
MASTER: MULTI-TASK PRE-TRAINED BOTTLE-
NECKED MASKED AUTOENCODERS ARE BETTER
DENSE RETRIEVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Dense retrieval aims to map queries and passages into low-dimensional vector
space for efficient similarity measuring, showing promising effectiveness in var-
ious large-scale retrieval tasks. Since most existing methods commonly adopt
pre-trained Transformers (e.g., BERT) for parameter initialization, some work fo-
cuses on proposing new pre-training tasks for compressing the useful semantic in-
formation from passages into dense vectors, achieving remarkable performances.
However, it is still challenging to effectively capture the rich semantic information
and relations about passages into the dense vectors via one single particular pre-
training task. In this work, we propose a multi-task pre-trained model, MASTER,
that unifies and integrates multiple pre-training tasks with different learning objec-
tives under the bottlenecked masked autoencoder architecture. Concretely, MAS-
TER utilizes a multi-decoder architecture to integrate three types of pre-training
tasks: corrupted passages recovering, related passage recovering and PLMs out-
puts recovering. By incorporating a shared deep encoder, we construct a repre-
sentation bottleneck in our architecture, compressing the abundant semantic in-
formation across tasks into dense vectors. The first two types of tasks concentrate
on capturing the semantic information of passages and relationships among them
within the pre-training corpus. The third one can capture the knowledge beyond
the corpus from external PLMs (e.g., GPT-2). Extensive experiments on several
large-scale passage retrieval datasets have shown that our approach outperforms
the previous state-of-the-art dense retrieval methods.

1 INTRODUCTION

Recent years have witnessed the great success of dense retrieval methods (Karpukhin et al., 2020;
Qu et al., 2021; Xiong et al., 2021) in industrial applications, e.g., web search (Brickley et al., 2019;
Qiu et al., 2022) and question answering (Karpukhin et al., 2020; Izacard & Grave, 2021). These
methods typically encode queries and passages into low-dimensional dense vectors and utilize the
vector similarity between them to measure semantic relevance. In real-world applications, the dense
vectors of large amounts of passages will be pre-computed. Then the approximate nearest neighbor
(ANN) search techniques (Johnson et al., 2021) can be incorporated for efficient retrieval.

To generate high-quality dense vectors, pre-trained language models (PLMs) (Devlin et al., 2019;
Liu et al., 2019) have been widely adopted as the backbone of the query and passage encoders.
However, general PLMs (e.g., BERT (Devlin et al., 2019)) may not be the best for dense retrieval,
as their produced native dense representations (usually the [CLS] embedding) are not designed on
purpose to generalize the information from the input text. To solve it, recent studies (Gao & Callan,
2021a; Lu et al., 2021; Sachan et al., 2021) adopt pre-training techniques to endow the [CLS]
embedding the capacity of compressing the semantic information of the input text. They either rely
on the autoencoding task that utilizes the [CLS] embedding to recover the corrupted text (e.g.,
masked or replaced tokens) (Liu & Shao, 2022; Wang et al., 2022; Wu et al., 2022), or leverage the
contrastive learning objective to capture the relations among passages (e.g., co-occurrence) (Ram
et al., 2022; Sachan et al., 2021), outperforming general PLMs in this task.
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Despite the success, it is obvious that neither the autoencoding nor contrastive learning pre-training
task is optimal to fully exploit the useful characteristics into the dense embedding for the retrieval
task, as either mainly relies on limited specific information or relation from the corpus. From
this point of view, adopting the multi-task pre-training framework that jointly learns various su-
pervised signals from different tasks is promising. However, due to the divergences of input formats
and learning objectives among different tasks, an arbitrary integration of these tasks is inappro-
priate, which may even cause detrimental gradient interference, leading to performance degrada-
tion (Kendall et al., 2018; Yu et al., 2020).

To address this problem, we consider integrating multiple pre-training tasks in a unified format and
reducing the divergence of different training objectives. Since most of the NLP tasks can be re-
formulated as the text-to-text format (Xie et al., 2022; Raffel et al., 2020), we can also reconstruct
the available pre-training tasks into such a format. Recently, the idea of bottlenecked masked au-
toencoder (BMAE) (Liu & Shao, 2022; Wang et al., 2022; Wu et al., 2022) has been proposed to
pre-train dense retrievers, which typically adopts an encoder-decoder architecture, consisting of a
deep encoder to generate the dense vector of the input texts and a shallow decoder that relies on the
dense vector to recover an aggressively-masked text. In this way, an information bottleneck is con-
structed. The deep encoder should force the dense vector to reserve as much useful information as
possible that is beneficial for recovering the text in the shallow decoder. Inspired by it, we consider
unifying multiple different pre-training tasks into the BMAE format, i.e., taking texts as the input
of the encoder and recovering itself or its related text in the decoder. For example, to capture the
passage relations (e.g., co-occurrence), we can utilize a passage as the encoder’s input and lever-
age its dense vector to help recover an aggressive masked related passage in the decoder. Such a
unified way is promising to solve the central issue of the multi-task pre-training derived from the
divergences of input formats and learning objectives among different tasks, and capture a variety of
semantics or relations in different tasks to pre-train effective dense vectors.

Based on the above motivation, we propose MASTER, a multi-task pre-trained bottlenecked
masked autoencoder, that adopts an multi-decoder architecture to integrate diverse pre-training tasks
in the BMAE format. For each pre-training task, we devise a task-specific decoder to accomplish it,
and all these decoders should rely on the output dense vector from the shared deep encoder to guide
the decoding process. In this way, we construct multiple information bottlenecks to enforce the deep
encoder to generate more informative dense vectors, leading to compressed high-quality representa-
tions. To learn sufficient useful semantics and relations, we devise three types of pre-training tasks:
corrupted passages recovering, related passages recovering, and PLMs outputs recovering, respec-
tively, a total of five tasks for pre-training. The first two types of tasks focus on compressing the
semantic information of passages and modeling the relationships among passages within the corpus.
The third type of tasks forces the dense vector of the input passage to recover the output text from
other public generative PLMs like GPT-2 (Radford et al., 2019), which are capable of capturing the
semantic information and relations beyond the corpus to further enhance the dense vectors.

To verify the effectiveness of our approach, we conduct extensive experiments on several text re-
trieval datasets, e.g., MS-MARCO Passage Ranking (Nguyen et al., 2016), TREC Deep Learning
Track (Craswell et al., 2020; 2021), Natural Questions (Kwiatkowski et al., 2019) and BEIR zero-
shot retrieval benchmark Thakur et al. (2021). Experimental results show that our approach can
achieve new state-of-the-art performances in dense retrieval. We will make the code and model
checkpoints publicly available.

2 RELATED WORK

Dense Retrieval. Recent years have witnessed the remarkable progress of dense retrieval
(Karpukhin et al., 2020; Zhan et al., 2020; Hong et al., 2022; Ram et al., 2022). Different from tra-
ditional sparse retrieval methods (e.g., BM25 (Robertson et al., 2009)), dense retrieval approaches
typically map queries and documents into low-dimensional dense vectors via a dual-encoder archi-
tecture and then utilize vector distance metrics (e.g., dot product and cosine similarity) as the rele-
vance scores. Such a way is supported by the efficient approximate nearest neighbor (ANN) search
engines, e.g., FAISS (Johnson et al., 2021). For effectively training dense retrieval models, existing
work typically leverages pre-trained Transformers (Liu et al., 2019; Devlin et al., 2019) to initialize
the dual encoders and then samples high-quality negatives when fine-tuning the encoders with con-
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trastive learning objectives. Early work (Karpukhin et al., 2020; Min et al., 2020) mainly relies on
in-batch random negatives and hard negatives mined by BM25. Afterward, a line of work (Qu et al.,
2021; Xiong et al., 2021) finds that sampling top-k ranked documents by a trained dense retriever
as hard negatives is more beneficial for fine-tuning. However, a common problem for such top-k
negative sampling strategies is that they are easy to select false negatives, which impedes better
performances. To alleviate the problem, current studies have explored several practical directions,
including knowledge distillation with rerankers (Qu et al., 2021; Ren et al., 2021b; Lu et al., 2022),
more effective pre-training methods (Zhou et al., 2022; Xu et al., 2022), denoising techniques (Mao
et al., 2022; Hofstätter et al., 2021) and so on.

Pre-training for Dense Retrieval. PLMs (Devlin et al., 2019; Sanh et al., 2019; Sun et al., 2020)
have become the de facto backbone of NLP models for their remarkable performances on various
tasks. However, the fact is that these models are pre-trained with general tasks (e.g., masked lan-
guage model) without any prior task knowledge. Therefore, existing work finds that they are not
ready to use for dense retrieval (Gao & Callan, 2021a; 2022), especially in low-data situations (Xu
et al., 2022). To solve this issue, several studies (Gao & Callan, 2021a; Lu et al., 2021; Xu et al.,
2022) are proposed to make the output sentence embedding more informative and discriminative.
A type of work relies on the explicit relations between text pairs and designs the pre-training tasks
based on the contrastive learning objective (Lee et al., 2019; Chang et al., 2020; Ma et al., 2022),
e.g., inverse cloze task and contrastive span prediction. Another line of work focuses on compress-
ing the textual semantic information into the [CLS] embedding. These methods prefer to leverage
the masked autoencoder architecture that incorporates a deep encoder and a shallow decoder, forcing
the [CLS] embedding of the input text from the encoders to recover itself (Liu & Shao, 2022; Wu
et al., 2022) or related texts (Wang et al., 2022).

3 PRELIMINARY

In this section, we introduce the task definition of this work and present the typical fine-tuning
process of dense retrieval.

Task Definition. Given a query q, the dense passage retrieval task aims to retrieve the most relevant
top-k passages {pi}ki=1 from a large candidate pool P . To achieve this goal, the dual-encoder
architecture is widely used. It consists of a query encoder Eq and a passage encoder Ep, mapping
the query q and passage p into k-dimensional dense vectors hq and hp, respectively. Then, the
semantic relevance score of q and p will be computed using dot product as

s(q, p) = hq · hp. (1)

Existing work mostly adopts pre-trained Transformers (e.g., BERT (Devlin et al., 2019)) as the two
encoders, using the representations of the [CLS] token as the dense vectors. In this work, we aim
to propose a more effective multi-task pre-training framework specially for the dense retrieval task,
which learns to compress more useful information into the [CLS] representations. Formally, given
a pre-training corpus and a Transformer encoder, we focus on devising several tasks to pre-train
the parameters of it. Then, the pre-trained Transformer will be used as the backbone of the query
encoder Eq and passage encoder Ep, and can be fine-tuned on downstream dense retrieval tasks.

Fine-tuning Dense Retrievers. In the fine-tuning stage, the learning objective is to pull the rep-
resentations of a query q and its relevant passages P+ together (as positives), while pushing apart
irrelevant ones P− = P \P+ (as negatives). Therefore, high-quality negatives are critical to the ef-
fectiveness of dense retrievers. Existing work commonly leverages the BM25 negatives (Karpukhin
et al., 2020) or the top-k ranked negatives mined by a well-trained dense retriever (Qu et al., 2021;
Xiong et al., 2021), denoted as D̃−. Then, the optimization objective can be formulated as:

θ∗ = argmin
θ

∑
q

∑
d+∈D+

∑
d−∈D̃−

l(s(q, d+), s(q, d−)), (2)

where l(·) is the loss function. Besides, as the top-k hard negatives may contain false negatives,
recent studies (Qu et al., 2021; Ren et al., 2021b; Lu et al., 2022) have adopted knowledge distillation
strategies to solve it. They rely on pre-learned cross-encoder rerankers to produce soft labels on D̃−,
and minimize the KL divergence between the dual encoders’ outputs and the soft labels.
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Figure 1: The overview of our MASTER. We incorporate a bottlenecked multi-decoder architecture,
and design three types of pre-training tasks, requiring totally five decoders for specific tasks.

4 APPROACH

In this section, we present MASTER, an approach to pre-train an effective dense retriever. We first
introduce the bottlenecked model architecture (consisting of a deep encoder and multiple shallow
decoders), then describe our adopted three types of pre-training tasks unified as the bottlenecked
masked autoencoding manner. Figure 1 shows the overview of our approach.

4.1 BOTTLENECKED MULTI-DECODER ARCHITECTURE

To pre-train the dense retriever for compressing useful information into the dense vectors, we borrow
the idea of bottlenecked masked autoencoders (BMAE) using an encoder-decoder architecture (Liu
& Shao, 2022; Wang et al., 2022; Wu et al., 2022). In this way, a deep Transformer encoder is to
compress the input text into a dense vector, and a shallow decoder is to recover the input or other
related text based on it. To enrich the informativeness of the output dense vectors, we devise a multi-
decoder architecture that incorporates five decoders corresponding to different pre-training tasks to
capture diverse semantics and relations.

Concretely, the deep Transformer encoder shares the same architecture as BERT (Devlin et al.,
2019), and can be initialized with its pre-trained parameters. Given a passage p from the pre-training
corpus, we leverage the deep encoder to encode it, and select the output representation of the [CLS]
token as its dense vector hp. Following existing work (Gao & Callan, 2021a; Lu et al., 2021), we
employ a masked language model task to pre-train the encoder. Formally, a certain percentage α%
of tokens from p will be masked to obtain p′, and the encoder needs to predict them as:

LMLM =
∑

ti∈Mp′

− log p(ti|p′; ΘE) (3)

where Mp′ denotes the masked tokens in p′, ΘE denotes the parameters of the encoder. The multiple
shallow decoders all adopt the 2-layer bi-directional Transformer encoder architecture, and share the
embedding matrix and language modeling head with the deep encoder. For each decoder, its input
is an aggressive masked text x′ (masking rate β ≥ 50%) that requires to be recovered. Besides, the
dense vector hp′ from the encoder will be inserted into the decoder to replace the original [CLS]
token embedding. In this way, the learning objective of each decoder is formulated as:

LD =
∑

ti∈Mx′

− log p(ti|x′,hp′ ; ΘE ,ΘD) (4)

where Mx′ denotes the masked tokens in x′, ΘD denotes the parameters of the decoder. Such a way
can build the information bottleneck that the multiple decoders must rely on the hp′ to help recover
its input text, forcing hp′ to reserve useful information from the input.
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4.2 MULTI-TASK PRE-TRAINING

Based on the architecture, we devise multiple pre-training tasks, to help the output dense vectors
from the encoder capture more useful information. Concretely, we adopt three types of tasks to
capture the semantic information within passages, relations with other passages, and knowledge
from other PLMs, namely corrupted passages recovering, related passages recovering and PLMs
outputs recovering, respectively.

Corrupted Passages Recovering. Given a passage p from the pre-training corpus, the corrupted
passages recovering tasks (CPR) first mask its contained tokens to compose the inputs of the encoder
p′ and decoder p̂′ according to the mask rates α% and β% respectively. Then, the output dense
vector hp′ from the encoder will be leveraged to help the shallow decoder to recover p̂′ into p. Such
a way is helpful to compress important semantic information from the passage into the dense vector.
To achieve it, we design two pre-training tasks by utilizing special masking mechanisms for the
decoder, namely masked keywords prediction (MKP) and complementary mask prediction (CMP).

For MKP, we aim to mask as more keywords as possible in the decoder, as they may reflect im-
portant semantic information of the passage. Specifically, we rely on the widely-used TF-IDF
weights (Ramos et al., 2003) to obtain a masked probability distribution about words in the pas-
sage, where keywords with low frequencies would receive larger probabilities to be masked. In this
way, the input masked passage p̂′MKP of the decoder will lose most keywords, which will force the
dense vector hp′ to well reserve their information for recovering.

For CMP, given the passage p, we leverage a complementary mask mechanism in the decoder that
masks the unmasked tokens from the input of the encoder p′. As a result, the incomplete inputs of the
encoder and decoder will be complementary, and the dense vector hp′ should accurately remember
all the unmasked input information from p′ for recovering p̂′CMP.

Finally, the pre-training objective of the CPR tasks is given by combining the above two tasks as:

LCPR =
∑

ti∈MMKP

− log p(ti|p̂′MKP,hp′ ; ΘE ,Θ
MKP
D ) +

∑
ti∈MCMP

− log p(ti|p̂′CMP,hp′ ; ΘE ,Θ
CMP
D ), (5)

where MMKP and MCMP denote the masked tokens in p̂′MKP and p̂′CMP, respectively, and ΘMKP
D and

ΘCMP
D are the parameters of the two specific decoders, respectively.

Related Passages Recovering. The related passages recovering task (RPR) aims to model the
semantic relationships between related passages. In this work, we focus on the commonly-used and
easily-obtained co-occurrence relation from the pre-training corpus. Based on this motivation, we
collect the passage pairs {⟨pi, pi+1⟩} that are neighbouring spans in a document, and devise the
neighbouring passage recovering task (NPR).

In NPR, given a neighbouring passage pair ⟨pi, pi+1⟩, we rely on the mask rates α% and β% to
mask their tokens for composing the inputs of the encoder p′i and decoder p′i+1, respectively. Next,
the output dense vector of p′i from the deep encoder is utilized to help the decoder recover p′i+1.
Such a way will encourage the dense vector to retain the information that is useful to recover the
neighbouring passage, capturing the intrinsic token-level correlations across the two passages. Be-
sides, we also rely on the TF-IDF weights of words to mask more keywords in the decoder as MKP,
which further increases the difficulty of this task and forces the dense vector to focus more on the
key information. The learning objective of the RPR task can be defined as:

LRPR =
∑

ti∈MNPR

− log p(ti|p′i+1,hp′
i
; ΘE ,Θ

NPR
D ), (6)

where MNPR and ΘNPR
D denote the masked tokens in p′i+1 and the parameters of the decoder specially

for the NPR task, respectively. Note that existing work (Lee et al., 2019; Ma et al., 2022) has
also considered the neighbouring relations and mostly adopts the contrastive learning objective to
capture it. In fact, contrastive learning mainly aims to characterize the passage-level semantics and
arbitrarily pushes apart irrelevant passages, even if they are semantically relevant. As a comparison,
the NPR task can capture more fine-grained token-level characteristics, and such a text covering task
is much safer to not hurt the semantic relevance between relevant but not neighbouring passages.
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PLMs Outputs Recovering. The above tasks are able to capture the semantic information and
relations within the unsupervised pre-training corpus. We further consider to learn the knowledge
from other PLMs, to capture more rich information beyond the corpus. Based on this idea, we design
the PLMs outputs recovering tasks (POR) that aim to recover the outputs of two generative PLMs,
consisting of the doc2query outputs recovering (DOR) and GPT-2 outputs recovering (GOR) tasks.

Given a passage p, we leverage a public well-trained doc2query model (Nogueira & Lin, 2019) to
generate k relevant queries {qi}ki=1 and concatenate them into a long sentence s(q), as the generated
queries have shown effectiveness in previous dense retrieval methods (Nogueira et al., 2019). Be-
sides, we also use p as the prompt to guide the popular autoregressive GPT-2 model (Radford et al.,
2019) to generate a long sentence s(g), as GPT-2 has shown surprising performance in generating
informative long text. Then, we aggressively mask the tokens in s(q) and s(g) according to the mask
rate β%, to obtain the inputs s′(q) and s′(g) of two task-specific decoders. Similar to above tasks, the
two decoders also rely on the dense vector hp′ to recover the generated texts, and the pre-training
objective of the POR tasks is the combination of the two tasks as:

LPOR =
∑

ti∈MDOR

− log p(ti|s′(q),hp′ ; ΘE ,Θ
DOR
D ) +

∑
ti∈MGOR

− log p(ti|s′(g),hp′ ; ΘE ,Θ
GOR
D ), (7)

where MDOR and MGOR denote the masked tokens in s′(q) and s′(g), respectively, and ΘDOR
D and

ΘGOR
D are the parameters of the two specific decoders, respectively. In this way, we can enhance the

dense vector to capture richer semantics from other PLMs, and learn more information not included
in the documents corpus. Note that such a way is similar to the knowledge distillation process that
transfers the learned knowledge from PLMs into the dense vector by forcing it to predict the PLMs’
outputs.

4.3 LEARNING

During pre-training, we optimize the parameters in the deep encoder and the multiple shallow de-
coders using the above pre-training tasks, denoted as:

Ltotal = LMLM + LCPR + LRPR + LPOR (8)

During fine-tuning, we utilize the pre-trained deep encoder as the backbone of the query and pas-
sage encoders. Following the pipeline in previous dense retrieval methods (Gao & Callan, 2022;
Wang et al., 2022; Wu et al., 2022), we first train the Retriever1 using the in-batch negatives and
BM25 hard negatives. Then, we utilize Retriever1 to mine hard negatives from a large-scale passage
pool, and leverage these negatives and in-batch negatives to train the Retriever2. Next, we train
a cross-encoder reranker model based on the mined negatives from Retriever2. Finally, we distil
the knowledge from the reranker into the Retrieverdistil by using it to produce soft labels for both
positives and mined negatives from Retriever2. Note that our pre-trained encoder is used to initialize
the Retriever1, Retriever2 and Retrieverdistil.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTING

Table 1: Statistics of the text retrieval datasets.
“#Passage” means the number of passages.
Dataset Train Dev Test #Passage
MS-PAS 502,939 6,980 - 8,841,823
TREC-19 - - 200 8,841,823
TREC-20 - - 200 8,841,823
NQ 58,880 8,757 3,610 21,015,324
TQ 60,413 8,837 11,313 21,015,324

Datasets and Evaluation. We conduct ex-
periments on several text retrieval datasets:
MS MARCO Passage Ranking (MS-MARCO)
(Nguyen et al., 2016), TREC 2019 Deep Learn-
ing Track (TREC-19) (Craswell et al., 2020),
TREC 2020 Deep Learning Track (TREC-20)
(Craswell et al., 2021), and Natural Questions
(NQ) (Kwiatkowski et al., 2019). The statistics
of the above datasets are shown in Table 1. MS-
MARCO consists of real queries collected from
Bing search engine.NQ is an open domain question answering dataset.
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Table 2: Experimental results on three web search datasets. The best and second-best methods are
marked in bold and underlined, respectively. The ✓in the column of “with KD?” means that the
model has used knowledge distillation.
Model with KD? MS-MARCO TREC-19 TREC-20

MRR@10 R@50 R@1k nDCG@10 nDCG@10
BM25 (Yang et al., 2017) 18.5 58.5 85.7 51.2 47.7
DeepCT (Dai & Callan, 2019a) 24.3 69.0 91.0 57.2 -
docT5query (Nogueira & Lin, 2019) 27.7 75.6 94.7 64.2 -
ANCE (Xiong et al., 2021) 33.0 - 95.9 64.5 64.6
STAR (Zhan et al., 2021) 34.7 - - 68.3 -
TAS-B (Hofstätter et al., 2021) ✓ 34.0 - 97.5 71.2 69.3
RocketQA (Qu et al., 2021) ✓ 37.0 85.5 97.9 - -
RocketQAv2 (Ren et al., 2021b) ✓ 38.8 86.2 98.1 - -
AR2 (Zhang et al., 2022) ✓ 39.5 87.8 98.6 - -
ERNIE-Search (Lu et al., 2022) ✓ 40.1 87.7 98.2 - -
COIL (Gao et al., 2021a) 35.5 - 96.3 70.4 -
ColBERT (Khattab & Zaharia, 2020) 36.0 82.9 96.8 - -
ColBERTv2 (Santhanam et al., 2022) ✓ 39.7 86.8 98.4 - -
SEED (Lu et al., 2021) 33.9 - 96.1 - -
RetroMAE (Liu & Shao, 2022) 35.0 - 97.6 - -
Condenser (Gao & Callan, 2021a) 36.6 - 97.4 69.8 -
coCondenser (Gao & Callan, 2022) 38.2 86.5 98.4 71.7 68.4
CoT-MAE (Wu et al., 2022) 39.4 87.0 98.7 - 70.4
PAIR (Ren et al., 2021a) ✓ 37.9 86.4 98.2 - -
SimLM (Wang et al., 2022) ✓ 41.1 87.8 98.7 71.2 69.7
MASTER ✓ 41.5 88.6 98.8 72.7 71.7

5.2 MAIN RESULTS

Performance on Web Search Datasets. Table 2 shows the experimental results on three web search
benchmarks, i.e., MS-MARCO, TREC-2019 and TREC-2020. First, we can see that with or without
distillation strategy, the best baselines are both pre-training dense retrieval methods, i.e., CoT-MAE
and SimLM, even outperforming methods using multiple representations. It indicates that proper
pre-training strategies are helpful to the downstream dense passage retrieval tasks. Second, SimLM
mostly outperforms other baselines. It employs a bottlenecked architecture that learns to compress
the input information into a dense vector, and adopts a replaced language modeling objective to pre-
train it. Such a way is more effective to force the dense vector to reserve the important semantics.

Besides, we can see that our approach outperforms all the baselines in terms of all metrics on all
datasets. Our approach adopts a multi-task pre-training framework that unifies five tasks on recover-
ing of corrupted passages, related passages and PLMs outputs, based on a bottlenecked one-encoder
multi-decoder architecture. In this way, we can force the output dense vector from the encoder to be
more informative and functional to accomplish these tasks, leading to better representative capacity.

Table 3: Results on NQ. Following (Wang et al.,
2022), we report the performance of Retriever2
without knowledge distillation for our MSATER.

Model NQ
R@20 R@100

BM25 (Yang et al., 2017) 59.1 73.7
DPRsingle (Karpukhin et al., 2020) 78.4 85.4
ANCE (Xiong et al., 2021) 81.9 87.5
RocketQA (Qu et al., 2021) 82.7 88.5
RocketQAv2 (Ren et al., 2021b) 83.7 89.0
Condenser (Gao & Callan, 2021a) 83.2 88.4
PAIR (Ren et al., 2021a) 83.5 89.1
coCondenser (Gao & Callan, 2022) 84.3 89.0
SimLM (Wang et al., 2022) 84.3 89.3
MASTER 84.6 89.4

Performance on Open Domain QA Datasets.
Table 3 shows the experimental results an open
domain QA datasets, NQ. For a fair com-
parison, we only report the performance of
Retriever2 without performing knowledge dis-
tillation in our approach. First, we can also see
that pre-training dense retrieval methods mostly
outperform other methods. It further indicates
the effectiveness of pre-training techniques in
open domain QA tasks. Besides, coCondenser
and SimLM perform better than other methods,
the reason is that they both adopt a bottlenecked
architecture to compress the information into
the dense vectors. Finally, we can see that our
approach outperforms all the baselines. As a
comparison, our approach can enhance the in-
formativeness of dense vectors by integrating
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Table 4: Zero-shot dense retrieval nDCG@10 performances on BEIR benchmark. Results with * are
from our reproduction.

Dataset BERT LaPraDoR SimCSE DiffCSE SEED Condenser SimLM* MASTER
TREC-COVID 0.649 0.495 0.524 0.492 0.612 0.754 0.637 0.620
BioASQ 0.262 0.239 0.264 0.258 0.297 0.317 0.350 0.354
NFCorpus 0.257 0.283 0.250 0.259 0.256 0.278 0.323 0.330
NQ 0.438 0.415 0.412 0.412 0.425 0.459 0.477 0.516
HotpotQA 0.478 0.488 0.502 0.499 0.528 0.537 0.581 0.589
FiQA-2018 0.237 0.266 0.240 0.229 0.244 0.261 0.292 0.328
Signal-1M (RT) 0.216 0.245 0.264 0.260 0.246 0.258 0.257 0.252
TREC-NEWS 0.362 0.206 0.368 0.363 0.335 0.353 0.326 0.409
Robust04 0.364 0.310 0.353 0.343 0.348 0.352 0.368 0.405
ArguAna 0.357 0.503 0.436 0.468 0.347 0.375 0.421 0.395
Touché-2020 0.270 0.178 0.178 0.168 0.180 0.223 0.292 0.320
CQADupStack 0.284 0.326 0.295 0.305 0.285 0.316 0.332 0.327
Quora 0.782 0.843 0.848 0.850 0.849 0.855 0.773 0.791
DBPedia 0.298 0.328 0.304 0.303 0.324 0.331 0.345 0.399
SCIDOCS 0.115 0.145 0.125 0.125 0.117 0.136 0.145 0.141
FEVER 0.684 0.518 0.651 0.641 0.653 0.682 0.657 0.692
Climate-FEVER 0.205 0.172 0.222 0.200 0.176 0.199 0.163 0.215
SciFact 0.504 0.483 0.545 0.523 0.556 0.570 0.588 0.637
Avg. Performance 0.376 0.358 0.377 0.372 0.377 0.403 0.407 0.429

Table 5: Comparison with different pre-training dense retrieval methods in three stages of our fine-
tuning pipeline on the dev set of MS-MARCO. Results with * are from our reproduction.

Model coCondenser CoTMAE SimLM MASTER
MRR@10 R@1k MRR@10 R@1k MRR@10 R@1k MRR@10 R@1k

Retriever1 35.7 97.8 36.8∗ 98.3∗ 38.0 98.3 38.3 98.8
Retriever2 38.2 98.4 39.2 98.7 39.1 98.6 40.4 98.8
Retrieverdistil 40.2 98.3 40.4 98.7 41.1 98.7 41.5 98.8

multiple pre-training tasks, which compress the semantic information within passages, model the
relations between passages, and learn the knowledge from other PLMs.

Zero-Shot Evaluation. We evaluate the zero-shot retrieval performance of our approach on BEIR
benchmark (Thakur et al., 2021). It contains 18 datasets, covering dense retrieval tasks across dif-
ferent domains, e.g., question answering, fact checking, bio-medical retrieval and news retrieval.
Following Thakur et al. (2021), we fine-tune our approach in MS-MARCO training set and evalu-
ate it on the BEIR benchmark using the official evaluation toolkit 1 to show the zero-shot abilities.
nDCG@10 is chosen as the evaluation metrics. As shown in Table 4, we can see that our approach
outperforms most of baselines in all 18 datasets, and the average performance also surpasses all
baselines significantly. Since our approach incorporates multiple pre-training tasks for learning the
dense representations, such a way can enrich the informativeness of them and help better adapt into
different domains and retrieval tasks.

5.3 FURTHER ANALYSIS

Performance in Three Stages of Fine-tuning Pipeline. To further investigate the effectiveness
of our approach, we show the performances of MASTER and other pre-training dense retrieval
methods in each stage of our fine-tuning pipeline. Here, the models in the three stages are all
initialized by corresponding pre-trained parameters of these methods. As shown in Table 5, we can
see that the performances of all pre-training methods are consistently improving with the process of
the three-stage training, and the models in the third stage Retrieverdistil perform the best. In addition,
our approach also consistently outperforms all other pre-training methods in all the three stages. It
also indicates the effectiveness of our proposed multi-task pre-training strategy, which can produce
higher-quality dense vectors for downstream retrieval tasks.

Ablation and Variation Study. Our proposed approach incorporates a multi-decoder architecture
and three types of tasks for pre-training. To verify the effectiveness of each part, we conduct the

1https://github.com/beir-cellar/beir
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Table 6: Ablation and variation study of our approach. We report the means and variances of
MRR@10 of the retriever1 and retriever2 on the dev set of MS-MARCO.

Model MASTER w/o CPR w/o RPR w/o POR +Shared-Dec SimLM
Retriever1 38.3 (0.016) 37.7 (0.016) 37.6 (0.007) 37.6 (0.016) 37.4 (0.016) 38.0
Retriever2 40.4 (0.016) 39.9 (0.007) 39.8 (0.009) 39.8 (0.002) 39.1 (0.069) 39.1

Table 7: Performance comparison w.r.t. different training data size on the dev set of MS-MARCO.

Model MRR@10 R@1k
5% 10% 20% 50% 100% 5% 10% 20% 50% 100%

SimLM 31.5 32.6 33.8 35.4 38.0 97.2 97.5 97.8 98.2 98.7
MASTER 33.0 34.3 35.4 36.6 38.3 97.8 97.9 98.4 98.7 98.8

ablation and variation study on the dev set of MS-MARCO to analyze their contributions. We
remove the CPR, RPR and POR tasks individually, and propose a variants that adopts a shared
decoder to deal with the multiple tasks. As shown in Table 6, we can see that all the ablation and
variation models will lead to the performance degradation. It indicates that all the pre-training tasks
and our multi-decoder architecture are useful to improve the performance. Besides, after removing
any type of pre-training tasks, our Retriever2 still outperforms the SOTA method, SimLM. It further
shows the promising effectiveness of multi-task pre-training for dense retrieval tasks.
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37
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41

M
R

R
@

10

Retriever-1 of MASTER
Retriever-2 of MASTER
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Figure 2: Performance comparison w.r.t. different
number of pre-training steps on MS-MARCO.

Performance w.r.t. Different Pre-training
Steps. As a pre-training approach, the num-
ber of pre-training steps will affect the perfor-
mance on downstream tasks. In each step, we
optimize the model parameters using a batch
of pre-training data by gradient descent algo-
rithm. However, too many pre-training steps
are time-consuming and costly. Here, we in-
vestigate the performance convergence speed of
our approach during pre-training. As shown in
Figure 2, we can see that our model performs
well with few pre-training steps, especially that
the retriever2 of our method achieves the 39.1
on MRR@10 metric (the same as SimLM) af-
ter 10k steps. It shows that our approach is
more effective to pre-train effective dense vec-
tors, with no need for too many pre-training steps.

Few-Shot Learning. In our approach, as we have pre-trained the backbone via a multi-task man-
ner, the pre-trained dense vectors can be easily adapted into downstream tasks with less data. To
validate this conjecture, we reduce the training data size into 50%, 20%, 10% and 5%, and com-
pare the MRR@10 and R@1k of our approach with the SOTA pre-training method SimLM. As
shown in Table 7, we can see that the performance substantially drops when less training data is
used. Additionally, our approach is consistently better than SimLM in all cases, especially in an
extreme sparsity level (5%). It indicates that MASTER is better pre-trained to effectively adapt to
downstream dense retrieval task.

6 CONCLUSION

In this paper, we proposed MASTER, a multi-task pre-trained bottlenecked masked autoencoder
for dense retrieval task. In our approach, we adopted a bottlenecked multi-decoder architecture to
integrate a variety of pre-training tasks, and devised three types of pre-training tasks about corrupted
passages recovering, related passage recovering and PLMs outputs recovering. The three types of
tasks focused on compressing the semantic information within the passages, modeling relations
among passages, and learning the knowledge from external public generative PLMs, respectively,
leading to more informative and effective dense vectors. Experimental results have shown that our
approach outperforms several competitive baselines.
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Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR:
A heterogenous benchmark for zero-shot evaluation of information retrieval models. CoRR,
abs/2104.08663, 2021. URL https://arxiv.org/abs/2104.08663.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bow-
man. GLUE: A multi-task benchmark and analysis platform for natural language understand-
ing. In Proceedings of ICLR 2019, 2019. URL https://openreview.net/forum?id=
rJ4km2R5t7.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Simlm: Pre-training with representation bottleneck for dense passage
retrieval. CoRR, abs/2207.02578, 2022. URL https://doi.org/10.48550/arXiv.
2207.02578.

Xing Wu, Guangyuan Ma, Meng Lin, Zijia Lin, Zhongyuan Wang, and Songlin Hu. Contextual
mask auto-encoder for dense passage retrieval. CoRR, abs/2208.07670, 2022. URL https:
//doi.org/10.48550/arXiv.2208.07670.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Yasunaga, Chien-
Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Victor Zhong, Bailin Wang, Chengzu Li,
Connor Boyle, Ansong Ni, Ziyu Yao, Dragomir R. Radev, Caiming Xiong, Lingpeng Kong, Rui
Zhang, Noah A. Smith, Luke Zettlemoyer, and Tao Yu. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text language models. CoRR, abs/2201.05966, 2022.
URL https://arxiv.org/abs/2201.05966.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett, Junaid Ahmed,
and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text
retrieval. In Proceedings of ICLR 2021, 2021. URL https://openreview.net/forum?
id=zeFrfgyZln.

Canwen Xu, Daya Guo, Nan Duan, and Julian J. McAuley. Laprador: Unsupervised pretrained dense
retriever for zero-shot text retrieval. In Smaranda Muresan, Preslav Nakov, and Aline Villavicen-
cio (eds.), Findings of the Association for Computational Linguistics: ACL 2022, pp. 3557–3569,
2022. URL https://doi.org/10.18653/v1/2022.findings-acl.281.

Peilin Yang, Hui Fang, and Jimmy Lin. Anserini: Enabling the use of lucene for information retrieval
research. In Proceedings of SIGIR 2017, pp. 1253–1256, 2017. URL https://doi.org/10.
1145/3077136.3080721.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and
Chelsea Finn. Gradient surgery for multi-task learning. In Proceedings of NeurIPS
2020, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
3fe78a8acf5fda99de95303940a2420c-Abstract.html.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. Repbert: Contextualized text
embeddings for first-stage retrieval. CoRR, abs/2006.15498, 2020. URL https://arxiv.
org/abs/2006.15498.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. Optimizing dense
retrieval model training with hard negatives. In Proceedings of SIGIR 2021, pp. 1503–1512, 2021.
URL https://doi.org/10.1145/3404835.3462880.

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng Lv, Nan Duan, and Weizhu Chen. Adversarial
retriever-ranker for dense text retrieval. In Proceedings of ICLR 2022, 2022. URL https:
//openreview.net/forum?id=MR7XubKUFB.

Jiawei Zhou, Xiaoguang Li, Lifeng Shang, Lan Luo, Ke Zhan, Enrui Hu, Xinyu Zhang, Hao Jiang,
Zhao Cao, Fan Yu, Xin Jiang, Qun Liu, and Lei Chen. Hyperlink-induced pre-training for passage
retrieval in open-domain question answering. In Proceedings of ACL 2022, pp. 7135–7146, 2022.
URL https://doi.org/10.18653/v1/2022.acl-long.493.

13

https://ojs.aaai.org/index.php/AAAI/article/view/6428
https://ojs.aaai.org/index.php/AAAI/article/view/6428
https://arxiv.org/abs/2104.08663
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.48550/arXiv.2207.02578
https://doi.org/10.48550/arXiv.2207.02578
https://doi.org/10.48550/arXiv.2208.07670
https://doi.org/10.48550/arXiv.2208.07670
https://arxiv.org/abs/2201.05966
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.18653/v1/2022.findings-acl.281
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3077136.3080721
https://proceedings.neurips.cc/paper/2020/hash/3fe78a8acf5fda99de95303940a2420c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3fe78a8acf5fda99de95303940a2420c-Abstract.html
https://arxiv.org/abs/2006.15498
https://arxiv.org/abs/2006.15498
https://doi.org/10.1145/3404835.3462880
https://openreview.net/forum?id=MR7XubKUFB
https://openreview.net/forum?id=MR7XubKUFB
https://doi.org/10.18653/v1/2022.acl-long.493


Table 8: Experimental results on four NLU tasks from GLUE.
Model CoLA MRPC STS-B QQP
BERT 59.1 87.7 87.8 89.7
Ours 60.7 89.1 88.0 89.8

A BASELINES.

We compare our approach with a variety of methods:

• BM25 (Yang et al., 2017) is a widely-used sparse retriever based on exact matching. DeepCT (Dai
& Callan, 2019b) and docT5query (Nogueira & Lin, 2019) enhance BM25 with neural models.

• ANCE (Xiong et al., 2021), TAS-B (Hofstätter et al., 2021) and STAR (Zhan et al., 2021) are
dense retrieval methods that adopt top-k hard negatives to improve training. RocketQA (Qu et al.,
2021), AR2 (Zhang et al., 2022) and ERNIE-search (Lu et al., 2022) utilize knowledge distillation
technique that leverages a teacher model to guide the training of the dual-encoder retriever.

• COIL (Gao et al., 2021b), ColBERT (Khattab & Zaharia, 2020) and ColBERTv2 (Santhanam
et al., 2022) utilize multiple representations for text retrieval.

• SEED (Lu et al., 2021), RetroMAE (Liu & Shao, 2022), Condenser (Gao & Callan, 2021b),
PAIR (Ren et al., 2021a), coCondenser (Gao & Callan, 2022), CoT-MAE (Wu et al., 2022) and
SimLM (Wang et al., 2022) design special pre-training tasks to improve the backbone models.

B IMPLEMENTATION DETAILS.

During pre-training, we leverage BERT-base to initialize the shared encoder, and the multiple de-
coders are randomly initialized two-layer Transformers. Following previous work (Gao & Callan,
2022; Wu et al., 2022; Wang et al., 2022), we leverage the passages in MS-MARCO and NQ
dataset as the pre-training corpus of them, respectively. The pre-training steps are setting to 120k.
During fine-tuning, we also follow SimLM that first train Retriever1 using BM25 negatives, then
train Retriever2 using the hard negatives mined by Retriever1, finally utilize a cross-encoder based
reranker 2 to perform knowledge distillation on the hard negatives mined by Retriever2, to train
Retrieverdistil. Note that our pre-trained deep Transformer encoder is leveraged to initialize the pa-
rameters of Retriever1, Retriever2 and Retrieverdistil. Our all other hyper-parameters are the same
as SimLM (Wang et al., 2022). All the experiments in this work are conducted on 8 NVIDIA Tesla
A100 GPUs.

C NATURAL LANGUAGE UNDERSTANDING TASKS

In our approach, as we have integrated multiple pre-training tasks for learning, our model is able
to capture diverse knowledge from these tasks. In this part, we aim to evaluate if our pre-training
methods can also benefit for other tasks, i.e., natural language understanding (NLU). We select the
single-sentence and similarity tasks from the GLUE benchmark (Wang et al., 2019) (i.e., CoLA,
MRPC, STS-B and QQP), which focus on predicting the acceptability, similarity and paraphrase of
sentences from different domains (e.g., news and misc). We fine-tune our pre-trained model on these
tasks. and all the hyper-parameters are following the suggestions of the original BERT paper (Devlin
et al., 2019). As shown in Table 8, we can see that our approach can also improve the performance
of BERT on these NLU tasks. It indicates that our multi-task pre-training can also enrich the useful
knowledge about NLU tasks for the PLM.

D HYPER-PARAMETER TUNING.

Our approach has two important hyper-parameters, namely the masked rates of the deep encoder
and multiple decoders, as they control the information bottleneck of our approach. In this part, we

2Following SimLM, we also leverage ELECTRA-base to initialize the reranker and train it using the mined
negatives by Retriever2.
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Table 9: Performance comparison w.r.t. different masked rates in the encoder and decoder. We
report MRR@10 of the Retriever1 and Retriever2 on the dev set of MS-MARCO.

Model 30% En-50% De 15% En-50% De 50% En-50% De 30% En-30% De 30% En-70% De
Retriever1 38.3 37.9 37.6 37.5 38.0
Retriever2 40.4 39.9 39.7 39.8 39.9

set the masked rate in the encoder to be 15%, 30% and 50%, and that in decoders to be 30%, 50%
and 70%. Table 9 shows the evaluation results. First, we can see that our model is robust to these
different hyper-parameter settings. Besides, when the masked rates of the encoder and decoders
are set to 30% and 50% respectively, our model performs slightly better than others. Therefore, we
apply 30% and 50% as the masked rates of the encoder and decoders.
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