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Abstract

We are working towards AI planning systems001
with natural language interfaces. In this pa-002
per, we tackle the semantic parsing problem of003
learning to set the logical goals of the planning004
system based on a natural language description005
of the task. The current state of the art in se-006
mantic parsing is to use supervised learning007
with deep neural networks but this needs a lot008
of labelled data made by domain experts. To009
reduce this need, we additionally use a reward010
signal that comes from completing the AI plan-011
ning task. We formalize this as a constrained012
combinatorial contextual bandit problem. The013
context is created by using a deep neural net-014
work for feature extraction and the constrained015
combinatorial nature of the task can be used to016
increase the efficiency of learning. We show017
this result theoretically with our lower regret018
bound and then experimentally in our extension019
of the TextWorld problem.020

1 Introduction021

AI planning systems are designed to solve prob-022

lems that can be formulated as finding a series of023

actions from an initial state to a goal state. This024

is a generic problem such that these systems are025

deployed in many different applications, e.g., game026

playing agents (Perez-Liebana et al., 2019), simple027

customer support agents (Nothdurft et al., 2015),028

enterprise applications (Sohrabi, 2019), robotics029

(Thomason et al., 2015), etc. In this paper, we use030

the example of an autonomous agent/robot. Al-031

though AI planning systems are powerful, they032

need to be programmed in a logic-base language033

such as the Planning Domain Definition Language034

(PDDL) (Fox and Long, 2003). Creating this logic035

specification is non-trivial and it is a well-known036

bottleneck that prevents the further application of037

AI planning systems. Towards reducing this bur-038

den, our task in this paper is enabling the use of039

natural language for specifying the PDDL goals as040

shown in Fig. 1.041

Figure 1: The semantic parsing task consists of translat-
ing a user request into logical goals. The goals interface
into in an AI planning system that uses a world model
to create an action plan.

Our task is a specific example of semantic pars- 042

ing - the general task of processing a given text into 043

its meaning, which is represented in a logical/sym- 044

bolic form. Modern semantic parsing methods are 045

based on deep learning (Dong and Lapata, 2016) 046

which has produced great results in recent years. 047

With this success, several semantic parsing appli- 048

cations have been introduced into the literature. A 049

useful taxonomy arises from the different output 050

logic forms. This output is usually a type of pro- 051

gramming language, for example, Prolog (Dong 052

and Lapata, 2016); SQL (Zhong et al., 2017; Dong 053

and Lapata, 2018); Python (Yin and Neubig, 2017; 054

Dong and Lapata, 2018); or Lisp (Liang et al., 055

2017). Of these examples, our task is closest to 056

that of (Zhong et al., 2017) where a natural lan- 057

guage question is translated into an SQL querry 058

which then uses an existing database to produce 059

the answer. A useful analog of each part can be 060

seen in Fig. 1. Here, a natural language quest is 061

translated into a PDDL goal which then uses an 062

existing world model and AI planning system to 063

produce the optimal sequence of actions. Similarly, 064

creating the semantic parsing labels (whether SQL 065

or PDDL goal) requires domain expertise which is 066

relatively expensive to obtain. There is a cheaper 067

but less informative label that can be obtained by 068
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checking the final output – checking the final an-069

swer in the case of SQL or running the actions and070

obtaining a goal completion or reward signal for071

our task. We seek to use this reward signal as a072

way to reduce the amount of logic labels required073

for training a useful system. Although there is a074

conceptual similarity between these tasks, there are075

two important differences that we use to our advan-076

tage - the temporal structure of the output and the077

rich logical structure of the world model.078

To solve our task, we seek an approach that can079

leverage the labelled logic form (PDDL goal) when080

available but also make use of the reward label of081

the final system output which are cheaper to get in082

practice. A good starting point was used in (Zhong083

et al., 2017), where they improved a supervised084

model with a kind of one-step reinforcement learn-085

ing (RL) by using policy gradient updates. In the086

RL literature, this one-step setting is also called the087

multi-armed bandit problem setting (Sutton and088

Barto, 2018). The basic bandit problem can be aug-089

mented in many ways to describe different tasks.090

Here, we add a context which corresponds to our091

quest and then we use the logical structure of our092

output PDDL goals together with the world model093

to impose a structure which is combinatorial and094

constrained.095

The contribution of this paper is twofold: First,096

we propose the formalization of our semantic pars-097

ing task as a constrained combinatorial contextual098

bandit. Theoretically, we show that we can reduce099

the regret which means learning is guaranteed to be100

more efficient. Practically, we introduce the CCLin-101

UCB algorithm for this task. Our second contribu-102

tion, is a scalable dataset for our task. Our task is103

common in the robotics literature in many differ-104

ent forms but there has been no large scale dataset105

suitable for large deep learning models. Here, we106

extend the existing TextWorld benchmark (Côté107

et al., 2018) by providing PDDL interfaces and we108

outline how this can be used similarly to Fig. 1.109

In the following sections, we start with a back-110

ground on semantic parsing and how deep learn-111

ing is used. Next, we introduce the constrained112

combinatorial contextual bandits for our seman-113

tic parsing task. Then we introduce our extension114

of TextWorld with PDDL planning and finally we115

demonstrated the results of our method on this.116

2 Semantic Parsing 117

Semantic parsing converts a given input of natural 118

language text, represented as x, into an output logic 119

form, represented as y. In our task, x comes from 120

the quest description and y is from the PDDL goal 121

statement. Both of the vectors, x and y, have a 122

sequential nature. 123

To get x and y, a common preprocessing step 124

is tokenization. This involves dividing the input 125

(or output) text into tokens, each one is typically a 126

separate word or a punctuation. A dictionary then 127

transforms these tokens into corresponding integer 128

IDs such that x and y are sequences of integers 129

representing the original input and output. This 130

whole preprocessing step is reversible meaning that 131

given an arbitrary sequence of integers, one can get 132

a corresponding input or output text. 133

Once we have x and y, the main problem of 134

semantic parsing consists of finding a function, g, 135

such that 136

y = gθ(x), (1) 137

where θ denotes the parameters of g. Learning the 138

function then amounts to finding θ and this can be 139

done in two different ways: supervised and bandits. 140

These are detailed in the following subsections. 141

2.1 Supervised Learning of Semantic Parsing 142

Supervised learning has shown to be very effective 143

for the semantic parsing problem but it requires 144

a sufficiently large, diverse and labelled dataset, 145

{x,ygt}, where a ground truth label, ygt, is pro- 146

vided for each x. The problem of finding g can 147

then be set up as: 148

θ∗ = argmin
θ

L(ygt, gθ(x)), (2) 149

where the problem is to find the model’s optimal 150

parameters, θ∗, by minimizing some loss function, 151

L, that measures the mismatch between predicted 152

y and the ground truth label ygt. 153

The key to successfully applying deep learning 154

on the problem of Eq.(2) is to find a suitable deep 155

neural network architecture for gθ. For semantic 156

parsing, sequential models (e.g. LSTM) are the 157

most suitable (Dong and Lapata, 2016). This means 158

that the neural network is modeling the conditional 159

probability, p(yi|yi−1, . . . , y0,x), where i denotes 160

the index of the value within the sequence. In the 161

current state of the art, the best sequential models 162

are variations on the Transformer (Vaswani et al., 163

2017). Because of this, we use it as our base model. 164
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For the rest of this paper, it is useful to recall165

that the Transformer has an encoder-decoder struc-166

ture (Vaswani et al., 2017). This means that the167

input sequence is first embedded into a vector with168

continuous values and then encoded into a con-169

text vector. The output tokens are then decoded170

in an auto-regressive manner based on the context171

vector and the previously generated output tokens.172

For more details, such as the loss function and opti-173

mization algorithm, we refer the reader to (Vaswani174

et al., 2017).175

2.2 Bandits for Semantic Parsing176

In our particular semantic parsing setting, we can177

obtain additional information by using the output178

logic form in some process, h, to obtain a reward,179

r. That is:180

r = h(y). (3)181

In our task depicted by Fig. 1, h consists of running182

the AI planning system and getting the action plan,183

the robot executing the plan and finally the human184

gives a scalar approval rating which is the reward,185

r. Additional rewards can also be obtained by other186

information during the whole process of h. Another187

example of this is using SQL (Zhong et al., 2017),188

where h consists of querying the database to get an189

answer and then a scalar reward r is returned based190

on the correctness of the answer and errors in the191

querying process.192

In this reinforcement learning (RL) paradigm,193

we want to use rewards, r, as information to im-194

prove the function that is generating y instead of195

labels, ygt, which were needed for the supervised196

case. Using RL terminology, we are treating y as197

an action and g as a policy function. The problem198

is then to maximize the cumulative rewards R such199

that:200

θ∗ = argmax
θ

E [R | gθ] . (4)201

This is the bandit problem (Sutton and Barto, 2018)202

where we need to explore the space of possible g203

to find one that gives us the most rewards. Intu-204

itively, the solution is to do a trial-and-error pro-205

cess, where we try different policies and update it206

based on the rewards produced. Furthermore, the207

problem in Eq.(4) is already a contextual bandit208

problem because the policy, g, takes the input x209

which is an additional context for the task.210

The RL literature has several ways to solve the211

optimization problem of Eq.(4). Perhaps the most212

common one is to use a policy gradient such that: 213

∇θE [R | gθ] ≈
1

N

N∑
n=1

∇θlog(gθ)R, (5) 214

where N is the number of samples to approximate 215

the gradient. This method was also used in (Zhong 216

et al., 2017) where N = 1. 217

Although it is appealing to train the agent with 218

only rewards, note that it comes at the computa- 219

tional cost in doing the exploration. This results in 220

the so called curse of dimensionality (Sutton and 221

Barto, 2018). Specifically, the action space y is 222

usually too large to be explored without a good 223

starting point. The next subsection discusses a 224

practical method for handling this. 225

2.3 On Combining Supervised Learning and 226

Bandit Algorithms 227

The previous subsections showed two different 228

learning methods with different pros and cons - 229

supervised learning requires labels, ygt and is very 230

efficient while bandits only require rewards, r, but 231

then an expensive exploration process is needed. 232

Each of the learning methods can be used sepa- 233

rately but it is more practical to use them together. 234

In fact, the method detailed in (Zhong et al., 235

2017) is one such instance wherein the available 236

labels for supervised learning are first used. When 237

this model converges, further training is carried out 238

in the RL setting. Another possible improvement 239

comes with the popularity and availability of pre- 240

trained language models such as BERT (Devlin 241

et al., 2019). These can be used in place of su- 242

pervised learning as the starting point for learning 243

with bandits or it may even be used as the starting 244

point for supervised learning and then RL training 245

is used as the final step. 246

3 Constrained Combinatorial Contextual 247

Bandits 248

We model our learning problem as a combinato- 249

rial online optimization called "combinatorial semi- 250

bandit" (Wang and Chen, 2018; Wen et al., 2015), 251

which is defined by a triple (E,A, P ), where (1) 252

E = {1, . . . , L} is a set of L arms, called the 253

ground set, (2) A ⊆ {A ⊆ E : |A| ≤ K} is a 254

family of subsets of E with up to K arms, where 255

K ≤ L, and P is a probability distribution over the 256

weights w ∈ RL of the arms in the ground set E. 257

(3) w : E → R is a weight function that assigns 258

each arm e in the ground set E a real number. The 259
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total weight of all arms in a set A ⊆ E is defined260

as: f(A,w) =
∑

e∈Aw(e), which is a linear func-261

tional of w. For our PDDL goal semantic parsing262

task, A is the set of facts in the logical goal state263

and E is the set of all possible facts to be consid-264

ered in forming this goal. The final PDDL goal265

state is simply the conjunction over A.266

At each iteration t, the agent chooses At ∈ A,267

gains f(At,wt), and observes the weights of all the268

chosen arms in iteration t,
{
(e,wt(e)) : e ∈ At

}
.269

The agent goal is to maximize the expected cumula-270

tive return in n-iterations E
[∑n

t=1 f(A
t,wt)

]
. We271

assume that the agent knows a generalization ma-272

trix Φ ∈ RL×d. With ϕe the transpose of the e-th273

row of Φ, and refer to it as the context vector. In274

our case, this should be a vector representation of275

the quest. We can get this by inputting the given276

text into a pre-trained deep neural network as a fea-277

ture extractor. That is, the context vector is some278

intermediate result in a middle layer of the neural279

network. Moreover, instead of generic pre-trained280

models, it is also possible to use the result of the281

supervised learning method described previously.282

Continuing, we define θ∗ = argmin θ ∥w̄−Φθ∥2,283

with the mean weight is denoted by w̄ = E[w]284

and w̄ = Φθ∗. Note that in our setting there285

are some arms that could be explored just once286

since the environment is going to inform the agent287

At
i ∈ {At ∩A′} the not allowed arms, with A′ the288

set of all not allowed arms. Intuitively, disallowed289

arms correspond to absurd facts. This error is usu-290

ally caught in type-checking by using the given291

PDDL world model. For example, given the predi-292

cate eaten which takes an object of type food as an293

input, then the fact (eaten kitchen) is absurd since294

kitchen is not a type of food. To continue, we de-295

fine Rt = f(Aopt,wt)−f(At,wt) as the regret in296

episode t. With Aopt ∈ argmaxA∈A f(A,w) =297

argmaxA∈A
∑

e∈Aw(e) and the expected cumu-298

lative regret of the learning algorithm in n episodes299

as R(n) =
∑n

t=1 E [Rt|w̄].300

The pseudocode of CCLinUCB is given in Al-301

gorithm 1 where λ is a regularization parameter, σ302

controls the decrease rate of the covariance matrix,303

and c controls the exploration. In each episode t,304

Algorithm 1 consists of three steps. First, for each305

e ∈ E, it computes an upper confidence bound306

(UCB) ŵt(e). Second, it computes At based on307

ŵt. Finally, it updates the mean vector θ̄t+1 and a308

covariance matrix Σt+1 based on Kalman filtering.309

Note that our proposed algorithm is a modification310

Algorithm 1 CCLinearUCB

Input: Combinatorial structure (E,A), general-
ization matrix Φ ∈ RL×d, algorithm parameters
λ, σ, c > 0

Initialize Σ1 ← λ2I ∈ Rd×d and θ̄1 = 0 ∈ Rd

for all t = 1, 2, . . . , n do

At = argmax
A∈A

∑
e∈A

〈
ϕe, θ̄t

〉
+ c

√
ϕT
e Σtϕe ∀e ∈ E

Choose set At, observe both Rt and At
i ∈ A′

remove the not allowed arms A = A\At
i

Update θ̄t+1 and Σt+1,
for all e ∈ At do

Σt+1 = Σt − ΣtϕeϕT
e Σt

ϕT
e Σtϕe+σ2

t

θ̄t+1 =
[
I − ΣtϕeϕT

e

ϕT
e Σtϕe+σ2

]
θ̄ +[

Σtϕe

ϕT
e Σtϕe+σ2

] 〈
ϕe, θ̄t

〉
end for

end for

of CombLINUCB proposed in (Wen et al., 2015), 311

where we remove in an iterative manner the not 312

allowed arms. We show in the following, how 313

our modification is positively impacting the regret. 314

Assuming that ∥ϕe∥2 ≤ 1, ∀e ∈ E wt(e) ∈ [0, 1] 315

and the stochastic arm weights {w(e)}e∈E are sta- 316

tistically independent under P , we have the fol- 317

lowing upper bound on R(n) when CCLINUCB is 318

applied: 319

Theorem 1 For any λ, σ > 0, any δ ∈ (0, 1), and 320
any c satisfying 321

c ≥ 1

σ

√
d ln

(
1 +

n(K −K′)λ2

dσ2

)
+ 2 ln

(
1

δ

)
+

∥θ∗∥2
λ

, 322

we have, 323

R(n) ≤ 2c(K −K ′)λ

√√√√√dn ln
(
1 + n(K−K′)λ2

dσ2

)
ln

(
1 + λ2

σ2

)
+K ′ + n(K −K ′)δ.

(6) 324

This Theorem is showing that we can reduce the re- 325

gret bound from Õ((K)d
√
n) to Õ((K−K ′)d

√
n) 326

when using CCLINUCB algorithm instead of the 327

classical CombLINUCB. The proof is a direct ap- 328

plication of the step done in CombLINUCB. 329
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Figure 2: Framework of our TextWorld game-playing agent that uses a Neural Network to set the goals of an AI
planning system.

4 The TextWorld PDDL benchmark330

Although our task in Fig. 1 is common in the331

robotics literature, there isn’t a common dataset.332

In this paper, we propose to extend an existing333

benchmark called TextWorld (Côté et al., 2018)334

which has an MIT License. This is a type of text-335

based game where the player can only interact by336

text - that is all observations and actions are in nat-337

ural language. By creating PDDL world models338

from the underlying game logic, we can repurpose339

it to be exactly the same as our task. An overview340

of our framework for TextWorld is shown in Fig.341

2. Specifically, we are using the custom games of342

TextWorld which can generate the widest variety of343

quests. For each game instance, the quest is given344

at the start which is suitable for our purpuse.345

4.1 Generating the TextWorld PDDL files346

The Planning Domain Definition Language347

(PDDL) is the de-facto standard for planners and348

the AI planning research community (Fox and349

Long, 2003). The PDDL is composed of 2 parts -350

the domain and problem. First, the domain descrip-351

tion models the general aspects of all the possible352

TextWorld game instances. It corresponds to the353

physics or rules of TextWorld. This is done by354

defining predicates which are templates for logi-355

cal facts and action templates which decompose356

an action into parameters, preconditions and ef-357

fects. Second, the problem description models the358

specifics of each TextWorld game instance. This359

is done by specifying the objects in the world, the360

initial state and the goal state. Both the initial and 361

goal states are described by using logical operators 362

along with the defined predicates and objects. 363

For reference, Figure 2 shows the domain file 364

and a problem file, but due to space only a few 365

relevant examples of each part are shown. Please 366

refer to the supplementary material for full exam- 367

ples. The domain file is common throughout and 368

was extracted only once from the TextWorld game 369

engine. Meanwhile, the problem description can be 370

parsed from a TextWorld game’s JSON file which 371

is produced together with the corresponding game 372

instance (Côté et al., 2018). Given both the domain 373

and problem descriptions, standard AI planning 374

systems can be used to solve TextWorld games. In 375

this case, the generated PDDL planning problems 376

are single-agent, discrete time, finite discrete space, 377

fully observable, deterministic, static, non-numeric, 378

non-durative, with non-conditional unit-duration 379

actions, using predicates with typed arguments. 380

With our proposed TextWorld PDDL, one can 381

effectively generate an arbitrarily large dataset 382

of PDDL corresponding to generated TextWorld 383

games. These allow us to tackle specific problems 384

by learning to predict parts of the PDDL while as- 385

suming that the rest is known. In this paper we 386

specifically learn to predict the goal state from the 387

given natural language quest. 388

4.2 The TextWorld PDDL agent 389

All of our learning framework and examples of 390

the important inputs/outputs are shown in Figure 2. 391

The TextWorld quest in orange border and the out- 392
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put goal in blue border are actual examples from393

TextWorld and our PDDL interface. The given do-394

main knowledge of the PDDL in black border is395

a shortened version due to space. With a model396

trained from supervised learning, we can already397

use it to play the TextWorld game as shown in Fig-398

ure 2. Then by using rewards from the TextWorld399

game itself or deriving negative rewards from er-400

rors in the planner, we can refine our model in the401

bandit setting.402

5 Experimental setup403

The TextWorld games (Côté et al., 2018) we use for404

our datasets are custom generated with the house405

theme, quest length of 5, world size of 5 and con-406

taining 10 objects. The random seeds for generat-407

ing TextWorld games are controlled to be uniquely408

in only one of the dataset splits (training and testing409

datasets). For experiments with supervised learn-410

ing, we started with a small dataset size of 4984411

games for training and 100 games for testing. For412

a larger scale experiment with the Transformer, we413

then used a big dataset with 48565 training set414

games and 9701 games for testing. These are the415

games left after removing some generated games416

where there is an unreachable goal(even with ex-417

pert play). The Transformer Neural Network is a418

standard implementation using the base parameters419

of (Vaswani et al., 2017). We optimize this model420

with stochastic gradient descent using a learning421

rate of 0.001, batch size of 4, momentum of 0.9,422

over 100 epochs. For planning, we used the Fast423

Downward planner (Helmert, 2006) with an im-424

plementation of the A∗ search algorithm and the425

landmark-cut heuristic. For comparison, we also426

trained an RNN model (the GRU with a hidden427

state size of 128) in a sequence-to-sequence struc-428

ture.429

For supervised learning, The main metric we use430

is the percentage of solved games in the test set431

which requires a perfect translation of the goal. We432

also evaluate the semantic parsing task by using433

the BLEU score. This metric is a good indicator434

of partially correct translations even if it is less435

suitable for our task.436

In Reinforcement Learning (RL), TextWorld437

games are known to pose significant chal-438

lenges (Côté et al., 2018; Adolphs and Hofmann,439

2019). This is why all previous works used interme-440

diate rewards such that a reward is given after each441

correct action. In contrast, all our experiments use442

the default sparse reward case wherein a reward is 443

only given when the goal is completed (i.e. after a 444

series of actions). This significantly increases the 445

difficulty of the learning task such that it highlights 446

the strengths of our approach. In the first set of ex- 447

periments, we want to find out how much a simple 448

contextual bandit approach can improve our fully 449

supervised model. To do this, we took the best su- 450

pervised learning result and used a policy gradient 451

method (Williams, 1992) to refine the result. Our 452

framework’s planner rewards give −0.1 whenever 453

there is any planner error. The Textworld game 454

gives a reward of 1 if it is completed otherwise 0. A 455

learning rate of 0.0001 was used for the policy gra- 456

dient updates. In the second set of experiments, we 457

test a more principled contextual bandit approach 458

that we proposed - CCLinUCB. Since our motiva- 459

tion here is in this algorithm’s usefulness without 460

our TextWorld supervised learning dataset, we in- 461

stead use a generic pre-trained model. For this, we 462

chose DistilBERT (Sanh et al., 2019), which is a 463

lightweight version of the well-known BERT (De- 464

vlin et al., 2019). We use this directly as a feature 465

extractor to get a context vector such that it doesn’t 466

use any TextWorld data for fine-tuning. To limit the 467

combinatorial complexity in our experiments, we 468

use only 20 games. However, this already provides 469

a big combinatorial challenge. Furthermore, in ad- 470

dition to the previously mentioned rewards, we are 471

also able to give a reward that is proportional to the 472

number of reachable goals. This takes inspiration 473

form the goal-count heuristic. This is possible in 474

this case since we impose some structure on the 475

bandit arms instead of treating it as a sequence 476

translation. 477

6 Results and Discussions 478

Before we present our main results, we point the 479

interested reader to our supplementary materials 480

where we have a small validation experiment to 481

compare our CCLinUCB against a standard Lin- 482

UCB algorithm. This showed that CCLinUCB con- 483

verged faster to a reward of about 2.5 compared to 484

LinUCB at only around 2. 485

Since our TextWorld PDDL dataset is also novel 486

in the literature, we start with supervised learn- 487

ing experiments which are summarized by Table 1. 488

We present this to show the difficulty of the task 489

and as a reference comparison later on. Similar to 490

many Natural Language Processing (NLP) tasks, 491

the Transformer outperforms the RNN model. In 492
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Model Dataset BLEU Solved %

train test train test
GRU small 0.6398 0.3098 0.00 0.00

Tr small 0.9999 0.6787 99.92 20.00
Tr big 1.0000 0.7944 100.00 38.19

Table 1: Supervised learning results

this case, the GRU is unable to solve any games493

but it has many partially correct translations as494

indicated by the BLEU score. The Transformer495

performed extremely well in the training set where496

it was able to solve almost all the games. How-497

ever, it did not do as well in the test set where it498

was only able to complete 20% of the games. One499

might think that this is due to a lack of diversity500

in the training set due to a relatively small number501

of training games, however we can see a similar502

problem on the Transformer model on the bigger503

dataset. With this, it still performed well in training504

and there is a small but significant improvement on505

the test set. However, the performance gap is still506

significant. Another possible reason for this might507

be overfitting to the training set, but this was not508

the case from investigating our loss curves where509

both training and testing loss levelled off. Rather,510

this gap illustrates the main difficulty of TextWorld511

which shows the need to incorporate a type of com-512

mon sense for better generalization (Murugesan513

et al., 2020). Practically, this can be thought of as514

adding much more knowledge into the world model515

portion and then utilizing this to further guide the516

learning phase. However, this research direction is517

orthogonal to our paper and it is out of our scope.518

The final results for our contextual bandit ex-519

periments are summarized in Table 2. Similar to520

the supervised learning case, our main metric is521

still the percentage of solved games. To comple-522

ment this, we also have the reward that the final523

trained agent can obtain. The reward has been524

scaled such that the maximum here is 1.0. We525

also keep the BLEU score for the supervised model526

to show how it improves with fine-tuning by pol-527

icy gradient updates. Under the learning methods,528

we also include the most common benchmark for529

text-adventure games which is the LSTM-DQN530

of (Narasimhan et al., 2015). Its performance in531

TextWorld even with intermediate rewards is bad532

since it has very simple action pruning (Adolphs533

and Hofmann, 2019). In the sparse reward case that534

we tackle here, we observed that it did not learn535

anything with 0 reward throughout resulting in 0%536

Learning Method Reward BLEU Solved %

LSTM DQN 0.0 — 0.0
SL 0.42 0.80 41.0

SL + PG 0.76 ± 0.01 0.84 ± 0.01 61.2 ± 1.92
LM + CCLinUCB 0.91 ± 0.02 — 60.0 ± 7.82

Table 2: Reinforcement learning results

solved games. Although this isn’t a great compar- 537

ison because our work uses much more domain 538

knowledge, what this benchmark demonstrates is 539

the difficulty of the end-to-end learning task if no 540

domain knowledge was used. To our knowledge, 541

we are also the first to tackle and solve sparse re- 542

ward games for TextWorld. The second learning 543

method is supervised learning (SL) as another base- 544

line for comparison. The difference in the result 545

here compared to Table 1 is due to the smaller test- 546

ing set but larger training set. The third learning 547

method starts from our best SL method and fine- 548

tunes it with policy gradient (PG) updates. Our 549

results show that all of the relevant metrics are 550

improved by this method. Notably, the number 551

of solved games increased by about 20% while 552

the BLEU score increased by only an average of 553

about 0.04. This result shows how the main defi- 554

ciency of our supervised models were addressed 555

by the agent as it has to simply correct a few key 556

words (small BLEU score increase) but there is a 557

large increase in solved games. The last learning 558

method is our proposed CCLinUCB. Our results 559

show that the rewards are significantly higher. In 560

our main metric which is the solved percentage, it 561

shows that CCLinUCB is comparable but slightly 562

lower than the supervised learning with policy gra- 563

dient refinement. Furthermore, the higher standard 564

deviation can indicate the need for more training 565

iterations and computation budget. However, recall 566

that we do not require labelled data (used in SL) 567

but instead we start from a generic language model 568

(LM) which is understood to have a much worse 569

performance than a specifically trained SL model. 570

With this consideration, we believe that our result 571

is significant and shows the efficacy of our method. 572

7 Related Work 573

In the broader scope of literature (outside our spe- 574

cific task), a related group of works is in trying 575

to improve AI planning systems with deep learn- 576

ing. Probably the closest work here is (Miglani, 577

2019). The difference is that they concentrate on 578

generating the action templates which is orthogo- 579
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nal to our task of generating the goal state. To do580

this, (Miglani, 2019) builds on the work of (Feng581

et al., 2018) which uses deep RL for extracting582

the action sequences from text. The line of work583

which connects planning and natural language by584

leveraging machine learning also traces back to585

the works before the popular rise of deep learning586

such as (Branavan et al., 2012). Compared to these,587

recent hardware has made both deep learning and588

bandit algorithms potentially viable solutions.589

Another important part of the related literature590

is deepRL research for text-based games. Perhaps591

the first paper to investigate this is (Narasimhan592

et al., 2015) where an LSTM neural network learns593

representations of natural language within a DQN594

RL framework. Since then, text-based games have595

increasingly gained research attention. Notably,596

TextWorld (Côté et al., 2018) was proposed as a597

new testbed and a competition was held with some598

pre-generated games. The work of (Adolphs and599

Hofmann, 2019) is a technical write-up of the sec-600

ond place entry in that competition. Compared601

to these deep RL methods which stem from an602

end-to-end learning approach, our work is very603

different and it can be seen as starting from a mod-604

elling approach in classical planning but then we605

relax this by learning the important parts relevant606

to our problem. Interestingly, recent approaches607

in deepRL for text-games have started to relax608

the end-to-end learning philosophy by incorpo-609

rating concepts from automated planning such as610

modeled rules (Adolphs and Hofmann, 2019) or611

knowledge graph structures (Ammanabrolu and612

Riedl, 2019; Ammanabrolu and Hausknecht, 2020;613

Zelinka et al., 2020; Adhikari et al., 2020).614

8 Conclusion615

We described the semantic parsing task for pro-616

ducing PDDL which allows automated planners to617

be used with natural language. We implemented618

a benchmark and dataset for this that we call619

TextWorld PDDL. We showed a baseline perfor-620

mance of the Transformer on this and demonstrated621

how to use this model with an automated planner622

to play the TextWorld game. We then proposed623

the CCLinUCB algorithm in the contextual bandit624

learning paradigm to allow for learning from re-625

wards instead of a fully labelled dataset. We believe626

that this work also opens the door for integrating627

more deep learning techniques with classical plan-628

ning which is best for applications where a large629

portion of the task can be formally modelled. 630

Ethics Statement 631

We believe this work contributes toward more ethi- 632

cal AI in two ways. First, we have an interpretable 633

logic in between the neural network semantic pars- 634

ing and robotic planning system. Second, we advo- 635

cate for training constraints for the semantic pars- 636

ing system which limits the possible errors. In this 637

work, we don’t have a sensitive context or applica- 638

tion area. 639
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