. On one end of
the spectrum, w has a single non-zero entry, and k = Θ(∆2)
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has to be Θ(maxx ∥x∥42 /mini |xi|4) to guarantee an ε-
approximation. At the other end of the spectrum, w is near-
uniform, and k = Θ(∆2) has to be Θ(maxw ∥w∥44) = Θ(d)
to guarantee an ε-approximation. Nonetheless, for sparse
weights such that the weighted norm is nonzero, the method
yields a valid dimensionality reduction technique.

We observe that in the case where the weights w are close
to 1 (i.e., a small re-weighting of all the dimensions), the
results of Theorem 1.1 yield no dimensionality reduction.
We address this particular case in the following section.

4.4. Improved results for near-uniform vectors

We now deal with the case where the entries of both the x’s
and w’s are near-uniform.

A uniform vector is a vector where all entries are the
same. A near-uniform vector is a relaxation of this con-
dition, where splitting the vector into contiguous parts re-
sults in sub-vectors with roughly the same norm. More
formally, let 1 ≤ L ≤ d, and let d1, . . . , dL such that∑
ℓ dl = d. Let then x(ℓ) ∈ Rdℓ , ℓ = 1, . . . , L be such that

x = (x(1)|| . . . ∥x(L)), with ∥ denoting concatenation. The
same holds for w. We suppose that

∥∥x(ℓ)∥∥2
2
≤ c ∥x∥22 /L

and
∥∥w(ℓ)

∥∥4
4
≤ c ∥w∥44 /L, which holds, e.g., if all the en-

tries are one within a factor c from any other one.

We will apply the dimensionality reduction to each of the
sliced vectors individually, and then combine the estimates
to obtain the final estimate for the weighted norm. We then
have that our reduced vector is stored as ḡ(x) = (g(ℓ)(x(ℓ)) :
ℓ = 1, . . . , L), with each g(ℓ) a function g, as in Section
4, defined with output dimension k and pairwise indepen-
dent matrices A(ℓ). Each of such L matrices is a com-
plex k × dℓ random matrix, where each entry is an inde-
pendently and identically distributed random variable over
{+1,−1,+i,−i}. Therefore, we have that ḡ(x) can be
stored with k · L complex numbers, i.e., ḡ(x) ∈ Ck·L. We
observe that ḡ(x) consists of a matrix-vector multiplication
with a sparse block matrix A, made of ℓ submatrices of
size k × d/ℓ and where each submatrix is generated as the
complex matrix described in the previous sections.

Let then ρ̄(ḡ(x), w) =
∑L
ℓ=1 ρ(g

(ℓ)(x(ℓ)), w(ℓ)), with ρ
defined as in Section 4. We have that it decomposes as

ρ̄(ḡ(x), w) =

L∑
ℓ=1

ρ(g(ℓ)(x(ℓ)), w(ℓ))

=

L∑
ℓ=1

k∑
i=1

∑
j1,j2,j3∈I3,dℓ

Re
(
A

(ℓ)
i,j1

A
(ℓ)
i,j2

(A(ℓ))2i,j3

) x(ℓ)j1 x(ℓ)j2 (w
(ℓ)
j3

)2

k

= H +
∑
ℓ

∥xl∥2w = H + ∥x∥2w .

We can then factorize H , which includes a sum over I3,d

into three sums of Rademacher chaoses H1, H2 and H3, as
done in Section 4. Here, the main difference is that the sum
that composes H1 is over k · L independent chaoses H1,ℓ,i.
These are not all identically distributed, but rather divided
into L blocks of k identically distributed chaoses each. The
same holds for H2 and H3.

In particular, we obtain that for chaoses in the ℓ-th
block, they satisfy W (H1,ℓ,i) ≤ ∥xℓ∥22 ∥wℓ∥

2
4 /k ≤

c ∥w∥24 ∥x∥
2
2 /(kL

3/2).

Then, by following a derivation akin to the one in the previ-
ous section, which is reported in the appendix for the sake
of brevity, we obtain the following result.

Lemma 4.5. For any given x,w ∈ Rd, we have

Pr
[
|ρ̄(ḡ(x), w)− ∥x∥2w | > t

]
≤ max


8 exp

(
−kc1 L3

(∥w∥24∥x∥
2
2)

2 t
2

)
8 exp

(
−
√
kc2

L
3/4

(∥w∥24∥x∥
2
2)

1/2

√
t
)

with c1 and c2 appropriate constants.

In turn, setting k and L carefully, we obtain a result akin to
Theorem 1.1.

Theorem 4.6. Let ε, δ > 0. Let c be a suitable universal
constant. Let L and k be positive integers such that k ≥
cmax

{
∆2 ln(8/δ)
L2ε2 , ∆ ln(8/δ)2

L3/2ε

}
. Then there exists a linear

function g(x) : Rd → Ck·L and an estimator ρ(g(x), w) :
Ck·L × Rd → R such that for any given x,w ∈ Rd, with
probability at least 1− δ,∣∣ρ(g(x), w)− ∥x∥2w

∣∣ < ε ∥x∥22 ∥w∥
2
4 /∆.

In particular, if ∥x∥22 ∥w∥
2
4 / ∥x∥

2
w ≤ ∆, we get, with prob-

ability at least 1− δ,

(1− ε) ∥x∥2w < ρ(g(x), w) < (1 + ε) ∥x∥2w .

We remark that, when the partition d1, . . . , dL is fixed for
all vectors x ∈ X , the function ḡ is still linear, the dimen-
sionality reduction maintains pairwise distances in a set of
vectors X .

4.5. Discussion of results for near-uniform vectors

In the case of near-uniform vectors, the results of Theo-
rem 4.6 provide a significant improvement over the results
of Theorem 1.1. Indeed, the balanced distribution across the
entries of the vectors allows for more efficient dimensional-
ity reduction via independent projections on the partitioned
components of the vectors.

In particular, the output dimension k · L is decreasing in
L. Therefore, if the vectors x and w are near-uniform for

8
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large values of L, it is beneficial to set k to be as small as
possible, i.e., setting k = 1, and

L ≥ cmax
{
(∆/ε) ln (8/δ)

1/2
, (∆/ε)

2/3
ln (8/δ)

4/3
}
.

In this case, the dependency of the output dimension on
∆ is lowered from up to Θ(∆2) of the original technique,
as discussed in Section 4.3, to only Θ(∆). This means
that to obtain a multiplicative ε-approximation to ∥x∥2w, the
dimension k · L = Θ(∆) of the reduced vectors has to be
only Θ(maxw ∥w∥24) = Θ(d1/2).

However, the technique to partition the vectors into L
smaller independent vectors guarantees a reduction in the
dimensionality of the reduced vector only if the input vec-
tors are guaranteed to be near-uniform. This is indeed a
reasonable assumption on the weight vectors w, as one can
expect to rescale the importance of each dimension just by
a constant factor. On the other hand, to guarantee the near-
uniformity condition on the input vectors x’s, one must have
some prior knowledge on the data-generating distribution.
We observe that, by bounding the maximum entry of the
input and weight vectors, a random permutation of the di-
mension can provide a near-uniform distribution with high
probability. Each entry is, e.g., uniformly distributed, one
can get probabilistic guarantees via Bernstein’s inequality.

Finally, we observe that the sparse block structure of the
linear map allows the use of hardware accelerators for matrix
multiplication (e.g., Google TPU, Nvidia TC) for further
speeding up the computation. We leave the development of
improvements to the dimensionality of the reduced vectors
via partitioning strategies under weaker guarantees on the
x’s to future work.

4.6. Experimental evaluation

In Appendix B, we report the results of a proof-of-concept
experimental evaluation of our techniques. In particular,
the experiments highlight the significant reduction of the
variance of the estimator when using the sparse block ma-
trices. Moreover, the experimental results showcase the
applicability of the method on sparse vectors, as discussed
in Section 4.3, as well as the poor quality of the estimate
for near-uniform vectors for the method described in The-
orem 1.2, suggesting that the probabilistic analysis of the
method is tight. Finally, from the experiments, we indeed
see a gap in the quality of the estimate between the lin-
ear and nonlinear method by Kaban (2015), as argued in
Section 4.3. Interestingly, the sparse map with the decom-
position into L sub-vectors almost closes the gap with the
non-linear method, as argued in Section 4.5.

5. Discussion and Conclusions
In this paper, we provided the first dimensionality reduction
techniques that are able to cope with dynamically-weighted
Euclidean distances, as well as novel concentration inequal-
ities for sums of independent Rademacher chaoses.

An interesting open question for future work is to provide
a fast method for dimensionality reductions in the com-
plex vector space similar to the Fast JL transform (Ailon &
Chazelle, 2009). We furthermore conjecture that the com-
plex map that we provide here admits a generalization to
the estimation of arbitrary (weighted) Lp norms. Indeed,
let h =

∑
j1,...jp

∏p
k=1Ajkxjk . If A is a uniform on the

p-th roots of 1, we have that E[
∏p
k=1Ajk ] = 1 if all the

jk’s are the same, and 0 otherwise. Therefore, E[h] = ∥x∥pp.
However, the variance of the estimator grows with p, and
novel approaches should be developed in order to reduce
this growth.

We envision that an interesting research direction is the
application of our techniques in downstream applications.
For example, in machine learning, the weighted distance,
phrased as the Mahalanobis distance with diagonal covari-
ance matrix, is used as a time-efficient alternative to dy-
namic tree warping (Prekopcsák & Lemire, 2010), and as
a substitute for the Euclidean distance in RBF-like ker-
nels (Abe, 2005; Kamada & Abe, 2006). These methods
could then benefit from our techniques. We believe that
our method might be of interest also in the weighted least
squares problem (Golub & Van Loan, 2013, Chapter 5),
which provides robust estimators in the presence of uneven
reliability in the measurement (Fox, 2015). Here, given
a data matrix X ∈ Rn×d, an observation vector y ∈ Rn,
and a weight vector w ∈ Rn (with wi ≥ 0 for all i), the
goal is to find θ ∈ Rd that minimizes the weighted residual
norm ∥Xθ − y∥2w =

∑n
i=1 w

2
i (X

⊤
i θ − yi)

2. JL maps have
been used to reduce the complexity of ordinary least squares
(Yang et al., 2015), and we envision that our technique could
be used in a similar fashion for weighted least squares under
dynamic weights. Finally, we believe that our constructions
can be of interest for privacy-preserving similarity search,
as it might allow the release of datasets that allow users to
detect if there are near points within the desired weighted
norms without releasing the details of the vector, similar to
what done in Blocki et al. (2012) for JL.
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Appendix

A. Missing proofs
A.1. Section 2

Lemma 2.2. For any x ∈ Rd and any 0 < p < q < +∞, we have ∥x∥q ≤ ∥x∥p

Proof. If x = 0 the claim holds trivially. Else, let yi = |xi|/ ∥x∥q ≤ 1. Then we have

∥x∥pp =
d∑
i=1

|xi|p =
d∑
i=1

|yi|p ∥x∥pq

≥
d∑
i=1

|yi|q ∥x∥pq = ∥x∥pq
d∑
i=1

|xi|q/ ∥x∥qq = ∥x∥pq

Lemma 2.3. For any p, q ≥ 1 and any x, y ∈ Rd, we have
∑d
i=1 |xi|p|yi|q ≤ ∥x∥p2 ∥y∥

q
2

Proof. By applying Lemmas 2.1 and 2.2, we get:

d∑
i=1

xpi y
q
i ≤

(
d∑
i=1

|xi|2p
)1/2( d∑

i=1

|yi|2q
)1/2

≤ ∥x∥p2p ∥y∥
q
2q ≤ ∥x∥p2 ∥y∥

q
2 .

A.2. Section 3

Lemma 3.1. Let S =
∑
σ∈Gγ

Sσ be a Rademacher chaos of order γ ≥ 2. Then, ∥S∥q ≤ (q − 1)γ/2
√
γ!W (S)

Proof. Let S
σ
=W (Sσ)2 = ∥Sσ∥22 ∀σ and S =W (S)2 =

∑
σ∈Gγ

S
σ

We have that:

0 ≤
∑
σ∈Gγ

∑
ρ∈Gγ

(√
S
σ −

√
S
ρ
)2

=
∑
σ∈Gγ

∑
ρ∈Gγ

(
S
σ
+ S

ρ − 2
√
S
σ
S
ρ
)
= 2γ!

∑
σ∈Gγ

S
σ − 2

∑
σ∈Gγ

∑
ρ∈Gγ

√
S
σ
S
ρ ≤

≤ 2γ!
∑
σ∈Gγ

S
σ − 2

∑
σ∈Gγ

√
S
σ

2

This implies that
√
γ!S ≥∑σ∈Gγ

√
S
σ

and thus
√
γ!W (S) ≥∑σ∈Gγ

∥Sσ∥2. Then we can use the triangular inequality
and Bonami’s hypercontractive inequalities to prove the lemma:

∥S∥q =

∥∥∥∥∥∥
∑
σ∈Gγ

Sσ

∥∥∥∥∥∥
q

≤
∑
σ∈Gγ

∥Sσ∥q ≤ (q − 1)γ/2
∑
σ∈Gγ

∥Sσ∥2 ≤ (q − 1)γ/2
√
γ!W (S)

Lemma 3.2. Let S be a Rademacher chaos of order γ ≥ 2. Then for any γ′ ≥ γ and t > 0, we have:

Pr [|S| > t] ≤ e2 exp
(
−(e

√
γ!W (S))−

2/γ′
t
2/γ′
)
.
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Proof. When t ≤ e
√
γ!W (S)2γ′/2, the lemma trivially follows since e2 exp

(
−(e

√
γ!W (S))−2/γ′

t2/γ
′) ≥ 1. Assume now

that t > e
√
γ!W (S)2γ′/2. We apply Markov’s inequality and lemma 3.1, obtaining

Pr [|S| > t] ≤ E [|S|q] t−q = ∥S∥qq t−q ≤
(
qγ/2

√
γ!W (S)

t

)q
≤
(
qγ′/2

√
γ!W (S)

t

)q
, ∀q ≥ 2.

Then, by setting q = t2/γ
′
(e
√
γ!W (S)))−2/γ′ ≥ 2, we have Pr [|S| > t] ≤ exp

(
−(e

√
γ!W (S))−2/γ′

t2/γ
′)
, from which the

Lemma follows.

Lemma 3.3. Let S be a Rademacher chaos of order γ ≥ 2. Let α ≤ 2/γ and ψα = exp(xα)− 1. Then

∥S∥ψα
≤ e(e2 + 1)

1/α
√
γ!W (S).

Proof. From the definition of Orlicz norm we have ∥S∥ψα
= inf {η > 0 : E [ψα(|S|/η)] ≤ 1} . Then, applying Lemma 3.2

with γ′ = 2/α ≥ γ, we get

E [ψ(|S|/η)] =
∫ ∞

0

Pr [ψ(|S|/η) > x] dx =

∫ ∞

0

Pr
[
|S| > η(ln(x+ 1)

1/α)
]
dx

≤ e2
∫ ∞

0

exp

(
−
(

1

e
√
γ!W (S)

)α
ηα ln(x+ 1)

)
dx = e2

∫ ∞

0

(x+ 1)
−
(

η

e
√

γ!W (S)

)α

dx

=
e2(

η
e
√
γ!W (S)

)α
− 1

.

Then, if η ≥ e(e2 + 1)1/α
√
γ!W (S), we have that E [ψ(|S|/η)] ≤ 1. Therefore, ∥S∥ψα

≤ e(e2 + 1)1/α
√
γ!W (S).

Corollary 3.4. Let {Si}i=1,...,k be a sequence of k independent and identically distributed Rademacher chaoses of order γ′.
Then ∀γ ≥ 3 such that γ′ ≤ γ, there exist constants c1(γ), c2(γ) depending only on γ such that

Pr

[∣∣∣∣∣
k∑
i=1

Si

∣∣∣∣∣ > t

]
≤


2 exp

(
− 1

4c1(γ)2W (S)2
t2

k

)
if t < 2

(
c1(γ)

γ

c2(γ)

) 1
γ−1

W (S)k
γ

2γ−2

2 exp

(
−
(

t
2c2(γ)W (S)

)2/γ
)

otherwise

Proof. Let ∆ = (c1/c2)
2/γ−1k1/γ−1 and let ∆′ = 2

(
cγ1
c2

) 1
γ−1

W (S)k
γ

2γ−2 . From Theorem 1.2 we have

Pr

[∣∣∣∣∣
k∑
i=1

Si

∣∣∣∣∣ > W (S)
(
c1
√
k
√
u+ c2u

γ/2
)]

≤ 2e−u.

For u < ∆, we have that c1
√
k
√
u+ c2u

γ/2 ≤ 2c1
√
k
√
u. Then,

Pr

[∣∣∣∣∣
k∑
i=1

Si

∣∣∣∣∣ > 2c1W (S)
√
k
√
u

]
≤ Pr

[∣∣∣∣∣
k∑
i=1

Si

∣∣∣∣∣ > W (S)
(
c1
√
k
√
u+ c2u

γ/2
)]

≤ 2e−u.

By setting u = t2/
(
4c21W (S)2k

)
, we have u < ∆ when t < ∆′. Then the above inequality gives the first part of the

inequality.

For u ≥ ∆, we have that c1
√
k
√
u+ c2u

γ/2 ≤ 2c2u
γ/2. Then,

Pr

[∣∣∣∣∣
k∑
i=1

Si

∣∣∣∣∣ > 2c2W (S)u
γ/2

]
≤ Pr

[∣∣∣∣∣
k∑
i=1

Si

∣∣∣∣∣ > W (S)
(
c1
√
k
√
u+ c2u

γ/2
)]

≤ 2e−u.

By setting u = (t/(2c2W (S)))
2/γ , we have u ≥ ∆ when t ≥ ∆′. Then the above inequality gives the second part of the

inequality.
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A.3. Section 4.2

We bound the tail probabilities of the individual terms Hℓ by expanding them into sums of Rademacher chaoses and using
Theorem 1.2. In what follows, let F (t) = c1

√
k
√
t+ c2t

2, with c1 and c2 the constants of Theorem 1.2 for γ = 4.

Lemma A.1. We have that Pr
[
|H1| > ∥w∥24 ∥x∥

2
2 F (t)

]
≤ 4e−t.

Proof. By setting τj1,j2,j3 = xj1xj2w
2
j3

, we rewrite H1 as

H1 =

k∑
i=1

∑
(j1,j2,j3)∈I′3,d

Re
(
Ai,j1Ai,j2A

2
i,j3

)
τj1,j2,j3

=

k∑
i=1

∑
(j1,j2,j3)∈I′3,d

(si,j1si,j2ri,j1ri,j3 + si,j1si,j2ri,j2ri,j3)τj1,j2,j3/2

=

k∑
i=1

∑
(j1,j2,j3)∈I′3,d

si,j1si,j2ri,j1ri,j3τj1,j2,j3/2 +

k∑
i=1

∑
(j1,j2,j3)∈I′3,d

si,j1si,j2ri,j2ri,j3τj1,j2,j3/2

=

k∑
i=1

H1,1,i/2 +

k∑
i=1

H1,2,i/2 = H1,1/2 +H1,2/2

Since H1,1 and H1,2 have the same distribution, we focus on the first one. There are three indexes but four independent
random variables in each term of the sum in H1,1, we perform an index transformation to get a chaos of order 4. Let
τ̂ : I ′4,2d → R be

τ̂j1,j2,j′1,j3 =

{
τj1,j2,j3−d if j′1 = j1 + d, j1, j2 ≤ d, j3 > d, j3 ̸= j2 + d

0 otherwise.

Let also Xi,: = (si,1, . . . , si,d, ri,1, . . . , ri,d). Note that the components of X are independent. Then, we can rewrite H1,1

as

H1,1 =

k∑
i=1

∑
(j1,j2,j′1,j3)∈I′4,2d

Xi,j1Xi,j2Xi,j′1
Xi,j3 τ̂j1,j2,j′1,j3 .

We now upper bound W (H1,1,i)
2 for any i ∈ {1, . . . k}; standard arguments give

W (H1,1,i)
2 =

∑
(j1,j2,j′1,j3)∈I′4,2d

τ̂2j1,j2,j′1,j3 =
∑

(j1,j2,j3)∈I′3,d

(
xj1xj2w

2
j3

)2
=

∑
(j1,j2,j3)∈I′3,d

x2j1x
2
j2w

4
j3 ≤ ∥w∥44 ∥x∥

4
2 .

The final inequality holds as: ∑
(j1,j2,j3)∈I′3,d

x2j1x
2
j2w

4
j3 ≤

∑
(j1,j2,j3)∈I3,d

|x2j1x2j2w4
j3 |

≤

 ∑
j1∈I1,d

|xj1 |2
 ∑

j2∈I1,d

|xj2 |2
 ∑

j3∈I1,d

|wj3 |4


= ∥w∥44 ∥x∥
4
2 .

We can then apply Theorem 1.2 with γ = 4, from which follows that

Pr
[
|H1,1| > ∥w∥24 ∥x∥

2
2 F (t)

]
≤ Pr [|H1,1| > W (H1,1,i)F (t)] ≤ 2e−t.
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Since a similar bound holds for H2,2, and since 2H1 = H1,1 +H1,2, an union bound gives

Pr
[
|H1| > ∥w∥24 ∥x∥

2
2 F (t)

]
= Pr

[
|H1,1 +H1,2| > 2 ∥w∥24 ∥x∥

2
2 F (t)

]
≤ 2Pr

[
|H1,1| > ∥w∥24 ∥x∥

2
2 F (t)

]
≤ 4e−t

Lemma A.2. We have that Pr
[
|H2| > 2 ∥w∥24 ∥x∥

2
2 F (t)

]
≤ 2e−t.

Proof. By setting τj1,j2 = xj1xj2w
2
j2

, we rewrite H2 as

H2 = 2

k∑
i=1

∑
(j1,j2)∈I′2,d

Re
(
Ai,j1A

3
i,j2

)
τj1,j2

= 2

k∑
i=1

∑
(j1,j2)∈I′2,d

sj1sj2(1 + rj1rj2)τj1,j2/2

=

k∑
i=1

∑
(j1,j2)∈I′2,d

sj1sj2τj1,j2 +

k∑
i=1

∑
(j1,j2)∈I′2,d

s′j1s
′
j2τj1,j2

where s′j = sjrj and has the same distribution of a Rademacher random variable.

Let τ̂ : I ′2,2d → R be

τ̂j1,j2 =


τj1,j2 if j1 ≤ d, j2 ≤ d

τj1−d,j2−d if j1 > d, j2 > d

0 otherwise.

Let also Xi,: = (si,1, . . . , si,d, s
′
i,1, . . . , s

′
i,d, ). Note that the components of X are independent.

Then, we can rewrite H2 as

H2 =

k∑
i=1

∑
(j1,j2)∈I′2,2d

Xi,j1Xi,j2 τ̂j1,j2 =

k∑
i=1

H2,i.

Then, we get that:

W (H2,i)
2 =

∑
(j1,j2)∈I′2,2d

τ̂2j1,j2 = 2
∑

(j1,j2)∈I′2,d

(
xj1xj2w

2
j2

)2
= 2

∑
(j1,j2)∈I′2,d

x2j1x
2
j2w

4
j2

≤ 4 ∥w∥44 ∥x∥
4
2 ,

Since H2 is a sum of independent Rademacher chaoses of order 2 ≤ 4, from Theorem 1.2 we have that

Pr
[
|H2| > 2 ∥w∥24 ∥x∥

2
2 F (t)

]
≤ Pr [|H2| > W (H2,i)F (t)] ≤ 2e−t,

and the claim follows.

Lemma A.3. We have that Pr
[
|H3| > ∥w∥24 ∥x∥

2
2 F (t)

]
≤ 2e−t.
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Proof. By setting τj1,j2 = x2j1w
2
j2

, we rewrite H3 as

H3 =

k∑
i=1

∑
(j1,j2)∈I′2,d

Re
(
A2
i,j1A

2
i,j2

)
τj1,j2

=

k∑
i=1

∑
(j1,j2)∈I′2,d

rj1rj2τj1,j2 =

k∑
i=1

H3,i

Then we get:

W (H3,i)
2 =

∑
(j1,j2)∈I′2,d

x4j1w
4
j2

≤ ∥w∥44 ∥x∥
4
2 .

Since H3 is a sum of independent Rademacher chaoses of order 2 ≤ 4, from Theorem 1.2 we have that

Pr
[
|H3| > ∥w∥24 ∥x∥

2
2 F (t)

]
≤ Pr [|H3| > W (H3,i)F (t)] ≤ 2e−t,

and the claim follows.

We then provide a bound on the quantity H = H1 +H2 +H3.

Lemma 4.2. We have that Pr
[
|H| > 4 ∥w∥24 ∥x∥

2
2 F (t)

]
≤ 8e−t.

Proof.

Pr
[
|H| > 4 ∥w∥24 ∥x∥

2
2 F (t)

]
= Pr

[
|H1 +H2 +H3| > 4 ∥w∥24 ∥x∥

2
2 F (t)

]
≤

≤ Pr
[
|H1| > ∥w∥24 ∥x∥

2
2 F (t)

]
+ Pr

[
|H2| > 2 ∥w∥24 ∥x∥

2
2 F (t)

]
+ Pr

[
|H3| > ∥w∥24 ∥x∥

2
2 F (t)

]
≤ 4e−t + 2e−t + 2e−t = 8e−t.

Lemma 4.3. For any given x,w ∈ Rd, we have

Pr
[
|ρ(g(x), w)− ∥x∥2w | > t

]

≤


8 exp

(
−k 1

(c18∥w∥2
4∥x∥

2
2)

2 t2
)

if (†)

8 exp

(
−
√
k 1√

c28∥w∥2
4∥x∥

2
2

√
t

)
otherwise

with (†) the event: t < c
4/3
1 c

−1/3
2 8 ∥w∥24 ∥x∥

2
2 k

−1/3.

Proof. We have kρ(g(x), w)− k ∥x∥2w = H1 +H2 +H3 = H, which in turn implies that

Pr
[
|ρ(g(x), w)− ∥x∥2w | > t

]
= Pr [|H| > kt] = Pr [|H| > u] .

From Lemma 4.2, we have that

Pr
[
|H| > 4 ∥w∥24 ∥x∥

2
2

(
c1
√
k
√
v + c2v

2
)]

≤ 8e−v.

16



Dimensionality Reduction on Complex Spaces with Dynamic Weights

Then, for v < (c1/c2)
2/3k1/3, we have that 2c1

√
k
√
v ≥ c1

√
k
√
v+c2v

2 and therefore Pr
[
|H| > 8 ∥w∥24 ∥x∥

2
2 c1

√
k
√
v
]
≤

8e−v . Similarly, for v ≥ (c1/c2)
2/3k1/3, we have that Pr

[
|H| > 8 ∥w∥24 ∥x∥

2
2 c2v

2
]
≤ 8e−v .

Then, setting u = 8 ∥w∥24 ∥x∥
2
2 c1

√
k
√
v for the first bound and u = 8 ∥w∥24 ∥x∥

2
2 c2v

2 for the second one yields

Pr [|H| > u] ≤


8 exp

(
− 1

(c18∥w∥2
4∥x∥

2
2)

2
u2

k

)
if u < c

4/3
1 c

−1/3
2 8 ∥w∥24 ∥x∥

2
2 k

2/3

8 exp

(
− 1√

c28∥w∥2
4∥x∥

2
2

√
u

)
otherwise.

Finally, making the substitution u = kt, we obtain the claim.

Theorem 1.1. Let ε, δ > 0. Let ∆ be a suitable parameter and k ≥ Ω
(
max

{
∆2 ln(8/δ)

ε2 , ∆ ln(8/δ)2

ε

})
. Then there exists

a linear function g(x) : Rd → Ck and an estimator ρ(g(x), w) : Ck × Rd → R such that for any given x,w ∈ Rd, with
probability at least 1− δ,

|ρ(g(x), w)− ∥x∥2w | < ε ∥x∥22 ∥w∥
2
4 /∆.

In particular, if ∥x∥22 ∥w∥
2
4 / ∥x∥

2
w ≤ ∆, we get, with probability at least 1− δ,

|ρ(g(x), w)− ∥x∥2w | < ε ∥x∥2w .

Proof. Assume that ε ln(8/δ)/∆ < c21c
−1
2 8, and set k = c218

2∆2ε−2 ln(8/δ), and we get:

t = ε ∥w∥24 ∥x∥
2
2 /∆ < c

4/3
1 c

−1/3
2 8 ∥w∥24 ∥x∥

2
2 k

−1/3,

We are thus in the Gaussian tail case of the bound described by Lemma 4.3. Then we have

Pr
[
|ρ(g(x), w)− ∥x∥2w | > t

]
≤ 8 exp

(
− kt2

(c18 ∥w∥24 ∥x∥
2
2)

2

)

≤ 8 exp

(
−c2182ε−2 ln

(
8

δ

)
ε2

c218
2

)
= δ.

Let now assume ε ln(8/δ)/∆ ≥ c21c
−1
2 8, and fix k = c28∆

ln(8/δ)2

ε . In this case,

t = ε ∥x∥22 ∥w∥
2
4 /∆ ≥ c

4/3
1 c

−1/3
2 8 ∥w∥24 ∥x∥

2
2 k

−1/3,

and we are in the long tail part of the bound described by Lemma 4.3. Then,

Pr
[
|ρ(g(x), w)− ∥x∥2w | > t

]
≤ 8 exp

−
√
kt√

c28 ∥w∥24 ∥x∥
2
2


≤ 8 exp

(
−c2182ε−2 ln

(
8

δ

)
ε2

c218
2

)
= δ.

As the failure probability decreases by k, taking k ≥ max
{
c218

2 ∆2 ln(8/δ)
ε2 , c28

∆ ln(8/δ)2

ε

}
completes the proof.
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A.4. Section 4.4

We have that ρ̄(ḡ(x), w) =
∑L
ℓ=1 ρ(g

(ℓ)(x(ℓ)), w(ℓ)) decomposes as

ρ̄(ḡ(x), w) =

L∑
ℓ=1

ρ(g(ℓ)(x(ℓ)), w(ℓ))

=

L∑
ℓ=1

k∑
i=1

∑
j1,j2,j3∈I3,dℓ

Re
(
A

(ℓ)
i,j1
A

(ℓ)
i,j2

(A
(ℓ)
i,j3

)2
) x(ℓ)j1 x(ℓ)j2 (w(ℓ)

j3
)2

k

=

L∑
ℓ=1

k∑
i=1

∑
j1,j2,j3∈I′3,d

Re
(
A

(ℓ)
i,j1
A

(ℓ)
i,j2

(A
(ℓ)
i,j3

)2
)
x
(ℓ)
j1
x
(ℓ)
j2

(w
(ℓ)
j3

)2/k

+ 2

L∑
ℓ=1

k∑
i=1

∑
j1,j2∈I′2,d

Re
(
A

(ℓ)
i,j1

(A
(ℓ)
i,j2

)3
)
x
(ℓ)
j1
x
(ℓ)
j2

(w
(ℓ)
j2

)2/k

+

L∑
ℓ=1

k∑
i=1

∑
j1,j2∈I′2,d

Re
(
(A

(ℓ)
i,j1

)2(A
(ℓ)
i,j2

)2
)
(x

(ℓ)
j1

)2(w
(ℓ)
j2

)2/k

+

L∑
ℓ=1

k∑
i=1

d∑
j=1

w2
jx

2
j

=

L∑
ℓ=1

k∑
i=1

H1,ℓ,i +

L∑
ℓ=1

k∑
i=1

H2,ℓ,i +

L∑
ℓ=1

k∑
i=1

H3,ℓ,i + ∥x∥2w

= H1 +H2 +H3 + ∥x∥2w .

For ease of exposition, we only deal with the decomposition of H3, as the discussion for H1 and H2 is similar. We first
bound some quantities related to the Orliz norms of the Rademacher chaoses H3,ℓ,i.

Lemma A.4. Let b = (∥H3,ℓ,i∥ψα
: ℓ = 1, . . . , L; i = 1, . . . , k). We have that, for some constant c,

∥b∥2 ≤ c ∥w∥24 ∥x∥
2
2 /(

√
kL)

and that
∥b∥∞ ≤ c ∥w∥24 ∥x∥

2
2 /(kL

3/2).

Proof. We have that

∥b∥22 =

L∑
ℓ=1

k∑
i=1

∥H3,ℓ,j∥2ψα
≤ 24e2(e+ 1)2/α

L∑
ℓ=1

k∑
i=1

W (H3,ℓ,j)
2

≤ 24e2(e+ 1)2/αc

L∑
ℓ=1

k∑
i=1

∥xℓ∥42 ∥wℓ∥
4
4 k

−2 ≤ c
∥w∥44 ∥x∥

4
2

k2L3
kL

Where we used Lemma 3.3 with the fact that x and w are near-uniform.

Similarly,

∥b∥2∞ = max
ℓ=1,...,L

max
i=1,...,k

∥H3,ℓ,j∥2ψα
≤ c max

ℓ=1,...,L
max

i=1,...,k
∥xℓ∥42 ∥wℓ∥

4
4 k

−2 ≤ c
∥w∥44 ∥x∥

4
2

k2L3
.

We then have the following result.
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Lemma A.5. We have Pr
[
|H3| ≥ ∥w∥24 ∥x∥

2
2 F̄ (t)

]
≤ 2e−t, with F̄ (t) = c1√

kL

√
t + c2

kL3/2
t2 and c1 and c2 appropriate

constants.

Proof. Recall that H1 =
∑L
ℓ=1

∑k
i=1H3,ℓ,i, with each summand a mean-zero Rademacher chaos of order at most 4. We

then have (Kuchibhotla & Chakrabortty, 2022) for suitable constants c1 and c2 that

Pr
[
|H3| ≥ c1 ∥b∥2

√
t+ c2 ∥b∥∞ t2

]
≤ 2e−t.

Plugging in the result of the previous lemma, we have:

2e−t ≥ Pr
[
|H3| ≥ c1 ∥b∥2

√
t+ c2 ∥b∥∞ t2

]
≥ Pr

[
|H3| ≥ c1

c ∥w∥24 ∥x∥
2
2√

kL

√
t+ c2

c ∥w∥24 ∥x∥
2
2

kL3/2
t2

]

Choosing c1 = c1c and c2 = c2c gets the claim.

Similar results hold for H1 and H2. We then have the following.

Lemma A.6. We have that Pr
[
|H| ≥ 4 ∥w∥24 ∥x∥

2
2 F̄ (t)

]
≤ 8e−t.

Proof. We use union bound over H1, H2, and H3, similarly to what is done in Lemma 4.2.

We can then prove the lemma stated in the main paper.

Lemma 4.5. For any given x,w ∈ Rd, we have

Pr
[
|ρ̄(ḡ(x), w)− ∥x∥2w | > t

]
≤ max


8 exp

(
−kc1 L2

(∥w∥2
4∥x∥

2
2)

2 t2
)

8 exp
(
−
√
kc2

L
3/4

(∥w∥2
4∥x∥

2
2)

1/2

√
t
)

with c1 and c2 appropriate constants (different from the ones in Lemma A.5).

Proof. We have
P = Pr

[
|ρ̄(ḡ(x), w)− ∥x∥2w | > t

]
= Pr [|H| > t] .

From Lemma A.6, we have that

Pr

[
|H| > 4c1

∥w∥24 ∥x∥
2
2

L
√
k

√
v + 4c2

∥w∥24 ∥x∥
2
2

L3/2k
v2

]
≤ 8e−v.

Then, for v such that the term with
√
v dominates, we have that P ≤ Pr

[
|H| > 8c1

∥w∥24 ∥x∥
2
2

L
√
k

√
v

]
≤ 8e−v .

Otherwise, we have P ≤ Pr

[
|H| > 8c2

∥w∥24 ∥x∥
2
2

L3/2k
v2

]
≤ 8e−v .

Then, setting v accordingly yields the claim.

Lemma 4.6. Let ε, δ > 0. Let c be a suitable universal constant. Let L and k be positive integers such that k ≥
cmax

{
∆2 ln(8/δ)
L2ε2 , ∆ ln(8/δ)2

L3/2ε

}
. Then there exists a linear function g(x) : Rd → Ck·L and an estimator ρ(g(x), w) :

Ck·L × Rd → R such that for any given x,w ∈ Rd, with probability at least 1− δ,∣∣ρ(g(x), w)− ∥x∥2w
∣∣ < ε ∥x∥22 ∥w∥

2
4 /∆.

In particular, if ∥x∥22 ∥w∥
2
4 / ∥x∥

2
w ≤ ∆, we get, with probability at least 1− δ,

(1− ε) ∥x∥2w < ρ(g(x), w) < (1 + ε) ∥x∥2w .
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Proof. Let t = ε ∥w∥24 ∥x∥
2
2 /∆.

Suppose we are in the Gaussian tail case of the bound. Then we have, taking k = c−1
1 ∆2ε−2 ln(8/δ)L−2,

Pr
[
|ρ(g(x), w)− ∥x∥2w | > t

]
≤ 8 exp

(
−kc1

t2 · L2

(∥w∥24 ∥x∥
2
2)

2

)
= δ.

Let now assume we are in the long tail part of the bound. Then, taking k = c−2
2 ∆ε−1 ln(8/δ)2L−3/2,

Pr
[
|ρ(g(x), w)− ∥x∥2w | > t

]
≤ 8 exp

(
−c2

√
k

√
tL3/4

(∥w∥24 ∥x∥
2
2)

1/2

)
= δ.

As the failure probability decreases by k, by taking k ≥ cmax
{

∆2 ln(8/δ)
L2ε2 , ∆ ln(8/δ)2

L3/2ε

}
, with an appropriate constant c,

completes the proof.

B. Experiments
We perform here a proof-of-concept experimental evaluation of our techniques. We generate a random vector x ∈ Rd by
selecting uniformly at random each entry in [−1, 1] and then normalizing the resulting vector such that ∥x∥2 = 1. The
random weight vector w ∈ Rd is also created by selecting uniformly at random each entry in [0.1, 1.2]. We set d = 2 · 104.
Finally, we generate 1000 random matrices A and plot the empirical distribution of the estimator ρ(g(x), w).

From the experiments, we see a gap in the quality of the estimate between the linear (Figure 2) and nonlinear (Figure 1)
method by Kaban (2015), as argued in Section 4.3. Moreover, the experimental results in Figure 5 showcase the applicability
of the method on sparse vectors, as discussed in Section 4.3, as well as the poor quality of the estimate for near-uniform
vectors for the method described in Theorem 1.2, suggesting that the probabilistic analysis of the method is tight. Finally,
the experiments in Figures 4 and 3 highlight the significant reduction of the variance of the estimator when using the sparse
block matrices. Interestingly, the sparse map with the decomposition into L sub-vectors almost closes the gap with the
non-linear method, as argued in Section 4.5.

Our code is publicly available at https://github.com/aidaLabDEI/complex-dimensionality-reduction.
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Figure 1. Empirical distribution of the nonlinear estimator g′(x) · g′(w) based on JL described in Equation 1, over N = 103 random
matrices A. The vectors x and w are fixed throughout the experiment, and drawn from a uniform distribution on [−1, 1]d and on
[1.0, 1.2]d, respectively. The dimensionality of the vectors is d = 2 · 104. We report the results for k ∈ {102, 103, 104}. We remark that,
due to its nonlinearity, this method does not allow to compute pairwise distances.
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Figure 2. Empirical distribution of the linear estimator ρ(x,w) described in Theorem 1.1, over N = 103 complex random matrices
A. The vectors x and w are fixed throughout the experiment, and drawn from a uniform distribution on [−1, 1]d and on [1.0, 1.2]d,
respectively. The dimensionality of the vectors is d = 2 · 104. We report the results for k ∈ {102, 103, 104}. We note that the choice of x
and w is the worst-case scenario discussed in Section 4.3, providing experimental evidence for the tightness of the analysis.
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Figure 3. Empirical distribution of the linear estimator ρ̄(x,w) described in Theorem 4.6, over N = 103 complex random matrices
A. The vectors x and w are fixed throughout the experiment, and drawn from a uniform distribution on [−1, 1]d and on [1.0, 1.2]d,
respectively. The dimensionality of the vectors is d = 2 · 104. We report the results for L ∈ {102, 103, 104} and k = 1, which is the
optimal parameter choice given the almost-uniformity of the vectors x and w. The results showcase the reduction of the estimator variance
when using the vector partitioning technique, thereby closing the gap with the nonlinear method.
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ρ̄(ḡ(x), w)

0.00

0.05

0.10

0.15

0.20

0.25

k · L = 102

‖x‖2
w

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
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Figure 4. Empirical distribution of the linear estimator ρ̄(x,w) described in Theorem 4.6, over N = 103 complex random matrices
A. The vectors x and w are fixed throughout the experiment, and drawn from a uniform distribution on [−1, 1]d and on [1.0, 1.2]d,
respectively. The dimensionality of the vectors is d = 2 · 104. We report the results for L = 100 and k · L ∈ {102, 103, 104}, which
ensures the almost-uniformity condition for a wider range of vectors x and w.
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Figure 5. Empirical distribution of the linear estimator ρ(x,w) described in Theorem 1.1, over N = 103 complex random matrices A.
The vector x is sparse, with m = 102 entries drawn from a uniform distribution on [−1, 1]d and the rest set to 0. Similarly, w is sparse,
with the same entries drawn from a uniform distribution on [1.0, 1.2]d. The dimensionality is d = 2 · 104. We report the results for
k ∈ {102, 103, 104}. We note that the concentration depends on m, rather than on d, as argued in Section 4.3.
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