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Abstract

We are working towards Al planning systems
with natural language interfaces. In this pa-
per, we tackle the semantic parsing problem of
learning to set the logical goals of the planning
system based on a natural language description
of the task. The current state of the art in se-
mantic parsing is to use supervised learning
with deep neural networks but this needs a lot
of labelled data made by domain experts. To
reduce this need, we additionally use a reward
signal that comes from completing the Al plan-
ning task. We formalize this as a constrained
combinatorial contextual bandit problem. The
context is created by using a deep neural net-
work for feature extraction and the constrained
combinatorial nature of the task can be used to
increase the efficiency of learning. We show
this result theoretically with our lower regret
bound and then experimentally in our extension
of the TextWorld problem.

1 Introduction

Al planning systems are designed to solve prob-
lems that can be formulated as finding a series of
actions from an initial state to a goal state. This
is a generic problem such that these systems are
deployed in many different applications, e.g., game
playing agents (Perez-Liebana et al., 2019), simple
customer support agents (Nothdurft et al., 2015),
enterprise applications (Sohrabi, 2019), robotics
(Thomason et al., 2015), etc. In this paper, we use
the example of an autonomous agent/robot. Al-
though Al planning systems are powerful, they
need to be programmed in a logic-base language
such as the Planning Domain Definition Language
(PDDL) (Fox and Long, 2003). Creating this logic
specification is non-trivial and it is a well-known
bottleneck that prevents the further application of
Al planning systems. Towards reducing this bur-
den, our task in this paper is enabling the use of
natural language for specifying the PDDL goals as
shown in Fig. 1.
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Figure 1: The semantic parsing task consists of translat-
ing a user request into logical goals. The goals interface
into in an Al planning system that uses a world model
to create an action plan.

Our task is a specific example of semantic pars-
ing - the general task of processing a given text into
its meaning, which is represented in a logical/sym-
bolic form. Modern semantic parsing methods are
based on deep learning (Dong and Lapata, 2016)
which has produced great results in recent years.
With this success, several semantic parsing appli-
cations have been introduced into the literature. A
useful taxonomy arises from the different output
logic forms. This output is usually a type of pro-
gramming language, for example, Prolog (Dong
and Lapata, 2016); SQL (Zhong et al., 2017; Dong
and Lapata, 2018); Python (Yin and Neubig, 2017;
Dong and Lapata, 2018); or Lisp (Liang et al.,
2017). Of these examples, our task is closest to
that of (Zhong et al., 2017) where a natural lan-
guage question is translated into an SQL querry
which then uses an existing database to produce
the answer. A useful analog of each part can be
seen in Fig. 1. Here, a natural language quest is
translated into a PDDL goal which then uses an
existing world model and Al planning system to
produce the optimal sequence of actions. Similarly,
creating the semantic parsing labels (whether SQL
or PDDL goal) requires domain expertise which is
relatively expensive to obtain. There is a cheaper
but less informative label that can be obtained by



checking the final output — checking the final an-
swer in the case of SQL or running the actions and
obtaining a goal completion or reward signal for
our task. We seek to use this reward signal as a
way to reduce the amount of logic labels required
for training a useful system. Although there is a
conceptual similarity between these tasks, there are
two important differences that we use to our advan-
tage - the temporal structure of the output and the
rich logical structure of the world model.

To solve our task, we seek an approach that can
leverage the labelled logic form (PDDL goal) when
available but also make use of the reward label of
the final system output which are cheaper to get in
practice. A good starting point was used in (Zhong
et al., 2017), where they improved a supervised
model with a kind of one-step reinforcement learn-
ing (RL) by using policy gradient updates. In the
RL literature, this one-step setting is also called the
multi-armed bandit problem setting (Sutton and
Barto, 2018). The basic bandit problem can be aug-
mented in many ways to describe different tasks.
Here, we add a context which corresponds to our
quest and then we use the logical structure of our
output PDDL goals together with the world model
to impose a structure which is combinatorial and
constrained.

The contribution of this paper is twofold: First,
we propose the formalization of our semantic pars-
ing task as a constrained combinatorial contextual
bandit. Theoretically, we show that we can reduce
the regret which means learning is guaranteed to be
more efficient. Practically, we introduce the CCLin-
UCB algorithm for this task. Our second contribu-
tion, is a scalable dataset for our task. Our task is
common in the robotics literature in many differ-
ent forms but there has been no large scale dataset
suitable for large deep learning models. Here, we
extend the existing TextWorld benchmark (Coté
et al., 2018) by providing PDDL interfaces and we
outline how this can be used similarly to Fig. 1.

In the following sections, we start with a back-
ground on semantic parsing and how deep learn-
ing is used. Next, we introduce the constrained
combinatorial contextual bandits for our seman-
tic parsing task. Then we introduce our extension
of TextWorld with PDDL planning and finally we
demonstrated the results of our method on this.

2 Semantic Parsing

Semantic parsing converts a given input of natural
language text, represented as X, into an output logic
form, represented as y. In our task, x comes from
the quest description and y is from the PDDL goal
statement. Both of the vectors, x and y, have a
sequential nature.

To get x and y, a common preprocessing step
is tokenization. This involves dividing the input
(or output) text into tokens, each one is typically a
separate word or a punctuation. A dictionary then
transforms these tokens into corresponding integer
IDs such that x and y are sequences of integers
representing the original input and output. This
whole preprocessing step is reversible meaning that
given an arbitrary sequence of integers, one can get
a corresponding input or output text.

Once we have x and y, the main problem of
semantic parsing consists of finding a function, g,
such that

y = go(x), (1)

where 6 denotes the parameters of g. Learning the
function then amounts to finding 6 and this can be
done in two different ways: supervised and bandits.
These are detailed in the following subsections.

2.1 Supervised Learning of Semantic Parsing

Supervised learning has shown to be very effective
for the semantic parsing problem but it requires
a sufficiently large, diverse and labelled dataset,
{x,y9}, where a ground truth label, y9¢, is pro-
vided for each x. The problem of finding g can
then be set up as:

6* = argmin L(y?, go(x)), @)
(%

where the problem is to find the model’s optimal
parameters, 6*, by minimizing some loss function,
L, that measures the mismatch between predicted
y and the ground truth label y9Jt.

The key to successfully applying deep learning
on the problem of Eq.(2) is to find a suitable deep
neural network architecture for gy. For semantic
parsing, sequential models (e.g. LSTM) are the
most suitable (Dong and Lapata, 2016). This means
that the neural network is modeling the conditional
probability, p(y'|y* =1, ..., y% x), where i denotes
the index of the value within the sequence. In the
current state of the art, the best sequential models
are variations on the Transformer (Vaswani et al.,
2017). Because of this, we use it as our base model.



For the rest of this paper, it is useful to recall
that the Transformer has an encoder-decoder struc-
ture (Vaswani et al., 2017). This means that the
input sequence is first embedded into a vector with
continuous values and then encoded into a con-
text vector. The output tokens are then decoded
in an auto-regressive manner based on the context
vector and the previously generated output tokens.
For more details, such as the loss function and opti-
mization algorithm, we refer the reader to (Vaswani
et al., 2017).

2.2 Bandits for Semantic Parsing

In our particular semantic parsing setting, we can
obtain additional information by using the output
logic form in some process, h, to obtain a reward,
r. That is:

r=h(y). 3)

In our task depicted by Fig. 1, h consists of running
the Al planning system and getting the action plan,
the robot executing the plan and finally the human
gives a scalar approval rating which is the reward,
r. Additional rewards can also be obtained by other
information during the whole process of /. Another
example of this is using SQL (Zhong et al., 2017),
where h consists of querying the database to get an
answer and then a scalar reward r is returned based
on the correctness of the answer and errors in the
querying process.

In this reinforcement learning (RL) paradigm,
we want to use rewards, r, as information to im-
prove the function that is generating y instead of
labels, y9¢, which were needed for the supervised
case. Using RL terminology, we are treating y as
an action and g as a policy function. The problem
is then to maximize the cumulative rewards R such
that:

0* = argmax E[R | gg] . 4)
0

This is the bandit problem (Sutton and Barto, 2018)
where we need to explore the space of possible g
to find one that gives us the most rewards. Intu-
itively, the solution is to do a trial-and-error pro-
cess, where we try different policies and update it
based on the rewards produced. Furthermore, the
problem in Eq.(4) is already a contextual bandit
problem because the policy, g, takes the input x
which is an additional context for the task.

The RL literature has several ways to solve the
optimization problem of Eq.(4). Perhaps the most

common one is to use a policy gradient such that:

N
1
VoE[R | go] = > Vilog(ge)R,  (5)
n=1

where IV is the number of samples to approximate
the gradient. This method was also used in (Zhong
et al., 2017) where N = 1.

Although it is appealing to train the agent with
only rewards, note that it comes at the computa-
tional cost in doing the exploration. This results in
the so called curse of dimensionality (Sutton and
Barto, 2018). Specifically, the action space y is
usually too large to be explored without a good
starting point. The next subsection discusses a
practical method for handling this.

2.3 On Combining Supervised Learning and
Bandit Algorithms

The previous subsections showed two different
learning methods with different pros and cons -
supervised learning requires labels, y9! and is very
efficient while bandits only require rewards, r, but
then an expensive exploration process is needed.
Each of the learning methods can be used sepa-
rately but it is more practical to use them together.

In fact, the method detailed in (Zhong et al.,
2017) is one such instance wherein the available
labels for supervised learning are first used. When
this model converges, further training is carried out
in the RL setting. Another possible improvement
comes with the popularity and availability of pre-
trained language models such as BERT (Devlin
et al., 2019). These can be used in place of su-
pervised learning as the starting point for learning
with bandits or it may even be used as the starting
point for supervised learning and then RL training
is used as the final step.

3 Constrained Combinatorial Contextual
Bandits

We model our learning problem as a combinato-
rial online optimization called "combinatorial semi-
bandit" (Wang and Chen, 2018; Wen et al., 2015),
which is defined by a triple (E, A, P), where (1)
E = {1,...,L} is a set of L arms, called the
ground set, (2) A C {ACFE: |A|<K}isa
family of subsets of £/ with up to K arms, where
K < L, and P is a probability distribution over the
weights w € R’ of the arms in the ground set E.
(3B)w : E — R is a weight function that assigns
each arm e in the ground set £ a real number. The



total weight of all arms in a set A C FE is defined
as: f(A,w) =3 ., w(e), which is a linear func-
tional of w. For our PDDL goal semantic parsing
task, A is the set of facts in the logical goal state
and E is the set of all possible facts to be consid-
ered in forming this goal. The final PDDL goal
state is simply the conjunction over A.

At each iteration t, the agent chooses A € A,
gains f(A*, w;), and observes the weights of all the
chosen arms in iteration ¢, { (e, wy(e)) : e € A'}.
The agent goal is to maximize the expected cumula-
tive return in n-iterations E [>°7 | f(A", wy)]. We
assume that the agent knows a generalization ma-
trix ® € RL*4, With ¢, the transpose of the e-th
row of ®, and refer to it as the context vector. In
our case, this should be a vector representation of
the quest. We can get this by inputting the given
text into a pre-trained deep neural network as a fea-
ture extractor. That is, the context vector is some
intermediate result in a middle layer of the neural
network. Moreover, instead of generic pre-trained
models, it is also possible to use the result of the
supervised learning method described previously.
Continuing, we define #* = argmin 4 |[w — ®6||2,
with the mean weight is denoted by w = E[w]
and w = ®60*. Note that in our setting there
are some arms that could be explored just once
since the environment is going to inform the agent
Al € {A' N A’} the not allowed arms, with A’ the
set of all not allowed arms. Intuitively, disallowed
arms correspond to absurd facts. This error is usu-
ally caught in type-checking by using the given
PDDL world model. For example, given the predi-
cate eaten which takes an object of type food as an
input, then the fact (eaten kitchen) is absurd since
kitchen is not a type of food. To continue, we de-
fine R; = f(A%", wy) — f(A", wy) as the regret in
episode . With A°P' € argmax 44 f(A4, W) =
argmax s 4 Y .c4 W(e) and the expected cumu-
lative regret of the learning algorithm in n episodes
as R(n) = Yj, E[Ry|wl.

The pseudocode of CCLinUCB is given in Al-
gorithm 1 where A is a regularization parameter, o
controls the decrease rate of the covariance matrix,
and c controls the exploration. In each episode ¢,
Algorithm 1 consists of three steps. First, for each
e € E, it computes an upper confidence bound
(UCB) w¢(e). Second, it computes A’ based on
w;. Finally, it updates the mean vector ;1 and a
covariance matrix >;1 based on Kalman filtering.
Note that our proposed algorithm is a modification

Algorithm 1 CCLinearUCB

Input: Combinatorial structure (F,.A), general-
ization matrix ® € RL*? algorithm parameters
Ao,c>0

Initialize ©1 + \2] € R9*4 apnd §; = 0 € R
forallt=1,2,...,ndo

A" = arg max Z <¢e,§t> +cvVolYipe Vee E

AcA ccA

Choose set A?, observe both R; and Al € A’
remove the not allowed arms A = A\ A!
Update §t+1 and >4,

for all e € A do

Sipepl T
D ¢gt§t(fe+‘;t2
— 2 e Z‘ —
Ori1 = {I - ¢>Z§f¢f+‘a2] 0 +

Sipe n
e (90 00)
end for
end for

of CombLINUCB proposed in (Wen et al., 2015),
where we remove in an iterative manner the not
allowed arms. We show in the following, how
our modification is positively impacting the regret.
Assuming that ||¢e||2 < 1, Ve € E wy(e) € [0, 1]
and the stochastic arm weights {w(e)} . ; are sta-
tistically independent under P, we have the fol-
lowing upper bound on R(n) when CCLINUCB is
applied:

Theorem 1 Forany A\,o > 0, any 6 € (0,1), and
any c satisfying

1 n(K — K’')\2 1 16" I
> = i el A -
c \/dln(l—f— 5 )+21n(6)+ Y

we have,

dnln (14 HEER)

In (1+§)

R(n) < 2¢(K — K')A

+ K' +n(K — K')é.
(6)

This Theorem is showing that we can reduce the re-
gret bound from O ((K)d\/n) to O((K —K')d\/n)
when using CCLINUCB algorithm instead of the
classical CombLLINUCB. The proof is a direct ap-
plication of the step done in CombLINUCB.
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Figure 2: Framework of our TextWorld game-playing agent that uses a Neural Network to set the goals of an Al

planning system.

4 The TextWorld PDDL benchmark

Although our task in Fig. 1 is common in the
robotics literature, there isn’t a common dataset.
In this paper, we propose to extend an existing
benchmark called TextWorld (C6té et al., 2018)
which has an MIT License. This is a type of text-
based game where the player can only interact by
text - that is all observations and actions are in nat-
ural language. By creating PDDL world models
from the underlying game logic, we can repurpose
it to be exactly the same as our task. An overview
of our framework for TextWorld is shown in Fig.
2. Specifically, we are using the custom games of
TextWorld which can generate the widest variety of
quests. For each game instance, the quest is given
at the start which is suitable for our purpuse.

4.1 Generating the TextWorld PDDL files

The Planning Domain Definition Language
(PDDL) is the de-facto standard for planners and
the Al planning research community (Fox and
Long, 2003). The PDDL is composed of 2 parts -
the domain and problem. First, the domain descrip-
tion models the general aspects of all the possible
TextWorld game instances. It corresponds to the
physics or rules of TextWorld. This is done by
defining predicates which are templates for logi-
cal facts and action templates which decompose
an action into parameters, preconditions and ef-
fects. Second, the problem description models the
specifics of each TextWorld game instance. This
is done by specifying the objects in the world, the

initial state and the goal state. Both the initial and
goal states are described by using logical operators
along with the defined predicates and objects.

For reference, Figure 2 shows the domain file
and a problem file, but due to space only a few
relevant examples of each part are shown. Please
refer to the supplementary material for full exam-
ples. The domain file is common throughout and
was extracted only once from the TextWorld game
engine. Meanwhile, the problem description can be
parsed from a TextWorld game’s JSON file which
is produced together with the corresponding game
instance (Coté et al., 2018). Given both the domain
and problem descriptions, standard Al planning
systems can be used to solve TextWorld games. In
this case, the generated PDDL planning problems
are single-agent, discrete time, finite discrete space,
fully observable, deterministic, static, non-numeric,
non-durative, with non-conditional unit-duration
actions, using predicates with typed arguments.

With our proposed TextWorld PDDL, one can
effectively generate an arbitrarily large dataset
of PDDL corresponding to generated TextWorld
games. These allow us to tackle specific problems
by learning to predict parts of the PDDL while as-
suming that the rest is known. In this paper we
specifically learn to predict the goal state from the
given natural language quest.

4.2 The TextWorld PDDL agent

All of our learning framework and examples of
the important inputs/outputs are shown in Figure 2.
The TextWorld quest in orange border and the out-



put goal in blue border are actual examples from
TextWorld and our PDDL interface. The given do-
main knowledge of the PDDL in black border is
a shortened version due to space. With a model
trained from supervised learning, we can already
use it to play the TextWorld game as shown in Fig-
ure 2. Then by using rewards from the TextWorld
game itself or deriving negative rewards from er-
rors in the planner, we can refine our model in the
bandit setting.

5 Experimental setup

The TextWorld games (C6té et al., 2018) we use for
our datasets are custom generated with the house
theme, quest length of 5, world size of 5 and con-
taining 10 objects. The random seeds for generat-
ing TextWorld games are controlled to be uniquely
in only one of the dataset splits (training and testing
datasets). For experiments with supervised learn-
ing, we started with a small dataset size of 4984
games for training and 100 games for testing. For
a larger scale experiment with the Transformer, we
then used a big dataset with 48565 training set
games and 9701 games for testing. These are the
games left after removing some generated games
where there is an unreachable goal(even with ex-
pert play). The Transformer Neural Network is a
standard implementation using the base parameters
of (Vaswani et al., 2017). We optimize this model
with stochastic gradient descent using a learning
rate of 0.001, batch size of 4, momentum of 0.9,
over 100 epochs. For planning, we used the Fast
Downward planner (Helmert, 2006) with an im-
plementation of the A* search algorithm and the
landmark-cut heuristic. For comparison, we also
trained an RNN model (the GRU with a hidden
state size of 128) in a sequence-to-sequence struc-
ture.

For supervised learning, The main metric we use
is the percentage of solved games in the test set
which requires a perfect translation of the goal. We
also evaluate the semantic parsing task by using
the BLEU score. This metric is a good indicator
of partially correct translations even if it is less
suitable for our task.

In Reinforcement Learning (RL), TextWorld
games are known to pose significant chal-
lenges (Coté et al., 2018; Adolphs and Hofmann,
2019). This is why all previous works used interme-
diate rewards such that a reward is given after each
correct action. In contrast, all our experiments use

the default sparse reward case wherein a reward is
only given when the goal is completed (i.e. after a
series of actions). This significantly increases the
difficulty of the learning task such that it highlights
the strengths of our approach. In the first set of ex-
periments, we want to find out how much a simple
contextual bandit approach can improve our fully
supervised model. To do this, we took the best su-
pervised learning result and used a policy gradient
method (Williams, 1992) to refine the result. Our
framework’s planner rewards give —0.1 whenever
there is any planner error. The Textworld game
gives a reward of 1 if it is completed otherwise 0. A
learning rate of 0.0001 was used for the policy gra-
dient updates. In the second set of experiments, we
test a more principled contextual bandit approach
that we proposed - CCLinUCB. Since our motiva-
tion here is in this algorithm’s usefulness without
our TextWorld supervised learning dataset, we in-
stead use a generic pre-trained model. For this, we
chose DistilBERT (Sanh et al., 2019), which is a
lightweight version of the well-known BERT (De-
vlin et al., 2019). We use this directly as a feature
extractor to get a context vector such that it doesn’t
use any TextWorld data for fine-tuning. To limit the
combinatorial complexity in our experiments, we
use only 20 games. However, this already provides
a big combinatorial challenge. Furthermore, in ad-
dition to the previously mentioned rewards, we are
also able to give a reward that is proportional to the
number of reachable goals. This takes inspiration
form the goal-count heuristic. This is possible in
this case since we impose some structure on the
bandit arms instead of treating it as a sequence
translation.

6 Results and Discussions

Before we present our main results, we point the
interested reader to our supplementary materials
where we have a small validation experiment to
compare our CCLinUCB against a standard Lin-
UCB algorithm. This showed that CCLinUCB con-
verged faster to a reward of about 2.5 compared to
LinUCB at only around 2.

Since our TextWorld PDDL dataset is also novel
in the literature, we start with supervised learn-
ing experiments which are summarized by Table 1.
We present this to show the difficulty of the task
and as a reference comparison later on. Similar to
many Natural Language Processing (NLP) tasks,
the Transformer outperforms the RNN model. In



Model  Dataset | BLEU Solved %
train test train test
GRU small 0.6398 0.3098 0.00 0.00
Tr small 0.9999 0.6787 99.92  20.00
Tr big 1.0000 0.7944 100.00 38.19

Table 1: Supervised learning results

this case, the GRU is unable to solve any games
but it has many partially correct translations as
indicated by the BLEU score. The Transformer
performed extremely well in the training set where
it was able to solve almost all the games. How-
ever, it did not do as well in the test set where it
was only able to complete 20% of the games. One
might think that this is due to a lack of diversity
in the training set due to a relatively small number
of training games, however we can see a similar
problem on the Transformer model on the bigger
dataset. With this, it still performed well in training
and there is a small but significant improvement on
the test set. However, the performance gap is still
significant. Another possible reason for this might
be overfitting to the training set, but this was not
the case from investigating our loss curves where
both training and testing loss levelled off. Rather,
this gap illustrates the main difficulty of TextWorld
which shows the need to incorporate a type of com-
mon sense for better generalization (Murugesan
et al., 2020). Practically, this can be thought of as
adding much more knowledge into the world model
portion and then utilizing this to further guide the
learning phase. However, this research direction is
orthogonal to our paper and it is out of our scope.
The final results for our contextual bandit ex-
periments are summarized in Table 2. Similar to
the supervised learning case, our main metric is
still the percentage of solved games. To comple-
ment this, we also have the reward that the final
trained agent can obtain. The reward has been
scaled such that the maximum here is 1.0. We
also keep the BLEU score for the supervised model
to show how it improves with fine-tuning by pol-
icy gradient updates. Under the learning methods,
we also include the most common benchmark for
text-adventure games which is the LSTM-DQN
of (Narasimhan et al., 2015). Its performance in
TextWorld even with intermediate rewards is bad
since it has very simple action pruning (Adolphs
and Hofmann, 2019). In the sparse reward case that
we tackle here, we observed that it did not learn
anything with 0 reward throughout resulting in 0%

Learning Method \ Reward BLEU Solved %
LSTM DQN 0.0 — 0.0
SL 0.42 0.80 41.0
SL + PG 0.76 £0.01 0.84+001 6124192
LM + CCLinUCB | 0.91 % 0.02 — 60.0 £+ 7.82

Table 2: Reinforcement learning results

solved games. Although this isn’t a great compar-
ison because our work uses much more domain
knowledge, what this benchmark demonstrates is
the difficulty of the end-to-end learning task if no
domain knowledge was used. To our knowledge,
we are also the first to tackle and solve sparse re-
ward games for TextWorld. The second learning
method is supervised learning (SL) as another base-
line for comparison. The difference in the result
here compared to Table 1 is due to the smaller test-
ing set but larger training set. The third learning
method starts from our best SL. method and fine-
tunes it with policy gradient (PG) updates. Our
results show that all of the relevant metrics are
improved by this method. Notably, the number
of solved games increased by about 20% while
the BLEU score increased by only an average of
about 0.04. This result shows how the main defi-
ciency of our supervised models were addressed
by the agent as it has to simply correct a few key
words (small BLEU score increase) but there is a
large increase in solved games. The last learning
method is our proposed CCLinUCB. Our results
show that the rewards are significantly higher. In
our main metric which is the solved percentage, it
shows that CCLinUCB is comparable but slightly
lower than the supervised learning with policy gra-
dient refinement. Furthermore, the higher standard
deviation can indicate the need for more training
iterations and computation budget. However, recall
that we do not require labelled data (used in SL)
but instead we start from a generic language model
(LM) which is understood to have a much worse
performance than a specifically trained SL model.
With this consideration, we believe that our result
is significant and shows the efficacy of our method.

7 Related Work

In the broader scope of literature (outside our spe-
cific task), a related group of works is in trying
to improve Al planning systems with deep learn-
ing. Probably the closest work here is (Miglani,
2019). The difference is that they concentrate on
generating the action templates which is orthogo-



nal to our task of generating the goal state. To do
this, (Miglani, 2019) builds on the work of (Feng
et al., 2018) which uses deep RL for extracting
the action sequences from text. The line of work
which connects planning and natural language by
leveraging machine learning also traces back to
the works before the popular rise of deep learning
such as (Branavan et al., 2012). Compared to these,
recent hardware has made both deep learning and
bandit algorithms potentially viable solutions.
Another important part of the related literature
is deepRL research for text-based games. Perhaps
the first paper to investigate this is (Narasimhan
et al., 2015) where an LSTM neural network learns
representations of natural language within a DQN
RL framework. Since then, text-based games have
increasingly gained research attention. Notably,
TextWorld (Coté et al., 2018) was proposed as a
new testbed and a competition was held with some
pre-generated games. The work of (Adolphs and
Hofmann, 2019) is a technical write-up of the sec-
ond place entry in that competition. Compared
to these deep RL methods which stem from an
end-to-end learning approach, our work is very
different and it can be seen as starting from a mod-
elling approach in classical planning but then we
relax this by learning the important parts relevant
to our problem. Interestingly, recent approaches
in deepRL for text-games have started to relax
the end-to-end learning philosophy by incorpo-
rating concepts from automated planning such as
modeled rules (Adolphs and Hofmann, 2019) or
knowledge graph structures (Ammanabrolu and
Riedl, 2019; Ammanabrolu and Hausknecht, 2020;
Zelinka et al., 2020; Adhikari et al., 2020).

8 Conclusion

We described the semantic parsing task for pro-
ducing PDDL which allows automated planners to
be used with natural language. We implemented
a benchmark and dataset for this that we call
TextWorld PDDL. We showed a baseline perfor-
mance of the Transformer on this and demonstrated
how to use this model with an automated planner
to play the TextWorld game. We then proposed
the CCLinUCB algorithm in the contextual bandit
learning paradigm to allow for learning from re-
wards instead of a fully labelled dataset. We believe
that this work also opens the door for integrating
more deep learning techniques with classical plan-
ning which is best for applications where a large

portion of the task can be formally modelled.

Ethics Statement

We believe this work contributes toward more ethi-
cal Al in two ways. First, we have an interpretable
logic in between the neural network semantic pars-
ing and robotic planning system. Second, we advo-
cate for training constraints for the semantic pars-
ing system which limits the possible errors. In this
work, we don’t have a sensitive context or applica-
tion area.
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