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Abstract

Learning from scarce labeled data with a larger pool of unlabeled samples, known
as semi-supervised few-shot learning (SS-FSL), remains critical for applications
involving tabular data in domains like medicine, finance, and science. The existing
SS-FSL methods often rely on self-supervised learning (SSL) frameworks devel-
oped for vision or language, which assume the availability of a natural form of
data augmentations. For tabular data, defining meaningful augmentations is non-
trivial and can easily distort semantics, limiting the effectiveness of conventional
SSL. In this work, we rethink SSL for tabular data and propose Separated-at-Birth
Alignment (SeBA), a joint-embedding framework for SS-FSL that eliminates the
dependence on augmentations. Our core idea is to separate the data into two
independent, but complementary views and align the representations of one view
to mirror the nearest-neighbor correspondence of the data in the second view. A
type-aware separation scheme ensures robust handling of mixed categorical and
numerical attributes, while a lightweight architecture with ensemble aggregation
improves generalization and reduces sensitivity to misselection of model parame-
ters. An experimental study conducted in various benchmark datasets demonstrates
that SeBA often achieves state-of-the-art performance in tabular SS-FSL, opening
a new avenue for SSL paradigm in the domain of tabular data.

1 Introduction

Learning with a limited amount of labeled data remains a fundamental challenge in machine learning
and data analysis. Although collecting additional annotations is costly, access to raw unlabeled data
is often inexpensive. This imbalance motivates the practical setting of semi-supervised few-shot
learning (SS-FSL), where classification must be performed with scarce labeled data and a large pool
of unlabeled samples.

The tabular modality poses unique challenges for typical SS-FSL methods, which rely on pretraining
with unlabeled data followed by fine-tuning on a few labeled examples (see Figure[Ta)). State-of-the-art
pretraining approaches often use self-supervised learning (SSL), which encourages models to produce
similar representations for semantically related positive pairs while avoiding collapse to trivial
solutions [Wang and Isolal [2020]. Such pairs are usually created by sampling multiple augmentations
of the same data point. In CV, augmentations are straightforward: image transformations such as
cropping, rotation, or color jittering yield valid semantically consistent samples. However, for tabular
data, there is no natural way to define proper augmentations. Poorly chosen transformations, such as
zero masking, Gaussian noise, or sampling features from marginal distribution, can distort semantics
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Learning (SS-FSL) setup. The for modalities such as images, they must be designed much more carefully

model is pretrained on a large pool  for tabular data. Improperly designed augmentations can generate samples

of unlabeled data and fine-tuned from outside the data manifold (decreasing car age, but increasing mileage),

on a few labeled examples. obfuscate the categorical values (neither option marked as true), or assign
incorrect values (number of car seats must be an integer).

Figure 1: Typical Semi-supervised Few-shot Learning (SS-FSL) approaches (a) pretrain their repre-
sentations on large pools of unlabeled data, usually via Self-supervised Learning (SSL). In the case
of tabular data, the state-of-the-art augmentation-based SSL approaches cannot be directly applied,
due to challenges with defining proper augmentations (b).

or even generate out-of-distribution samples (see Figure[Ib), ultimately undermining the effectiveness
of SSL.

In this paper, we rethink SSL for tabular data and show that, with carefully designed positive
pairs, it yields significantly stronger tabular representations than previously assumed. Instead of
aligning the representations of positive pairs created via augmentations, we introduce Separated-
at-Birth Alignment (SeBA), illustrated in Figure 2] SeBA projects data into two complementary
subspaces: feature and target views. The model is then pretrained by identifying nearest-neighbor
correspondences in the target view, using only the information encoded in the feature view. This
replaces the problematic reliance on augmentations with a nearest-neighbor graph. To properly handle
mixed data types, we employ a type-aware separation scheme that accounts for both categorical and
numerical features, ensuring that the resulting projections remain semantically meaningful.

SeBA requires far less dataset-specific knowledge than hand-crafting augmentations, making it
practical and easy to apply. Moreover, the model pretrained by SeBA is lightweight and thus less
prone to overfitting for small datasets. Finally, the applied ensemble strategy minimizes the need
for the selection of model’s parameters, which is crucial in the FSL scenario. The experimental
results clearly show that SeBA generalizes effectively in a wide variety of tabular datasets, achieving
impressive results in few-shot classification.

2 Method

Overview. The design of SeBA follows Self-supervised Joint-Embedding Architectures (JEAs),
which learn through aligning semantically-related positive pairs of data in the representation
space [Chen et al.| 2020, [He et al.l 2020] and pushing away the unrelated ones. Unlike conventional
JEAs, SeBA does not rely on sampling multiple data augmentations for the construction of positive
pairs, which is problematic for tabular data. Instead, in every minibatch, SeBA separates the tabular
records "at birth" into two random complementary views, which we denote as feature and target views.
The model is trained to align the data representations of feature views according to the similarity
graph induced by the target views, therefore, learning semantically meaningful correspondences
without relying on augmentations. We outline the schema of SeBA in Figure [2] and describe its
components in detail below.

Separating the data at-birth. Let 3 be a minibatch of (unlabeled) data points, and let m € {0, 1}
be a binary mask vector sampled once per batch that defines features included in each view. The
proportion of 1-s in m is controlled by the hyperparameter named separation ratio. For every x € B,
we create a feature view:

zy=x0(1—m) (1
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Figure 2: Representation learning via Separated-at-Birth Alignment (SeBA). In each minibatch, we
separate the columns of tabular data "at-birth" into two complementary and independent subsets,
which define target an feature views. Instead of augmentation, semantically-related positive pairs
for a pretraining contrastive task are defined using the nearest neighbor relation in their target view
(upper side). The encoder is trained to create the representation of the feature view, which aligns the
positive pairs defined in the target view (bottom side). To allow the encoder to create general data
representation, SeBA uses a conditioned projector to build a task-specific representation for every
separation mask.

and a target view:

Ty =xOMm, 2)
where © is an element-wise multiplication, and x4,z € RP. As such, the target and feature views
are complementary and independent.

Target similarity graph. We use target views to define the positive data pairs with respect to the
sampled mask m. For each sample x in the batch, we identify its nearest neighbor in terms of the
target views: )
' =arg min d(z,a). 3
gaeg\{w} (¢, ar) (3)
In other words, m defines positive pairs (x, z’) based on the nearest-neighbor graph defined in the
target view.

Alignment objective. Finally, we train the encoder to align the feature-view representations to
match the nearest-neighbor relation defined in the target view. For this purpose, we first construct the
encoder representations of the feature views:

h=f(xg);h' = f(af) “4)
Observe that the feature views x y do not contain unequivocal information about the data separation
scheme m and, as such, it may not be able to solve the alignment task on their own. To address this
problem, SeBA incorporates a conditioned projector 7 : R x RP? — RF, where P is the embedding
shape of 7 [Przewigzlikowski et al.l 2024} [Bordes et al [2023]]. The projector combines the general
feature view representation of the encoder and information about how the data was separated (i.e.
the mask vector m). The projector transforms the encoder representation into the task-specific latent
space:

z=m(h,m);z = =n(h',m), 5)
in which we optimize the alignment objective. The objective takes form of the InfoNCE loss, which
pulls together the positive representation pairs, and pushes away the unrelated ones [[Oord et al.

28 exp(d(z,2'))
YaeB azta €XP (d (Zﬁ m(f(ay), m))>

L(z) = —log (6)



Because SeBA trains on numerous separation schemes (multiple mask vectors), the encoder adapts
repeatedly to different target matching objectives. This exposure yields robust representations that
generalize well to downstream tasks.

3 Experiments

Few-shot learning efficacy. We evaluate SeBA in terms of its performance in downstream few-shot
learning tasks. We compare our method with the state-of-the-art SS-FSL methods, STUNT [Nam
et al., |2023]], and D2R2 [Liu et al. 2024], which we run on exactly the same splits as SeBA.
Moreover, we also report the results of 9 other baselines from [Nam et al., 2023||. They represent the
best supervised, self-supervised and meta-learning approaches (see Appendix [A.3]for more details).

We rank the performance of models in terms of 1- and 5-shot classification on 8 common datasets
used previously by [Nam et al.,[2023} [Liu et al.l 2024]], and report the rank distributions in FigureE]
It is evident that SeBA is significantly better ranked than competitive methods. We report the detailed
classification results in Appendix [B.T]
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Figure 3: Box-plots of 1-shot (left) and 5-shot (right) classification ranks of benchmarked approaches.
SeBA is the most consistently high-ranking method.

Detailed analysis of SeBA. We refer to Appendix [B.2]for a detailed ablation study of the hyperpa-
rameters of SeBA. Moreover, in Appendix [B.3] we demonstrate how the SeBA pretraining objective
corresponds to the downstream few-shot classification tasks, further justifying its design.

4 Conclusion

In this paper, we introduce Separated-at-Birth Alignment (SeBA), a novel Semi-supervised Few-Shot
Learning framework designed for tabular data. SeBA uses the powerful Joint-Embedding Architecture
(JEA) paradigm to pretrain its representations, while avoiding the problematic need to for manual
data augmentation design — the issue that has prevented the use of JEAs for tabular data in the past.
Instead, our core idea is to separate the data "at birth" into two independent, complementary subspaces
and align the representations of one subspace to mirror the nearest-neighbor correspondence of the
data in the second subspace. We demonstrate that this pretraining task indeed captures the semantic
correspondence in a wide variety of tabular datasets.

SeBA achieves impressive performance in few-shot learning on various tabular datasets, confirming
its effectiveness. Our findings open new avenues for further investigations into tabular representation
learning and are a useful foundation for data-constrained applications.
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A Experiment details

A.1 Experimental setup

We follow the benchmark proposed by [Nam et al.,[2023]] and then developed by [Liu et al., [2024]]
verifying the performance of the models in a few-shot learning scenario.

Datasets preparation. In addition to the 8 datasets used in previous SS-FSL benchmarks [Nam
et al.| 2023|], we select 4 more datasets from the OpenML-CC18 benchmark [Asuncion et al.,[2007,
Bischl et al.| 2017]], see Appendix [A.2]for details.

All datasets are randomly divided into train and test sets in a ratio of 5:1. The training data are
treated unlabeled and are used for model pretraining. In addition, 10% of the training data is used for
validation. Once the model is pretrained, it is fine-tuned on the support set and evaluated on the query
set. The support and query sets are randomly sampled from the test set. In the N-shot K-way setting,
the support set contains N examples of each of K classes. We consider 1-, 5-, and 10-shot settings.

Setup of SeBA. We pretrain the encoder and projector of SeBA for 10 000 epochs, using the early
stopping. We stop training when the value of the objective function, measured on the validation set,
stops decreasing for 100 epochs.

Following [Nam et al.| 2023, the encoder is a 2-layer MLP with a hidden dimension of 1024, and the
projector is also a 2-layer network with the same hidden dimension and an embedding dimension of
256, a common choice in contrastive learning [[Chen et al.|[2021]]. In the fine-tuning stage, we freeze
the encoder and train a classification head at the top of the encoder representation using the support
set. For 5- and 10-shot, we use linear probing, while for 1-shot setting, we assign query samples to
the closest class prototypes based on the support set.

Experiments on 1- and 5-shot classification are repeated with 100 different random seeds, while in the
case of 10-shot learning, we use 20 seeds. A higher number of seeds reduces the randomness related
to model initialization and dataset splits. For each train-test split, we sample the support and query
sets 100 times and average the accuracy metrics over all splits and all selections of the support/query
sets.
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A.2 Datasets

The details of the datasets are presented in Table[T]

Table 1: Overview of the datasets used in the experiments, including the number of instances,
proportion of numerical and categorical features, and the number of classes.

Dataset code Dataset # Instances # Features (num., cate.) # Classes
CMC cmce 1473 92,7 3
DIA diabetes 768 8 (8,0) 2
DNA dna 3186 180 (0,180) 3
INC income 48842 14 (6,8) 2
KAR karhunen 2000 64 (64,0) 10
OPT optdigits 5620 64 (64,0) 10
PIX pixel 2000 240 (0,240) 2
SEM semeion 1593 256 (256,0) 10
GES GesturePhaseSegmentationProcessed 9873 32 (32,0) 5
MAR bank-marketing 45211 16 (5,11) 2
PHO phoneme 5404 5(5,0) 2
SAT satimage 6430 36 (36,0) 6
TEX texture 5500 40 (40,0) 11

A.3 Baselines

Along with SeBA, we report the performance of nine methods taken from [Liu et al.,|2024]], which
represent three types of baselines:

1. Supervised. CatBoost [Prokhorenkova et al.,[2018] is considered a shallow SOTA approach
to tabular data; k-NN [Petersonl 2009|] works well for the few-shot case; TabPFN [[Hollmann
et al., [2023]] represents a transformer-based zero-shot technique, which can be applied to
small datasets.

2. Self-supervised. VIME [Yoon et al.,2020]], SubTab [[Ucar et al.,|2021]] and SCARF [Bahri
et al., 2021] represents typical SSL approaches for tabular data. The representations acquired
from those models are used to conduct Center Prototype Classification.

3. Few-shot meta-learning. Although UMTRA [Sun et al.,[2019], SES [Ye et al.,[2022]] and
CACTUs [Hsu et al.| [2018]] are designed for image data, their structures were modified for
tabular data modality.

STUNT [Nam et al., 2023]] and D2R2 [Liu et al., 2024] were evaluated using authors’ repositories
with hyperparameters selection procedures implemented there. For D2R2, we run the variant denoted
by D2R2-c, which uses mean support embeddings as the classifier. The default D2R2 uses an
instance-wise iterative prototype scheme, additionally using query data for class prototype estimation.
This is not consistent with the inductive setting, where queries are unseen during classifier training.

A.4 Hyperparameters

We report the values of the hyperparameters used by SeBA in Table 2]

A.5 Implementation details

We implement SeBA in PyTorch Paszke et al.| [2019]. We include the codebase as supplementary
material and will publish it along with the paper. All of the experiments described in the paper were
run on a single NVidia-V100 GPU.

B Additional experimental results

B.1 Detailed Few-shot learning performance results

We present the results of the evaluation in 1-, 5-, and 10-shot classification in Tables[3]to[5] respectively.
The efficacy of SeBA increases consistently with the number of support examples, as opposed to



Table 2: SeBA hyperparameters

Hyperparameter Value
Pretraining
Epochs 10.000
Learning rate 0.001
Optimizer Adam [Kingma and Bal 2014
Batch size 1024
Early stopping patience 100
Encoder depth 2
Encoder hidden size 1024
Encoder output size 256
Projector depth 2
Projector hidden size 1024
Projector output size 256

Few-shot classification

Epochs 10.000
Learning rate 0.001
Optimizer Adam [Kingma and Bal 2014

Table 3: Evaluation in terms of 1-shot classification accuracy.
Method CMC DIA DNA INC KAR OPT PIX SEM GES MAR SAT TEX

CatBoost  36.03 56.74 39.15 57.55 53.24 58.30 54.74 43.21 - - - -
kNN 35.39 58.50 42.20 51.45 54.61 65.60 60.79 44.35 - - - -
TabPFN  35.37 53.35 - - 46.02 55.74 - - - - - -
SubTab 36.23 58.22 46.98 62.45 50.22 62.01 60.34 39.99 - - - -
VIME 35.90 58.99 51.23 61.82 59.81 69.26 63.28 46.99 - - - -

Scarf 35.39 55.64 57.86 57.94 60.96 63.31 63.93 — - - - -
UMTRA  35.46 57.64 25.13 57.23 49.05 49.87 34.26 26.33 - - - -
SES 34.59 59.97 39.56 56.39 49.19 56.30 49.19 33.73 - - - -

CACTUs  36.10 58.92 65.93 64.02 65.59 71.98 67.61 48.96
STUNT  37.10 61.08 66.20 63.52 71.20 76.94 79.05 55.91 27 04 53 88 63 12 58 69
D2R2-c 40.81 60.10 61.29 72.85 61.45 77.41 61.45 34.26 26.58 51.70 60.92 61.78

SeBA (our) 36.76 61.14 66.79 62.89 76.40 78.94 83.06 61.11 27.07 58.43 65.70 70.94

approaches like D2R2-c, which exhibit significant variance in quality on datasets like SEM. SeBA
achieves the best accuracy in 29 out of 36 instances and the second-best in 3 out of the remaining
7, which confirms its practicality and applicability to a wide range of datasets. We summarize the
average performance of each method in Figure 3] from which it is evident that SeBA is the generally
best-performing approach.

B.2 Detailed ablation study results

In this section, we ablate the design choices of SeBA: data preprocessing, separation ratio, and the
choice of the multi-shot classifier. The model variants are evaluated in terms of 5-shot classification
accuracy with 5 random seeds. We detail the model variants and report the results in Tables [6]to 8]
and summarize them in Figure ]

Data preprocessing (Figure [da]/ Table[6). We ablate the usefulness of data normalization and
two variants of missing data imputation: zero filling and sampling column values from marginal
distribution. In most cases, the combination of data normalization and zero imputation yields
representations of the highest quality.



Table 4: Evaluation in terms of 5-shot classification accuracy.
Method CMC DIA DNA INC KAR OPT PIX SEM GES MAR SAT TEX

CatBoost  39.89 64.51 60.20 67.99 77.94 83.07 83.38 68.69 — - - -
kNN 37.65 65.61 61.16 62.19 80.08 84.16 84.75 68.33 - - - -
TabPFN  38.31 64.06 - - 76.59 81.68 - - - - - -
SubTab 39.81 68.26 62.49 72.14 70.88 83.27 80.41 59.87 - - - -
VIME 39.83 67.64 71.29 72.19 19.42 83.21 85.24 68.45 - - - -

Scarf 37.75 68.66 62.75 66.09 69.96 85.67 81.32 - - - - -
UMTRA  38.05 64.41 25.08 65.78 67.28 73.29 51.32 35.90 - - - -
SES 39.04 66.61 52.25 68.27 74.80 78.46 74.80 52.74 - - - -

CACTUs  38.81 66.79 81.52 72.03 82.20 85.92 85.25 65.00
STUNT  40.40 69.88 79.18 72.69 85.45 88.42 89.08 71.54 32 19 58 62 74 25 68 57
D2R2-c 43.39 68.69 81.39 73.34 79.49 87.12 82.22 60.16 30.26 56.24 70.66 71.82

SeBA (our) 42.85 69.54 79.86 71.28 87.59 90.11 91.88 79.41 32.07 65.22 78.66 87.51

Table 5: Evaluation in terms of 10-shot classification accuracy.
Method CMC DIA DNA INC KAR OPT PIX SEM GES MAR SAT TEX

STUNT  42.01 72.82 80.96 74.08 86.95 89.91 89.98 74.74 34.30 61.08 75.58 71.10
D2R2-c 37.86 72.02 81.72 75.34 84.81 89.27 73.70 36.30 31.22 59.80 71.96 73.43

SeBA (our) 46.30 73.61 83.59 72.68 90.88 92.62 93.88 84.11 34.60 69.96 81.17 90.18

Separation ratio and model ensembling (Figure[db|/ Table[7). We ablate the choice of target /
feature separation ratio and compare it with an ensemble of encoders trained with all ratios. Although
certain ratios yield the best results for several datasets, we find that ensembles of encoders perform
most reliably.

Learning the few-shot classifier (Figure dc|/ Table[8). We compare several choices of learning
the classifier on top of the pretrained representation from the support data in the multi-shot setting.
Our analysis shows that linear probing is the simplest and most effective approach.

Table 6: Ablation of normalizing the numerical columns in tabular data (Norm.) and of the type
of data imputation in separated columns (Imput.), where we compare zero-imputation (Zero), and
sampling from the column’s marginal distribution (Marg.).

Norm. Imput. CMC DIA DNA INC KAR OPT PIX SEM GES MAR SAT TEX

Zero (¥*) 42.85 69.54 79.86 71.28 87.59 90.11 91.88 79.41 32.07 65.22 78.66 87.51
Marg. 41.71 69.78 68.69 67.89 86.36 89.18 89.67 77.32 32.70 53.19 78.64 84.83
Zero 40.50 53.49 70.82 47.01 91.00 87.91 90.54 77.28 31.06 60.16 78.67 68.43
Marg. 37.95 54.97 69.71 46.44 89.09 89.41 89.29 77.85 30.87 59.40 78.69 79.04

True

False

Table 7: Ablation of the separation ratios between the target and feature data views, compared with
the ensemble of encoders trained with different ratios.

Mode CMC DIA DNA INC KAR OPT PIX SEM GES MAR SAT TEX

Ensemble (*) 42.85 69.54 79.86 71.28 87.59 90.11 91.88 79.41 32.07 65.22 78.66 87.51
Ratio=0.1 41.18 68.20 69.07 69.73 84.21 85.84 89.37 72.02 32.21 64.98 78.53 85.08
Ratio=0.2 41.56 69.73 73.64 68.14 86.36 88.83 91.13 76.04 31.88 62.33 78.66 88.16
Ratio=0.3 42.71 68.19 77.01 68.40 87.53 90.29 91.24 77.33 31.80 63.58 78.21 87.98
Ratio=0.4 41.86 68.41 73.33 70.11 87.43 90.69 91.79 78.69 31.40 64.28 77.82 87.08
Ratio=0.5 41.16 68.26 72.69 70.74 88.11 90.51 89.83 78.94 31.35 59.66 77.87 85.37
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Figure 4: Ablation of the design aspects of SeBA ((*) denotes the default setting of SeBA). In the
barplots, we report the number of datasets in which a given variant of SeBA performs best.

Table 8: Ablation of different ways of forming the many-shot classifier. We compare linear probing
(Linear), using support data to form prototypes and assigning queries based on Euclidean od cosine
distance (Proto eucl/cos), matching individual support representations as nearest neighbors based
on Euclidean od cosine distance (nn eucl /cos), and fine-tuning the whole encoder along with the
classifier (fine-tuning).

Mode CMC DIA DNA INC KAR OPT PIX SEM GES MAR SAT TEX

Linear (*) 42.85 69.54 79.86 71.28 87.59 90.11 91.88 79.41 32.07 65.22 78.66 87.51
Proto (eucl) 39.78 67.27 75.85 70.45 86.06 86.76 92.33 75.16 28.70 66.68 73.46 76.66
Proto (cos) 39.35 67.66 78.49 70.30 87.36 89.61 92.71 75.50 31.10 65.45 77.29 79.97
nn (eucl)  40.31 66.57 72.68 69.22 86.26 89.74 92.37 76.41 28.14 64.59 74.97 84.76
nn (cos) 40.83 67.34 74.53 70.14 87.74 91.09 92.55 77.74 30.41 63.57 T7.78 86.28
fine-tuning 42.52 70.31 76.30 71.63 85.27 89.09 91.71 79.48 31.27 66.91 78.15 86.17

B.3 Alignment of the SeBA pretraining objective with recognition task

In this section, we evaluate the validity of the proposed Separated-at-Birth Alignment as an unsuper-
vised pretraining objective. For this purpose, we analyze its stability and the semantic relationship
of the positive pairs created by SeBA. For each dataset, we generate 100 random separations into
feature and target views with a separation ratio of 0.2. Next, we identify the nearest neighbors of the
samples in terms of target views (see eq. (3)).

To measure how the SeBA objective aligns with the downstream classification task, we measure
the proportion of pairs in which the nearest neighbors share the same class as the original instance,
see Figure [5a|for the SEM dataset. A detailed inspection of the remaining datasets shows that the vast
majority of nearest-neighbor pairs share the same class, which indicates that the pretraining objective
learns features useful for a downstream task, see Figure [6]

We also verify the stability of SeBA. To this end, we count the number of unique samples that are
matched to a given instance as nearest neighbors. It is evident from Figure[5b|that the average number
of unique neighbors for the SEM dataset reaches up to 5% of the entire data, showing low noise in
the pretraining objective, see Figure[7]

Both metrics follow similar-shaped distributions for the majority of datasets, indicating high stability
of the SeBA pretraining objective. The exceptions include the CMC and GES datasets, in which
the performance of SeBA is relatively lower, especially in 1- and 5-shot classification tasks. This
indicates that while SeBA is generally a good pretext task for learning tabular representation, there is
still room for improvement in future work.
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Figure 5: Analysis of neighbor stability under masked perturbations for Semeion dataset: (a) high
fraction of neighbors sharing the same class label as the original instance confirms high consistency
between pretext and downstream tasks, (b) low number of unique neighbors for each sample indicates
high stability of SeBA.
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Figure 6: The fraction of neighbors sharing the same class label as the original instance. High values
indicate high alignment between pretext and downstream tasks.
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Figure 7: A distribution of the number of unique neighbors matched to the original instance. Low

values indicate high stability of SeBA.
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