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Abstract

Provably efficient Model-Based Reinforcement Learning (MBRL) based on op-
timism or posterior sampling (PSRL) is ensured to attain the global optimality
asymptotically by introducing the complexity measure of the model. However, the
complexity might grow exponentially for the simplest nonlinear models, where
global convergence is impossible within finite iterations. When the model suffers a
large generalization error, which is quantitatively measured by the model complex-
ity, the uncertainty can be large. The sampled model that current policy is greedily
optimized upon will thus be unsettled, resulting in aggressive policy updates and
over-exploration. In this work, we propose Conservative Dual Policy Optimization
(CDPO) that involves a Referential Update and a Conservative Update. The policy
is first optimized under a reference model, which imitates the mechanism of PSRL
while offering more stability. A conservative range of randomness is guaranteed by
maximizing the expectation of model value. Without harmful sampling procedures,
CDPO can still achieve the same regret as PSRL. More importantly, CDPO enjoys
monotonic policy improvement and global optimality simultaneously. Empirical
results also validate the exploration efficiency of CDPO.

1 Introduction

Model-Based Reinforcement Learning (MBRL) involves acquiring a model by interacting with the
environment and learning to make the optimal decision using the model [55, 32]. MBRL is appealing
due to its significantly reduced sample complexity compared to its model-free counterparts. However,
greedy model exploitation that assumes the model is sufficiently accurate lacks guarantees for global
optimality. The policies can be suboptimal and get stuck at local maxima even in simple tasks [10].

As such, several provably-efficient MBRL algorithms have been proposed. Based on the principle
of optimism in the face of uncertainty (OFU) [56, 49, 10], OFU-RL achieves the global optimality
by ensuring that the optimistically biased value is close to the real value in the long run. Based
on Thompson Sampling [62], Posterior Sampling RL (PSRL) [57, 42, 43] explores by greedily
optimizing the policy in an MDP which is sampled from the posterior distribution over MDPs.
Beyond finite MDPs, to obtain a general bound that permits sample efficiency in various cases, we
need to introduce additional complexity measure. For example, [49, 43] provide an O(v/dgT') regret
for both OFU and PSRL with eluder dimension d capturing how effectively the model generalizes.
However, it is recently shown [13, 33] that the eluder dimension for even the simplest nonlinear
models cannot be polynomially bounded. The effectiveness of the algorithms will thus be crippled.

The underlying reasons for such ineffectiveness are the aggressive policy updates and the over-
exploration issue. Specifically, when a nonlinear model is used to fit complex transition functions,
its generalizability will be poor compared to simple linear problems. If a random model is selected
from the large hypothesis, e.g., optimistically chosen or sampled from the posterior, it is “unsettled".
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In other words, the selected model can change dramatically between successive iterations. Policy
updates under this model will also be aggressive and thus cause value degradation. What’s worse,
large epistemic uncertainty results in an unrealistic model, which drives agents for uninformative
exploration. An exploration step can only eliminate an exponentially small portion of the hypothesis.

In this work, we present Conservative Dual Policy Optimization (CDPO), a simple yet provable
MBRL algorithm. As the sampling process in PSRL harms policy updates due to the unsettled
model during training, we propose the Referential Update that greedily optimizes an intermediate
policy under a reference model. It mimics the sampling-then-optimization procedure in PSRL but
offers more stability since we are free to set a steady reference model. We show that even without
a sampling procedure, CDPO can match the expected regret of PSRL up to constant factors for
any proper reference model, e.g., the least squares estimate where the confidence set is centered
at. The Conservative Update step then follows to encourage exploration within a reasonable range.
Specifically, the objective of a reactive policy is to maximize the expectation of model value, instead
of a single model’s value. These two steps are performed in an iterative manner in CDPO.

Theoretically, we show the statistical equivalence between CDPO and PSRL with the same order
of expected regret. Additionally, we give the iterative policy improvement bound of CDPO, which
guarantees monotonic improvement under mild conditions. We also establish the sublinear regret of
CDPO, which permits its global optimality equipped with any model function class that has a bounded
complexity measure. To our knowledge, the proposed framework is the first that simultaneously enjoys
global optimality and iterative policy improvement. Experimental results verify the existence of the
over-exploration issue and demonstrate the practical benefit of CDPO.

2 Background

2.1 Model-Based Reinforcement Learning

We consider the problem of learning to optimize an infinite-horizon «-discounted Markov Decision
Process (MDP) over repeated episodes of interaction. Denote the state space and action space as S
and A, respectively. When taking action a € A at state s € S, the agent receives reward r(s, a) and
the environment transits into a new state according to probability s’ ~ f*(-|s, a). Here, f* is a dirac
measure for deterministic dynamics and is a probability distribution for probabilistic dynamics.

In model-based RL, the true dynamical model f* is unknown and needs to be learned using the
collected data through episodic (or iterative) interaction. The history data up to iteration ¢ then forms

Hie = {{Sh.i> @h.is 5;14_1’1-}}?;01}2;%, where H is the actual timesteps agents run in an episode. The
posterior distribution of the dynamics model is estimated as ¢(:|H;). Alternatively, the frequentist
model of the mean and uncertainty can also be estimated. Specifically, consider the model function
class F = {f : S x A — S} with size | 7|, which contains the real model f* € F. The confidence set
(or model hypothesis set) F; C F is introduced to represent the range of dynamics that is statistically

plausible [49, 43, 10]. To ensure that f* € F; with high probability, one way is to construct the

confidence set as F; := {f € F|||f — ELSHg,Et < V/pt}. Here, B; is an appropriately chosen
confidence parameter (via concentration inequality), the cumulative empirical 2-norm is defined by

lgll3,z, == Zf: lg(;)||3. The least squares estimate is
LS .= argmin Z | f(s,a) — &||3. 2.1)
fer (s,a,s’")EH

Denote the state and state-action value function associated with 7 on model f by V. : S — R and
QL : S x A — R, respectively, which are defined as

Vi(s) = E[Z Y (sn, an) | so = S,ﬂ',f:|, Ql(s,a) = E{Z (s, ap)
h=0 h=0

So =S, a0 =a,m, f|.

The objective of RL is to learn a policy 7* = argmax,_ J(7) that maximizes the expected return
J (). Denote the initial state distribution as . Under policy , the state visitation measure vy (s)
over S and the state-action visitation measure p (s, a) over S x A in the true MDP are defined as

va(s) = (1=7)- Y " Plsn=5), pr(s,a) = (1=7)- Y A" -Blsp =s,an =a), 22)
h=0 h=0



where sg ~ (, ap, ~ 7(-|sp) and sp41 ~ f*(-|sp, an). The objective J() is then
J(Tl') = ESONC[Vﬂf* (50)] = ]E(s,a)fvp7r [T(Sv a’)] (2.3)
2.2 Cumulative Regret and Asymptotic Optimality

A common criterion to evaluate RL algorithms is the cumulative regret, defined as the cumulative
performance discrepancy between policy 7, at each iteration ¢ and the optimal policy 7* over the run
of the algorithm. The (cumulative) regret up to iteration 7" is defined as:

T
Regret(T,m, /) = 3 / )V (5) — VE (), 2.4)
t—1 7/ SES

In the Bayesian view, the model f*, the learning policy 7, and the regret are random variables that
must be learned from the gathered data. The Bayesian expected regret is defined as:

BayesRegret(T, 7, ¢) := E [Regret(T, m, f*) | f* ~ ¢]. (2.5)

One way to prove the asymptotic optimality is to show that the (expected) regret is sublinear in 7', so
that 7; converges to 7* within sufficient iterations. To obtain the regret bound, the width of confidence
set w(s, a) is introduced to represent the maximum deviation between any two members in JF%:

wi(s,a) = sup [ f(s,a) — f(s,a)llz. (2.6)
Lo f~F

3 Provable Model-Based Reinforcement Learning

In this section, we analyze the central ideas and limitations of greedy algorithms as well as two
popular theoretically justified frameworks: optimistic algorithms and posterior sampling algorithms.

Greedy Model Exploitation. Before introducing provable algorithms, we first analyze greedy model-
based algorithms. In this framework, the agent takes actions assuming that the fitted model sufficiently
accurately resembles the real MDP. Algorithms that lie in this category can be roughly divided into
two groups: model-based planning and model-augmented policy optimization. For instance, Dyna
agents [61, 20, 17] optimize policies using model-free learners with model-generated data. The model
can also be exploited in first-order gradient estimators [18, 12, 9] or value expansion [15, 6]. On the
other hand, model-based planning, or model-predictive control (MPC) [40, 41], directly generates
optimal action sequences under the model in a receding horizon fashion.

However, greedily exploiting the model without deep exploration [45] will lead to suboptimal per-
formance. The resulting policy can suffer from premature convergence, leaving the potentially
high-reward region unexplored. Since the transition data is generated by the agent taking actions in
the real MDP, the dual effect [4, 27] that current action influences both the next state and the model
uncertainty is not considered by greedy model-based algorithms.

Optimism in the Face of Uncertainty. A common provable exploration mechanism is to adopt the
principle of optimism in the face of uncertainty (OFU) [56, 49, 10]. With OFU, the agent assigns to
its policy an optimistically biased estimate of virtual value by jointly optimizing over the policies and
models inside the confidence set F;. At iteration ¢, the OFU-RL policy 7, is defined as:

— ft

e argﬂmax }?ea})‘i Vit (3.1
Most asymptotic analyses of optimistic RL algorithms can be abstracted as showing two properties:
the virtual value V,/ is sufficiently high, and it is close to the real value V/" in the long run. However,
in complex environments where the generalizability of nonlinear models is limited, large epistemic
uncertainty will result in an unrealistically large optimistic return that drives agents for uninformative
exploration. What’s worse, such suboptimal exploration steps eliminate only a small portion of the
model hypothesis [13], leading to a slow converging process and suboptimal practical performance.

Posterior Sampling Reinforcement Learning. An alternative exploration mechanism is based on
Thompson Sampling (TS) [62, 52], which involves selecting the maximizing action from a statistically



plausibly set of action values. These values can be associated with the MDP sampled from its posterior
distribution, thus giving its name posterior sampling for reinforcement learning (PSRL) [57, 42, 43].
The algorithm begins with a prior distribution of f*. At each iteration ¢, a model f; is sampled from
the posterior ¢(+|#;), and 7; is updated to be optimal under f;:

ft ~ &(-|Hy), m = argmax V,ft. 3.2)

The insight is to keep away from actions that are unlikely to be optimal in the real MDP. Exploration
is guaranteed by the randomness in the sampling procedure. Unfortunately, executing actions that
are optimally associated with a single sampled model can cause similar over-exploration issues
[52, 51]. Specifically, an imperfect model sampled from the large hypothesis can cause aggressive
policy updates and value degradation between successive iterations. The suboptimality degree of
the resulting policies depends on the epistemic model uncertainty. Besides, executing 7; is not
intended to offer performance improvement for follow-up policy learning, but only to narrow down
the model uncertainty. However, this elimination procedure will be slow when the model suffers a
large generalization error, which is quantitatively formulated in the model complexity measure below.

Complexity Measure and Generalization Bounds. In RL, we seek to have the sample complexity
for finding a near-optimal policy or estimating an accurate value function. When given access to a
generative model (i.e., an abstract sampling model) in finite MDPs, it is known that the (minimax)
number of transitions the agent needs to observe can be sublinear in the model size, i.e. smaller than
O(|S]?|A|). Beyond finite MDPs where the number of states is large (or countably or uncountably
infinite), we are interested in the learnability or generalization of RL. Unfortunately, it is impossible
for agnostic reinforcement learning that finds the best hypothesis in some given policy, value, or
model hypothesis class: the number of needed samples depends exponentially on the problem horizon
[24]. Despite of the structural assumptions, e.g. linear MDPs [66, 22, 65] or low-rank MDPs [21, 38],
we focus on the generalization bounds that can cover various cases. This can be done with additional
complexity measure, e.g. eluder dimension [49], witness rank [60], or bilinear rank [14].

By introducing the eluder dimension dg [49], previous work [43, 44] established regret O(v/dgT)
for both OFU-RL and PSRL. Intuitively, the eluder dimension captures how effectively the model
learned from observed data can extrapolate to future data, and permits sample efficiency in various
(linear) cases. Nevertheless, it is shown in [13, 33] that even the simplest nonlinear models do not
have a polynomially-bounded eluder dimension. The following result is from Thm. 5.2 in Dong et al.
[13] and similar results are also established in [33].

Theorem 3.1 (Eluder Dimension of Nonlinear Models [13]). The eluder dimension dimg(F, ) (c.f.
Definition 5.6) of one-layer ReLU neural networks is at least Q(e~(4~1)), where d is the state-action
dimension, i.e. (s, a) € R%. With more layers, the requirement of ReLU activation can be relaxed.

As a result, additional complexity is hidden in the eluder dimension, e.g. when we choose ¢ =T -1

regret 5(\/dET) contains dg = Q(7T?!) and is no longer sublinear in 7. In this case, previous
provable exploration mechanisms will lose the desired property of global optimality and sample
efficiency, which is the underlying reason for the over-exploration issue.

4 Conservative Dual Policy Optimization

When using nonlinear models, e.g. neural networks, the over-exploration issue causes unfavorable
performance in practice, in terms of slow convergence and suboptimal asymptotic values. To tackle
this challenge, the key is to abandon the sampling process and have guarantees during training.

In this regard, we propose Conservative Dual Policy Optimization (CDPO) that is simple yet provably
efficient. By optimizing the policy following two successive update procedures iteratively, CDPO
simultaneously enjoys monotonic policy value improvement and global optimality properties.

4.1 CDPO Framework

To begin with, consider the problem of maximizing the expected value, 7; = argmax_ E[V,/ ) | Hy),
where E[V/ ) | H:] denotes the expected values over the posterior. Obviously, we have the expected
value improvement guarantee E[V,{" | H,] > E[V;Z" |H,]. We can also perform expected value



maximization in a trust-region to guarantee iterative improvement under any f*. However, such
updates will lose the desired global convergence guarantee and may get stuck at local maxima even
with linear models. For this reason, we propose a dual procedure of policy optimization.

Referential Update. The first update step returns an intermediate policy, denoted as ¢;. This step
is a greedy one in the sense that ¢; is optimal with respect to the value of a single model ft, which
we call a reference model. Selecting a reference model and optimizing a policy w.r.t. it imitates the
sampling-optimization procedure of PSRL. We will show in Section 5.1 that if we pose the constraint
ﬁ € F;, then CDPO achieves the same expected regret as PSRL, which implies global optimality.

More importantly, policy optimization under ﬁ is more stable and can avoid the over-exploration
issue in PSRL since we are free to set it as a steady reference between successive iterations. For
example, we fix the reference model f; as the least squares estimate ftLS defined in (2.1), instead of a
random model sampled from the large hypothesis that causes aggressive policy update. This gives us:
FLS
Referential Update (with LS Reference): ¢+ = argmax V5* . 4.1
q

Constrained Conservative Update. The conservative update then follows as the second stage of
CDPO, which takes input ¢, and returns the reactive policy myy1:

Conservative Update: m; = argmax]E[Vf |7—lt], .t Es,, {DTV (ﬂt(~|s),qt(o|s))} <n, 42

where Dy (-, -) stands for the total variation distance and 7 is the hyperparameter that characterizes
the trust-region constraint and controls the degree of exploration.

Compared with OFU-RL and PSRL, the above exploration and policy updates are conservative since
the policy maximizes the expectation of the model value, instead of a single model’s value (i.e. the
optimistic model in OFU-RL and the sampled model in PSRL). The conservative update (4.2) avoids
the pitfalls when the optimistic model or the posterior sampled model suffers large bias, which leads
to aggressive policy updates and over-exploration during training. Notably, the term conservative in
our work differs from previous use, e.g. Conservative Policy Iteration [23, 53]. While the latter refers
to policy updates with constraints, ours is to emphasize the conservative range of randomness and the
reduction of unnecessary over-exploration by shelving the sampling process.

In our analysis, we follow previous work [43, 59, 10, 35] and assume access to a policy optimization
oracle. In practice, the problem of finding an optimal policy under a given model can be approximately
solved by model-based solvers listed below. More fine-grained analysis can be obtained by applying
off-the-shelf results established for policy gradient or MPC for specific policy or model function
classes. This, however, is beyond the scope of this paper.

4.2 Practical Algorithm

The pseudocode of CDPO is in Alg. 1. The Algorithm 1 Practical CDPO Algorithm

model-based solver MBPO(r, f, J) outputs the Tnput: Prior ¢, model-based policy optimization
policy (q; or m;) that optimizes the objec- gglyer MBPO(7, f, J).
tive J with access to model f. Several dif- 1: foriteration t = 1. ... T do

ferent types of solvers can be leveraged, e.g., ) LS
model-augmented model-free policy optimiza- 2: gt < f/[ B]P\)[O(" dt | ,(4.1)) N
tion such as Dyna [61], model-based reparame- ample NV models { ;. }n—,
terization gradient [18, 9], or model-predictive
control [63]. Details of different optimization
choices can be found in Appendix E. In exper-
iments, we use Dyna and MPC solvers.

3
4 m¢ < MBPO(q, {ft,n},f:;h 4.2))

5. Execute m; in the real MDP

6: Update H;411 = H U {Sh,h Qhts 5h+1,t}h
7. Update fL5 and ¢

8: end for

9

With Pinsker’s inequality, the total variation : .
: return policy mp

constraint in (4.2) is replaced by the KL di-
vergence [53, 2] in experiments. We follow
previous work [34] to use neural network ensembles [10, 25] for model estimation and use calibra-
tions [29, 10] for accurate uncertainty measure.




5 Analysis

In this section, we first show the statistical equivalence between CDPO and PSRL in terms of the same
BayesRegret bound. Then we give the iterative policy value bound with monotonic improvement.
Finally, we prove the global convergence of CDPO. The missing proofs can be found in the Appendix.

5.1 Statistical Equivalence between CDPO and PSRL

We begin our analysis by highlighting the connection between CDPO and PSRL with the following
theorem, from which we also show the role of the dual update procedure and the reference model.

Theorem 5.1 (CDPO Matches PSRL in BayesRegret). Let 7"Rl be the policy of any posterior
sampling algorithm for reinforcement learning optimized by (3.2). If the BayesRegret bound of 7PSR-
satisfies that for any 7' > 0, BayesRegret (T, 775kt ¢) < D, then for all T > 0, we have for the
CDPO policy 7PPO that BayesRegret (T, 7°PP0, ¢) < 3D.

Sketch proof. We first sketch the general strategy in the PSRL analysis. Recall the definition of the
Bayesian expected regret BayesRegret(T, 7, ¢) := E[Zthl Ry, where }, = VI — V" PSRL
breaks down R; by adding and subtracting V. ‘o the value of the imagined optimal policy 7, under
a sampled model f;, i.e. 7, = argmax, V,/*.

PSRL: %, =V — VI =V —v =vI vl 4vi —vI (5.1
where the second equality follows from the definition of the PSRL policy. Followmg the law of total
expectation and the Posterior Sampling Lemma (e.g. Lemma 1 in [42]), we have E[V#i - Vi ;t] =0

by noting that f* and f; are identically distributed conditioned upon ;. Then we obtain

T
BayesRegret(T, 7%, ¢) = > "E[V/: —V/'] < vZE[ [L]| fe(sn.an) — f*(sn, ah)||2]}
T
< .
_W1745;E[wt]+4*y5T_D, (5.2)

where the first inequality follows from the simulation lemma under the L-Lipschitz value assumption
[43]. The second inequality follows from the definition of w; in (2.6) and the construction of con-
fidence set such that P(f* € ((F;) > 1 — 26 and P(f; € (| Fz, f* € () F:) = 1 — 4 via a union
bound. As more data is collected, the model uncertainty is reduced and the sum of confidence set
width w; will be sublinear in 7" (c.f. Lemma B.5 and B.6), indicating sublinear regret.

When it comes to CDPO, we decompose the regret as
CDPO: Ry =V -V =V —vl vl vl vh v (5.3)
where the CDPO policy 7 is defined in (4.2). Since ]E[V,'rf: -V ;1 =0, we have

BayesRegret (T, 7°°F°, ZE fott — VJ; + Vrff _ fot]

L
ST
where the first inequality follows from the greediness of g; and m; in the dual updati steps, i.e.,
v . = Vq{t for any 7y, as well as E[VJt ] > ]E[Vq{ t]. The 80T term is introduced since f; € F; and
P(f, e NFi,fr e NF) >1—20. L)

T
fi i fi fi -
<Y RV -V vV v -V < T Z3]E we] + 8y0T < 3D, (5.4)

Theorem 5.1 indicates that although CDPO performs conservative updates and abandons the sampling
process, it matches the statistical efficiency of PSRL up to constant factors.

The importance of the reference model and the dual procedure is also reflected in the proof. The
referential update builds the bridge between Vf t and Vf t. Policy optimization under the reference
model mimics the sampling-then-optimization procedure of PSRL while offering more stability when
the reference is steady, e.g., the least squares estimate we use. We formalize this idea below.



5.2 CDPO Policy Iterative Improvement

One motivation for the conservative update is that it maximizes (thus improves) the expected value
over the posterior. In this section, we are interested in the policy value improvement under any
unknown f*. Namely, we seek to have the iterative improvement bound J(m;) — J(m;_1), where the
true objective J is defined in (2.3).

We impose the following regularity conditions on the underlying MDP transition and the state-action
visitation.

Assumption 5.2 (Regularity Condition on MDP Transition). Assume that the MDP transition function
f*: 8 x A— S is with additive o-sub-Gaussian noise and bounded norm, i.e., ||s||2 < C.

Assumption 5.3 (Regularity Condition on State-Action Visitation). We assume that there exists
x > 0 such that for any policy 7y, ¢ € [1,T],

dpoces V2
{Epw,, [( d;; (s,a)) H <k, (5.5)

where dpy, . , /dpx, is the Radon-Nikodym derivative of p,,,, with respect to pr,.

Theorem 5.4 (Policy Iterative Improvement). Suppose we have ||f(, I < C for f € F where
the model class F is finite. Define ¢ := max, , |AS (s,a)|, where A" is the advantage function
defined as Af (s, a) := QI (s,a) — V./™ (s). With probability at least 1 — d, the policy improvement
between successive iterations is bounded by

229C%In(|F|/5) 2

— 1) > A —-(1 .
J(me) = J(m—1) 2 At) = (1 + k) (- )H 1 (5.6)
where A(t) := Esc [Vq} (s) — V({El (s)] = 0 due to the greediness of g;.

The above theorem provides the iterative improvement bound following the CDPO algorithm. When
H is large enough, the policy value improvement is at least A(t) by choosing a properly small 7.

In particular, the first term A(t) characterizes the policy improvement brought by the greedy exploita-
tion in (4.1), and A(t) > 0 since g¢; is optimal under the reference model f;. The second term in (5.6)

accounts for the generalization error of least square methods. Specifically, model f; = ftLS e F
is trained to fit the history samples. However, we seek to have the model error bound over the state-
action visitation measure, which requires the deviation from the empirical mean to its expectation
using Bernstein’s inequality and union bound. Finally, the trust-region constraint in (4.2) brings the
4dna/(1 — ) term, which reduces to zero if 7 is small. This makes intuitive sense as 7 controls the
degree of conservative exploration.

5.3 Global Optimality of CDPO

We now analyze the global optimality of CDPO by studying its expected regret. As discussed in
Section 3, agnostic reinforcement learning is impossible. Without structural assumptions, additional
complexity measure is required for a generalization bound beyond finite settings. For this reason, we
adopt the notation of eluder dimension [49, 43], defined as follows:

Definition 5.5 ((F, ¢)-Dependence). If we say (s,a) € SxAis (F,e)-dependent on {(s;,a;)}, C
S x A, then

Vfi, f2 € F, ZHfl(Siaai) - f2(5i7ai)||§ <e® = || fils,a) — fa(s,a)||, <e.
=1

Conversely, (s,a) € S x Ais (F, )-independent of {(s;,a;)}"; if and only if it does not satisfy
the definition for dependence.

Definition 5.6 (Eluder Dimension). The eluder dimension dim g (F, €) is the length of the longest
possible sequence of elements in S x A such that for some &’ > ¢, every element is (F, &’)-independent
of its predecessors.

We make the following assumption on the Lipschitz continuity of the value function.



Assumption 5.7 (Lipschitz Continuous Value). At iteration ¢, assume the value function V,/* for any
policy  is Lipschitz continuous in the sense that |Vt (s;) — V./* (s2)| < Ly||s1 — s2||2.

Notably, Assumption 5.7 holds under certain regularity conditions of the MDP, e.g. when the transition
and rewards are Lipschitz continuous [5, 47]. Under this assumption, many RL settings can be satisfied
[13], e.g., nonlinear models with stochastic Lipschitz policies and Lipschitz reward models, and is
thus adopted by various model-based RL work [35, 7, 13].

We now study the global optimality of CDPO by the following expected regret theorem, which can
be seen as a direct consequence of Theorem 5.1 that states the statistical equivalence between CDPO
and PSRL.

Theorem 5.8 (Expected Regret of CDPO). Let N(F,q, ||-||2) be the a-covering number of F.
Denote dp := dimp(F,T~!) for the eluder dimension of F at precision 1/7. Under Assumption
5.2 and 5.7, the cumulative expected regret of CDPO in T iterations is bounded by

~T(3T — 5)L 1
< 12T T _ \/ .
BayesRegret(T, 7, qb) ( ) ) 1+ 1 ’yC’dE +4+/TdgpB | + 4~C, 5.7

where 3 := 802 1og(2N(f, 1/(T?), |H|2)T) +2(8C + /802 10g(8T7) ) /T and L := E[L).

Here, the covering number is introduced since we are considering F that may contain infinitely many
functions, for which we cannot simply apply a union bound. Besides, 5 is the confidence parameter
that contains f* with high probability (via concentration inequality).

To clarify the asymptotics of the expected regret bound, we introduce another measure of dimension-
ality that captures the sensitivity of F to statistical overfitting.

Corollary 5.9 (Asymptotic Bound). Define the Kolmogorov dimension w.r.t. function class F as
log(N (7, e, ||[|2))

dx = dimg (F) := limsup

al0 IOg(l/OZ)
Under the assumptions of Theorem 5.8 and by omitting terms logarithmic in 7', the regret of CDPO is
BayesRegret(T, 7, ¢) = O(Lo/dgdgT). (5.8)

The sublinear regret result permits the global optimality and sample efficiency for any model class
with a reasonable complexity measure. Meanwhile, the iterative improvement theorem guarantees
efficient exploration and good performance even when the model class is highly nonlinear.

6 Empirical Evaluation

6.1 Understanding Different Exploration Mechanisms

We first provide insights and evidence of why CDPO exploration can be more efficient in the tabular
N-Chain MDPs, which have optimal right actions and suboptimal left actions at each of the IV states.
Settings and full results are provided in Appendix F.2. In Figure 1, we compare the posterior of CDPO
and PSRL at the state that is the furthest away from the initial state, i.e. the state that is the hardest for
the agents to reach and explore.

s=8a=left 5 s=8,a=right 5 s=15,a=left 5 s =15, a = right 8-Chain MDP 15-Chain MDP
150 00
8-Chain MDP 8-Chain MDP 15-Chain MDP 15-Chain MDP CDPO COPO
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0
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Figure 1: CDPO and PSRL posterior on an 8-Chain MDP Figure 2: Regret curve of CDPO and
and a 15-Chain MDP, where the right actions are optimal. PSRL when N = 8 and N = 15.

When training starts, both algorithms have a large variance of value estimation. However, as training
progresses, CDPO gives more accurate and certain estimates, but only for the optimal right actions not



for the suboptimal /eft actions, while PSRL agents explore both directions. This verifies the potential
over-exploration issue in PSRL: as long as the uncertainty contains unrealistically large values, PSRL
agents can perform uninformative exploration by acting suboptimally according to an inaccurate
sampled model. In contrast, CDPO replaces the sampled model with a stable mean estimate and cares
about the expected value, thus avoiding such pitfalls. We see in Figure 2 that although CDPO has
much larger uncertainty for the suboptimal left actions, its regret is lower.

6.2 Exploration Efficiency with Nonlinear Model Class

In finite MDPs, PSRL-style agents can specify and try every possible action to finally obtain an
accurate high-confidence prediction. However, our discussion in Section 3 indicates that a similar
over-exploration issue in more complex environments can lead to less informative exploration steps,
which only eliminate an exponentially small portion of the uncertainty.

To see its impact on the training performance, we report the results of provable algorithms with
nonlinear models on several MuJoCo tasks in Figure 3. For OFU-RL, we mainly evaluate HUCRL
[10], a deep algorithm proposed to deal with the intractability of the joint optimization. We observe
that all algorithms achieve asymptotic optimality in the inverted pendulum. Since the dimension of the
pendulum task is low, learning an accurate (and thus generalizable) model poses no actual challenge.
However, in higher dimensional tasks such as half-cheetah, CDPO achieves a higher asymptotic value
with faster convergence. Implementation details and hyperparameters are provided in Appendix F.1.
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Figure 3: Performance of CDPO, PSRL, and HUCRL equipped with nonlinear models in several
MuJoCo tasks: inverted pendulum swing-up, pusher goal-reaching, and half-cheetah locomotion.

6.3 Comparison with Prior RL Algorithms

We also examine a broader range of MBRL algorithms, including MBPO [20], SLBO [35], and
ME-TRPO [30]. The model-free baselines include SAC [16], PPO [54], and MPO [2]. The results are
shown in Figure 4. We observe that CDPO achieves competitive or higher asymptotic performance
while requiring fewer samples compared to both the model-based and the model-free baselines.
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Figure 4: Comparison between CDPO and model-free, model-based RL baseline algorithms.



6.4 Ablation Study

We conduct ablation studies to provide a better understanding of the components in CDPO. One
can observe from Figure 5 that the policies updated with only Referential Update or Conservative
Update lag behind the dual framework. We also test the necessity and sensitivity of the constraint
hyperparameter . We see that a constant 7 and a time-decayed 1 achieve similar asymptotic values
with a similar convergence rate, showing the robustness of CDPO. However, removing the constraint
will lose the policy improvement guarantee, thus causing degradation. Ablation on different choices
of MBPO solver (Dyna and POPLIN-P [63]) shows the generalizability of CDPO.
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Figure 5: Ablation studies on the effect of the dual update steps and the trust-region constraint. The
robustness and generalizability of the CDPO framework are demonstrated by the results of different
choices of the constraint threshold and different solvers.

7 Conclusions & Future Work

In this work, we present Conservative Dual Policy Optimization (CDPO), a simple yet provable model-
based algorithm. By iterative execution of the Referential Update and Conservative Update, CDPO
explores within a reasonable range while avoiding aggressive policy update. Moreover, CDPO gets rid
of the harmful sampling procedure in previous provable approaches. Instead, an intermediate policy
is optimized under a stable reference model, and the agent conservatively explore the environment
by maximizing the expected policy value. With the same order of regret as PSRL, the proposed
algorithm can achieve global optimality while monotonically improving the policy. Considering our
naive choice of the reference model, other more sophisticated designs should be a fruitful future
direction. It will also be interesting to explore different choices of the MBPO solvers, which we would
like to leave as future work.
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