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Abstract

Reinforcement Learning with Verifiable Rewards (RLVR) has greatly improved1

the reasoning abilities of large language models (LLMs) on mathematics and2

programming tasks, often by maximizing pass@1 correctness. However, optimiz-3

ing single-attempt accuracy can inadvertently suppress response diversity across4

repeated attempts, narrowing exploration and overlooking underrepresented strate-5

gies. We adapt Mutual Information Skill Learning (MISL) to LLMs and develop6

training-time rewards that induce structured response diversity: a discrete latent z7

selects a reproducible “strategy” that steers the token distribution toward distinct8

modes. We propose two complementary rewards for Group Relative Policy Opti-9

mization (GRPO): a token-level mutual information (MI) reward that encourages10

trajectory specificity to z, and a semantic MI reward that encourages separation11

in an embedding space. Experiments on GSM8K with three open-weight models,12

Llama 3.1–8B, Qwen 2.5–7B, and R1-Distilled–Qwen2.5–Math–1.5B, with 2,00013

training problems show that token-level MISL improves multi-attempt metrics,14

yielding median gains of ∼4% in pass@k and ∼12% in consensus@k without15

degrading pass@1. We further outline a theoretical connection that shows that16

improvement in pass@k is upper-bounded linearly by the mutual information. We17

discuss practical considerations, the instability of the semantic MI estimator, and18

open directions.19

Keywords: Language Models, Mutual Information, Reasoning, Response Diversity, RLVR20

1 Introduction21

LLMs excel at verifiable reasoning tasks such as mathematical problem solving and code generation22

[15]. However, repeated sampling often yields highly similar outputs [32]. In multi-attempt settings23

where any one correct completion suffices, such as code generation with tests [5], formal proofs in24

Lean [39], or objectives evaluated by pass@k, a lack of diversity reduces the effective number of25

independent attempts and thus the chance that some sampled attempt will succeed. Furthermore,26

recent work has found that post-training that optimizes single-attempt correctness suppresses response27

variation across attempts [7, 9], creating a discrepancy between how models are trained and how they28

are used or evaluated.29

The challenge of balancing diversity and accuracy, or exploration and exploitation, has been ex-30

plored in the form of decoding-time fixes. Methods such as temperature sampling [31], nucleus31

sampling [18], and prompt perturbations [36] can inject variety, but they require manual tuning, are32

brittle across domains [35], and may leave the connection between perturbations and LLM response33

under-specified [29]. We seek a training-time mechanism that (i) increases diversity in a controlled34

manner, (ii) produces semantically distinct and reproducible modes of reasoning, and (iii) preserves35

single-attempt verifiable accuracy.36
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To do so, we explore a training-time approach that induces structured response diversity without37

prompt engineering. Modeling LLM attempts on verifiable reasoning tasks as a token-level Markov38

Decision Process, we adapt the unsupervised reinforcement-learning framework of Mutual Infor-39

mation Skill Learning (MISL) from [49] to LLMs: the model conditions its response on a discrete40

latent z ∈ {1, . . . , N}, and training encourages behaviors whose distribution depends strongly on z.41

Intuitively, each z should correspond to a reproducible “skill” or “strategy,” and the set of strategies42

should span a broad range of behaviors.43

Concretely, we implement MISL within Group Relative Policy Optimization (GRPO) [33] by adding44

two new reward terms: a token-level mutual information reward, which encourages diversity in45

completions, and a semantic mutual information reward, which encourages diversity in embedding46

space.47

Finally, we sketch a theoretical link between I(τ ; z | x) and pass@k: the improvement of pass@k48

after training is upper-bounded by CI(τ ; z | x) for finite positive C depending on the prompt and49

strategies, showing that large improvement in pass@k requires large mutual information. In summary,50

our contributions are as follows:51

Contributions:52

• We demonstrate median gains of 4% in pass@k and 12% in consensus@k on GSM8K53

across three open-weight models using LoRA fine-tuning on 2,000 problems, with preserved54

pass@1 accuracy.55

• We prove that pass@k improvement is upper-bounded by ∆ ≤ O(I(τ ; z|x)), showing that56

low mutual information fundamentally limits multi-attempt gains.57

• We provide an effective and reproducible method for token-level MI and semantic-MI,58

optimal hyperparameters, and an implementation focused on practical performance.59

2 Background60

2.1 Multi-attempt evaluation, redundancy, and why diversity matters61

For verifiable tasks, we often consider the probability of success across multiple completions rather62

than a single attempt [7]. Let x denote the input and τ a sampled completion from policy π(· | x); let63

Y (τ) ∈ {0, 1} indicate correctness under a deterministic verifier. For k attempts, the standard metric64

pass@k(x) = 1− Pr

(
k⋂

i=1

{Y (τi) = 0}

∣∣∣∣∣x
)

(1)

is the complement of the joint failure probability across k i.i.d. draws τ1:k ∼ π(· | x) [5]. Letting65

p = Pr(Y (τ) = 1 | x), we therefore have Pr(pass@k(x)) = 1− (1− p)k.66

In practice, identical prompts with fixed decoding hyperparameters can yield strongly correlated67

trajectories, especially for deterministic or near-deterministic samplers [41]. A useful lens is to68

consider an “effective number of attempts” keff that discounts k by a correlation term (analogous to69

design effects in sampling) [20]. If completions have pairwise correlation ρ in the binary success70

indicators, a heuristic adjustment gives keff ≈ k/(1 + (k − 1)ρ): as ρ→ 1, additional attempts71

contribute little; as ρ→ 0, keff → k. Although crude, this highlights the central point: reducing72

dependence among attempts is as important as raising per-attempt accuracy. Structured diversity aims73

to decrease redundancy so that the joint failure probability decreases faster in k.74

Beyond pass@k, plurality@k and consensus@k measure agreement among completions, examining75

robustness and internal consistency of the model’s reasoning [42]. In many workflows, agreement76

acts as a proxy for confidence while still benefiting from diversity to escape shared failure modes [17].77

2.2 RLVR and GRPO for verifiable reasoning78

Reinforcement learning from verifiable rewards (RLVR) uses automatically checked signals (e.g.,79

exact numeric answers, unit tests) to shape policies toward correctness while ensuring the new80
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policy remains close to a base model [24, 10]. Let πθ denote the trainable policy and πbase a frozen81

reference; a common form of the per-trajectory reward is82

rRLVR(τ) = rcorrectness(τ) − β DKL

(
πθ(· | x)

∥∥πbase(· | x)) , (2)

where β > 0 controls deviation from the base model [44].83

Group Relative Policy Optimization (GRPO) [33] adapts PPO-style updates to reasoning by sampling84

multiple completions per prompt x as a group. Within-group baselines reduce variance and increase85

the relative difference between completion rewards. Concretely, for each x one draws C trajectories86

{τi}Ci=1, computes verifiable rewards and a group baseline (e.g., a rank or mean-normalized signal),87

and updates πθ with clipped policy ratios as in PPO. GRPO typically improves pass@1 on math/code88

under RLVR; however, absent any explicit term for diversity, it can reduce variation across attempts as89

the policy sharpens around locally high-reward regions [9]. Empirically, this can shrink the entropy of90

the completion distribution and heighten redundancy among attempts, limiting pass@k improvements91

even as pass@1 increases [9].92

2.3 Skill discovery and MISL93

Unsupervised skill discovery in RL aims to learn diverse, reusable behaviors without external reward94

by maximizing the mutual information between a latent “skill” variable and observed behaviors [14,95

11]. Let z ∈ Z index a skill and τ denote an agent trajectory. MISL (Mutual Information Skill96

Learning) [49] maximizes the conditional mutual information97

max
π

I(τ ; z | x) = E
[
log pπ(τ |x, z)− log pπ(τ |x)

]
= H(τ | x)−H(τ | x, z). (3)

This decomposition clarifies the pressure on the policy: (i) increase marginal entropy H(τ | x) to98

cover more of trajectory space; (ii) decrease conditional entropy H(τ | x, z) so that each z induces a99

reproducible mode. The net effect is a set of distinct, stable behaviors indexed by z that together span100

diverse solution strategies.101

Language models often face verifier-sparse rewards (binary correct/incorrect), where exploration102

structure matters [1, 24, 10]. MISL offers a training-time mechanism to factor diversity into a103

discrete latent z that is easy to control at inference. Instead of sampling k times from a single narrow104

distribution, one samples once from each of k distinct, trained modes.105

2.4 LLMs as policies and the role of MI in text106

Autoregressive LLMs can be cast as policies over an MDP with state equal to the token prefix and107

action equal to the next token [3, 27]. Let τ = (y1, . . . , yT ) be a completion. For a discrete latent108

z ∈ {1, . . . , N} introduced via a lightweight prefix (e.g., Strategy {z}), the conditional likelihood109

factorizes as110

pπ(τ |x, z) =

T∏
t=1

pπ
(
yt
∣∣x, z, y<t

)
. (4)

Directly maximizing I(τ ; z | x) is difficult because pπ(τ | x) is a mixture over z and high-111

dimensional [28, 25]. We therefore consider practical surrogates in our approach based on empirical112

approximations.113

3 Related Work114

3.1 Response Diversification115

One popular approach to increase output diversity is post-hoc or decoding-time diversification.116

This involves adjusting parameters at inference time, like increasing temperature, using a different117

sampling strategy [18] [12], or perturbing the prompt [29]. However, these approaches suffer from118

some fundamental limitations: (i) they provide no guarantee that samples explore qualitatively119

different solution paths; (ii) they require per-domain tuning; (iii) diversity often trades off against120

local coherence or correctness; and (iv) the strategies are not reliably reproducible. Prompt-cycling121

can inject domain knowledge (e.g., “try algebra” vs. “try geometry”), but it burdens users with122

prompt engineering and saturates well below human diversity [36].123

3



In contrast, training-time diversification shapes the policy so that it supports multiple intentionally124

distinct modes that can be invoked at inference without manual prompt design. For instance, recent125

works have explored training LLMs explicitly on objectives based on pass@k evaluation. [38]126

proposed an unbiased estimator for generic k-attempt objectives with a “leave-one-out” control127

variate, showing overall improved model efficacy.128

Extending this, [7] argue that simply training on pass@1 falls victim to over-exploitation, in which129

agents fail to explore and converge to a local maximum due to the harsh binary pass@1 rewards. [7]130

find that pass@k training reduces rewards for high-accuracy responses, naturally focusing optimiza-131

tion efforts on harder problems and mitigating overfitting on easier ones. This produces significant132

improvements in both pass@k and pass@1.133

3.2 Mutual Information134

Maximizing mutual information (MI) between latent variables and observed behavior has been a135

recurring tool for learning structured, controllable representations. In generative modeling, Info-136

GAN [6] augments GAN training with a variational lower bound on I(c;x) to make latent codes c137

predictably control semantic factors (e.g., stroke thickness for MNIST). In variational autoencoders,138

InfoVAE [47] adds an explicit MI term to counteract posterior collapse and preserve informative139

latents even with expressive decoders.140

In sequential decision making, MI has been used to discover diverse, reusable behaviors without141

external rewards. Early work such as VIC [14] and DIAYN [11] maximizes I(s; z) or I(τ ; z),142

encouraging skills z whose rollouts visit different parts of state or trajectory space and remain143

identifiable from observations. InfoGAIL [23] brings these ideas to imitation learning by maximizing144

MI between a latent intention and trajectories to capture multi-modal expert behavior. Subsequent145

methods vary the conditioning and the support of the MI objective: conditioning on context or goals146

(e.g., I(τ ; z | context)) to promote contextual diversity, or measuring MI over future states to bias147

toward long-horizon distinctiveness [34, 16].148

Our setting is closest in spirit to unsupervised skill discovery (e.g., DIAYN, VIC) and to MISL [49],149

but differs importantly in leveraging the MISL approach for language models with RLVR training,150

connecting pass@k performance with the MISL objective, and developing proxies unique to the LLM151

reasoning setting. Additional related work descriptions are available in Appendix A.152

3.3 Determinant Diversity153

An alternative family of objectives for encouraging diversity comes from determinantal point pro-154

cesses (DPPs). DPP-based methods promote sets of outputs whose embeddings have high determinant155

volume, effectively rewarding diversity at the set level rather than through latent conditioning. For156

text generation, DPP sampling has been used to penalize near-duplicate candidates and promote157

coverage in decoding [22, 41]. In reinforcement learning, determinant-based rewards can encourage158

agents to explore trajectories that span complementary regions of state space [2, 46].159

Compared to mutual information, which directly couples a latent z with trajectories to ensure re-160

producible modes, determinant diversity is distribution-free: it treats a set of samples as diverse161

if they occupy a high-volume region in representation space, regardless of whether the same di-162

versity is reproducible under repeated sampling. This makes DPP-style objectives well-suited for163

one-shot reranking or decoding, but less natural for training-time conditioning where we want inter-164

pretability and strategy reproducibility. In this work, we focus on mutual-information based rewards,165

although other response diversification methods and determinant-based regularizers could provide166

complementary benefits.167

4 Methods168

Given an input x and an autoregressive policy π( · | x) that produces a completion (trajectory)169

τ = (y1, . . . , yT ), we introduce a discrete latent z ∈ {1, . . . , N} via a lightweight prompt prefix170

(e.g., Strategy {z} |), yielding conditional policies π(· | x, z). During training, z is drawn171

uniformly. At inference, one selects k ≤ N distinct values of z and generates one completion per172

value, producing k structured and reproducible attempts.173
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4.1 Objective174

We encourage structured response diversity by maximizing the conditional mutual information175

max
π

I(τ ; z | x) = E
[
log pπ(τ | x, z)− log pπ(τ | x)

]
, (5)

which increases marginal trajectory entropy while reducing conditional entropy within each z-mode.176

The term pπ(τ | x) = 1
N

∑N
z′=1 pπ(τ | x, z′) is a uniform mixture over skills. Maximizing mutual177

information encourages (i) high marginal entropy of trajectories, promoting broad coverage, and (ii)178

low conditional entropy given z, so that each response is distinct and determined by z.179

4.2 Token-level mutual information reward180

For each pair (x, z), let {τi}Ci=1 be C completions sampled from π(· | x, z). We define a per-sample181

token-level score182

rTMI(τi;x, z) =

|τi|∑
t=1

[
log pπ(yt | x, z, y<t)− log pπ(yt | x, y<t)

]
, (6)

where the second term is the uniform mixture183

pπ(yt | x, y<t) =
1

N

N∑
z′=1

pπ(yt | x, z′, y<t).

Log-probabilities are computed by π on the realized τi. In our implementation the mixture is184

computed exactly across all N skills; this is feasible for the N used in our experiments (Section 6).185

For large N , the mixture can be the unconditioned probabilities of the actor, although this differs186

from the MISL theory.187

4.3 Semantic mutual information reward188

Token-level differences can reflect formatting or paraphrase rather than distinct strategies. To bias189

toward semantic differences, we embed completions with a fixed encoder ψ(τ) ∈ Rd and estimate190

the mutual information between embeddings and skills for a single prompt x:191

Î
(
ψ(τ); z

∣∣x) (7)

using the KSG k-nearest-neighbor estimator [21], implemented with the library NPEET [37].192

Concretely, for each x we collect the set of embeddings across strategies and samples, B(x) =193

{(ψ(τ (z)i ), z) : z ∈ {1, . . . , N}, i = 1, . . . , C}, and apply KSG to B(x) to obtain a single scalar194

rSMI(x).195

KSG requires multiple points per class to be well-behaved. In our experiments (Section 6), we use196

N = 5 strategies and C = 6 completions per strategy (30 points per x) when the semantic term197

is enabled; for larger N we disable the semantic term to avoid excessive compute and estimator198

variance.199

4.4 Combined GRPO objective200

Let rcorr(τi) ∈ R denote the verifiable correctness reward (often binary) and201

∆KL(τi) =

|τi|∑
t=1

log
π(yt | x, z, y<t)

πbase(yt | x, z, y<t)

be the per-trajectory log-likelihood penalty toward the base model. The per-sample scalar reward is202

thus203

r(τi;x, z) = rcorr(τi) − β∆KL(τi) + α1 rTMI(τi;x, z) + α2 rSMI(x), (8)

with α1, α2, β ≥ 0. GRPO then, after normalization, applies a clipped policy-gradient update.204
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4.5 Training procedure205

We fine-tune a trainable policy πθ with GRPO while injecting a discrete strategy variable z ∈206

{1, . . . , N}. At each step, we draw a minibatch of prompts x and, for each x, sample a strategy207

z uniformly and generate C completions τ1:C ∼ πθ(· | x, z) under fixed decoding. For every208

completion τ , we compute: (i) a verifiable correctness reward rcorr(τ) from the task’s deterministic209

checker; (ii) the token-level MISL term rTMI that measures how specific the trajectory is to the210

chosen strategy; and (iii) a KL control term toward a frozen base policy.211

Optionally, to encourage semantic separation among strategies for a fixed prompt, we compute the212

semantic-MI reward rSMI. We then apply GRPO’s within-group baseline (computed over the C213

completions that share the same (x, z)) to obtain advantages, and we update πθ with a clipped PPO214

objective using stored behavior-policy log-probs. At inference, diversity is exercised by selecting215

k≤N distinct strategy indices and drawing one completion per z, optionally followed by plurality or216

consensus aggregation.217

Algorithm 1 MISL-GRPO with exact mixture and prompt-level semantic MI
1: Inputs: base policy πbase, trainable policy π, latent count N , completions per group C, weights

(α1, α2, β)
2: repeat
3: Sample a minibatch of prompts {x}
4: for each x in the minibatch do
5: Sample z ∼ Unif({1, . . . , N}); generate C completions {τi}Ci=1 with π(· | x, z)
6: Compute rcorr(τi), rTMI(τi;x, z), and ∆KL(τi) as above
7: end for
8: if semantic MI is enabled then
9: For each prompt x, collect B(x) across all strategies/samples in the batch and compute

rSMI(x) via KSG
10: end if
11: Form per-sample rewards via (8); compute advantages; update π with GRPO
12: until convergence

4.6 Inference218

Given a budget of k attempts, choose k distinct latents from {1, . . . , N} and generate one completion219

per latent under fixed decoding hyperparameters. Optional aggregation (e.g., majority vote) can220

be applied. Because each completion is produced by a trained, distinct mode, conditional success221

probabilities remain larger than with redundant samplings, improving multi-attempt metrics.222

5 Theory223

This section derives mathematical connections between the token-level mutual information with224

discrete strategies and the pass@k. Our seminal lemma is as follows:225

226

Lemma 1. Under the assumptions below, with ∆ referring to the pass@k improvement over training,227

we show that:228

0 ≤ ∆ ≤ (1− pass@k(x, 0)) c I(τ ; z | x),
where pass@k(x, 0) refers to the initial pass@k score on prompt x and c depends on both k and the229

highest success probability of any strategy on prompt x.230

5.1 Problem setup and assumptions231

Similar to the setup in Sec. 2.4, suppose that we have k strategies that are being fine-tuned from232

an initial model, each of which have different policies for generating trajectories πz,t(· | x) for233

strategy z ∈ [k] at training step t. These trajectory distributions are therefore subject to the following234

conditions:235
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1. Assume that all k strategies have the same distribution before training begins, i.e. πi,0(· |236

x) = πj,0(· | x) for 1 ≤ i < j ≤ k. We will denote this initial distribution π0(· | x) as237

shorthand.238

2. At each time step, assume that the joint distribution of trajectories over picking a strat-239

egy uniformly at random is the same as the original distribution, or mathematically240
1
k

∑k
z=1 πz,t(· | x) = π0(· | x). In practice, this condition imposes undue constraints241

on the strategy distribution, and thus for the practical implementation, this is not enforced. 1242

We extend the traditional definition of pass@k to fit the setting of having multiple different strategies243

to query. For a given prompt x and deterministic verifier Y (τ), define the pass@k accuracy at training244

step t to be the probability that querying each of these strategies exactly once, as outlined in Sec. 4.6,245

results in at least one correct answer. Writing this out mathematically, for z ∈ [k] we independently246

sample τz,t ∼ πz,t(· | x). Then247

pass@k(x, t) = 1− Pr

(
k⋂

z=1

{Y (τz,t) = 0}

∣∣∣∣∣x
)

= 1−
k∏

z=1

Pr(Y (τz,t) = 0 | x). (9)

We will focus on the potential improvement from the beginning to the end of the training. Suppose248

that training ends at step T ; sample τ ∼ π0(· | x) and τz,T ∼ πz,T (· | x) for z ∈ [k]. Let249

a = Pr[Y (τ) = 1] and az = Pr[Y (τz,T ) = 1]. From assumption (2) above and the fact that the250

trajectories τz,T are sampled independently, we have that251

1

k

k∑
z=1

az = a. (10)

Then252

pass@k(x, 0) = 1− (1− a)k, pass@k(x, T ) = 1−
k∏

z=1

(1− az).

5.2 Derivation of lower bound253

Since f(y) = log(1− y) is strictly concave, by Jensen’s inequality we have that254

k∑
z=1

ln(1−az) =
k∑

z=1

f(az) ≤ kf

(
1

k

k∑
z=1

az

)
= kf(a) = k ln(1−a) =⇒

k∏
z=1

(1−az) ≤ (1−a)k

255
=⇒ 1− pass@k(x, T ) ≤ 1− pass@k(x, 0) =⇒ pass@k(x, T ) ≥ pass@k(x, 0). (11)

Equation (11) implies that the expected pass@k after training the k strategies is always at least256

as high as the expected pass@k before training. Furthermore, equality is achieved if and only if257

a1 = a2 = . . . = ak = a, i.e., each strategy’s chance of being correct is the same.258

5.3 Sketch of upper bound259

The full proof of Lemma 1 is in Appendix B; the following section gives highlights of the proof. A260

Taylor expansion argument gives261

1− pass@k(x, T ) ≥ (1− pass@k(x, 0)) exp

− 1

2(1− u)2

∑
z∈[k]

(az − a)2

 . (12)

Using Pinsker’s inequality to relate
∑

z(az − a)2 to the average KL (hence to conditional mutual262

information) yields263

1− pass@k(x, T ) ≥
(
1− pass@k(x, 0)

)
exp

(
− k

4(1− u)2
I(τ ; z | x)

)
. (13)

1We believe that weaker forms of this condition may also be sufficient, and this is an ongoing component of
our research.
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The left-hand side is the probability that none of the k draws pass. At high level, the Taylor expansion264

step (12) shows that this product is controlled by the variance of the per-index success probabilities265

(az). If the learning updates do not substantially change the trajectory distributions (small KL / small266

I(τ ; z | x)), then the az remain tightly concentrated around their mean a and pass@k cannot increase267

substantially.268

Rearranging and using the inequality x + e−x ≥ 1 yields Lemma 1. Thus, for small mutual269

information, x the possible gain in pass@k scales at most linearly with I(τ ; z | x) (up to the270

multiplicative factor (1− pass@k(x, 0))c).271

6 Experiments272

To validate the MISL-GRPO framework described in Section 4, we evaluate our approach on273

GSM8K across three open-weight models. We test whether the token-level MI reward (equation (6))274

and semantic MI reward (equation (7)) improve multi-attempt metrics without degrading pass@1275

performance. We also examine the effect of varying the number of strategies N and assess the stability276

of semantic MI rewards.277

Tasks and data. GSM8K (MIT License) [8], with 2,000 training problems and 100 held-out questions278

for evaluation. Zero-shot prompting; max sequence length 1024.279

Models. Llama 3.1–8B (Meta Llama 3 Community License Agreement) [26], Qwen 2.5–7B (Apache280

License) [30], and R1-Distilled–Qwen2.5–Math–1.5B (MIT License). We train LoRA adapters281

(≈80M parameters) on top of open-weight backbones [43].282

RL training. GRPO [33] with a correctness reward and KL penalty to the base model. MISL adds283

α1rTMI + α2rSMI. We ablate N ∈ {5, 10, 20} and (α1, α2). Semantic MI experiments primarily284

use N=5 due to estimator cost.285

Evaluation. Metrics: pass@1, pass@k, plurality@k, consensus@k. For inference, we fix k distinct286

strategies and sample one completion per strategy with fixed temperature.287

Each experiment was run on one H100 GPU on an internal cluster with 80 GB of memory. The288

training took approximately 12-24 hours per experiment and the evaluation took approximately 3289

hours per experiment.290

7 Results291

Token-level MISL improves multi-attempt success. With N=5 and (α1, α2) = (5, 0), token292

MI consistently improves pass@5 and consensus@5 without hurting pass@1; instead, we also293

observe gains in pass@1. Figure 1 shows our performance on the withheld evaluation set; asterisks294

mark p<.05 improvements. We hypothesize that token MI reduces redundant failure modes across295

strategies, aligning with Sec. 5.2.296

Scaling the number of strategies. For N ∈ {10, 20}, gains are mixed. Many GSM8K problems297

admit only a few distinct solution approaches; forcing too many strategies may allocate capacity to298

irrelevant modes.299

Semantic MI is promising but unstable. Optimizing against the KSG estimator for I(ψ(τ); z | x)300

often destabilized training, likely due to estimator variance and challenges with fitting a distribution301

on a high-dimensional embedding space with few examples. On R1-Distilled-Qwen, combining302

semantic MI with token MI occasionally yielded additional gains, suggesting that better semantic303

signals (e.g., contrastive or classifier-based surrogates) could help.304

8 Conclusion305

Our experiments show that token-level MISL provides a simple and effective way to induce strategy-306

level diversity in LLMs, leading to consistent gains on multi-attempt metrics such as pass@5 and307

consensus@5. By conditioning on discrete latent variables, the model learns reproducible modes of308

reasoning that reduce redundancy across attempts and increase the likelihood of success. However,309
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Figure 1: Performance with N=5 strategies and token MI only. We observe consistent gains on
pass@1 and consensus@5. Asterisks denote p<.05 from a paired Student’s t-test on the binary test
problems.

despite the success of token-level MI, our current approach for Semantic MISL is promising but310

unstable.311

Beyond these empirical findings, MISL provides a principled training-time approach for improving312

response diversity. and our analysis links I(τ ; z | x) to upper bounds in pass@k improvement in313

training. We hope this stimulates research on robust semantic diversity signals and theoretical ties314

between information-theoretic objectives and multi-attempt success.315

8.1 Future work316

We hope to better understand improvement guarantees under weaker assumptions. Empirically,317

assumption (2) does not seem necessary for pass@k improvement, and we hope improve the theory318

to better explain our experimental findings. We also wish to explore possible connections of pass@k319

with Tsallis entropy, a generalization of Shannon entropy [13].320

For further experimentation, we want to explore the performance of our MISL-based training method321

in other domains (code, formal proofs) with full fine-tuning rather than using LoRA adapters and322

larger-scale validation. We additionally look forward to testing MISL on more challenging problems323

with a wide variety of tentative solutions, in which case ample exploration of the solution space324

may require k > 20. Finally, we hope to investigate encoding strategies as a separate part of the325

embedding instead of in the prompt.326
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A Extended Mutual Information Related Work479

Estimating MI reliably is challenging in high dimensions. Variational bounds (Barber–Agakov)480

optimize a classifier or regressor qϕ(z | ·) as a proxy for the intractable posterior [40]. Contrastive481

bounds such as InfoNCE [40] reduce MI estimation to noise-contrastive classification and have482

become standard due to their stability. Neural MI estimators like MINE [4] directly optimize483

a Donsker–Varadhan bound but can suffer from bias/variance trade-offs and training instability.484

Nonparametric kNN estimators (KSG) [21] avoid parametric critics but require many samples and485

are sensitive to dimension, motivating careful batching and normalization when used inside policy486

gradients. In text generation, MI-style objectives have been used to prevent latent collapse and enable487

controllable generation, e.g., by encouraging informative latents in variational text models [48, 45] or488

aligning codes with style attributes [19]. These approaches typically maximize MI between prompts489

or attributes and latent variables, rather than between a discrete strategy and the full trajectory490

distribution, and are optimized with supervised losses rather than RL.491

Conceptually, our objective reconciles two desiderata emphasized in prior MI work: coverage (high492

marginal entropy over trajectories) and control (low conditional entropy given z). Whereas decoding-493

time diversity manipulates token entropy without guarantees about identifiable modes, MI-based494

diversification learns reusable, reproducible modes indexed by a small discrete latent. This makes495

diversity a first-class, training-time property that can be cleanly exercised at inference by selecting496

distinct z values.497

B Derivation of mutual information upper bound498

This appendix derives Lemma 1.499

Let u = maxz az < 1. Using Taylor’s Theorem on f(y) = log(1 − y) gives the equations500

f(az) = f(a) + (az − a)f ′(a) + 1
2 (az − a)2f ′′(ξz) where ξz lies in between az and a, for z ∈ [k].501

Since f ′′(y) = − 1
(1−y)2 is a decreasing function, in [min(a, a1, a2, . . . , ak),max(a, a1, a2, . . . , ak)]502

it achieves its minimum at f ′′(u) = − 1
(1−u)2 , where u = max(a, a1, a2, . . . , ak) = maxz∈[k] az .503

Summing all of these equations, the linear terms cancel due to (10). Then504 ∑
z∈[k]

log(1−az) = k log(1−a)+
∑
z∈[k]

1

2
(az−a)2f ′′(ξz) ≥ k log(1−a)− 1

2(1− u)2

∑
z∈[k]

(az−a)2

505

=⇒
k∏

z=1

(1− az) ≥ (1− a)k exp

− 1

2(1− u)2

∑
z∈[k]

(az − a)2


506

=⇒ 1− pass@k(x, T ) ≥ (1− pass@k(x, 0)) exp

− 1

2(1− u)2

∑
z∈[k]

(az − a)2

 . (14)

This places an upper bound on how much we can possibly improve pass@k compared to our original507

trajectory distributions. In particular, letting δ be the total variation distance and using Pinsker’s508

Inequality, we find that for all i ∈ [k],509

|ai − a| = |Pr[Y (τ) = 1]− Pr[Y (τi,T ) = 1]| =

∣∣∣∣∣∣
∑

Y (τ ′)=1

π0(τ
′)−

∑
Y (τ ′)=1

πi,T (τ
′)

∣∣∣∣∣∣
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510

≤
∑

Y (τ ′)=1

|π0(τ ′)− πi,T (τ
′)| ≤

∑
τ ′

|π0(τ ′)− πi,T (τ
′)| ≤ δ(π0, πi,T ) ≤

√
1

2
DKL(π0 ∥ πi,T )

511

=⇒ (ai − a)2 ≤ 1

2
DKL(π0 ∥ πi,T ) =⇒

∑
z∈[k]

(az − a)2 ≤ k

2
· 1
k

∑
z∈[k]

DKL(π0 ∥ πz,T )

512

=
k

2
Ez∼Unif{1,2,...,k}[DKL(π0 ∥ πz,T )] =

k

2
I(τ ; z | x).

Combining this with (14) yields513

1− pass@k(x, T ) ≥ (1− pass@k(x, 0)) exp

(
− k

4(1− u)2
I(τ ; z | x)

)
.

As a result, if I(τ ; z | x) is too small, then our theoretical upper bound on improvement in pass@k514

between steps 0 and T will also be very small.515

Rearranging (13) to bound the improvement ∆ := pass@k(x, T )− pass@k(x, 0), we obtain516

∆ = (1− pass@k(x, 0))− (1− pass@k(x, T ))
517

≤ (1− pass@k(x, 0))

(
1− exp

(
− k

4(1− u)2
I(τ ; z | x)

))
518

≤ (1− pass@k(x, 0)) · k

4(1− u)2
· I(τ ; z | x),

where the final inequality uses 1− e−x ≤ x.519

14



NeurIPS Paper Checklist520

1. Claims521

Question: Do the main claims made in the abstract and introduction accurately reflect the522

paper’s contributions and scope?523

Answer: [Yes]524

Justification: We claim that we have identified a method to improve multi-attempt perfor-525

mance with a mutual information reward term and demonstrate in the experiments section526

that our method successfully works.527

Guidelines:528

• The answer NA means that the abstract and introduction do not include the claims529

made in the paper.530

• The abstract and/or introduction should clearly state the claims made, including the531

contributions made in the paper and important assumptions and limitations. A No or532

NA answer to this question will not be perceived well by the reviewers.533

• The claims made should match theoretical and experimental results, and reflect how534

much the results can be expected to generalize to other settings.535

• It is fine to include aspirational goals as motivation as long as it is clear that these goals536

are not attained by the paper.537

2. Limitations538

Question: Does the paper discuss the limitations of the work performed by the authors?539

Answer: [Yes]540

Throughout the paper, we include comments and mentions in directions we believe can be541

improved. Additionally, in our conclusion and future work sections, we highlight the current542

limitations of our theory and experimentation.543

Guidelines:544

• The answer NA means that the paper has no limitation while the answer No means that545

the paper has limitations, but those are not discussed in the paper.546

• The authors are encouraged to create a separate "Limitations" section in their paper.547

• The paper should point out any strong assumptions and how robust the results are to548

violations of these assumptions (e.g., independence assumptions, noiseless settings,549

model well-specification, asymptotic approximations only holding locally). The authors550

should reflect on how these assumptions might be violated in practice and what the551

implications would be.552

• The authors should reflect on the scope of the claims made, e.g., if the approach was553

only tested on a few datasets or with a few runs. In general, empirical results often554

depend on implicit assumptions, which should be articulated.555

• The authors should reflect on the factors that influence the performance of the approach.556

For example, a facial recognition algorithm may perform poorly when image resolution557

is low or images are taken in low lighting. Or a speech-to-text system might not be558

used reliably to provide closed captions for online lectures because it fails to handle559

technical jargon.560

• The authors should discuss the computational efficiency of the proposed algorithms561

and how they scale with dataset size.562

• If applicable, the authors should discuss possible limitations of their approach to563

address problems of privacy and fairness.564

• While the authors might fear that complete honesty about limitations might be used by565

reviewers as grounds for rejection, a worse outcome might be that reviewers discover566

limitations that aren’t acknowledged in the paper. The authors should use their best567

judgment and recognize that individual actions in favor of transparency play an impor-568

tant role in developing norms that preserve the integrity of the community. Reviewers569

will be specifically instructed to not penalize honesty concerning limitations.570

3. Theory assumptions and proofs571
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Question: For each theoretical result, does the paper provide the full set of assumptions and572

a complete (and correct) proof?573

Answer: [Yes]574

Justification: We provide a complete and correct proof to justify our theoretical results in575

section 5. The proofs are included in section 5 and additional details are completed in the576

appendix.577

Guidelines:578

• The answer NA means that the paper does not include theoretical results.579

• All the theorems, formulas, and proofs in the paper should be numbered and cross-580

referenced.581

• All assumptions should be clearly stated or referenced in the statement of any theorems.582

• The proofs can either appear in the main paper or the supplemental material, but if583

they appear in the supplemental material, the authors are encouraged to provide a short584

proof sketch to provide intuition.585

• Inversely, any informal proof provided in the core of the paper should be complemented586

by formal proofs provided in appendix or supplemental material.587

• Theorems and Lemmas that the proof relies upon should be properly referenced.588

4. Experimental result reproducibility589

Question: Does the paper fully disclose all the information needed to reproduce the main ex-590

perimental results of the paper to the extent that it affects the main claims and/or conclusions591

of the paper (regardless of whether the code and data are provided or not)?592

Answer: [Yes]593

Justification: We describe our algorithm completely in section 4 and provide additional594

practical implementation details in sections 4 and 6. Our code repository will also be open595

sourced.596

Guidelines:597

• The answer NA means that the paper does not include experiments.598

• If the paper includes experiments, a No answer to this question will not be perceived599

well by the reviewers: Making the paper reproducible is important, regardless of600

whether the code and data are provided or not.601

• If the contribution is a dataset and/or model, the authors should describe the steps taken602

to make their results reproducible or verifiable.603

• Depending on the contribution, reproducibility can be accomplished in various ways.604

For example, if the contribution is a novel architecture, describing the architecture fully605

might suffice, or if the contribution is a specific model and empirical evaluation, it may606

be necessary to either make it possible for others to replicate the model with the same607

dataset, or provide access to the model. In general. releasing code and data is often608

one good way to accomplish this, but reproducibility can also be provided via detailed609

instructions for how to replicate the results, access to a hosted model (e.g., in the case610

of a large language model), releasing of a model checkpoint, or other means that are611

appropriate to the research performed.612

• While NeurIPS does not require releasing code, the conference does require all submis-613

sions to provide some reasonable avenue for reproducibility, which may depend on the614

nature of the contribution. For example615

(a) If the contribution is primarily a new algorithm, the paper should make it clear how616

to reproduce that algorithm.617

(b) If the contribution is primarily a new model architecture, the paper should describe618

the architecture clearly and fully.619

(c) If the contribution is a new model (e.g., a large language model), then there should620

either be a way to access this model for reproducing the results or a way to reproduce621

the model (e.g., with an open-source dataset or instructions for how to construct622

the dataset).623
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(d) We recognize that reproducibility may be tricky in some cases, in which case624

authors are welcome to describe the particular way they provide for reproducibility.625

In the case of closed-source models, it may be that access to the model is limited in626

some way (e.g., to registered users), but it should be possible for other researchers627

to have some path to reproducing or verifying the results.628

5. Open access to data and code629

Question: Does the paper provide open access to the data and code, with sufficient instruc-630

tions to faithfully reproduce the main experimental results, as described in supplemental631

material?632

Answer: [Yes]633

Justification: We leverage open-source models and datasets, and we aim to open-source our634

code repository, along with the scripts required to rerun our experiments and load both the635

data and models.636

Guidelines:637

• The answer NA means that paper does not include experiments requiring code.638

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/639

public/guides/CodeSubmissionPolicy) for more details.640

• While we encourage the release of code and data, we understand that this might not be641

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not642

including code, unless this is central to the contribution (e.g., for a new open-source643

benchmark).644

• The instructions should contain the exact command and environment needed to run to645

reproduce the results. See the NeurIPS code and data submission guidelines (https:646

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.647

• The authors should provide instructions on data access and preparation, including how648

to access the raw data, preprocessed data, intermediate data, and generated data, etc.649

• The authors should provide scripts to reproduce all experimental results for the new650

proposed method and baselines. If only a subset of experiments are reproducible, they651

should state which ones are omitted from the script and why.652

• At submission time, to preserve anonymity, the authors should release anonymized653

versions (if applicable).654

• Providing as much information as possible in supplemental material (appended to the655

paper) is recommended, but including URLs to data and code is permitted.656

6. Experimental setting/details657

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-658

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the659

results?660

Answer: [Yes]661

Justification: Throughout section 4, we explain all the necessary details to understand the662

results. Although there are minor choices that are not included in the main paper, these are663

not necessary to understand the results and will be included in the forthcoming code release.664

Guidelines:665

• The answer NA means that the paper does not include experiments.666

• The experimental setting should be presented in the core of the paper to a level of detail667

that is necessary to appreciate the results and make sense of them.668

• The full details can be provided either with the code, in appendix, or as supplemental669

material.670

7. Experiment statistical significance671

Question: Does the paper report error bars suitably and correctly defined or other appropriate672

information about the statistical significance of the experiments?673

Answer: [Yes]674
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Justification: For our main result in Figure 1 of Section 7, we analyze the statistical675

significance of our result, showing which improvements satisfy p < 0.05 and providing676

details on the statistical test employed. However, unfortunately, due to the computational677

cost of model training, we were unable to run multiple training runs per model, so the error678

within training runs remains not properly understood.679

Guidelines:680

• The answer NA means that the paper does not include experiments.681

• The authors should answer "Yes" if the results are accompanied by error bars, confi-682

dence intervals, or statistical significance tests, at least for the experiments that support683

the main claims of the paper.684

• The factors of variability that the error bars are capturing should be clearly stated (for685

example, train/test split, initialization, random drawing of some parameter, or overall686

run with given experimental conditions).687

• The method for calculating the error bars should be explained (closed form formula,688

call to a library function, bootstrap, etc.)689

• The assumptions made should be given (e.g., Normally distributed errors).690

• It should be clear whether the error bar is the standard deviation or the standard error691

of the mean.692

• It is OK to report 1-sigma error bars, but one should state it. The authors should693

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis694

of Normality of errors is not verified.695

• For asymmetric distributions, the authors should be careful not to show in tables or696

figures symmetric error bars that would yield results that are out of range (e.g. negative697

error rates).698

• If error bars are reported in tables or plots, The authors should explain in the text how699

they were calculated and reference the corresponding figures or tables in the text.700

8. Experiments compute resources701

Question: For each experiment, does the paper provide sufficient information on the com-702

puter resources (type of compute workers, memory, time of execution) needed to reproduce703

the experiments?704

Answer: [Yes]705

Justification: We specify the computer resources required in section 6.706

Guidelines:707

• The answer NA means that the paper does not include experiments.708

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,709

or cloud provider, including relevant memory and storage.710

• The paper should provide the amount of compute required for each of the individual711

experimental runs as well as estimate the total compute.712

• The paper should disclose whether the full research project required more compute713

than the experiments reported in the paper (e.g., preliminary or failed experiments that714

didn’t make it into the paper).715

9. Code of ethics716

Question: Does the research conducted in the paper conform, in every respect, with the717

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?718

Answer: [Yes]719

Justification: This paper does not involve any human subjects or sensitive information in720

datasets. As explained below, it poses minimal societal impact.721

Guidelines:722

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.723

• If the authors answer No, they should explain the special circumstances that require a724

deviation from the Code of Ethics.725
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-726

eration due to laws or regulations in their jurisdiction).727

10. Broader impacts728

Question: Does the paper discuss both potential positive societal impacts and negative729

societal impacts of the work performed?730

Answer: [NA]731

Justification: The paper only discusses problems with verifiable rewards, which means732

that there can only be a right or wrong answer, and furthermore there are straightforward733

methods to check whether the resulting output is correct or not.734

Guidelines:735

• The answer NA means that there is no societal impact of the work performed.736

• If the authors answer NA or No, they should explain why their work has no societal737

impact or why the paper does not address societal impact.738

• Examples of negative societal impacts include potential malicious or unintended uses739

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations740

(e.g., deployment of technologies that could make decisions that unfairly impact specific741

groups), privacy considerations, and security considerations.742

• The conference expects that many papers will be foundational research and not tied743

to particular applications, let alone deployments. However, if there is a direct path to744

any negative applications, the authors should point it out. For example, it is legitimate745

to point out that an improvement in the quality of generative models could be used to746

generate deepfakes for disinformation. On the other hand, it is not needed to point out747

that a generic algorithm for optimizing neural networks could enable people to train748

models that generate Deepfakes faster.749

• The authors should consider possible harms that could arise when the technology is750

being used as intended and functioning correctly, harms that could arise when the751

technology is being used as intended but gives incorrect results, and harms following752

from (intentional or unintentional) misuse of the technology.753

• If there are negative societal impacts, the authors could also discuss possible mitigation754

strategies (e.g., gated release of models, providing defenses in addition to attacks,755

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from756

feedback over time, improving the efficiency and accessibility of ML).757

11. Safeguards758

Question: Does the paper describe safeguards that have been put in place for responsible759

release of data or models that have a high risk for misuse (e.g., pretrained language models,760

image generators, or scraped datasets)?761

Answer: [NA]762

Justification: [NA]763

Guidelines:764

• The answer NA means that the paper poses no such risks.765

• Released models that have a high risk for misuse or dual-use should be released with766

necessary safeguards to allow for controlled use of the model, for example by requiring767

that users adhere to usage guidelines or restrictions to access the model or implementing768

safety filters.769

• Datasets that have been scraped from the Internet could pose safety risks. The authors770

should describe how they avoided releasing unsafe images.771

• We recognize that providing effective safeguards is challenging, and many papers do772

not require this, but we encourage authors to take this into account and make a best773

faith effort.774

12. Licenses for existing assets775

Question: Are the creators or original owners of assets (e.g., code, data, models), used in776

the paper, properly credited and are the license and terms of use explicitly mentioned and777

properly respected?778
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Answer: [Yes]779

Justification: In section 6, we detail the licenses for each model and resources, and we780

properly credit the model and dataset providers. Moreover, we choose models and datasets781

with well-understood licenses and that are commonly-used in RLVR literature with an aim782

to ensure further research is accessible. All licenses are properly credited and respected.783

Guidelines:784

• The answer NA means that the paper does not use existing assets.785

• The authors should cite the original paper that produced the code package or dataset.786

• The authors should state which version of the asset is used and, if possible, include a787

URL.788

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.789

• For scraped data from a particular source (e.g., website), the copyright and terms of790

service of that source should be provided.791

• If assets are released, the license, copyright information, and terms of use in the792

package should be provided. For popular datasets, paperswithcode.com/datasets793

has curated licenses for some datasets. Their licensing guide can help determine the794

license of a dataset.795

• For existing datasets that are re-packaged, both the original license and the license of796

the derived asset (if it has changed) should be provided.797

• If this information is not available online, the authors are encouraged to reach out to798

the asset’s creators.799

13. New assets800

Question: Are new assets introduced in the paper well documented and is the documentation801

provided alongside the assets?802

Answer: [NA]803

Justification: [NA]804

Guidelines:805

• The answer NA means that the paper does not release new assets.806

• Researchers should communicate the details of the dataset/code/model as part of their807

submissions via structured templates. This includes details about training, license,808

limitations, etc.809

• The paper should discuss whether and how consent was obtained from people whose810

asset is used.811

• At submission time, remember to anonymize your assets (if applicable). You can either812

create an anonymized URL or include an anonymized zip file.813

14. Crowdsourcing and research with human subjects814

Question: For crowdsourcing experiments and research with human subjects, does the paper815

include the full text of instructions given to participants and screenshots, if applicable, as816

well as details about compensation (if any)?817

Answer: [NA]818

Justification: [NA]819

Guidelines:820

• The answer NA means that the paper does not involve crowdsourcing nor research with821

human subjects.822

• Including this information in the supplemental material is fine, but if the main contribu-823

tion of the paper involves human subjects, then as much detail as possible should be824

included in the main paper.825

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,826

or other labor should be paid at least the minimum wage in the country of the data827

collector.828

15. Institutional review board (IRB) approvals or equivalent for research with human829

subjects830
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Question: Does the paper describe potential risks incurred by study participants, whether831

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)832

approvals (or an equivalent approval/review based on the requirements of your country or833

institution) were obtained?834

Answer: [NA]835

Justification: [NA]836

Guidelines:837

• The answer NA means that the paper does not involve crowdsourcing nor research with838

human subjects.839

• Depending on the country in which research is conducted, IRB approval (or equivalent)840

may be required for any human subjects research. If you obtained IRB approval, you841

should clearly state this in the paper.842

• We recognize that the procedures for this may vary significantly between institutions843

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the844

guidelines for their institution.845

• For initial submissions, do not include any information that would break anonymity (if846

applicable), such as the institution conducting the review.847

16. Declaration of LLM usage848

Question: Does the paper describe the usage of LLMs if it is an important, original, or849

non-standard component of the core methods in this research? Note that if the LLM is used850

only for writing, editing, or formatting purposes and does not impact the core methodology,851

scientific rigorousness, or originality of the research, declaration is not required.852

Answer: [NA]853

Justification: [NA]854

Guidelines:855

• The answer NA means that the core method development in this research does not856

involve LLMs as any important, original, or non-standard components.857

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)858

for what should or should not be described.859
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