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Abstract

Collaborative filtering (CF) methods are now facing the challenge of data sparsity
in recommender systems. In order to reduce the effect of data sparsity, researchers
proposed contrastive learning methods to extract self-supervised signals from raw
data. Contrastive learning methods address this problem by graph augmentation
and maximizing the consistency of node representations between different aug-
mented graphs. However, these methods tends to unintentionally distance the target
node from its path nodes on the interaction path, thus limiting its effectiveness.
In this regard, we propose a solution that uses paths as samples in the contrastive
loss function. In order to obtain the path samples, we design a path sampling
method. In addition to the contrast of the relationship between the target node
and the nodes within the path (intra-path contrast), we also designed a method
of contrasting the relationship between the paths (inter-path contrast) to better
pull the target node and its path nodes closer to each other. We use Simplifying
and Powering Graph Convolution Network (LightGCN) as the basis and combine
with a new path-enhanced graph approach proposed for graph augmentation. It
effectively improves the performance of recommendation models. Our proposed
Path Enhanced Contrastive Loss (PECL) model replaces the common contrastive
loss function with our novel loss function, showing significant performance im-
provement. Experiments on three real-world datasets demonstrate the effectiveness
of our model.

1 Introduction

In the era of information explosion, recommender systems play a crucial role in identifying users’
preferences and delivering personalized experiences effectively[18]. Among the various techniques,
CF[9, 21] has become a cornerstone approach to generate recommendations utilizing implicit feedback
such as clicks, purchases, and comments. The core idea of CF methods is that users with similar
behaviors are likely to share similar preferences. CF methods are broadly classified into memory-
based[15, 4, 20] and model-based approaches[17, 10, 12]. Recent research trends focus on model-
based CF techniques due to their superior performance and scalability. However, CF methods are
often challenged by the data sparsity problem. To address this, researchers proposed various models
to enhance the representations of users and items by using additional information[10, 25, 2, 13, 27, 5].
For instance, models like SVD++ incorporate implicit feedback from user-item interactions to refine
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predictions[12], while LightGCN effectively captures higher-order collaborative signals to improve
the embedding quality of users and items[10].

Recently, contrastive learning has emerged as a powerful paradigm in representation learning, achiev-
ing remarkable success in various domains such as computer vision[3, 7, 1, 8] and natural language
processing[6, 28, 31]. By leveraging self-supervised signals, contrastive learning can effectively
extract meaningful features from large-scale unlabeled data, offering a promising solution to the prob-
lem of data sparsity[24, 23]. Given its ability to provide additional supervisory signals, an increasing
number of studies[14, 26, 33] have applied contrastive learning techniques to recommender systems,
resulting in significant improvements in recommendation performance. The core concept behind
contrastive learning is creating additional supervised instances and applying a self-designed task
to this augmented data, thereby tackling the challenge of data scarcity. Specifically, we randomly
select a node from the interaction graph to be the target node and paths extending from the target
node as center paths. Data augmentation is achieved by perturbing the interaction graph. During
training, the augmentation of the target node is represented as its positive samples and other nodes
as negative samples. However, disturbing interaction graph may generate irrelevant connections or
discard critical training information, thereby weakening the reliability and overall performance of
contrastive learning models. Moreover, treating other nodes as negative nodes will unintentionally
distance the target node from its node neighbors along the interaction path. However, these neighbors
exert a positive influence on the target node.

To overcome these challenges, we propose a path-enhanced contrastive learning method (PECL)
that focuses on path-level representations, offering a neighborhood-based perspective for contrastive
learning approaches. We first propose an intra-path contrastive learning strategy that effectively
selects nodes for contrastive learning, so that the target node is pulled closer to the nodes along the
interaction path. Nevertheless, the semantics of a single node can often be diverse or ambiguous,
which motivates us to further design an inter-path contrastive learning method. Since a path consists
of multiple sequentially connected nodes, it naturally encodes contextual constraints and thus helps to
mitigate noise. To enable inter-path contrast, we devise a general path sampling strategy that selects
representative paths extending from the target node as positive samples of the center path, thereby
enabling the model to align semantically similar paths more effectively.

In summary, our main contributions are summarized as follows:

• We propose an efficient path contrastive learning model that utilizes multiple positive path
samples to guide the updating of the representation of the center path. The experiments
show that multiple positive samples together influence the representation of the center path
and enhance the recommendation performance of the model.

• We design a path sampling method that can sample paths similar to the center path as positive
samples. The positive samples provided allow model to perform inter-path contrastive
learning, which in turn brings the target node closer to its collaborative nodes on other paths.

• By utilizing three datasets derived from actual real-world situations, we conducted empirical
research that revealed a distinct advantage of PECL compared to state-of-the-art baseline
models.

2 Related Work

Graph Neural Network Based Recommender Systems. Graph Neural Networks (GNNs) have
emerged as a powerful tool for recommendation tasks, particularly because they can capture intricate
relationships between users and items in a graph-based setting. Traditional collaborative filtering (CF)
models, such as matrix factorization, have been widely adopted in recommender systems. However,
these models often struggle with data sparsity and fail to capture complex higher-order interac-
tions between users and items. GNN-based models, such as NGCF (Neural Graph Collaborative
Filtering)[25], address these limitations by leveraging message-passing mechanisms to propagate
information across the user-item graph. NGCF captures both direct and indirect collaborative sig-
nals, making it particularly suitable for recommendation tasks in sparse data scenarios. Despite the
improvements offered by NGCF, its heavy reliance on deep message-passing layers and non-linear
activations leads to potential over-smoothing and overfitting, making the model inefficient and compu-
tationally expensive. LightGCN[10] addresses these issues by simplifying the architecture—removing
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the non-linear activation functions and transformation parameters typically used in GNN models.
This reduction in complexity not only improves computational efficiency but also enhances the
model’s ability to focus on essential collaborative signals. While LightGCN demonstrates excellent
performance in many recommendation scenarios, its multi-layered message-passing still requires
significant computational resources during both training and inference.

Self-Supervised Learning Techniques in Recommender Systems. In recent years, Self-
supervised learning has become an important technique in enhancing recommendation models,
especially when dealing with sparse or noisy data. In contrastive self-supervised learning, the goal is
to pull positive samples closer together while pushing negative samples further apart, thus improving
the robustness of learned representations. SimGCL[33] proposes a contrastive learning framework
for graph-based recommendation models, where the authors introduce augmented views of users and
items to enhance the model’s ability to distinguish between relevant and irrelevant interactions. By
incorporating contrastive loss, SimGCL not only improves the robustness of the learned embeddings
but also helps address the issue of negative sampling, which is often problematic in collaborative
filtering-based systems. Furthermore, NCL[14] enhances this approach by clustering users and items
into meaningful groups, allowing the model to leverage these clusters as positive samples. This
clustering technique, combined with contrastive loss, significantly improves the quality of the learned
representations, particularly in sparse scenarios. IHGCL[19] leverages meta-paths in heterogeneous
graphs to extract user intents and enhances recommendation via intent–intent and intent–interaction
contrastive learning. However, existing work does not fully consider the relationships between
target nodes and nodes on the interaction path in a recommendation scenario. In this paper, we use
contrastive learning to interpretively model these potential node relationships.

3 The PECL framework

In this section, we introduce the PECL framework. The PECL framework is composed by four parts:
graph collaborative filtration backbone LightGCN, path node-aware contrastive learning method,
path sampling network and the path-aware contrastive learning method. The overall framework is
shown in Fig.1.

3.1 Graph Collaborative Filtering Backbone

In PECL, we use LightGCN as the backbone model. The LightGCN model focuses on effectively
capturing high-order collaborative signals in a user-item interaction graph by leveraging a simplified
GCN structure. Given a bipartite graph G = (V, E), the node set V = U ∪ I includes both users
and items, and the edge set E = {(u, i)|Rui = 1} captures observed interactionsRui. that connects
users and items. LightGCN updates node embeddings over k layers, where each layer aggregates
information from increasingly distant neighbors. The embedding at the k-th layer, Hk represents
knowledge collected from k-hop neighbors. To counteract the over-smoothing commonly observed
in deep GCNs, LightGCN constructs the final node representations by combining embeddings from
all layers, including the input embeddings:

H = α0H
(0) + α1H

(1) + α2H
(2) + . . .+ αKH(K)

= α0H
(0) + α1ÃH(0)+α2Ã

2H(0) + . . .+ αKÃKH(0),
(1)

Ã = D− 1
2AD− 1

2 , (2)
where Ã is the symmetrically normalized matrix and D is a (|U|+ |I|)×(|U|+ |I|) diagonal matrix.
The 0-th layer embedding matrix H(0) ∈ R(|U|+|I|)×E , where E is the embedding size.

These final embeddings are used to represent users and items—specifically, user u and item i are
represented by hu and hi, respectively. The predicted interaction score between user u and item i is
then computed using the inner product operation:

r̂ui = huh
T
i (3)

The model is trained using a ranking loss function, encouraging observed interactions (positive
samples fromR+) to have higher scores than unobserved ones (negative samples fromR−), with a
sigmoid function σ(x) = 1/(1 + e−x) used to map predictions to probabilities:

LBPR = −
∑
u∈U

∑
i∈R+

u ,j∈R−
u

log(σ(r̂ui − r̂uj)) (4)
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Figure 1: Method framework.

3.2 Path Node Aware Contrastive Learning

Existing graph augmentation contrastive learning methods mainly augment graph collaborative
filtering by utilizing similar or structural neighbors[14, 22]. These methods ignore the internal nodes
of the interaction paths, however, in fact, the nodes inside the interaction paths also have influence
on the target nodes. In order to take full advantage of contrastive learning, we argue that when
constructing the contrast loss of a target node, it is also important to consider the representatives of
the nodes inside its interaction path as positive samples. Computing all nodes on paths may make the
computation too large, so we use the random walk with restart for path sampling based on length
classification proposed by Xiong et al.[30].

p =

pr, restart;

1−pr

|Nneighbor| , random selection of neighbors,
(5)

where Nneighbor denotes the set of neighbors and the probability p of the next move in a random
walk is governed by two distinct scenarios. We obtain our set of center paths Pv of the target node v
utilizing the above sampling approach. In order to find the positive nodes n of the target node v,we
define a positive node selection method:

V+
v = {n |α ≤ |{P ∈ Pv |n ∈ P }|} , (6)
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where P denotes the path and α is a hyperparameter that determines the minimum number of positive
nodes in sample paths. We will discuss α in a subsequent experimental section. During the contrast
loss construction process, specifically, we learn the embeddings of the target nodes themselves and
the sampled intra-path nodes by contrast. Building on the principles of InfoNCE[16], we introduce
an intra-path contrastive learning framework aimed at encouraging closer alignment between related
representations by reducing their mutual divergence:

Lintra= −
∑
v∈V

log
∑

n∈V+
v

exp(hv(hn)
T
/τ)∑

j∈V exp(hv(hj)
T
/τ)

, (7)

where h denotes the embedding vector of the node and j denotes the negative node.

3.3 Preparation for Path Aware Contrastive Learning

This section will introduce how to find sample paths of the path-aware contrastive learning. Our
ultimate target is to bring the target node on the center path closer to the nodes on the positive path
through the path. Random walk sampling with the target node as the starting point is an option.
However, since we define our own way of obtaining the center path, the path obtained by random
walk sampling is not guaranteed to have a high similarity with our center path, since it can only
determine that it has the same starting point. The meta-path sampling approach is not available for
the recommendation task we study because we only have a simple user-item binary graph. To our
knowledge, few studies have performed contrastive learning between paths, while our study has
center paths that we define, so we need a corresponding positive path sampling method which can
ensure that the computation is not too large and the similarity is also good.

To better capture the time dynamics and structural patterns in user-item interaction graphs, we propose
a two-stage path sampling method termed Target-guided Random Walk. This strategy integrates
deterministic time traversal with stochastic exploration, enabling sampled paths to reflect both the
structured information flow and the inherent uncertainty of user behavior.

Formally, each edge (u, i) ∈ E is associated with a timestamp t(u, i) ∈ T . For the set of center
paths Pv of the target node v, we define a center path C = (v1, v2, . . . , vn), C ∈ Pv , constructed by
following the time interaction sequence such that:

t(vi, vi+1) ≤ t(vi+1, vi+2), ∀i = 1, . . . , n− 2 (8)

This path reflects a plausible trajectory of user or item interaction based on actual historical data.

We divide the sampling process into two stages to obtain path C’s positive path set P+
C :

Stage 1 (Target-guided traversal): We deterministically follow one center path C ∈ Pv from the start
node v1 to the intermediate node vβ , where β is a hyperparameter controlling the number of steps
before random walking. The partial path is denoted as:

P (1) = (v1, v2, . . . , vβ) (9)

Stage 2 (Conditional random walk): Starting from node vβ , we conduct a time-aware conditional
random walk to generate the remaining n− β nodes. At each step j, the next node v′j+1 is sampled
from the neighborhood N (v′j) based on a temporally-biased transition probability T P(v′j) :

T P(v′j) = Softmaxv∈N (v′
j)

(
1

∆t(v′j , v)
· w(v′j , v)

)
, (10)

where ∆t(v′j , v) = t(v′j , v)− tlast captures the relative time gap, and w(v′j , v) denotes a tunable edge
weight that can incorporate interaction frequency or node similarity. The second-stage path P (2) is
defined as a sequence of nodes generated via a time-aware random walk process:

P (2) = (v′β+1, . . . , v
′
n), where v′j+1 ∼ T P(v′j) for j = β, . . . , n− 1 (11)

The final sampled path is defined as:

P = P (1) ∪ P (2) = (v1, . . . , vβ , v
′
β+1, . . . , v

′
n) (12)

This hybrid sampling mechanism ensures that the sampled paths maintain time consistency with real-
world interaction sequences while introducing stochasticity to enhance path diversity and coverage.
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3.4 Path Aware Contrastive Learning

The inter-path loss introduced in this section leverages representative paths extending from the target
node as positive counterparts of the center path, enabling the model to align semantically similar
paths and mitigate the ambiguity of single-node semantics.

To perform inter-path contrastive learning, we need to encode the paths. Since we are sampling
the paths based on time series, we consider incorporating time information in the encoding of the
paths. We use Temporal Context Encoding[11] to get the encoding of the timestamps e. We show
specific coding methods in A.5. Since the timestamp in the recommender system is an attribute of
the user-item relationship, i.e., it is a time code corresponding to each edge on the graph. So it is
necessary to choose a suitable way to fuse node and edge information. In this paper, the Hermitian
inner product is chosen as the interaction between node embedding and time embedding. The rotation
on the complex plane maintains the invariance of the relationship between the node embedding and
the time embedding, so that the distance between the two in the complex plane does not change
due to the rotation. Normalizing the time embedding and then doing the Hermitian inner product
operation with the node embedding, i.e., rotating the node embedding by a certain angle in the
complex plane. For node embeddings and time embeddings, first treat the first half of the dimension
of the embedding vector as the real part xreal, ereal and the second half of the dimension as the
imaginary part ximg, eimg. Perform the Hermitian inner product with the edges from the farthest
node of the path towards the center node in the following order:

w0 = x
′

0,

w
′real
i−1 = wreal

i−1 ⊙ ereali + wimg
i−1 ⊙ eimg

i ,

w
′img
i−1 = −wreal

i−1 ⊙ eimg
i + wimg

i−1 ⊙ ereali ,

w
′

i−1 =
(
w

′real
i−1 ∥ w

′img
i−1

)
wi = x

′

i + w
′

i−1,
hP = wn

n ,

(13)

where ⊙ denotes the elemental product of vectors, wi is the intermediate computation, i denotes the
order of nodes on the path, i ∈ [0, L], and L is the path length.

Similar to Eq.7, the contrast loss between paths is defined as follows:

Linter = −
∑
v∈V

∑
C∈Pv

log
∑

P∈P+
C

exp(hC(hP )
T
/τ)∑

J∈Pv
exp(hC(hJ)

T
/τ)

(14)

3.5 Gradient Analysis and Comparative Study of Contrastive Losses

Contrastive learning enhances representation learning by encouraging proximity between positive
samples and separation from negatives. In this section, we provide a detailed gradient derivation for
the intra-path and inter-path contrastive losses and analyze their roles in optimization.

Gradient of Intra-path Contrastive Loss. For the gradient of the intra-path loss with respect to
the target node embedding, we differentiate the Eq.7:

∂Lintra

∂hv
= −

∑
n∈V+

v

exp(hvh
T
n/τ)

Zintra

hn

τ
+
∑
j∈V

exp(hvh
T
n/τ)

Zintra

hj

τ
(15)

where Zintra is the partition function given by:

Zintra =
∑

n∈V+
v

exp(hvh
T
n/τ)+

∑
j∈V

exp(hvh
T
n/τ) (16)

The gradient analysis reveals that the intra-path loss encourages positive nodes closer to the target
node while pushing negative nodes away. The strength of this attraction-repulsion mechanism is
modulated by the temperature parameter τ .
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Gradient of Inter-path Contrastive Loss. Recalling the inter-path loss from Eq.14, we compute
the gradient w.r.t. with respect to the center path embedding hC :

∂Linter

∂hC
= −

∑
P∈P+

C

exp(hCh
T
P /τ)

Zinter

hP

τ
+
∑
J∈P

exp(hCh
T
J/τ)

Zinter

hJ

τ
(17)

where Zinter is the partition function defined as:

Zinter =
∑

P∈P+
C

exp(hCh
T
P /τ) +

∑
J∈P

exp(hCh
T
J/τ) (18)

The gradient analysis indicates that the inter-path loss minimizes the discrepancy between the center
path and positive paths while distinguishing them from negative paths.

From the gradient perspective, the intra-path loss directly updates node embeddings through their
pairwise similarities weighted by influence functions, resulting in localized embedding refinement.
In contrast, the inter-path loss updates path-level representations that indirectly influence the node
embeddings through path encoding networks, promoting global consistency across paths. Combining
these two losses yields a complementary synergy: intra-path loss strengthens local neighborhood
coherence within sampled paths, while inter-path loss encourages global structural alignment across
diverse paths. This joint optimization facilitates learning robust and discriminative representations
for recommendation tasks. We provide further analysis in A.6.

3.6 Model Training

In this section, we will present the overall loss of the model. As with most contrastive learning
methods, our model loss is composed of the BPR loss for interactions between user items and the
contrastive learning loss.

L = LBPR + λ1Lintra + λ2Linter + λ3∥Θ∥2 (19)

where [λ1, λ2, λ3] denotes the regularized penalty coefficient and Θ corresponds to the parameters of
the model. We give the values of lambda in A.7.

4 Experimental Results

4.1 Experimental Settings

Our experiments utilize three publicly available, real-world datasets—ML-1M, Ciao and Ama-
zon—that offer rich information, including both user-item ratings and the corresponding timestamps
of user interactions. Each dataset is divided into training and test sets by randomly selecting 80% of
the rating entries for training purposes, while the leftover 20% is reserved to evaluate the model’s
performance during testing. To assess the effectiveness of our recommendation approach, we rely
on two widely adopted evaluation metrics: Recall@K and NDCG@K. In our experiment, K is set
to 10 and 20. To evaluate performance differences, we conduct a comparison between PECL and
nine state-of-the-art recommendation approaches: SimGCL[33], SGL[26],SCCF[29], LightGCN[10],
NGCF[25], SelfCF[34], SEPT[32], GAIPSRec[30], IHGCL[19].

4.2 Comparative Experiments

To validate the effectiveness and generalizability of the proposed PECL, we conducted a compre-
hensive performance comparison against several baseline models using three distinct datasets. We
compute the average results 5 times for each dataset. The results of these experiments are presented
in Table 1, and the key findings are summarized as follows: The experimental results demonstrate
that PECL outperforms all baseline models in both Recall@K and NDCG@K across the evaluated
datasets. In particular, PECL achieves significant gains over the best-performing baseline models
in terms of NDCG@10 on the Ciao, with improvement rate of 4.52%. The improvement can be
attributed to the following key factors: (1) PECL generates multiple complementary nodes and
paths through its contrastive learning framework. These nodes and paths are not simply based on
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Datasets Metrics NGCF SGL LightGCN SEPT SelfCF SimGCL SCCF GAIPSRec IHGCL PECL

ML-1M

NDCG@10 0.3279 0.3645 0.3542 0.3529 0.3629 0.3667 0.3364 0.4096 0.4148 0.4206
NDCG@20 0.3115 0.3981 0.3476 0.3462 0.3475 0.3523 0.3274 0.3985 0.4006 0.4024
Recall@10 0.1275 0.1429 0.1443 0.1357 0.1514 0.1542 0.1437 0.1582 0.1601 0.1676
Recall@20 0.2161 0.2510 0.2419 0.2218 0.2259 0.2373 0.2501 0.2514 0.2565 0.2605

Ciao

NDCG@10 0.0298 0.0376 0.0354 0.0354 0.0371 0.0369 0.0297 0.0362 0.0364 0.0393
NDCG@20 0.0353 0.0447 0.0435 0.0368 0.0451 0.0471 0.0360 0.0473 0.0450 0.0486
Recall@10 0.0338 0.0483 0.0420 0.0433 0.0439 0.0476 0.0444 0.0481 0.0476 0.0496
Recall@20 0.0520 0.0713 0.0687 0.0678 0.0709 0.0721 0.0663 0.0728 0.0691 0.0745

Amazon

NDCG@10 0.0785 0.1091 0.1016 0.1013 0.1054 0.1021 0.1086 0.1105 0.1132 0.1169
NDCG@20 0.0913 0.1256 0.1183 0.1156 0.1195 0.1243 0.1208 0.1240 0.1309 0.1354
Recall@10 0.0813 0.1135 0.1084 0.1034 0.1089 0.1145 0.1029 0.1128 0.1193 0.1241
Recall@20 0.1257 0.1501 0.1528 0.1486 0.1548 0.1691 0.1494 0.1664 0.1764 0.1820

Table 1: NDCG and Recall of PECL and baseline models.

random augmentations, but on the rich paths formed through both direct interactions and higher-order
connections within the user-item graph. This mechanism ensures that PECL can effectively learn
diverse representations that better capture the complex relationships between users and items. (2)
Unlike traditional recommendation models that focus solely on direct user-item interactions, PECL
introduces a novel contrastive learning strategy that incorporates path-based comparisons. By lever-
aging multiple interaction paths between users and items, PECL ensures that richer and more diverse
representations of user preferences are captured. This path-based contrast helps the model discern
nuanced patterns in the data, allowing for more accurate recommendations. (3) The combination
of temporal information and collaborative filtering principles enables PECL to balance historical
interaction patterns with the evolving preferences of users, resulting in improved predictive accuracy
and user satisfaction.

When analyzing the performance of all baseline models, it is clear that self-supervised learning
(SSL)-enhanced methods consistently outperform traditional recommendation approaches. This trend
is especially noticeable in models such as SimGCL and SGL, which incorporate SSL techniques into
the learning process. While these methods are useful, they fail to fully capture the complexity of
user-item interactions and their higher-order relationships. On the other hand, PECL’s path-based
contrastive learning directly addresses this issue by comparing different paths within the user-item
interaction graph. This allows PECL to learn richer and more meaningful representations.

4.3 Ablation Study

To verify the effectiveness of the core components in PECL, we conducted ablation studies by
designing the following model variants: PECL w/o Inter-Path Contrast(w/o inter): This variant
removes the inter-path contrastive learning mechanism. PECL w/o Intra-Path Contrast(w/o intra):
This version excludes the intra-path contrast mechanism. PECL w/o Path Sampling(w/o PS): In
this variant, we replace our proposed path sampling method with a standard random walk sampling
technique. PECL (Full): The complete model incorporating all three components, serving as the
baseline for comparison. The performance of these variants is summarized in Fig.2 in terms of
Recall@10, NDCG@10 on the ML-1M and Ciao.

When the inter-path contrast mechanism is removed, the model experiences substantial performance
degradation, with a decline of 27.4% in Recall@10 on ML-1M. This demonstrates that contrasting
multiple paths effectively enhances the model’s capability to capture diverse interaction patterns across
different user-item paths, leading to more comprehensive and robust representations. The exclusion
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Figure 3: Effect of hyperparameters on ML-1M.

of intra-path contrast also results in noticeable performance drops, particularly in both metrics, where
the model shows a 7.3% reduction in NDCG@10 and a 13.7% reduction on ML-1M. This indicates
that contrasting within a single path helps the model refine its representations by reinforcing the
consistency of the learned embeddings within each path, thus preventing noisy or trivial patterns
from dominating. Replacing our path sampling method with random walk sampling (PECL w/o PS)
leads to declines in both Recall and NDCG scores, with a 11.3% drop in Recall@10 on ML-1M.
This demonstrates that our proposed path sampling strategy is more effective in selecting informative
and diverse paths that contribute to more discriminative and expressive user-item representations.
PECL w/o PS’s decline is least because it does not ablate any contrast loss. The full model (PECL)
consistently outperforms all ablation variants, indicating that each proposed component contributes
to the overall performance improvement. Notably, the inter-path contrast mechanism exhibits the
most significant impact, highlighting its crucial role in capturing diverse and informative paths.

4.4 Hyperparameter Analysis

To comprehensively evaluate the impact of hyperparameters on PECL performance, we performed a
series of controlled experiments by varying key hyperparameters. Specifically, we focus on three
crucial hyperparameters: α (Eq.6), β (Eq.9), and τ (Eqs.7, 14). We conducted these experiments on
the ML-1M with NDCG@10 and Recall@10. Experiments on Ciao are shown in A.8.5.

We vary α in {1, 2, 3, 4} to assess how the number of positive nodes influences the model’s ability to
capture various interaction patterns. As depicted in Fig.3a, increasing the α from 1 to 2 improves
the performance, with an 4.4% gain in NDCG@10 on ML-1M. However, further increasing α to 4
leads to performance decreases. When the value of alpha is too small, the model tends to capture too
many positive nodes, leading to overfitting. Conversely, when alpha is too large, the model may fail
to capture sufficient path nodes, resulting in potential information loss. Therefore, setting alpha to
2 can effectively balance the model’s generalization ability and the capture of path nodes, thereby
enhancing the overall performance.

We examine β in {1, 2, 3, 4, 5} to verify the effect of this parameter on our path sampling method.
As shown in Fig.3b, increasing the number of positive nodes generally improves performance, with
the optimal performance observed at β = 4. further increase β beyond 4 leads to performance
degradation. This is likely because excessive positive nodes introduce redundant, diluting the
effectiveness of contrastive learning. It is worth noting that the performance improvement when
changing from odd to even is higher when alpha is less than 5. This is due to the fact that in the
user-item bipartite graph, paths grow even lengths with the addition of nodes of the same type, which
allows for the learning of more efficient path node information.

We vary τ in {0.01, 0.03, 0.05, 0.07, 0.09} to investigate its effect on representation discrimination.
As depicted in Fig.3c, the impact of τ is evident in both metrics. When τ is set to 0.05, the
model achieves the highest performance, indicating that a moderate temperature provides a balanced
contrastive distribution. Setting τ too low results in overly sharp distributions, making it difficult
for the model to differentiate similar paths. Conversely, a higher τ produces excessively smooth
distributions, weakening the contrastive effect.
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5 Conclusion

In this work, we proposed a novel path-enhanced contrastive learning framework for recommenda-
tion, which leverages the structural information embedded in multiple interaction paths to enhance
representation learning. Unlike conventional contrastive learning methods that primarily focus on
node-level or edge-level interactions, PECL explores both inter-path and intra-path relationships,
effectively capturing richer contextual dependencies among users and items. Additionally, our tailored
path sampling strategy mitigates the risk of redundant or noisy paths, enabling more informative
contrastive learning signals. Extensive experiments conducted on three real world datasets, ML-1M,
Ciao and Amazon, demonstrate the effectiveness of the proposed framework, highlighting the im-
portance of path-level contrastive learning and the proposed path sampling strategy. In summary,
this study underscores the potential of integrating path-level information into contrastive learning
for recommendation tasks, offering a promising direction for further exploration. Future work may
extend this framework by incorporating adaptive path sampling techniques or integrating additional
auxiliary information to further improve recommendation accuracy and robustness.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are aligned with contributions
and scope. All claims match theoretical and experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: As we have discussed in A.8.5, the presence of the hyperparameter alpha
has a small improvement in model performance, but if alpha is removed it can reduce the
screening work for the number of active nodes, so the presence or absence of alpha needs to
be analyzed specifically.

Guidelines:
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, we provide a complete derivation/proof for our proposed probabilistic
variation metric in Section3.5 and A.6.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, all experimental settings, codes, pesudo code and datasets are provided in
paper and github.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, all experimental settings, codes, and datasets are provided in paper,
supplemental material and github.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, all experimental settings are provided in Section4.14.4A.7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We retrained PECL five times and computed p-values.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provide sufficient information of computer resources in A.8.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We carefully reviewed the Code of Ethics and confirmed that we have adhered
to each one.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have provide a Section ”Ethic and Broader Impact Statements” in A.9.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: All models and datasets used in this study are publicly accessible.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the creators or original owners of assets are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

18

paperswithcode.com/datasets


Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Notation and Description

Symbol Description
U Set of users
I Set of items
R User-item interaction matrix
G Bipartite graph representing interactions
V Set of nodes (users and items)
E Set of edges (interactions)
Hk Node embeddings at layer k
Ã Symmetrically normalized adjacency matrix
pr Restart probability in random walk

Nneighbor Set of neighbors
τ Temperature parameter in contrastive loss
Pv Path set for node v

hu, hi Embeddings of user u and item i

LBPR BPR loss function
Lintra Intra-path contrastive loss
Linter Inter-path contrastive loss

Table 2: Symbols and descriptions used in the PECL model

A.2 Preliminary

CF is a foundational technique in recommender systems, designed to identify and suggest items that
users are likely to engage with, inferred from implicit feedback such as clicks, purchases, or other
forms of interaction. Consider a set of users U = {u} and a set of items I = {i}. The user-item
interaction data is captured in a binary matrix R ∈ {0, 1}|U|×|I|, where an entryRui = 1 indicates
that user u has interacted with item i, andRui = 0 otherwise. Using this matrix R, recommendation
models aim to infer unobserved interactions and predict user preferences.

In recent approaches, GNNs have been leveraged to enhance collaborative filtering by modeling
the user-item interactions as a bipartite graph G = (V, E), where the node set V = U ∪ I includes
both users and items, and the edge set E = {(u, i)|Rui = 1} captures observed interactions. GNN-
based methods learn expressive user and item embeddings by recursively aggregating information
from neighboring nodes in the graph. Typically, this process involves two major phases: infor-
mation propagation to propagate neighborhood signals, and update operations to generate refined
representations:

h
(k)
u = AGGREGATE(k)

({
h
(k−1)
v |v ∈ N (u)

})
,

hu = UPDATE(k)(h
(0)
u , h

(1)
u , . . . , h

(k)
u ),

(20)

where h
(k)
u is the updated representation of node u at layer k and N (u) denotes the neighboring

nodes of node u.
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A.3 Pesudo Code

Algorithm 1: PECL Framework Training Algorithm
Input: User-item interaction graph G = (U ∪ I, E)
Embedding dimension E, number of LightGCN layers K
Number of sampled paths per node S, path length L
Two-stage path sampling parameter β
Number of positive/negative samples Np, Nn

Learning rate η, total training epochs T
Output: Learned embeddings H∗ for users and items

1 Initialize embeddings H(0) for all nodes randomly;
2 Precompute normalized adjacency matrix Ã;
3 for epoch = 1 to T do

// LightGCN Embedding Propagation
4 H(0) ← initial embeddings;
5 for k = 1 to K do
6 H(k) ← Ã×H(k−1);
7 Compute final embeddings:

H∗ =

K∑
k=0

αkH
(k)

where αk are layer weights;
// Path Node Aware Contrastive Learning

8 foreach node v ∈ U ∪ I do
9 Pv ← empty set to store sampled paths;

10 for s = 1 to S do
11 p← Sample path of length L from node v via random walk with restart (temporal

constraints);
12 Add p to Pv;

// Construct positive node set V+
v

13 V+
v ← {};

14 foreach path p in Pv do
15 For positive node u in p, add u to V+

v ;
16 Sample Nn negative nodes;
17 Compute intra-path contrastive loss Lintra using Eq.(7) on embeddings H∗ for node v,

V+
v , and negatives;

// Path Aware Contrastive Learning
18 foreach node v ∈ U ∪ I do
19 Qv ← empty set for sampled paths;
20 for s = 1 to S do
21 p← Two-stage path sampling of length L from node v:

• Deterministic walk β steps along center path
• Conditional random walk for remaining L− β steps;

Add p to Qv;
22 foreach pi in Qv do
23 Sample negative path pj ;
24 Encode path into vector embeddings using temporal context encoding and Hermitian

inner product;
25 Compute inter-path contrastive loss Linter on pairs;

// Update embeddings
26 Update H(0) using gradients from Lintra and Linter via optimizer with learning rate η;
27 return H∗;
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A.4 Complexity Analysis

In this section, we analyze the computational complexity of the PECL framework, focusing on its
main components: the LightGCN backbone, path node-aware contrastive learning, and the path-aware
contrastive learning with path sampling.

A.4.1 Complexity of LightGCN Backbone

The LightGCN backbone operates on a bipartite graph G = (U ∪ I, E) with |U| users, |I| items, and
|E| edges representing observed interactions.

At each layer k of LightGCN, the embedding update is a sparse matrix multiplication of the normalized
adjacency matrix Ã with the embedding matrix H(k−1). Since Ã has 2|E| non-zero entries (due to
the bipartite graph symmetry), the cost per layer is approximately:

O(|E| × E), (21)

where E is the embedding dimension.

For K layers, the total complexity for embedding propagation is:

O(K × |E| × E). (22)

Finally, the weighted sum aggregation of embeddings from all layers has a cost of:

O((|U|+ |I|)×K × E), (23)

which is typically negligible compared to the sparse matrix multiplications.

A.4.2 Complexity of Path Node Aware Contrastive Learning

The path node-aware contrastive learning module involves:

• Random walk with restart path sampling: For each target node v, paths of length L are
sampled by random walks guided by temporal constraints. Assuming S paths per node, the
sampling complexity per node is roughly:

O(S × L). (24)

Since the random walk step involves selecting neighbors, and the neighbor size is generally
small compared to |U| or |I|, this step is efficient.

• Positive node selection and influence computation: For each node v, the positive node set
V+
v is constructed by checking path membership. This involves checking S paths of length

L, thus:
O(S × L). (25)

• Contrastive loss computation: The intra-path contrastive loss in Eq.(7) involves computing
dot products between the target node and positive nodes, and between the target node and
all negative nodes. Let Np = |V+

v | be the number of positive nodes and Nn the number of
negative samples per node. The cost per node is:

O((Np +Nn)× E). (26)

Typically, Np and Nn are kept small by sampling to maintain efficiency.

Overall, the complexity of this module is:

O(|U|+ |I|)×
(
S × L+ (Np +Nn)× E

)
. (27)

A.4.3 Complexity of Path Aware Contrastive Learning with Path Sampling

The path-aware contrastive learning involves:
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• Two-stage path sampling: - The first stage deterministically traverses β nodes along the
center path, costing:

O(β). (28)
- The second stage performs conditional random walks of length L− β, each step involving
a softmax over the neighbors. Assuming average degree d, the complexity per step is:

O(d), (29)

thus for the random walk:
O((L− β)× d). (30)

The total sampling complexity per path is:

O(β + (L− β)× d). (31)

• Path encoding and contrastive loss: Encoding a path of length L using temporal context
encoding and Hermitian inner products involves:

O(L× E) (32)

operations per path.
The inter-path contrastive loss computes similarity between pairs of paths or between a
center path and positive paths. If M positive paths are sampled per center path, the cost per
target path is:

O(M × L× E). (33)

Considering all target nodes and their sampled paths, the total complexity is approximately:

O((|U|+ |I|)× (S × (β + (L− β)d) +M × L× E)). (34)

A.4.4 Summary

The overall computational complexity of PECL is dominated by the LightGCN embedding propa-
gation and the path-aware contrastive learning components. Given typical sparse user-item graphs
where |E| ≫ |U|+ |I|, and carefully controlled sampling parameters S, L, β, M , Np, and Nn, the
model remains scalable and efficient for large-scale recommendation tasks.

A.5 Encoding of Timestamps

The time embedding is computed as follows:

e [k] =

{
sin
(
timestamp

10000

)2k/d
, k%2 = 0

cos
(
timestamp

10000

)2(k−1)/d
, k%2 ̸= 0

(35)

where k is a certain dimension of temporal embedding e, d denotes the dimension of temporal
embedding, and timestamp denotes the timestamp. The model can learn certain temporal dependencies
of information dissemination paths through the temporal context of t.

A.6 Comparison of the Two Loss Functions

Aspect Intra-path Contrastive Loss Inter-path Contrastive Loss
Granularity Node-level Path-level
Positives Definition Nodes frequently appearing in paths Paths with spatiotemporal consistency
Optimization Pulls nodes closer within same path Pulls similar paths together, separates others
Computational Cost Lower (scales with node set) Higher (depends on path sampling)
Expressiveness Local semantic focus Global structural discrimination

Table 3: Comparison of the Two Loss Functions

The gradient expressions of both losses show a common structure: positive embeddings attract
while negative embeddings repel. The interaction between these two contrastive losses provides a
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multi-level optimization strategy: the intra-path loss fine-tunes local relations between nodes, while
the inter-path loss preserves the global path consistency. The balance between these gradients is
controlled by the temperature τ , which affects the sharpness of the similarity distribution. Both
intra-path and inter-path contrastive losses are designed to improve the quality of node representations
by leveraging structural information in the user-item interaction graph, but they operate at different
granularities:

• Intra-Path Loss focuses on the local structure within a single path by contrasting the target
node against nodes inside its sampled paths. It captures fine-grained relationships and
encourages tight clustering of nodes that co-occur frequently within interaction paths. This
helps the model learn nuanced user-item correlations informed by intermediate nodes on the
paths.

• Inter-Path Loss, on the other hand, operates at the path level by contrasting entire paths
against each other. This loss mitigates the randomness and potential noise introduced by
path sampling by encouraging the model to pull positive paths closer and push apart negative
or unrelated paths. It effectively smooths the representation space by aligning semantically
or temporally related paths.

A.7 Gradient Normalization Strategy for Balancing Loss Terms

To ensure balanced optimization when combining the BPR loss with contrastive components, we
adopt a gradient normalization strategy to determine the weighting coefficients λ1 and λ2 in the total
loss Eq.19. This strategy ensures that the gradients of all loss components have similar magnitudes
during backpropagation, thereby avoiding dominance by any single term. The weighting coefficients
are computed as follows:

λ1 =
∥∇ΘLBPR∥2
∥∇ΘLintra∥2

, λ2 =
∥∇ΘLBPR∥2
∥∇ΘLinter∥2

(36)

Here, Θ denotes the full set of model parameters, and ∇ΘLi is the gradient of loss component Li

with respect to Θ. Each gradient norm is computed as:

∥∇ΘLi∥2 =

√√√√∑
p∈Θ

(
∂Li

∂p

)2

(37)

To reduce the variance caused by mini-batch noise, we optionally apply exponential moving average
smoothing over multiple batches:

ḡ
(t)
i = α · g(t)i + (1− α) · ḡ(t−1)

i (38)

where α ∈ [0.9, 0.99] is the decay rate, and g
(t)
i denotes the raw gradient norm at batch t.

This normalization-based tuning of λ1 and λ2 leads to more stable convergence and improved model
performance by balancing the optimization pressures from different loss components.

A.8 Experimental

A.8.1 Device

All experiments we conducted are performed with Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz,
Tesla A100, and 256GB memory, running the Ubuntu 20.04.4 LTS operating system.

A.8.2 Datases

We present information on the three real-world datasets we use in Table4.
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ML-1M Ciao Amazon
Number of users 6,040 101,998 6,170
Number of items 3,706 5,441 2,753

Number of ratings 1,000,209 268,975 195,791
Sparrsity 95.53% 99.95% 98.85%
Table 4: Features of the evaluation datasets

A.8.3 Baselines

SimGCL[33] introduces contrastive learning into graph collaborative filtering by generating per-
turbed graph views and maximizing agreement between them. It effectively enhances graph-based
recommendation by mitigating oversmoothing issues.
SGL[26] employs contrastive learning to leverage both graph structure and node attributes, creating
multiple views of the graph to learn robust user and item embeddings.
SCCF[29] unifies contrastive learning and collaborative filtering by jointly optimizing self-supervised
signals and recommendation loss, enhancing robustness and generalization.
LightGCN[10] simplifies traditional GCNs by removing unnecessary components such as feature
transformation and nonlinear activation, focusing purely on message passing to improve recommen-
dation performance.
NGCF[25] integrates user-item interaction data into graph neural networks, allowing for richer and
deeper embeddings that capture higher-order connectivity patterns.
SelfCF[34] adopts self-supervised contrastive learning to generate self-augmented views for collabo-
rative filtering, aiming to mitigate data sparsity and improve recommendation accuracy.
SEPT[32] leverages contrastive learning to generate positive and negative samples for self-supervised
learning, effectively improving collaborative filtering by aligning and contrasting multiple graph
views.
GAIPSRec[30] introduces a graph attention network that captures high-order neighbor information
through a heterogeneous graph sampling and path aggregation mechanism. It leverages attention and
gating to integrate multi-hop dependencies and mitigate over-smoothing.
IHGCL[19] introduces an intent-guided heterogeneous graph contrastive learning framework. It
leverages meta-path based intent representations with dual contrastive learning and employs a bottle-
necked autoencoder to reduce noise, improving recommendation accuracy.

A.8.4 Ablation Study

0.4024

0.3945

0.3701

0.3836

0.35

0.36

0.37

0.38

0.39

0.40

0.41
 full
 w/o PS
 w/o inter
 w/o intra

(a) ML-1M NDCG@20

0.2605

0.2514

0.2295

0.2443

0.18

0.20

0.22

0.24

0.26

 full
 w/o PS
 w/o inter
 w/o intra

(b) ML-1M Recall@20

Figure 4: PECL and its variants on ML-1M.
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Figure 5: PECL and its variants on Ciao.

We supplement the top-20 results from the ablation experiments(Figs.4,5) with experimental conclu-
sions consistent with the main text section.

A.8.5 Hyperparameter Analysis

The experimental supplement for hyperparameters on the Ciao dataset is showed in Figs. 678.
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Figure 6: α on Ciao

0.0297

0.0349

0.0365

0.0393

0.0371

0.0402

0.045

0.0468

0.0496

0.0479

0 1 2 3 4 5 6
0.028

0.030

0.032

0.034

0.036

0.038

0.040

0.036

0.038

0.040

0.042

0.044

0.046

0.048

0.050

R
ec

al
l@

10

N
D

C
G

@
10

 NDCG@10
 Recall@10

Figure 7: β on Ciao
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Figure 8: τ on Ciao

In Fig.6, we can see that the performance growth when alpha changes from 1 to 2 is not very much.
However, if we fix alpha to 1, we can eliminate the positive node sampling work (Eq.6), which
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reduces a certain computational complexity, and this problem can be analyzed specifically in a specific
scenario.

A.9 Ethic Impact Statements

Our paper uses real-world, publicly available datasets that do not raise ethical impact.
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