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Abstract

Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reason-
ing abilities of large language models (LLMs) on mathematics and programming
tasks, often by maximizing pass@1 correctness. However, optimizing single-
attempt accuracy can inadvertently suppress response diversity across repeated
attempts, narrowing exploration and overlooking underrepresented strategies. We
introduce UpSkill, a training time method that adapts Mutual Information Skill
Learning (MISL) to LLMs to induce structured response diversity: a discrete latent
z selects a reproducible “strategy” that steers the token distribution toward distinct
modes. We propose a novel reward that we implement within Group Relative Policy
Optimization (GRPO): a token-level mutual information (MI) reward that encour-
ages trajectory specificity to z. Experiments on GSM8K with three open-weight
models, Llama 3.1–8B, Qwen 2.5–7B, and R1-Distilled–Qwen2.5–Math–1.5B
show that UpSkill improves multi-attempt metrics for Qwen 2.5–7B, yielding
gains of ∼4% in pass@k and ∼4% in plurality@k without degrading pass@1.
Additionally, we prove that improvements in pass@k are closely tied to the mutual
information objective, providing a theoretical justification for UpSkill.
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1 Introduction

LLMs excel at verifiable reasoning tasks such as mathematical problem solving and code generation
[21]. However, repeated sampling often yields highly similar outputs [42]. This is detrimental in
multi-attempt settings where just one correct completion solves the problem at hand, such as code
generation with tests [5] or formal proofs in Lean [54], as a lack of diversity reduces the effective
number of independent attempts. Therefore, for these or other objectives evaluated by pass@k, or the
probability that at least one of k completions will be correct, more deterministic output decreases
the chance that some sampled attempt will succeed. Furthermore, recent work has found that post-
training that optimizes single-attempt correctness suppresses response variation across attempts [7, 9],
creating a discrepancy between how models are trained and how they are used and evaluated.

The challenge of balancing diversity and accuracy, or exploration and exploitation [51], has primarily
been studied in prior works that change how decoding is done. Methods such as temperature
sampling [39], nucleus sampling [24], and prompt perturbations [48] can inject variety, but they
require manual tuning [12] and are brittle across domains [47, 37]. Separately, prior training-time
methods do not expose a controllable basis of strategies and require a complex training regime to
properly balance exploration and exploitation [52, 7]. We seek a training-time mechanism that (i)
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If Raymond does half as much laundry as Sarah, and Sarah does 4 times as much laundry as David, calculate 
the difference in the amount of laundry Raymond and David do if Sarah does 400 pounds of laundry.

Sarah does 400 pounds of laundry.

David does 1/4 the laundry Sarah does, so he 
does 400 / 4 = 100 pounds of laundry.

Raymond does 1/2 the laundry Sarah does, so 
he does 400 / 2 = 100 pounds of laundry.

The difference is 200 – 100 = 100 pounds of 
laundry.

Answer: 100 pounds

Input

Let D be the amount of laundry David does and let 
R be the amount of laundry Raymond does.

Since Sarah does 4 times as much laundry as 
David, and Raymond does half as much laundry as 
Sarah, we know that 4D = 400 and R = 400 / 2

The difference is:
R – D = 400 / 2 – 400 / 4 = 200 – 100 = 100
Answer: 100 pounds

Figure 2: UpSkill is an unsupervised method for training LLMs to produce diverse responses. After
training, different latent vectors z (blue boxes above) correspond to different response strategies.
Because of space constraints, the figure shows summarized responses from UpSkill; we report the
full responses in Appendix K.

increases diversity in a controlled manner, (ii) produces semantically distinct and reproducible modes
of reasoning, and (iii) preserves single-attempt verifiable accuracy.

Figure 1: Token-level MISL improves multi-
attempt accuracy without hurting single-attempt
accuracy on GSM8K for the Qwen 2.5-7B model
(See Sec. 5.2).

We introduce UpSkill, a training-time approach
that induces structured response diversity with-
out prompt engineering. The key idea behind
UpSkill is to introduce an input token z that
structures the response, so that different values
of z correspond to different responses. Formally,
we will model LLM attempts on verifiable rea-
soning tasks as a token-level Markov decision
process. We can then adopt prior work from
reinforcement learning on learning skills, which
learn a policy conditioned on a latent variable
z. These methods [14, 19, 1, 44, 16] include a
loss term that maximizes the mutual information
between z and the policy’s behavior. Precisely,
we adapt the CSF method [65] to LLMs: the
model conditions its response on a discrete la-
tent z ∈ {1, . . . , N}, and training encourages
behaviors whose distribution depends strongly
on z. Intuitively, each z should correspond to a
reproducible strategy, and the set of strategies
should span a broad range of behaviors.

The main contribution of our paper is a method for training LLMs to produce diverse responses. Our
method implements mutual information skill learning by applying GRPO [43] with a novel reward
term: a token-level mutual information reward, which encourages diversity in completions. Finally,
we sketch a theoretical link between I(τ ; z | x) and pass@k: the improvement of pass@k after
training is related to I(τ ; z | x), In summary, our contributions are as follows:

• UpSkill achieves gains of +3.6% in pass@k and +4.0% in plurality@k on GSM8K on
Qwen 2.5–7B using RL fine-tuning with LoRA adapters on 2,000 problems, with preserved
pass@1 accuracy. We additionally test two other open-weight models, although we do not
observe improved performance.

• In an arithmetic puzzle environment, UpSkill improves pass@5 by +10% by mitigating
response variation collapse and developing a collection of diverse and complementary skills.
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• We prove that pass@k improvement closely corresponds to the mutual information I(τ ; z |
x), showing that large improvements in multi-attempt accuracy require — and are limited
by — sufficient mutual information.

• We provide an effective and reproducible method for token-level MI, and will release an
open-source implementation focused on practical performance.

Training and evaluation code is open-sourced at https://github.com/dshah02/upskill.

2 Background and Related Work

2.1 Multi-attempt evaluation, redundancy, and why diversity matters

For verifiable tasks, we often consider the probability of success across multiple completions rather
than a single attempt [7]. Let x denote the input and τ a sampled completion from policy π(· | x).
Let Y (τ) ∈ {0, 1} indicate correctness under a deterministic verifier. For k attempts, the standard
metric

pass@k(x) = 1− Pr

(
k⋂

i=1

{Y (τi) = 0}

∣∣∣∣∣x
)

(1)

is the complement of the joint failure probability across k i.i.d. draws τ1:k ∼ π(· | x) [5]. Letting
p = Pr(Y (τ) = 1 | x), we therefore have pass@k(x) = 1− (1− p)k.

In practice, identical prompts with fixed decoding hyperparameters can yield strongly correlated
trajectories, especially for deterministic or near-deterministic samplers [56]. A useful lens is to
consider an “effective number of attempts” keff that discounts k by a correlation term (analogous to
design effects in sampling) [27]. If completions have pairwise correlation ρ in the binary success
indicators, a heuristic adjustment gives keff ≈ k/(1 + (k − 1)ρ): as ρ→ 1, additional attempts
contribute little; as ρ→ 0, keff → k. Although crude, this highlights the central point: reducing
dependence among attempts is as important as raising per-attempt accuracy. Structured diversity
aims to decrease redundancy so that the joint failure probability decreases faster in k. For Gaussian
random variables, correlation and mutual information are closely related (as intuitively, correlated
variables have information on each other) [28]. However, as text correctness cannot easily be framed
as a Gaussian distribution, mutual information is more a natural measurement.

Beyond pass@k, plurality@k and consensus@k measure agreement among completions, examin-
ing robustness and internal consistency of the model’s reasoning [57]. In many workflows, agreement
acts as a proxy for confidence while still benefiting from diversity to escape shared failure modes [23].

2.2 RL on language models: token-level MDPs, RLVR, and GRPO

Autoregressive LLMs can be cast as policies over a Markov decision process (MDP), where the
state is the token prefix and the action is the next token [3, 36]. This setup, often referred to as the
token-level MDP [66], allows reinforcement learning algorithms to directly optimize model behavior
for correctness on verifiable tasks such as math or code.

Reinforcement Learning from Verifiable Rewards (RLVR) leverages automatically checkable signals
(e.g., exact numeric answers, unit tests) as rewards, with the goal being to improve the pass rate of
policies while ensuring the new policy remains close to a base model [33, 11]. Let πθ denote the
trainable policy and πbase a frozen reference. A common form of the per-trajectory reward is

rRLVR(τ) = rcorrectness(τ) − β DKL

(
πθ(· | x)

∥∥πbase(· | x)) , (2)

where β > 0 controls deviation from the base model [60].

Group Relative Policy Optimization (GRPO) [43] adapts PPO-style updates to reasoning by sampling
multiple completions per prompt x as a group. Within-group baselines reduce variance and increase
the relative difference between completion rewards. Concretely, for each x one draws C trajectories
{τi}Ci=1, computes verifiable rewards and a group baseline (e.g., a rank or mean-normalized signal),
and updates πθ with clipped policy ratios as in PPO [41]. GRPO typically improves pass@1 on
math/code under RLVR [43]. However, absent any explicit term for diversity, it can reduce variation
across attempts as the policy sharpens around locally high-reward regions [9].
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As some intuition for this distribution change, suppose that the model is attempting to predict the
correct answer in a setting where it believes that the answer is Yes with probability 70% and No with
probability 30%. Cross-entropy loss encourages a model to predict the correct distribution of 70%
Yes and 30% No; on the other hand, GRPO training would cause the model to collapse its output
distribution towards predicting 100% Yes, as it maximizes the pass@1. Empirically, this can shrink
the entropy of the completion distribution and heighten redundancy among attempts, limiting pass@k
improvements even as pass@1 increases [9].

2.3 Mutual Information and Skill Discovery

Maximizing mutual information (MI) between latent variables and observed behavior has been a
recurring tool for learning structured, controllable representations [53, 26, 50].

In generative modeling, InfoGAN [6] augments GAN training with a variational lower bound on
I(c;x) to make latent codes c predictably control semantic factors (e.g., stroke thickness for MNIST).
In variational autoencoders, InfoVAE [63] adds an explicit MI term to counteract posterior collapse
and preserve informative latents even with expressive decoders.

In sequential decision making, MI has been used to discover diverse, reusable behaviors without
external rewards. Early work such as VIC [20] and DIAYN [13] maximizes I(s; z) or I(τ ; z), encour-
aging skills z whose rollouts visit different parts of state or trajectory space and remain identifiable
from observations. InfoGAIL [32] extends this to imitation learning by maximizing MI between a
latent intention and trajectories to capture multi-modal expert behavior. Subsequent methods bias
the MI objective toward long-horizon distinctiveness to avoid trivial short-term variation [45, 22].
Additional related work on MI is available in Appendix B.

Unsupervised skill discovery in RL can be viewed as maximizing the MI between a latent “skill”
variable and observed trajectories [20, 13]. Let z ∈ Z index a skill and let τ denote a trajectory.
These methods maximize

max
π

I(τ ; z | x) = E
[
log pπ(τ |x, z)− log pπ(τ |x)

]
= H(τ | x)−H(τ | x, z). (3)

This decomposition clarifies the pressure on the policy: (i) to increase marginal entropy H(τ | x) so
that trajectories cover more of the solution space; and (ii) to decrease conditional entropy H(τ | x, z)
so that each z induces a reproducible, stable mode. The net effect is a set of distinct, consistent
behaviors indexed by z that together span diverse solution strategies.

Our setting is closest in spirit to unsupervised skill discovery (e.g., DIAYN, VIC) and to mutual
information-based skill learning [65], but differs in applying these techniques to language models
with RLVR training. We develop an approach for maximizing MI tailored to LLM reasoning, and
also connect pass@k performance with the mutual information objective.

2.4 Other techniques for response diversification

Beyond MI-based training, several other approaches aim to increase output diversity.

At inference time, decoding-time diversification alters sampling: increasing temperature, switching
to nucleus/top-k sampling [24, 15], or perturbing prompts [37]. While simple, these approaches face
limitations: (i) they often fail to explore qualitatively distinct solution paths [35, 39]; (ii) they require
domain-specific tuning [59]; and (iii) they can trade off against correctness and coherence [35].
Prompt-cycling can inject domain knowledge (e.g., “try algebra” vs. “try geometry”), but it burdens
users with prompt engineering and saturates well below human diversity [48].

Determinantal point processes (DPPs) provide another path by rewarding sets of outputs that span
high-volume regions in embedding space [30, 56, 34, 58]. In reinforcement learning, determinant-
based rewards can encourage agents to explore trajectories that span complementary regions of
state space [2, 62]. Compared to MI, which directly couples a latent z with trajectories to ensure
reproducible modes, DPP-based diversity is distribution-free: it treats a set of samples as diverse if
they occupy a high-volume region in representation space, regardless of whether the same diversity is
reproducible under repeated sampling.

Finally, training-time diversification has also been studied through explicit pass@k-based objectives.
[52] proposed an unbiased estimator for generic k-attempt objectives, showing overall improved
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ℋ𝜋 𝜏 | 𝑧 ≈ ℋ𝜋 𝜏 ℋ𝜋 𝜏 | 𝑧 ≪ ℋ𝜋 𝜏

Let’s try geometry…

Let’s try calculus…

Let’s try algebra…

𝑧1

𝑧2

𝑧3

𝑧4 𝑧0

GRPO: log 𝑝𝜋 𝜏 | 𝑥, 𝑧 − log 𝑝𝜋 𝜏 | 𝑥

MISL Pressure

GRPO Pressure

Figure 3: Example illustration of how the MISL reward improves pass@k performance. Before MISL
(left), the trajectory distribution is independent of the latents z, so the conditional entropy is close to
the marginal. MISL training prevents distribution collapse due to pass@1 training (middle). Adding
the token-level MI reward (right) yields well-separated clusters indexed by z, reducing conditional
entropy while preserving high marginal entropy. At inference, fixing different z values produces
consistent and diverse solution strategies.

model efficacy. Extending this, [7] argue that simply training on pass@1 falls victim to a local
maximum of over-exploitation and reduced exploration. They find that pass@k training naturally
focusing optimization efforts on harder problems producing significant improvements in both pass@k
and pass@1. Outside of verifiable domains, DivPO [31] alters preference optimization by contrasting
diverse high-quality responses with common low-quality ones using a predefined diversity objective,
yielding large diversity gains on creative and instruction-following tasks.

As we provide an orthogonal method to improve pass@k and diversity, our approach may complement
that of [7], [52], and [31].

3 Optimizing LLM Diversity with Mutual Information

Given an input x and an autoregressive policy π( · | x) that produces a completion (trajectory)
τ = (y1, . . . , yT ), we introduce a discrete latent z ∈ {1, . . . , N} via a lightweight prompt prefix
(e.g., Strategy {z} |), yielding conditional policies π(· | x, z). During training, z is drawn
uniformly at random from the set {1, . . . , N}. At inference, one selects k ≤ N distinct values of z
and generates one completion per value, producing k semantically distinct attempts.

3.1 Objective

We would like to encourage structured response diversity by maximizing the conditional mutual
information I(τ ; z | x). Intuitively, maximizing mutual information makes the outputs of different
strategies distinguishable, ensuring that each z induces a reliably different mode. By querying each
strategy once, we obtain k semantically distinct attempts. Formally, this corresponds to maximizing

max
π

I(τ ; z | x) = E
[
log pπ(τ | x, z)− log pπ(τ | x)

]
, (4)

which increases the overall entropy of trajectories while reducing the conditional entropy within each
z-mode, ensuring diverse yet reproducible strategies. The term pπ(τ | x) = 1

N

∑N
z′=1 pπ(τ | x, z′) is

a uniform mixture over skills. Maximizing mutual information encourages (i) high marginal entropy
of trajectories, promoting broad coverage; and (ii) low conditional entropy given z, so that each
response is distinct and determined by z. Figure 3 provides an overview of the relevant dynamics.
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Algorithm 1 UpSkill: A method for training LLMs to produce diverse responses with mutual
information.

1: Inputs: base policy πbase, trainable policy π, latent count N , completions per group C, weights
(α1, α2, β)

2: repeat
3: Sample a minibatch of prompts {x}
4: for each x in the minibatch do
5: Sample z ∼ Unif({1, . . . , N}); generate C completions {τi}Ci=1 with π(· | x, z)
6: Compute rcorr(τi), rTMI(τi;x, z), and ∆KL(τi) as above
7: end for
8: Form per-sample rewards via (6); compute advantages; update π with GRPO
9: until convergence

3.2 Token-level mutual information reward

We now focus on implementing the mutual information as a token-level reward. For each pair (x, z),
let {τi}Ci=1 be C completions sampled from π(· | x, z). We define a per-sample token-level score

rTMI(τi;x, z) =

C∑
t=1

[
log pπ(yt | x, z, y<t)− log pπ(yt | x, y<t)

]
, (5)

where the second term is the uniform mixture

pπ(yt | x, y<t) =
1

N

N∑
z′=1

pπ(yt | x, z′, y<t).

Log-probabilities are computed by π on the realized τi. In our implementation the mixture is
computed exactly across all N skills; this is feasible for the N used in our experiments (Section 5).
Since 1

C rTMI(τi;x, z) is a Monte Carlo estimator of I(τ ; z | x), we make this our main reward term
with UpSkill, with the other reward term being considered in ablation experiments. Appendix D
discusses an alternative based on semantic mutual information.

3.3 Combined RL objective

Let rcorr(τi) ∈ R denote the verifiable correctness reward (often binary) and define the per-trajectory
KL penalty as

∆KL(τi) =

|τi|∑
t=1

log
π(yt | x, z, y<t)

πbase(yt | x, z, y<t)
.

The per-sample scalar reward is
r(τi;x, z) = rcorr(τi) − β∆KL(τi) + α1 rTMI(τi;x, z), (6)

with α1, β ≥ 0. We apply GRPO to optimize the sum of the combined rewards.

3.4 Training procedure

We fine-tune a trainable policy πθ with GRPO while injecting a discrete strategy variable z ∈
{1, . . . , N}. At each step, we draw a minibatch of prompts x and, for each x, sample a strategy
z uniformly and generate C completions τ1:C ∼ πθ(· | x, z) under fixed decoding. For every
completion τ , we compute: (i) a verifiable correctness reward rcorr(τ) from the task’s deterministic
checker; (ii) the token-level MISL term rTMI that measures how specific the trajectory is to the
chosen strategy; and (iii) a KL control term toward a frozen base policy. We then update the policy
with GRPO on this reward.

3.5 Inference

Given a budget of k attempts, we choose k distinct latents from {1, . . . , N} and generate one
completion per latent under fixed decoding hyperparameters. Aggregation (e.g., majority vote) can
optionally be applied. Because each completion is produced by a trained, distinct mode, conditional
success probabilities remain larger than with redundant samplings, improving multi-attempt metrics.
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4 Theoretical Connection Between pass@k Improvement and Mutual
Information

Our main theoretical result shows that the mutual information objective is closely tied to pass@k.
In particular, we will show that the mutual information objective is a lower bound on improvement
in the pass@k objective, so maximizing mutual information provably results in an increased (lower
bound on) pass@k. Our theoretical results will require the following assumptions:

1. k-uniform mixture model: Assume that the marginal distribution over the skills is identical
to the base model.

2. Distributional impact: Let az be the probability of success of strategy z and a be the
probability of success of the base model. Assume that for all x ∈ X there exists η > 0 such
that for all z ∈ [k], |az − a| ≥ ηδ(πM,z(· | x), πB(· | x)), where δ is the total variation
distance.

The second assumption says that the distribution shifts induced by UpSkill correspond to different
problem approaches, and, as a result, will have different probabilities of success. A more precise
definition of k-uniform mixture models, additional justification for the assumptions, and the statement
and proof of the lemma are in Appendix C.
Lemma 1. Let pass@kB be the pass@k score of the base model on prompt x and pass@kM be the
pass@k score of the mixture model on prompt x. Under the above assumptions, we show that:

1− exp
(
−C1η

2I(τ ; z | x)2
)
≤ pass@kM − pass@kB

1− pass@kB
≤ 1− exp (−C2I(τ ; z | x))

where C1 depends on k and C2 depends on k and maxz az .

The quantity in the middle can be interpreted as the fraction of possible improvement from the base
model that is realized by the mixture model. Since monotonically increasing functions in I(τ ; z | x)
provide both lower and upper bounds on how much the mixture model improves over the base model,
it makes sense to optimize directly for the mutual information. UpSkill explicitly increases I(τ ; z | x)
during training, ensuring diversity across skills and giving a guaranteed improvement in pass@k over
the base model.

5 Experiments

We evaluate whether conditioning on a discrete latent z and training with our token-level mutual-
information reward (5) improves multi-attempt metrics. We present results in two settings: (1) a
controlled arithmetic environment that allows for fully verifiable evaluation and direct inspection of
distributional effects, and (2) the GSM8K benchmark across three open-weight models. We then
report ablations on the number of strategies N and on adding a semantic-MI surrogate.

5.1 Arithmetic Environment

The arithmetic environment consists of prompts with three single-digit integers and a latent skill
index z∈{0, . . . , N−1}. A small transformer model chooses one of the integers to be a target and is
required to produce a simple arithmetic expression with the other two digits that evaluates to this
target. We use an automatically verified correctness reward, and training uses GRPO without a KL
penalty. Full details of the environment, model, and training procedure are provided in Appendix E.

Figure 4 illustrates that in the control condition (α1=0), training quickly collapses to a single
deterministic strategy: by the end of training, pass@1 and pass@5 are indistinguishable (0.793),
offering no benefit from multiple attempts. In contrast, with UpSkill (α1=0.5, MI reward cap at
1.0), the model maintains diverse trajectories, yielding a substantially higher multi-attempt accuracy
(pass@5 = 0.897) despite a lower single-attempt accuracy (pass@1 = 0.390). This difference aligns
with the entropy dynamics: UpSkill preserves broad output distributions (token entropy changed
from 0.723 to 0.797 over training), sustaining diverse strategies and higher pass@5. By contrast, the
control run—while substantially improving pass@1—collapses to near-deterministic outputs (with
entropy 0.723 changing to 0.030), leaving pass@5 identical to pass@1 (see Appendix E.5 for more
details).
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Figure 4: Arithmetic environment results. Training curves show that under GRPO alone (blue),
pass@1 and pass@5 converge together, indicating that multiple attempts provide little benefit. With
MISL (orange; N=5), pass@5 improves substantially while pass@1 remains modest, demonstrating
that different latents yield complementary solutions. Operator distributions further highlight this
effect: without MISL, they are nearly identical across z, reflecting a lack of specialization, whereas
with MISL, distinct latents focus on different operators, producing diverse strategies that drive multi-
attempt gains.

Figure 4 illustrates that under UpSkill, different z values yield distinct distributions over operators
and digits, whereas the control produces nearly identical distributions across z. In this small-scale
environment, we can directly observe the learned strategies, and notably z = 1 and z = 2 converge
to risky yet common modes, whereas other values of z cover the remaining operations, improving
multi-attempt success with a strategy infeasible for optimizing a pass@1 objective. The distributions
over the first digit are available in Appendix E.7.

We additionally ablate the impact of starting model capabilities, the coefficient of KL penalty, and
GRPO parameters (see Appendix F for full details and results). KL penalty β discourages entropy
collapse by ensuring the new policy remains close to the initial policy, thereby improving performance.
On models with β ∈ [0.05, 0.10], we test α1 ∈ [0.1, 0.3, 0.5] and find that well-chosen MI-reward
parameters increase pass@k by an average of 3% for the weaker base model. However, for the
stronger base model, we find the opposite trend. It is always best to choose α1 = 0, with the best
choice of α1 ∈ [0.1, 0.3, 0.5] still leading to a 1.2% performance decrease. Our theoretical results in
Lemma 1 suggest that UpSkill improvement is negatively related to pass@1 (equivalently pass@kB)
capability, and thus, although surprising, this result is in line with our theoretical analysis. We
separately conjecture that β, which corresponds with a decrease in exploration from the base policy,
conflicts with the mutual information incentive to explore.

5.2 GSM8K

We next evaluate on GSM8K [8], a dataset of grade-school arithmetic word problems. We use 2,000
training problems and a held-out set of 500 questions. All experiments are conducted in a zero-shot
setting with a maximum sequence length of 1024 tokens. We train LoRA adapters (approximately
80M trainable parameters) on top of three open-weight backbones: Llama 3.1–8B [18], Qwen 2.5–7B
[38], and R1-Distilled–Qwen2.5–Math–1.5B [10]. As before, we apply GRPO with a correctness
reward and with default KL penalty, and UpSkill is applied at the token level as in Eq. (6). At
inference, we fix k distinct skill indices and generate one completion per skill. More details and
ablations are available in Appendices G, H, and I. Figure 5 shows our performance on the withheld
evaluation set. Token-level MISL improves results on Qwen 2.5–7B on all metrics. The other tested
models are generally unaffected. Interestingly, these results do not entirely parallel the arithmetic
environment, as UpSkill’s improvement on Qwen 2.5–7B has not come at the cost of pass@1. We
hypothesize this is due to the existence of a larger set of correct reasoning approaches, and thus MISL
does not necessarily come at a cost of pass@1. Chen et al. [7] have separately found that pass@k
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training methods can improve pass@1 performance. We include summarized outputs from Qwen in
Figure 2 and the isolated Qwen results in Figure 1.

Figure 5: Performance on 500 held-out problems with N=5 strategies. We observe gains on all
metrics for the Qwen model. Base refers to the model before GRPO training, Without MI refers to
after GRPO training without token MI, and With MI refers to training with GRPO and token MI. An
asterisk denotes p<0.02 and † denotes p<0.06 from McNemar’s test on the hypothesis ‘With MI’
outperforms ‘Without MI’.

5.3 GSM8K Ablations

We conduct two ablations to probe the robustness of the approach. First, increasing the number of
skills beyond N=5 produces mixed results. Many GSM8K problems admit only a limited number
of distinct solution paths, so larger N values fragment the capacity into modes that do not translate
into additional gains. Second, we study the effect of replacing the token-level MI with a semantic
MI, which we formally introduce in Appendix D. This semantic MI occasionally yields further
improvements but introduces instability due to estimator variance in high dimensions. We provide
more details in Appendix J. Therefore, our main results use token-level MISL only, with semantic
variants left as a direction for future work.

6 Conclusion

Our experiments show that UpSkill provides a simple and effective way to induce strategy-level
diversity in LLMs, leading to gains on multi-attempt metrics such as pass@5 and plurality@5.
By conditioning on discrete latent variables, the model learns reproducible modes of reasoning that
reduce redundancy across attempts and increase the likelihood of success. Beyond these empirical
findings, UpSkill provides a principled training-time approach for improving response diversity, and
our analysis links I(τ ; z | x) to upper bounds in pass@k improvement in training. We hope this
stimulates research on robust semantic diversity signals and theoretical ties between information-
theoretic objectives and multi-attempt success.

Limitations. There are a few notable limitations with our work. Assumption 1 is rather limiting
and difficult to enforce empirically, so we hope to find a natural way to either incorporate it into our
training method or find another assumption that can also prove Lemma 1. As future work, we hope
for further experimentation across domains and with larger models, to better study how our method is
affected by KL penalty and base model performance, and to approach the theoretical guarantees from
the perspective of Tsallis entropy [17]. The Llama and R1 models had unstable RL training, causing
performance to degrade from the base model; we will switch to a more reliable RL framework like
verl [46] and use a more robust prompting method than an already semantically meaningful prefix
string.

Reproducibility. We make several efforts towards encouraging reproducibility of our work and
results. We have included all experiment code at https://github.com/dshah02/upskill, along
with instructions to reproduce our results. We use only models under permissive licenses. For our
theoretical results, we provide a description of assumptions and the complete proof of claims in the
appendix. Additionally, for various experiments whose full results could not fit in the main paper, we
include the full results in the appendix.
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A Use of LLMs

Large language models were used in the preparation of this work for writing assistance (including
polishing, improving presentation of concepts, and restructuring of text), for retrieval and discovery
of related work, and for support in producing experimental code and figures. Language models were
additionally used for feedback on the paper and to formalize mathematical arguments. All analysis,
experimental and method design, and final interpretations are our own. LLM outputs were always
rigorously reviewed.

B Extended Mutual Information Related Work

Estimating MI reliably is challenging in high dimensions. Variational bounds (Barber–Agakov)
optimize a classifier or regressor qϕ(z | ·) as a proxy for the intractable posterior [55]. Contrastive
bounds such as InfoNCE [55] reduce MI estimation to noise-contrastive classification and have
become standard due to their stability. Neural MI estimators like MINE [4] directly optimize
a Donsker–Varadhan bound but can suffer from bias/variance trade-offs and training instability.
Nonparametric kNN estimators (KSG) [29] avoid parametric critics but require many samples and
are sensitive to dimension, motivating careful batching and normalization when used inside policy
gradients. In text generation, MI-style objectives have been used to prevent latent collapse and enable
controllable generation, e.g., by encouraging informative latents in variational text models [64, 61] or
aligning codes with style attributes [25]. These approaches typically maximize MI between prompts
or attributes and latent variables, rather than between a discrete strategy and the full trajectory
distribution, and are optimized with supervised losses rather than RL.

Conceptually, our objective reconciles two desiderata emphasized in prior MI work: coverage (high
marginal entropy over trajectories) and control (low conditional entropy given z). Whereas decoding-
time diversity manipulates token entropy without guarantees about identifiable modes, MI-based
diversification learns reusable, reproducible modes indexed by a small discrete latent. This makes
diversity a first-class, training-time property that can be cleanly exercised at inference by selecting
distinct z values.

C Statement and derivation of theoretical bounds

C.1 Problem setup and assumptions

Let X be the set of all possible prompts. The statement of Lemma 1 applies to the general class of
k-uniform mixture models.

Definition. A k-uniform mixture model (M,B) is defined to be an ordered pair of a mixture model,
which is a set of k different policies for generating trajectories, which we will call πM,z(· | x) for a
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prompt x ∈ X and strategy z ∈ [k], along with a base model πB(· | x) for generating trajectories
subject to the condition that

1

k

k∑
z=1

πM,z(· | x) = πB(· | x) ∀x ∈ X .

This definition can be interpreted as follows: πB is the trajectory distribution of the original, non-
strategy conditioned language model. If we weigh each strategy as being equally important, we
sample once from the mixture model by randomly choosing one strategy. In this case, the joint
distribution of trajectories from the mixture is

πM (· | x) := 1

k

k∑
z=1

πM,z(· | x).

The condition essentially means that the joint distribution of trajectories over picking a strategy
uniformly at random must be the same as the original distribution. Therefore, in essence, the mixture
model partitions πB into k different policies that together average back to πB .

In practice, this condition imposes undue constraints on the strategy distribution, and thus, for the
practical implementation, this is not enforced. Also, while in practice one may actually train N > k
different strategies and then randomly sample k different strategies so that they still have equal
probabilities of being selected, here we make the simplifying assumption that N = k, which is true
for all of our experiments.

For ease of notation, let a = Pr(Yx(τB,1) = 1 | x) and az = Pr(Yx(τM,z) = 1) for z ∈ [k].
Because the trajectories τM,z are sampled independently, we have that

πM (· | x) = πB(· | x) =⇒ 1

k

k∑
z=1

az = a. (7)

We provide additional justification for the second assumption made in section 4. First, if the strategies
differ in more than just style and contain meaningful semantic differences, we expect that the
difference in success should be proportional to how different these two distributions are. The total
variation distance measures this distance in trajectory space, while the constant η controls how
sensitive the success probabilities are to changes in the distribution shift.

C.2 Extending pass@k to k-uniform mixture models

We now extend the traditional definition of pass@k to fit the setting of k-uniform mixture models to
leverage the fact that we now have a natural structure for querying k different strategies by varying z.
This is notably different from the setting in the consistency assumption, which can be interpreted as
querying just one strategy uniformly at random.

For a given prompt x and deterministic verifier Yx(τ) outputting 1 if τ is a valid output on prompt
x and 0 otherwise, and k-uniform mixture model (M,B), define pass@kM be the probability that
querying each of these strategies independently exactly once (see Sec. 3.5) results in at least one
correct answer, and define pass@kB to be the probability that querying πB independently k times
results in at least one correct answer. Writing this out mathematically, for each z ∈ [k] we sample
τM,z ∼ πM,z(· | x); then

pass@kM = 1− Pr

(
k⋂

z=1

{Yx(τM,z) = 0}

∣∣∣∣∣x
)

= 1−
k∏

z=1

Pr(Yx(τM,z) = 0 | x). (8)

While we use the same definition of pass@k for B as in standard literature, we include it for the sake
of completeness; similarly, when sampling τB,z ∼ πB(· | x) independently for each z ∈ [k], we find
that

pass@kB = 1− Pr

(
k⋂

z=1

{Yx(τB,z) = 0}

∣∣∣∣∣x
)

= 1− Pr(Yx(τB,1) = 0 | x)k (9)
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where we simplify the product into the RHS of (9) with the independence of samples. Then

pass@kB = 1− (1− a)k, pass@kM = 1−
k∏

z=1

(1− az).

We now give the precise statement of the main result.
Lemma 2 (pass@k Improvement for k-uniform Mixture Models, Full Statement). Let u =

maxz∈[k] az and let φ : R≥0 7→ R be defined as φ(x) = x log x
x−1 for x ̸= 0, 1 and φ(0) = 0, φ(1) = 1.

Then

1− exp

(
−kη

2I(τ ; z | x)2

2φ(k)2

)
≤ pass@kM − pass@kB

1− pass@kB
≤ 1− exp

(
−kI(τ ; z | x)

4(1− u)2

)
.

C.3 Derivation of Lower Bound

Using Taylor’s Theorem on f(y) = log(1− y) gives the equations f(az) = f(a) + (az − a)f ′(a) +
1
2 (az − a)2f ′′(ξz) where ξz lies in between az and a, for z ∈ [k]. Summing all of these equations,
the linear terms cancel due to (7). Then∑

z∈[k]

log(1− az) = k log(1− a) +
∑
z∈[k]

1

2
(az − a)2f ′′(ξz). (10)

Let A be the random variable that takes value az for each z ∈ [k] with probability 1
k . Since

f ′′(y) = − 1
(1−y)2 is a decreasing function in the interval [0, 1), we find that f ′′(ξz) ≤ f ′′(0) = −1

for all z ∈ [k], i.e. ∑
z∈[k]

log(1− az) ≤ k log(1− a)−
∑
z∈[k]

1

2
(az − a)2

=⇒ k log(1− a)−
∑
z∈[k]

log(1− az) ≥
kVar(A)

2
=⇒ 1− pass@kB

1− pass@kM
≥ exp

(
k

2
Var(A)

)
=⇒ pass@kM − pass@kB = (1− pass@kB)

(
1− 1− pass@kM

1− pass@kB

)
≥ (1− pass@kB)

(
1− exp

(
−kVar(A)

2

))
.

We now find a lower bound for Var(A) in terms of the mutual information to finish off the proof. Let
δ(·, ·) represent the total variation distance between two distributions. We have that Var(A) ≥ E[|A|]2
by Jensen’s Inequality, so using the distributional impact assumption,

Var(A) ≥
(
Ez∼Unif{1,2,...,k}[|az − a|]

)2
=

(
1

k

k∑
z=1

|az − a|

)2

≥

(
1

k

k∑
z=1

ηδ(πM,z, πB)

)2

= η2
(
Ez∼Unif{1,2,...,k}[δ(πM,z, πB)]

)2
.

Note that by the assumption that πM (· | x) = πB(· | x) we have that 0 ≤ πM,z(· | x) ≤ kπB(· | x)
for all z ∈ [k]. Therefore,

dπM,z

dπB
(τ) ∈ [0, k].

Applying Theorem 26 from Sason and Verdú [40] with β2 = 0, β1 = 1
k where the constants are from

the assumption on bounded likelihood ratio, we have that DKL(πM,z ∥ πB) ≤ φ(k)δ(πM,z, πB).
Summing over z ∈ [k] and dividing by k yields

I(τ ; z | x) = Ez∼Unif{1,2,...,k}[DKL(πM,z ∥ πB)] ≤ φ(k)Ez∼Unif{1,2,...,k}[δ(πM,z, πB)].

Putting both bounds together, we finally find that

Var(A) ≥
(
ηI(τ ; z | x)

φ(k)

)2

=⇒ pass@kM − pass@kB ≥ (1− pass@kB)
(
1− exp

(
−kη

2I(τ ; z | x)2

2φ(k)2

))
as desired.
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C.4 Derivation of Upper Bound

Let u = maxz az < 1. In the interval [min(a, a1, a2, . . . , ak),max(a, a1, a2, . . . , ak)] f
′′ achieves

its minimum at f ′′(u) = − 1
(1−u)2 . Then from (10)∑

z∈[k]

log(1− az) ≥ k log(1− a)− 1

2(1− u)2

∑
z∈[k]

(az − a)2

=⇒
k∏

z=1

(1− az) ≥ (1− a)k exp

− 1

2(1− u)2

∑
z∈[k]

(az − a)2


=⇒ 1− pass@kM ≥ (1− pass@kB) exp

− 1

2(1− u)2

∑
z∈[k]

(az − a)2

 . (11)

This places an upper bound on how much we can possibly improve pass@k compared to our original
trajectory distributions. Using Pinsker’s Inequality, we find that for all i ∈ [k],

|ai − a| = |Pr[Y (τM,i) = 1]− Pr[Y (τB,i) = 1]| =

∣∣∣∣∣∣
∑

Y (τ ′)=1

πM,i(τ
′)−

∑
Y (τ ′)=1

πB,i(τ
′)

∣∣∣∣∣∣
≤

∑
Y (τ ′)=1

|πM,i(τ
′)− πB,i(τ

′)| ≤
∑
τ ′

|πM,i(τ
′)− πB,i(τ

′)|

≤ δ(πB,i, πM,i) ≤
√

1

2
DKL(πM,i ∥ πB,i)

=⇒ (ai − a)2 ≤ 1

2
DKL(πM,i ∥ πB,i) =⇒

∑
z∈[k]

(az − a)2 ≤ k

2
· 1
k

∑
z∈[k]

DKL(πM,i ∥ πB,i)

=
k

2
Ez∼Unif{1,2,...,k}[DKL(πM,i ∥ πB)] =

k

2
I(τ ; z | x).

Combining this with (11) yields

1− pass@kM ≥ (1− pass@kB) exp
(
− k

4(1− u)2
I(τ ; z | x)

)
. (12)

As a result, if I(τ ; z | x) is too small, then our theoretical upper bound on improvement in pass@k
between steps 0 and T will also be very small.

Rearranging (12) to bound the improvement ∆ := pass@kM − pass@kB , we obtain
∆ = (1− pass@kB)− (1− pass@kM )

≤ (1− pass@kB)
(
1− exp

(
− k

4(1− u)2
I(τ ; z | x)

))
≤ (1− pass@kB) ·

k

4(1− u)2
· I(τ ; z | x),

where the final inequality uses 1− e−x ≤ x.

D Semantic mutual information reward

One observation that we made empirically is that token-level differences tend to reflect formatting or
paraphrasing, rather than semantically distinct strategies. To bias toward more meaningful differences,
we test an alternative method for measuring mutual information by embedding completions with a
fixed encoder ψ(τ) ∈ Rd and estimating the mutual information between embeddings and skills for a
single prompt x:

Î
(
ψ(τ); z

∣∣x) (13)
using the KSG k-nearest-neighbor estimator [29], implemented with the library NPEET [49].
Concretely, for each x we collect the set of embeddings across strategies and samples, B(x) =

{(ψ(τ (z)i ), z) : z ∈ {1, . . . , N}, i = 1, . . . , C}, and apply KSG to B(x) to obtain a single scalar
rSMI(x).
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E Arithmetic Environment

E.1 Task

Each problem instance consists of three integers a, b, c ∈ {0, . . . , 9}. A small transformer model
chooses one of the integers to be a target and is required to produce a simple arithmetic expression
with the other two digits that evaluates to this target. Valid operators are {+,−,×,÷,mod}, with
division and modulo defined only when results are integers and denominators are nonzero. A latent
skill index z ∈ {0, . . . , N−1} is provided as part of the prompt, conditioning the model on which
strategy to adopt.

E.2 Prompt format and conditioning

The input is formatted as

[z] a b c

where [z] encodes the latent skill id and a, b, c are the three digits. The model is required to generate
exactly three tokens in the order (digit, operator, digit). This restriction enforces that every
completion corresponds to a candidate arithmetic expression of the form LoR with L,R ∈ {a, b, c}.
The verifier deterministically evaluates the completion, awarding a reward of 1 if the output matches
the designated target and 0 otherwise.

E.3 Evaluation protocol

At inference, we fix k = min(N, 5) distinct latent skills and generate one completion per skill at a
fixed temperature. We then report:

• pass@1: the fraction of skills (out of k) that yield a correct completion, i.e. the probability that a
single uniformly sampled skill would succeed.

• pass@k: the probability that at least one of the k skills yields a correct completion.

This definition differs from conventional pass@1 (best-of-k) to more closely capture the multi-skill
sampling process we target.

E.4 Model and optimization

The policy is a 2-layer causal Transformer (hidden size 128, 4 attention heads, pre-layer normalization,
GELU activations). Inputs are embedded with learned token and positional embeddings. The output
vocabulary consists of 15 symbols: 0–9, +, -, *, /, %. Training uses GRPO updates without a KL
penalty, comparing runs with and without the MISL reward. Teacher-forced cross-entropy warmup is
applied for 100 steps before switching to RL. Unless otherwise noted: N=5, temperature 0.9, batch
size 32 groups, and C=5 completions per update.

E.5 Training Outcomes

Table 1 reports pass@1, pass@5, and marginal token entropy Hm at the end of the supervised
warmup (step 0), mid-training (step 1000), and the final step (step 2000). All runs use N = 5 skills
and 2000 training steps.

E.6 Sensitivity to α1 and cap

Increasing the clipping parameter cap sustains higher entropy but also introduces more variance
across runs. Raising α1 strengthens specialization and increases pass@5, though at the expense of
pass@1. A moderate setting of α1=0.5 and cap= 1.0 provided the most consistent balance in our
experiments.
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After Warmup (Step 0) Step 1000 Step 2000

Condition p@1 p@5 Hm p@1 p@5 Hm p@1 p@5 Hm

Control – (α1 = 0) 0.313 0.665 0.723 0.668 0.673 0.016 0.793 0.793 0.013
(α1 = 0.5, cap=1.0) 0.313 0.665 0.723 0.353 0.843 0.755 0.390 0.897 0.768
(α1 = 0.5, cap=1.5) 0.313 0.665 0.723 0.338 0.833 0.764 0.399 0.830 0.852
(α1 = 1.0, cap=1.0) 0.313 0.665 0.723 0.281 0.813 0.813 0.373 0.897 0.844

Table 1: Arithmetic environment training outcomes. Accuracy is reported as pass@1 and pass@5;
Hm is marginal token entropy. MISL prevents entropy collapse and sustains diverse skill-conditioned
strategies.

E.7 Additional Distribution Data

Figure 6: Learned distribution over first response digit with α1 = 0.5 and cap = 1.0

F Ablated Arithmetic Environment

Here we ablate model capacity by varying the number of warmup steps and by adding a KL penalty.
Warmup 50 corresponds to a weaker base model, while warmup 100 produces a stronger base model.
This manipulation allows us to study how UpSkill interacts with correctness-oriented pretraining
and how much headroom remains for diversity improvements. We also include a KL penalty
with coefficients kl_coef ∈ {0.05, 0.10}, completions per group C ∈ {5, 10}, and MIs weights
α1 ∈ {0.0, 0.1, 0.3, 0.5} (token MI only).

Warmup Steps pass@1 pass@k

50 0.235 0.540
100 0.313 0.665

Table 2: Performance of the base model after warmup only (no RL). Warmup 50 yields a weaker
base capacity, while warmup 100 yields a stronger base capacity.

Tables 3 and 4 report pass@1 and pass@5 after RL across settings. Columns aX.Y denote α1 = X.Y .
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kl_coef warmup C pass@1a0.0 pass@1a0.1 pass@1a0.3 pass@1a0.5

0.050 50 5 0.779 0.780 0.561 0.457
0.050 50 10 0.845 0.817 0.655 0.439
0.100 50 5 0.813 0.801 0.557 0.366
0.100 50 10 0.833 0.860 0.629 0.437

0.050 100 5 0.908 0.897 0.749 0.521
0.050 100 10 0.914 0.897 0.767 0.521
0.100 100 5 0.911 0.895 0.788 0.568
0.100 100 10 0.917 0.901 0.844 0.614

Table 3: pass@1 after RL with KL penalty in the arithmetic environment.

kl_coef warmup C pass@5a0.0 pass@5a0.1 pass@5a0.3 pass@5a0.5

0.050 50 5 0.793 0.807 0.840 0.870
0.050 50 10 0.867 0.833 0.867 0.817
0.100 50 5 0.840 0.843 0.840 0.847
0.100 50 10 0.857 0.893 0.850 0.820

0.050 100 5 0.940 0.917 0.863 0.883
0.050 100 10 0.927 0.903 0.903 0.887
0.100 100 5 0.927 0.907 0.910 0.917
0.100 100 10 0.944 0.931 0.940 0.923

Table 4: pass@5 after RL with KL penalty in the arithmetic environment.

Overall, a modest KL penalty (0.05–0.10) prevents entropy collapse and supports higher multi-
attempt accuracy, especially when the warmup baseline is stronger (100 vs. 50). With warmup 50,
larger α1 increases pass@5 substantially (e.g., 0.793 → 0.870), though often at the expense of
pass@1. With warmup 100, the base capacity is already high, and further MISL gains are more
limited, reflecting our theoretical expectation that improvements in pass@k depend on the available
headroom for diversity.

G GSM8K Experimental Details

G.1 Setup

We evaluate our method on GSM8K [8], a grade-school arithmetic dataset with 2,000 training and
500 held-out evaluation problems. Prompts are provided in a zero-shot format with a maximum
sequence length of 1024 tokens. For inference, we fix k distinct latent skill identifiers and sample
one completion per skill at fixed temperature.

G.2 Models

We attach LoRA adapters (about 80M parameters) to three open-weight backbones: Llama 3.1–8B,
Qwen 2.5–7B, and R1-Distilled–Qwen2.5–Math–1.5B. Training uses GRPO with correctness reward
only (control) or correctness and token-level MISL (experimental) with α1 = 5.0 and a learning rate
of 5× 10−6. Each experiment is run for 2000 steps on a single H100 GPU with 80 GB of memory.
For Llama, we adjusted to a learning rate of 1× 10−6, and α1 to 1. Results with and without these
changes are included in Appendix H.

G.3 Evaluation Details

We train and evaluate the model with the prompting format of: "Strategy [z] | Question" when
training with the token MI reward and with only the question otherwise (base model and without
MI models). We ablate the prompting format for evaluation in Appendix I. During training and
evaluation, we fix the system prompt as “You are a helpful math assistant that solves problems step
by step."
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In inference, we fix N distinct latent skills and generate one completion per skill, with N = 5 except
in ablations. To determine correctness, we use a robust extraction function that searches for values
within common tags (such as "<answer> </answer>"), defaulting to the final word containing
digits in the model’s output, removes characters not in 0123456789.-, and compares the resulting
value against the reference answer. We then report:

• pass@1: the fraction of skills (out of N ) that yield a correct completion; i.e., the probability
that a single uniformly sampled skill would succeed

• pass@k: the probability that at least one of the k skills yields a correct completion

• plurality@k: the probability that there is a unique mode response, and that it is correct

• consensus@k: the probability that a strict majority of the completions are correct.

H Training Hyperparameter Choice

For the Llama model, we noticed the learning rate of 5× 10−6 and α1 = 5 led to training instability,
and a model that, at intermediate points in training, substantially sacrificed correctness to maximize
the token-level mutual information reward. Thus, we changed the learning rate for the Llama model
to 1× 10−6 and the reward coefficient to α1 = 1. The effects of the change on Llama is shown in
Figure 7.

Figure 7: Llama results for learning rate of 1× 10−6 and α1 = 1 (green bars) compared to 5× 10−6

and α1 = 5 (blue bars). We simultaneously ablate the result of the strategy prompting, as we do in
Figure 8. In each pair of 4 pairs, the leftmost represents the 5× 10−6 without the strategy prompt,
the second furthest to the left represents 5× 10−6 with the strategy prompt, followed by the models
trained with learning rate 1× 10−6 and evaluated without and with the strategy prompt, respectively.
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Figure 8: Comparison of open-source models under different prompts during evaluation. Models
were trained With MI or Without MI.

I Ablation on Prompting for Evaluations

We ablate the impact of prompting in the format of: "Strategy [z] | Question" at the evaluation
stage in Figure 8. We test prompting with "Strategy [z] | Question" compared to "Question"
at the evaluation stage to determine if our difference in prompting leads to an advantage. We generally
find that some models, including base models and models trained without strategy prompting (Without
MI models), still often prefer the strategy prompting, likely as it introduces diversity into the prompt.

J Ablation Studies

J.1 Scaling the number of strategies.

We investigated the effect of increasing the number of latent skills N beyond the default N=5. In
particular, we trained models with N ∈ {10, 20} while holding other hyperparameters fixed. The
gains were mixed: although we continued to see improvements in consensus@k relative to baselines
without MISL, the magnitude of these gains was reduced compared to the N=5 case, and we did
not see a gain in pass@k or plurality@k. Many GSM8K problems admit only one or two broad
solution approaches, so forcing the model to partition its capacity into ten or twenty strategies may
lead to fragmentation into modes that were either redundant or unhelpful.

J.2 Semantic MI is promising but unstable.

We also evaluated the addition of a semantic mutual information reward, using the KSG estimator
of I(ψ(τ); z | x) in the embedding space of τ . In principle, this should encourage the learned
strategies to differ not only at the token level but also in their higher-level semantics. In practice,
however, training with a nonzero α2 proved challenging. Optimizing against the KSG estimator often
destabilized learning, likely due to estimator variance in high dimensions. KSG requires multiple
points per class to be well-behaved. In our experiments (Section 5), we use N = 5 strategies and
C = 6 completions per strategy (30 points per x) when the semantic term is enabled; for larger N we
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disable the semantic term to avoid excessive compute and estimator variance. We include this test in
our ablation.

On R1-Distilled-Qwen, combining semantic MI with token MI occasionally yielded additional
improvements, but these were not consistent and were offset by instability in other runs. On Qwen2.5–
7B, semantic MI frequently caused degeneracy, with certain strategies collapsing to incoherent or
repetitive outputs.

These results suggest that semantic MI is promising but fragile. The occasional positive signal
points to the potential of semantic surrogates for enforcing genuine strategy diversity, but the current
estimator is too noisy to be reliable in practice. We conjecture that improved semantic objectives
could offer a more stable alternative. For the purposes of this work, we therefore report token-MI
only as the main result, with semantic MI left for future exploration.

K Full Example Outputs

The following contains the full output of the summarized items in Figure 2:

Strategy 1: Problem: If Raymond does half as much laundry as Sarah, and Sarah does 4 times as
much laundry as David, calculate the difference in the amount of laundry Raymond and David do if
Sarah does 400 pounds of laundry.

SOLUTION: To find the solution, let’s break it down step by step:

1. Sarah does 400 pounds of laundry.
2. David does 1/4 of the laundry Sarah does because Sarah does 4 times as much laundry as

David. So David does 400 / 4 = 100 pounds of laundry.
3. Raymond does half as much laundry as Sarah does, so Raymond does 400 / 2 = 200 pounds

of laundry.
4. Now, we need to calculate the difference between the amount of laundry Raymond does and

David does.
The difference is 200 - 100 = 100 pounds

The difference in the amount of laundry Raymond and David do is 100 pounds.

Strategy 3: Problem: If Raymond does half as much laundry as Sarah, and Sarah does 4 times as
much laundry as David, calculate the difference in the amount of laundry Raymond and David do if
Sarah does 400 pounds of laundry.

SOLUTION: To solve this problem, let’s break it down step by step.

Given information:

• Raymond does half as much laundry as Sarah.
• Sarah does 4 times as much laundry as David.
• Sarah does 400 pounds of laundry.

Step 1: Determine the amount of laundry David does. Since Sarah does 4 times as much laundry as
David, and Sarah does 400 pounds of laundry, we can set up the following equation to find out how
much David does:

Let D be the amount of laundry David does. 4D = 400

To find D, we divide both sides by 4.
D = 400 / 4
D = 100

Step 2: Determine the amount of laundry Raymond does.
Since Raymond does half as much laundry as Sarah, and Sarah does 400 pounds of laundry, we can
find out how much Raymond does:
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Let R be the amount of laundry Raymond does.
R = 400 / 2
R = 200

Step 3: Calculate the difference between the amount of laundry Raymond and David do.
Difference = Amount of laundry Raymond does - Amount of laundry David does
Difference = 200 - 100
Difference = 100

Therefore, the difference in the amount of laundry Raymond and David do is 100 pounds.

26



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim that we have identified a method to improve multi-attempt perfor-
mance with a mutual information reward term and demonstrate in the experiments section
that our method successfully works.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Throughout the paper, we include comments and mentions in directions we believe can be
improved. Additionally, in our conclusion and future work sections, we highlight the current
limitations of our theory and experimentation.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a complete and correct proof to justify our theoretical results in
section 5. The proofs are included in section 5 and additional details are completed in the
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our algorithm completely in section 4 and provide additional
practical implementation details in sections 4 and 6. Our code repository will also be open
sourced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We leverage open-source models and datasets, and we aim to open-source our
code repository, along with the scripts required to rerun our experiments and load both the
data and models.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Throughout section 4, we explain all the necessary details to understand the
results. Although there are minor choices that are not included in the main paper, these are
not necessary to understand the results and will be included in the forthcoming code release.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: For our main result in Figure 1 of Section 7, we analyze the statistical
significance of our result, showing which improvements satisfy p < 0.05 and providing
details on the statistical test employed. However, unfortunately, due to the computational
cost of model training, we were unable to run multiple training runs per model, so the error
within training runs remains not properly understood.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the computer resources required in section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper does not involve any human subjects or sensitive information in
datasets. As explained below, it poses minimal societal impact.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper only discusses problems with verifiable rewards, which means
that there can only be a right or wrong answer, and furthermore there are straightforward
methods to check whether the resulting output is correct or not.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: In section 6, we detail the licenses for each model and resources, and we
properly credit the model and dataset providers. Moreover, we choose models and datasets
with well-understood licenses and that are commonly-used in RLVR literature with an aim
to ensure further research is accessible. All licenses are properly credited and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have detailed the LLM usage in Appendix A.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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