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Abstract

We study the problem of training neural stochastic differential equations, or diffusion models,
to sample from a Boltzmann distribution without access to target samples. Existing methods
for training such models enforce time-reversal of the generative and noising processes,
using either differentiable simulation or off-policy reinforcement learning (RL). We prove
equivalences between families of objectives in the limit of infinitesimal discretization steps,
linking entropic RL methods (GFlowNets) with continuous-time objects (partial differential
equations and path space measures). We further show that an appropriate choice of coarse
time discretization during training allows greatly improved sample efficiency and the use of
time-local objectives, achieving competitive performance on standard sampling benchmarks
with reduced computational cost.

1 Introduction

We consider the problem of sampling from a distribution on Rd with density ptarget, which is described by
an unnormalized energy model ptarget(x) = exp(−E(x))/Z with Z =

∫
Rd exp(−E(x)) dx. We have access to

E but not to the normalizing constant Z or to samples from ptarget. This problem is ubiquitous in Bayesian
statistics and machine learning and has been an object of study for decades, with Monte Carlo methods
(Duane et al., 1987; Roberts & Tweedie, 1996; Hoffman et al., 2014; Leimkuhler et al., 2014; Lemos et al.,
2023) recently being complemented by deep generative models (Albergo et al., 2019; Noé et al., 2019; Gabrié
et al., 2021; Midgley et al., 2023; Akhound-Sadegh et al., 2024).

Neural SDE

Paths X ∼ PX

Policy −→π

Trajectories X̂ ∼ P̂
X̂

Reverse SDE

Paths Y ∼ QY

Policy ←−π in rev. MDP

Trajectories Ŷ ∼ Q̂
Ŷ

Euler-Maruyama
discretization

Continuous-time limit
(Prop. 3.1)

Euler-Maruyama
discretization

Continuous-time limit
(Prop. 3.1)

Generative process Diffusion process

objectives

!

Continuous-time processes
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Figure 1: The problem of making continuous-time
forward and reverse processes determine the same
path space measure is approximated by matching
distributions over discrete-time trajectories.

Building upon the success of diffusion models in data-
driven generative modeling (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach
et al., 2021, inter alia), recent work (e.g., Zhang & Chen,
2022; Berner et al., 2022; Vargas et al., 2023; Richter &
Berner, 2024; Vargas et al., 2024; Sendera et al., 2024) has
proposed solutions to this problem that model generation
as the reverse of a diffusion (noising) process in discrete
or continuous time (Fig. 1). Thus ptarget is modeled by
gradually transporting samples, by a sequence of stochas-
tic transitions, from a simple prior distribution pprior (e.g.,
a Gaussian) to the target distribution. When a dataset of
samples from ptarget is given, diffusion models are trained
using a score matching objective equivalent to a variational
bound on data log-likelihood (Song et al., 2021a). The
problem is more challenging when we have no samples but
can only query the energy function, as training methods
necessarily involve simulation of the generative process. (We survey additional related work in Appendix A.)
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Figure 2: Training objectives for neural SDEs (top row) and their approximations by objectives for discrete-time
policies (bottom row). On-policy objectives minimize a divergence by differentiating through SDE integration, while
off-policy objectives enforce local or global consistency constraints. Our results explain the behavior of discrete-time
objectives as the time discretization becomes finer.

In continuous time, we assume the generative process takes the form of a stochastic differential equation
(SDE) (with initial condition pprior and diffusion coefficient σ):

dXt = −→µ (Xt, t) dt + σ(t) dWt, X0 ∼ pprior. (1)

When the drift µ is given by a parametric model, such as a neural network, (1) is called a neural SDE (Tzen
& Raginsky, 2019; Kidger et al., 2021a; Song et al., 2021b). The goal is to fit the parameters so as to make
the distribution of X1 induced by the initial conditions and the SDE (1) close to ptarget.

In discrete time, we assume the generative process is described by a Markov chain with transition kernels
−→π n(X̂n+1 | X̂n), n = 0, . . . , N − 1, and initial distribution X̂0 ∼ pprior. The goal is to learn the transition
probabilities −→π n so as to make the distribution of X̂N close to ptarget. This is the setting of stochastic
normalizing flows (Hagemann et al., 2023), which are, in turn, a special case of (continuous) generative flow
networks (GFlowNets; Bengio et al., 2021; Lahlou et al., 2023).

Training objectives for both the continuous-time and discrete-time processes are typically based on mini-
mization of a bound on the divergence between the distributions over trajectories induced by the generative
process and by the target distribution together with the noising process. These objectives may rely on
differentiable simulation of the generative process (Li et al., 2020; Kidger et al., 2021b; Zhang & Chen, 2022)
or on off-policy reinforcement learning (RL), which optimizes objectives depending on trajectories obtained
through exploration (Nüsken & Richter, 2021; Malkin et al., 2023). Objectives may further be classified as
global (involving the entire trajectory) or local (involving a single transition). Common objectives and the
relationships among them are summarized in Fig. 2.

Any SDE determines a discrete-time policy when using a time discretization, such as the Euler-Maruyama
integration scheme; conversely, in the limit of infinitesimal time steps, the discrete-time policy obtained in
this way approaches the continuous-time process (Kloeden & Platen, 1992). The question we study in this
paper is how the training objectives for continuous-time and discrete-time processes are related in the limit
of infinitesimal time steps. We formally connect RL methods to stochastic control and dynamic measure
transport with the following theoretical contributions:

(1) We show that global objectives in discrete time converge to objectives that minimize divergences between
path space measures induced by the forward and reverse processes in continuous time (Prop. 3.3).

(2) We show that local constraints enforced by GFlowNet training objectives asymptotically approach partial
differential equations that govern the time evolution of the marginal densities of the SDE under the
generative and noising processes (Prop. 3.4).
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These results motivate the hypothesis that an appropriate choice of time discretization during training can
allow for greatly improved sample efficiency. Training with shorter trajectories obtained by coarse time
discretizations would further allow the use of time-local objectives without the computationally expensive
bootstrapping techniques that are necessary when training with long trajectories. Confirming this hypothesis,
we make the following empirical contribution:

(3) In experiments on standard sampling benchmarks, we show that training with nonuniform time dis-
cretizations much coarser than those used for inference achieves similar performance to state-of-the-art
methods, at a fraction of the computational cost (Fig. 5).

2 Dynamic measure transport in discrete and continuous time

Recall that our goal is to sample from a target distribution ptarget = 1
Z exp(−E(x)) given by a continuous

energy function E : Rd → R. To achieve this goal, we present approaches using discrete-time policies in the
framework of Markov decision processes (MDPs) in §2.1 and continuous-time processes in the context of
neural SDEs in §2.2. In particular, we will draw similarities between the two approaches and show how time
discretizations of neural SDEs give rise to specific policies in MDPs in §2.3. This allows us to rigorously
analyze the asymptotic behavior of corresponding distributions and divergences in §3. Note that our general
assumptions can be found in Appendix B.1.

Our exposition synthesizes the definitions for MDP policies (Bengio et al., 2023; Lahlou et al., 2023), results
on neural SDEs for sampling (Richter & Berner, 2024; Vargas et al., 2024), and PDE perspectives (Máté &
Fleuret, 2023; Sun et al., 2024). The results in §3 extend classical results on SDE approximations (see, e.g.,
Kloeden & Platen (1992)) to objectives for diffusion-based samplers.

2.1 Discrete-time setting: Stochastic control policies

pprior
−→π 0 −→π N−1 −E(xN )

• · · · ⊥

{(x, t0)} {(x, t1)} {(x, tN−1)}{(x, tN )}

X̂0 X̂1 X̂N−1 X̂N

• • •
•

Figure 3: The MDP and policy representing the process P̂,
a distribution over X̂ = (X̂0, . . . , X̂N ).

A discrete-time Markovian process X̂ with den-
sity P̂(X̂) – a distribution over Rd-valued variables
X̂0, . . . , X̂N – can be identified with a policy −→π in
the deterministic Markov decision process (MDP)
(S,A, T, R) depicted in Fig. 3, given by

−→π (a | •) = P̂(X̂0 = a) = pprior(a),
−→π n(a | (x, tn)) = P̂(X̂n+1 = a | X̂n = x). (2)

We sometimes write −→π n(· | x) for −→π n(· | (x, tn)) for
convenience. We relegate formal definitions to Appendix B.2; in short, the states are pairs of space and time
coordinates (x, tn) (together with abstract initial and terminal states), actions represent steps from X̂n to
X̂n+1 (taking action a leads to state (a, tn+1)), and the reward for terminating from a state (x, tN ) is set to
−E(x). The learning problem is to find −→π whose induced distribution over X̂N is the Boltzmann distribution
of the reward.

This learning problem differs from that of standard reinforcement learning, where one wishes to maximize the
expected reward with respect to a policy in the MDP. However, it is close to the setting of maximum-entropy
reinforcement learning (MaxEnt RL; Ziebart, 2010), in which the objective includes the policy entropy as
a regularization term. With such regularization, the optimal policy samples the Boltzmann distribution of
the negative reward, which is the target distribution in our setting. This observation is the basis for the
connection between control (policy optimization) and inference (sampling) (Levine, 2018). (See Eysenbach &
Levine (2022) for the connection to KL-constrained or adversarial policy optimization, Zhang & Chen (2022);
Domingo-Enrich et al. (2024) for the related derivation of sampling via stochastic control with a diffusion
policy, and Tiapkin et al. (2023); Deleu et al. (2024) for the connections between MaxEnt RL and off-policy
objectives for training samplers of discrete sequentially constructed objects.)
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Distributions over trajectories. The possible trajectories in the MDP starting at • and ending in ⊥ have
the form • → (xt0 , t0) → · · · → (xtN

, tN ) → ⊥, which we sometimes abbreviate to xt0 → xt1 → · · · → xtN
.

Following the policy −→π for N + 1 steps starting at • yields a distribution over trajectories xt0 → xt1 → · · · →
xtN

, i.e.,

P̂(X̂) = P̂(X̂0)
N−1∏
n=0
P̂(X̂n+1 | X̂n) = pprior(X̂0)

N−1∏
n=0

−→π n(X̂n+1 | X̂n). (3)

The same construction is possible in reverse time: a density ptarget over X̂N and a policy←−π (analogously to (2)
defining transition probabilities from X̂n+1 to X̂n) on the reverse MDP yields a Markovian distribution over
trajectories Q̂, given analogously to (3) in reverse time. Given a (forward) policy, the reverse policy generating
the same distribution over trajectories can be recovered using the marginal state visitation distributions via
the detailed balance formula (8).

Radon-Nikodym derivative and divergences. The distributions P̂, Q̂ determined by a pair of policies
−→π , ←−π and densities pprior, ptarget allow us to develop divergences (losses) for learning the parameters of
suitable parametric families of policies. Our goal is to make the forward and reverse processes approximately
equal by minimizing a divergence between the distributions over their trajectories. The density ratio of
these distributions, also known as Radon-Nikodym derivative, is given by

dP̂
dQ̂

(X̂) = P̂(X̂)
Q̂(X̂)

= P̂(X̂0)
∏N−1

n=0 P̂(X̂n+1 | X̂n)
Q̂(X̂N )

∏N−1
n=0 Q̂(X̂n | X̂n+1)

= pprior(X̂0)
∏N−1

n=0
−→π n(X̂n+1 | X̂n)

ptarget(X̂N )
∏N−1

n=0
←−π n+1(X̂n | X̂n+1)

. (4)

Using (4), we can write the Kullback-Leibler (KL) divergence as

DKL(P̂, Q̂) := E
X̂∼P̂

[
log dP̂

dQ̂
(X̂)

]

= E
X̂∼P̂

[
log pprior(X̂0) + E(X̂N ) +

N−1∑
n=0

log
−→π n(X̂n+1 | X̂n)
←−π n+1(X̂n | X̂n+1)

]
+ log Z.

(5)

Since log Z is constant, this expression can be minimized via gradient descent on the parameters of the policies,
for instance by zeroth-order gradient estimation (REINFORCE; Williams (1992)). If the policies allow for
a differentiable reparametrization as a function of noise (e.g., if they are conditionally Gaussian) we can use a
deep reparametrization trick, amounting to writing the KL as a function of the noises introduced at each step.
In particular, by fitting the parameters of −→π and←−π so that the two processes are approximate time-reversals of
one another, we also get an approximate solution to the sampling problem, i.e., X̂N is approximately distributed
as the target distribution ptarget. This can be motivated by the data processing inequality, which yields that

DKL(P̂(X̂N ), ptarget(X̂N )) ≤ DKL(P̂, Q̂). (6)

We can also consider other divergences between two measures P̂ and Q̂. For instance, the trajectory balance
(TB, also known as second-moment, Malkin et al. (2022); Nüsken & Richter (2021)) and related log-variance
(LV, also known as VarGrad, Richter et al. (2020)) divergences are given by

DŴTB(P̂, Q̂) = E
X̂∼Ŵ

(log dP̂
dQ̂

(X̂)
)2
 and DŴLV(P̂, Q̂) = Var

X̂∼Ŵ

[
log dP̂

dQ̂
(X̂)

]
, (7)

where the density ratio inside the square is given by (4) and Ŵ is a reference measure. We are free in the choice
of reference measure, which allows for exploration in the optimization task (in RL, this is called off-policy train-
ing). We note that computing the second-moment divergence in (7) requires either knowledge of the normalizing
constant Z of ptarget or a learned approximation, with the LV divergence coinciding with TB when using a batch-
level estimate of log Z (see, e.g., Malkin et al. (2023, §2.3)). While estimators of the two divergences in (7) have
different variance (which is related to baselines in RL), the expectations of their gradients with respect to the
policy of P̂ coincide when Ŵ = P̂ and are then, in turn, equal to the gradient of the KL divergence (5) (Richter
et al., 2020; Malkin et al., 2023). In §2.2, we will see that one can define analogous concepts in continuous time.
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Local divergences. Instead of looking at entire trajectories, we can as well define divergences locally, i.e.,
on small parts of the trajectories. To this end, one can define the so-called detailed balance (DB) divergence as

DŴDB,n(P̂, Q̂, p̂) = E
X̂∼Ŵ

log
(

p̂n(X̂n)−→π (X̂n+1 | X̂n)
p̂n+1(X̂n+1)←−π (X̂n | X̂n+1)

)2
 , (8)

for the time step n, where p̂n is a learned estimate of the density of X̂n for 0 < n < N , while p̂0 = pprior and
p̂N = ptarget are fixed. Minimizing the DB divergence enforces that the transition kernels −→π and ←−π of P̂ and
Q̂, respectively, are stochastic transport maps between distributions with densities p̂n and p̂n+1, for each n.
If the policies and density estimates jointly minimize (8) to 0 for some full-support reference distribution Ŵ
and all n, it can be shown that they also minimize the trajectory-level divergences (7); see Bengio et al. (2021)
for the discrete case, Lahlou et al. (2023) for the continuous case, Malkin et al. (2023) for the connection
to nested variational inference (Buchner, 2021), and Deleu & Bengio (2023) for the connection to detailed
balance for Markov chains. The divergence used for training may be a (possibly weighted1) sum of the DB
divergences (8) for n = 0, . . . , N − 1. ‘Subtrajectory’ interpolations between the global TB objective (7) and
the local DB objective (8) exist; see Appendix B.4 and Nüsken & Richter (2023).

Uniqueness of solutions. Learning both the generative policy −→π and the time-reversed policy ←−π in
the general setting as above leads to non-unique solutions. We can achieve uniqueness of the objectives by
prescribing ←−π (as in diffusion models), adding additional regularizers (as in Schrödinger (half-)bridges), or
prescribing the densities (P̂(X̂n))N−1

n=1 and imposing constraints on the policies (as in annealing schemes);
see Blessing et al. (2024, Tables 6 & 7) and Sun et al. (2024).

2.2 Continuous-time setting: Neural SDEs

We consider neural stochastic differential equations (neural SDEs) with isotropic additive noise, i.e., families
of stochastic processes X = (Xt)t∈[0,1] given as solutions of SDEs of the form

dXt = −→µ (Xt, t) dt + σ(t) dWt, X0 ∼ pprior, (9)

where −→µ : Rd × [0, 1]→ Rd is the drift (also called the control function), parametrized by a neural network2;
σ : [0, 1]→ R>0 is the diffusion rate, which in this paper is assumed to be fixed (more generally, it could be
a d × d matrix that depends also on Xt); and Wt is a standard d-dimensional Brownian motion. Using a
time discretization, the drift −→µ , together with the noise given by the diffusion rate and the Brownian motion,
can be connected to a policy −→π of a MDP, which can be sampled to approximately simulate the process X
(see §2.3).

Distributions over trajectories. Similar to the previous section, we can define a measure on the
trajectories of the process X. Since the trajectories t 7→ Xt are almost surely continuous, the distribution
(also known as law or push-forward) of the process X defines a path space measure P, which is a measure on
the space C([0, 1],Rd) of continuous functions, representing the distribution of trajectories of X. We will
show in §2.3 that such a path measure can be interpreted as the limit of distributions over discrete-time
trajectories as in (3) when the step-sizes tn+1 − tn tend to zero.

We can also define the time marginals p : Rd × [0, 1] → R, where for each time t ∈ [0, 1], p(·, t) gives the
density of Xt. In measure-theoretic notation, the time marginals are the densities of the pushforwards of the
path measure P by the evaluation maps X 7→ Xt sending a continuous function (trajectory) to its value at
time t. Thus, we will also denote the distribution of the time marginals by Pt. The evolution of p is governed
by the Fokker-Planck equation (FPE), which is the partial differential equation (PDE)

∂tp = −∇ · (p−→µ ) + σ2

2 ∆p, p(·, 0) = pprior, (10)

1Our result Prop. 3.4 suggests a weighting of 1
N∆tn

, in the notation of §2.3, but our experiments showed no significant
difference between such a weighting and a uniform one.

2For notational convenience, we do not make the dependence of X on the neural network parameters explicit.
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where ∆p denotes the Laplacian of p. The Fokker-Planck equation generalizes the continuity equation
for ordinary differential equations, which corresponds to the case σ = 0. It expresses the conservation of
probability mass when particles distributed with density p(·, t) are stochastically transported by the drift −→µ
and diffused with scale σ. While such a PDE perspective is only possible in continuous time, in §3 we derive
that certain MDPs satisfy FPEs in the limit of finer time discretizations.

Reverse process. As for reverse-time MDPs, we can also define reverse-time SDEs

dXt =←−µ (Xt, t) dt + σ(t) d←−W t, X1 ∼ ptarget, (11)

where ←−W t is a reverse-time3 Brownian motion and ←−µ is a suitable drift, potentially also parametrized by a
neural network. This SDE gives rise to another path space measure Q. While in discrete time (§2.1) local
reversibility is given by detailed balance (8), in continuous time one can characterize when the path space
measure Q of the reverse-time SDE in (11) coincides with the path space measure P of the forward SDE
in (9) by a local condition known as Nelson’s identity (Nelson (1967), also attributed to Anderson (1982)),
which states that Q = P if and only if

←−µ = −→µ − σ2∇ log p and Q1 = P1, (12)

where p denotes the densities of P’s time marginals. It can be shown that substituting this expression into
the FPE for the backward process recovers the FPE (10) for the forward process, and similarly that the KL
divergence, given by (15) below, between the forward and backward processes is zero.

Radon-Nikodym derivative and divergences. Since we typically cannot compute the time marginals,
we cannot directly use Nelson’s identity to solve the sampling problem. However, similar to §2.1, we can
establish learning problems to infer the parameters of the neural networks −→µ ,←−µ , so that the induced terminal
distribution of the forward SDE (9) is close to the target, P1 ≈ ptarget, in some suitable measure of divergence.

The tool to establish such learning problems is Girsanov’s theorem, which states the following. Let P(1)

and P(2) be the path space measures defined by SDEs of the form (9) with drifts −→µ (1), −→µ (2). Then, for
P(2)-almost every X ∈ C([0, 1],Rd), the Radon-Nikodym derivative is given by

log dP(1)

dP(2) (X) =
∫ 1

0

∥−→µ (2)(Xt, t)∥2 − ∥−→µ (1)(Xt, t)∥2

2σ(t)2 dt +
∫ 1

0

−→µ (1)(Xt, t)−−→µ (2)(Xt, t)
σ(t)2 · dXt. (13)

An intuitive explanation of (13) using a discrete-time approximation can be found in Särkkä & Solin (2019,
Section 7.4) or in the proof of Lemma B.7. The same result holds for reverse-time processes as in (11) with
dXt replaced by integration against the reverse-time process d←−X t. Using a reversible Brownian motion as
a reference path measure (see Léonard (2014; 2013)), we can thus derive the Radon-Nikodym derivative
between the path measures P and Q of the forward and reverse-time SDEs in (9) and (11) as

log dP
dQ (X) = log pprior(X0)

ptarget(X1) +
∫ 1

0

∥←−µ (Xt, t)∥2 − ∥−→µ (Xt, t)∥2

2σ(t)2 dt

+
∫ 1

0

−→µ (Xt, t)
σ(t)2 · dXt −

∫ 1

0

←−µ (Xt, t)
σ(t)2 · d←−X t,

(14)

see Vargas et al. (2024). A related result was derived by Richter & Berner (2024) using the conversion
formula

∫ 1
0 f(Xt, t) · dXt =

∫ 1
0 f(Xt, t) · d←−X t −

∫ 1
0 σ(t)2∇ · f(Xt, t) dt. By integrating (14) over X ∼ P, it can

be derived that the KL divergence is given by an expression analogous to (5):

DKL(P,Q) = EX∼P

[
log pprior(X0) + E(XT )

+
∫ 1

0

(
∥−→µ (Xt, t)−←−µ (Xt, t)∥2

2σ(t)2 −∇ ·←−µ (Xt, t)
)

dt

]
+ log Z,

(15)

3We refer to Kunita (2019); Vargas et al. (2024) for details on reverse-time SDEs and backward Itô integration.
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Informally, the derivation uses that in expectation over X ∼ P, the integral with respect to dXt in (14) is
the sum of an integral with respect to −→µ (Xt) dt and a stochastic integral with zero expectation.

The KL divergence can also be interpreted as the cost of a continuous-time stochastic optimal control
problem (Dai Pra, 1991; Berner et al., 2022). Some objectives, such as those in Zhang & Chen (2022),
optimize the parameters of the drift defining P by minimizing variants of the KL divergence (15) approximately:
by passing to a time discretization of the SDE (§2.3) and expressing the objective as a function of the Gaussian
noises introduced at each step of the SDE integration, amounting to a deep reparametrization trick. For
suitable integration schemes (Vargas et al., 2023; 2024), the discretized Radon-Nikodym derivative can be
written as a density ratio, so that this approach corresponds to optimizing a discrete-time KL as in (5).

Analogously to the discrete-time setting (7), we can also consider the second-moment or log-variance

divergences DWTB(P,Q) = EX∼W

[(
log dP

dQ (X)
)2
]

and DWLV(P,Q) = VarX∼W

[
log dP

dQ (X)
]
, where W is a

reference path space measure. These divergences were explored by Nüsken & Richter (2021).

Local time reversal: PDE viewpoint. The continuous-time perspective also offers to employ the PDE
framework for learning the dynamical measure transport. Recall that the density p of the process X defined
in (9) fulfills the Fokker-Planck equation (10). One can thus aim to learn −→µ so as to make it satisfy the FPE,
with the boundary values p(·, 0) = pprior and p(·, 1) = ptarget, where p is either prescribed or also learned (as
done in Máté & Fleuret (2023)). In Sun et al. (2024) it is shown that when using suitable losses on this
problem one recovers a loss equivalent to DTB. When choosing the diffusion loss from Nüsken & Richter
(2023), one recovers a continuous-time variant of DSubTB (see Appendix B.4) and thus DDB. In §3, we show
that it also works the other way around: we can start with the discrete-time detailed balance divergence and
derive PDE constraints in the limit.

2.3 From SDEs to discrete-time Euler-Maruyama policies

Simulation of the process X can be achieved by discretizing time and applying a numerical integration scheme,
such as the Euler-Maruyama scheme (Maruyama, 1955). Specifically, one fixes a sequence of time points
0 = t0 < t1 < · · · < tN = 1 and defines the discrete-time process X̂ = (X̂n)N

n=0 by

X̂0 ∼ pprior, X̂n+1 = X̂n +−→µ (X̂n, tn)∆tn + σ(tn)
√

∆tn ξn, ξn ∼ N (0, Id), (16)

where ∆tn := tn+1 − tn. This defines the policy −→π (a | (x, tn)) = N (a; x + −→µ (x, tn)∆tn, σ(tn)2∆tn) on an
MDP as in (2). It is clear by comparing (2) and (16) that this distribution exactly coincides with the
distribution P̂ in (3) over sequences (X̂0, X̂1, . . . , X̂N ) of the Euler-Maruyama-discretized process X̂. As we
will discuss below, with decreasing mesh size, the marginals P̂(Xn) of the n-th step of the discretized process
converge to the marginals p(·, tn) of the continuous-time process at time tn. Based on the Central Limit
Theorem, such convergence can also be shown for non-Gaussian policies that satisfy suitable consistency
conditions (Kloeden & Platen, 1992, §6.2).

Finally, the same discretization is possible for reverse time: a reverse-time process of the form (11) with drift
function −→µ together with a target density ptarget determine a policy ←−π on the reverse MDP, corresponding
to reverse Euler-Maruyama integration:

X̂N ∼ ptarget, X̂n = X̂n+1 −←−µ (X̂n+1, tn+1)∆tn − σ(tn+1)
√

∆tn ξn, ξn ∼ N (0, Id). (17)

However, note that the Euler-Maruyama discretizations of a process and of its reverse-time process defined
by (12) do not, in general, coincide. That is, a policy on the reverse MDP can be constructed either by
discretizing an SDE to yield a policy on the forward MDP, then reversing it, or by discretizing the reverse
SDE to directly obtain a policy on the reverse MDP, possibly with different results. In particular, the
Gaussianity of transitions is not preserved under time reversal: the reverse of a discrete-time process with
Gaussian increments does not, in general, have Gaussian increments. However, Nelson’s identity (12) shows
that the two are equivalent in the continuous-time limit.
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The discretization allows us to compare the two Radon-Nikodym derivatives: those of the discretizations
in (4) and of the continuous-time processes in (14). In particular, in Lemma B.7 we will show that these
expressions are equal in the limit.

3 Asymptotic convergence

3.1 Distributions over trajectories

A standard result shows that the discretized process X̂ converges to the continuous counterpart X as the time
discretization becomes finer, i.e., as the maximal step size maxN−1

n=0 ∆tn goes to zero (Maruyama, 1955). The
precise statement of convergence requires the processes to be embedded in a common probability space. Let ι
be the mapping from the observation space of X̂ (discrete-time trajectories) to that of X (continuous-time
paths) that takes a sequence X̂0, . . . , X̂n to the function f ∈ C([0, 1],Rd) defined by f(tn) = X̂n and linearly
interpolating between the tn (note that ι implicitly depends on the discretization). We then have convergence
of ι(X̂) to X:
Proposition 3.1 (Convergence of Euler-Maruyama scheme). As maxN−1

n=0 ∆tn → 0, ι(X̂) converges weakly
and strongly to X with order γ = 1 and the path measures ι∗P̂ converge weakly to P.

We refer the reader to Appendix B.3 for definitions of strong and weak convergence. The result can, e.g., be
found in Kloeden & Platen (1992) and we refer to Baldi (2017, Corollary 11.1) and Kloeden & Neuenkirch
(2007) for the convergence of path measures. Generally, the Euler-Maruyama scheme has order of strong
convergence γ = 1/2. However, since we consider additive noise, i.e., σ not depending on the spatial
variable x, the Milstein scheme reduces to the Euler-Maruyama scheme and we inherit order γ = 1 as stated
in Prop. 3.1 (Kloeden & Platen, 1992, Section 10.2 and 10.3).

3.2 Radon-Nikodym derivative and divergences

Beyond the convergence of path measures, this section shows – more relevant for practical applications –
that commonly used local and global objectives converge their continuous-time counterparts as the time
discretization is refined. To this end, we leverage Lemma B.7, which analyzes the convergence of time
discretizations of Radon-Nikodym derivatives dP

dQ appearing in (14) to their discrete-time analogs dP
dQ . We

note that Vargas et al. (2024, Proposition E.1) shows that, for constant σ, an Euler-Maruyama discretization
of dP

dQ can be written as a density ratio as in (4). This also implies that the ratio in the detailed balance
divergence in (8) arises from a single-step Euler-Maruyama approximation of the Radon-Nikodym derivative
dP
dQ on the subinterval [tn, tn+1]. We present proofs of all results in this Section in Appendix B.6.

Global objectives: Second-moment divergences approach the continuous-time equivalents. The
following key result uses convergence of the Radon-Nikodym derivatives (Lemma B.7):
Proposition 3.2 (Convergence of functionals). If P,Q,W are path measures of three forward-time SDEs,
the drifts of the SDEs and their derivatives are bounded, and f ∈ C∞(R,R) has at most polynomially growing
derivatives, then

E
X̂∼Ŵ

[
f

(
log dP̂

dQ̂
(X̂)

)]
maxn ∆tn→0−−−−−−−−→ EX∼W

[
f

(
log dP

dQ (X)
)]

.

We now show that the second-moment losses in (7) converge to their continuous-time counterparts.
Proposition 3.3 (Asymptotic consistency of TB and VarGrad). Under the assumptions of Prop. 3.2, the
divergences DŴTB(P̂, Q̂) and DŴLV(P̂, Q̂) converge to DWTB(P,Q) and DWLV(P,Q), respectively.

The convergence holds for the TB divergence with respect to any c, i.e., E
Ŵ

[(
log dP̂

dQ̂
− c
)2
]
, showing that

Prop. 3.3 continues to hold if one uses a learned estimate of the log-partition function log Z in the TB
divergence, as typically done in practice.

8
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Local objectives: Detailed balance approaches the Fokker-Planck PDE. Consider a pair of
forward and reverse SDEs with drifts −→µ and ←−µ , respectively, defining processes P and Q, and suppose that
p̂ : Rd × [0, 1]→ R is a density estimate with p̂(·, 0) = pprior and p̂(·, 1) = ptarget.

For 0 ≤ t < t′ ≤ 1, consider any time discretization in which t and t′ are adjacent time steps (tn = t and
tn+1 = t′). The discretization defines a pair of policies −→π ,←−π corresponding to Euler-Maruyama discretizations
of the two SDEs. Let us define the detailed balance discrepancy:

∆t→t′(x, x′) := log p̂n(x)−→π n(x′ | x)
p̂n+1(x′)←−π n+1(x | x′) , (18)

where we set p̂n(x) = p̂(x, tn). Recalling the definition (8), we have that

DŴDB,n(P̂, Q̂, p̂) = E
Ẑ∼Ŵ

[
∆tn→tn+1(Ẑn, Ẑn+1)2

]
. (19)

The following proposition will show that the two SDEs are time reversals of one another if and only if certain
asymptotics of the DB discrepancy vanish. It is proved using a technical lemma (Lemma B.8), which shows
that the asymptotics of the discrepancy in h are precisely the errors in the satisfaction of Nelson’s identity
and the Fokker-Planck equation.
Proposition 3.4 (Asymptotic equality of DB and FPE). Under the smoothness conditions in Lemma B.8,
−→µ ,←−µ , p̂ jointly satisfy Nelson’s identity (←−µ = −→µ − σ2∇ log p̂) at (xt, t) if and only if

lim
h→0

[
1√
h

∆t→t+h(xt, xt+h)
]

= 0 for almost every z,

where xt+h := xt +−→µ (xt, t)h + σ(t)
√

hz. If in addition

lim
h→0

Ez∼N (0,Id)

[
1
h

∆t→t+h(xt, xt+h)
]

= 0,

then the Fokker-Plank equation is satisfied at (xt, t). If both conditions hold at all (xt, t) ∈ Rd × (0, 1), then
−→µ ,←−µ define a pair of time-reversed processes with marginal density p̂.

In particular, this result shows that if we impose a parametrization of −→µ and ←−µ as two vector fields that
differ by σ2∇ log p̂, where p̂ is a fixed or learned marginal density estimate, then asymptotic satisfaction of
DB implies that the continuous-time forward and backward processes coincide.

Generalization to processes defined by discrete-time reversal. The generative and diffusion processes
play a symmetric role in Prop. 3.4. However, some past work – starting from Zhang & Chen (2022), from
which we adopt the experiment settings in §4 – has defined ←−π as the reversal of the Euler-Maruyama
discretization of a forward SDE, rather than as the Euler-Maruyama discretization of a backward SDE, in a
special case where the former happens to have Gaussian increments. To ensure the applicability of the results
to the experiment setting, we need a slight generalization:
Proposition 3.5 (DB and FPE for Brownian bridges). The results of Prop. 3.4 hold if σ(t) is constant and
←−π is the discrete-time reversal of the Euler-Maruyama discretization of the process

pprior(x) = N (x; 0, σ0Id), dXt = σ(t) dWt. (20)

Our theoretical results guarantee that global and local objectives with different discretizations are approximat-
ing unique continuous-time objects when maxN−1

n=0 ∆tn → 0. This justifies training and inference of samplers
with different discretizations, allowing us to greatly reduce the computational cost of training (see §4). These
observations are particularly relevant for diffusion-based samplers which rely on discretization of (partial)
trajectories during training. In contrast, for generative modeling, one can use denoising score-matching
objectives which can be minimized without any discretization in continuous time.

9
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4 Experiments

We evaluate the effect of time discretization on the training of diffusion samplers using the objectives introduced
in §2, targeting several unnormalized densities. In all experiments, we follow the training setting from Sendera
et al. (2024), extending their published code with an implementation of variable time discretization (see
Appendix C.1 for details). The following objectives are considered:

• Path integral sampler (PIS) (Zhang & Chen, 2022): The trajectory-level KL divergence (5), which
approximates the path space measure KL (15) is minimized via the deep reparametrization trick (i.e.,
through differentiable simulation of the generative SDE, hence necessarily on-policy).

• Trajectory balance (TB) and VarGrad: The trajectory-level divergences of the second-moment type
(7), optimized either on-policy or using the off-policy local search technique introduced in Sendera et al.
(2024). As TB and VarGrad are found to be nearly equivalent in unconditional sampling settings, we
consider VarGrad only for conditional sampling (see Fig. 9).

• Detailed balance (DB): The time-local detailed balance divergence (8), and its variant FL-DB, which
places an inductive bias on the log-density estimates – first used by Wu et al. (2020); Máté & Fleuret
(2023) and evaluated in the off-policy RL setting by Zhang et al. (2024); Sendera et al. (2024) – that
assumes access to the target energy at intermediate time points (see Appendix B.5).

Table 1: Properties of training objectives. Variants
with LP also use the intermediate energy gradient.
Property ↓ Objective → PIS TB/VarGrad DB FL-DB
Time-local ✗ ✗ ✓ ✓
Off-policy ✗ ✓ ✓ ✓
Use intermediate energy ✗ ✗ ✗ ✓
Use energy gradient ✓ ✗ ✗ ✗

Each objective is additionally studied with and without
the Langevin parametrization (LP), a technique in-
troduced by Zhang & Chen (2022) that parametrizes the
generative SDE’s drift function via the gradient of the
target energy. The assumptions made by each objective
are summarized in Table 1.

The noising process is always fixed to the reverse of a
Brownian motion, following Zhang & Chen (2022) and subsequent work. The following densities are targeted:

• Standard targets 25GMM (2-dimensional mixture of Gaussians), Funnel (10-dimensional funnel-shaped
distribution), Manywell (32-dimensional synthetic energy), and LGCP (1600-dimensional log-Gaussian
Cox process) as defined in the benchmarking library of Sendera et al. (2024).

• VAE: the conditional task of sampling the 20-dimensional latent z of a variational autoencoder trained on
MNIST given an input image x, with target density p(z | x) ∝ p(x | z)p(z).

• Bayesian logistic regression problems for the German Credit and Breast Cancer datasets (25- and
31-dimensional, respectively), from the benchmark by Blessing et al. (2024).

We use a well-established primary metric: the ELBO of the target distribution computed using the learned
sampler and the true log-partition function, estimated using N -step Euler-Maruyama integration. In our
notation, the ELBO is log Ẑ = E

X̂∼P̂

[
−E(X̂N ) + log Q̂(X̂|X̂N )

P̂(X̂)

]
(see (33) for details). While recent work

on diffusion samplers has used a discretization with uniform-length time intervals for both integration and
training, we vary the time discretization. Unless stated otherwise, we evaluate ELBO using Neval = 100
uniform discretization steps. However, during training, we vary the number of time steps Ntrain and their
placement:

• Uniform: Time steps uniformly spaced: ti = i
Ntrain

for i = 0, . . . , Ntrain.

• Random and Equidistant: Two ways of constructing nonuniform partitions of the time interval [0, 1]
into Ntrain segments, described in Appendix C.2 and illustrated in Fig. 7.
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Figure 5: Left: Time to train for 25k iterations on Manywell as a function of Ntrain, mean and std over 3 runs (note
the log-log scale). Right: Runtime and ELBO gap, showing that Random discretization gives a superior balance of
speed and performance. Results for 25GMM and Funnel densities in Fig. 11.
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Figure 4: Difference between true log Z and ELBO as a
function of Ntrain, always evaluating with 100-step uni-
form integration. Additional targets in Fig. 8 and Fig. 9,
Equidistant results in Fig. 10.

Results: Training-time discretization. In
Fig. 4, we show the ELBO gaps on three of the
datasets for different training-time discretizations
as a function of Ntrain. We observe that, for all ob-
jectives, training with Random discretization con-
sistently outperforms Uniform discretization with
a small number of steps, with the two converging
as Ntrain increases to approach Neval = 100. The
Equidistant discretization performs similarly to
Random in most cases (see Fig. 10).

Notably, the time-local objectives (DB and FL-DB)
perform similarly to the trajectory-level objectives
(TB and PIS) when trained with few steps. How-
ever, as Ntrain increases, the time-local models’ per-
formance typically plateaus or even (on some tar-
gets they even diverge with 100 steps). These re-
sults suggest that time-local objectives trained with
nonuniform discretization and few steps can be a
viable alternative to trajectory-level objectives in
high-dimensional problems where the memory re-
quirements associated with long trajectories are pro-
hibitive.

Results: Time efficiency. The training time per
iteration is expected to scale approximately linearly
with the trajectory length Ntrain. Fig. 5 (left) con-
firms this scaling and illustrates the relative cost of
different objectives: FL-DB and methods using the
Langevin parametrization are the most expensive, as
they require stepwise evaluations of the target energy
and its gradient, respectively. Fig. 5 (right) shows
the ELBO gap plotted against training time, demon-
strating that methods with nonuniform discretization
achieve a superior trade-off between training time
and sampling performance.
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Figure 6: ELBO gaps for models trained with
various discretization schemes and Ntrain = 10,
then evaluated with various numbers of integra-
tion steps Neval. Results on Manywell energy;
others shown in Fig. 12.

Results: Inference-time discretization. To study the
effect of sampling-time discretization, we train models with
Ntrain = 10 steps (using TB with Langevin parametrization)
and different placement of time steps, then evaluate with dif-
ferent Neval ∈ {1, 2, ..., 100}. From Fig. 6, we observe that
randomized discretization (Random or Equidistant) during
training leads to smooth ELBO curves as a function of Neval,
whereas training with Uniform discretization gives unstable be-
havior with periodic features at multiples of Ntrain, which may
be due both to the restricted set of inputs t to the model −→µ (x, t)
during training and to the harmonic timestep embedding in
the model architecture. This result is further evidence that
nonuniform discretization during training yields more robust
samplers that are less sensitive to the choice of Neval.

Additional results. Figures complementing those in the main text appear in Appendices D.2 and D.3,
while Appendix D.1 contains more metrics and comparisons in tabular form. In particular, we combine
the above objectives with the off-policy local search of Sendera et al. (2024) to achieve near-state-of-the-art
results with much coarser (nonuniform) time discretizations during training, whereas local search does not
help the performance of methods using coarse Uniform schemes (Table 2).

5 Conclusion

We have shown the convergence of off-policy RL objectives used for the training of diffusion samplers to
their continuous-time counterparts. Those are Nelson’s identity and the Fokker-Planck equation for stepwise
objectives and path space measure divergences for trajectory-level objectives. Our experimental results
give a first understanding of good practices for training diffusion samplers in coarse time discretizations.
We expect that the increased training efficiency and the ability to use local objectives without expensive
energy evaluations are especially beneficial in very high-dimensional problems where trajectory length is a
bottleneck, noting that trajectory balance was recently used in fine-tuning of diffusion foundation models for
text and images (Venkatraman et al., 2024). Future theoretical work could generalize our results to diffusions
on general Riemannian manifolds and to non-Markovian continuous-time processes, such as those studied
in Daems et al. (2024); Nobis et al. (2023).
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A Additional related work

Classical sampling methods. The gold standard for sampling is often considered Annealed Importance
Sampling (AIS) (Neal, 2001) and its Sequential Monte Carlo (SMC) extensions (Chopin, 2002; Del Moral
et al., 2006). The former can be viewed as a special case of our discrete-time setting, where, however, the
transition kernels are fixed and not learned, thus requiring careful tuning. For the kernels, often a form
of Markov Chain Monte Carlo (MCMC), such Langevin dynamics and extensions (e.g., ULA, MALA, and
HMC) are considered. While they enjoy asymptotic convergence guarantees, they can suffer from slow
mixing times, in particular for multimodal targets (Doucet et al., 2009; Kass et al., 1998; Dai et al., 2022).
Alternatives are provided by variational methods that reformulate the sampling problem as an optimization
problem, where a parametric family of tractable distributions is fitted to the target. This includes mean-field
approximations (Wainwright et al., 2008) as well as normalizing flows (Papamakarios et al., 2021). We note
that MCMC can also be interpreted as a variational approximation in an extended state space (Salimans
et al., 2015).

Normalizing flows. There exist various versions of combining (continuous-time or discrete-time) normaliz-
ing flows with classical sampling methods, such as MCMC, AIS, and SMC (Wu et al., 2020; Arbel et al.,
2021; Matthews et al., 2022). Most of these methods rely on the reverse KL divergence that suffers from
mode collapse. To combat this issue, the underlying continuity equation (and Hamilton-Jacobi-Bellman
equations in case of optimal transport) have been leveraged for the learning problem (Ruthotto et al., 2020;
Máté & Fleuret, 2023; Sun et al., 2024). However, in all the above cases, one needs to either restrict model
expressivity or rely on costly computations of divergences (in continuous time) or Jacobian determinants
(in discrete time). Our Prop. 3.4 shows that, in the stochastic case, the discrepancy in the corresponding
Fokker-Planck equation – an expression involving divergences and Laplacians – can be approximated by
detailed balance divergences, which require no differentiation.

Diffusion-based samplers. Motivated by (annealed) Langevin dynamics and diffusion models, there is
growing interest in the development of SDEs controlled by neural networks, also known as neural SDEs,
for sampling. This covers methods based on Schrödinger (Half-)bridges (Zhang & Chen, 2022), diffusion
models (Vargas et al., 2023; Berner et al., 2022), and annealed flows (Vargas et al., 2024). These methods
can be interpreted as special cases of stochastic bridges, aiming at finding a time-reversal between two SDEs
starting at the prior and target distributions (Vargas et al., 2024; Richter & Berner, 2024). In particular,
this allows to consider general divergences between the associated measures on the SDE trajectories, such
as the log-variance divergence (Richter et al., 2020; Nüsken & Richter, 2021). We note that there has also
been some work on combining classical sampling methods with diffusion models (Phillips et al., 2024; Doucet
et al., 2022).

GFlowNets. GFlowNets are originally defined in discrete space (Bengio et al., 2023), but were generalized
to general measure spaces in (Lahlou et al., 2023), who proved the correctness of objectives in continuous time
and experimented with using them to train diffusion models as samplers. However, the connection between
GFlowNets and diffusion models had already been made informally by Malkin et al. (2023) for samplers of
Boltzmann distributions and by Zhang et al. (2023) for maximum-likelihood training, and the latter showed
a connection between detailed balance and sliced score matching, which has a similar flavor to our Prop. 3.4.
GFlowNets are, in principle, more general than diffusion models with Gaussian noising, as the state space
may change between time steps and the transition density does not need to be Gaussian, which has been
taken advantage of in some applications (Volokhova et al., 2024; Phillips & Cipcigan, 2024).

Accelerated integrators for diffusion models. We remark that there has been great interest in
developing accelerated sampling methods for diffusion models and the related continuous normalizing flows
(e.g., Shaul et al., 2024; Pandey et al., 2024). In particular, one can consider higher-order integrators for the
associated probability flow ODE (Song et al., 2021b) or integrate parts of the SDE analytically (Zhang & Chen,
2023). However, we note that this research is concerned with accelerating inference, not training, of diffusion
models and thus orthogonal to our research. While Denker et al. (2024) explored subsampling strategies for
the gradient estimators to reduce memory costs, they did not analyze the effect of randomized time steps. For
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generative modeling, one has access to samples from the target distribution, allowing the use of simulation-free
denoising score matching for training. For sampling problems without access to samples, diffusion-based
methods, such as those outlined in the previous paragraphs, need to rely on costly simulation-based objectives.
However, our findings show that we can significantly accelerate these simulations during training with a
negligible drop in inference-time performance.

B Theory details

B.1 Assumptions

Throughout the paper, we assume that all SDEs admit densities of their time marginals (w.r.t. the Lebesgue
measure) that are sufficiently smooth such that we have strong solutions to the corresponding Fokker-Planck
equations. In particular, we assume that4 pprior, ptarget ∈ C∞(Rd,R>0) are bounded. Furthermore, we assume
that µ ∈ C∞([0, 1]× Rd,Rd) for all drifts µ, i.e., they are infinitely differentiable, and satisfy a uniform (in
time) Lipschitz condition, i.e., there exists a constant C such that for all x, y ∈ Rd and t ∈ [0, 1] it holds that

∥µ(x, t)− µ(y, t)∥ ≤ C∥x− y∥. (21)

Moreover, we assume that the diffusion rate satisfies that σ ∈ C∞([0, 1],R>0). These conditions guarantee
the existence of unique strong solutions to the considered SDEs. They are also sufficient for all considered
path measures to be equivalent and for Girsanov’s theorem and Nelson’s relation to hold. Moreover, they
allow the definition of the forward and backward Itô integrals via limits of time discretizations that are
independent of the specific sequence of refinements (Vargas et al., 2024). While we use these assumptions to
simplify the presentation, we note that they can be significantly relaxed.

B.2 Formal definition of the MDP

We elaborate the definition of the MDP in §2.1.

• The state space is

S = {•} ∪
N⋃

n=0
{(x, tn) : x ∈ Rd}

:=Sn

∪{⊥}, (22)

where • and ⊥ are abstract initial and terminal states.

• The action space is A = Rd.

• The transition function T : S ×A → S describing the deterministic effect of actions is given by

T (•, a) = (a, t0), T ((x, tn), a) =
{

(a, tn+1) n < N

⊥ n = N
, T (⊥, a) = ⊥. (23)

• The reward is nonzero only for transitions from states in SN to ⊥ and is given by R(x, tN ) = −E(x).

It is arguably more natural from a control theory perspective to treat the addition of (e.g., Gaussian) noise
as stochasticity of the environment, making the policy deterministic. However, we choose to formulate
integration as a constrained stochastic policy in a deterministic environment to allow flexibility in the form of
the conditional distribution. We also note that the policy at ⊥ is irrelevant since ⊥ is an absorbing state.

4Note that we also consider samplers using a Dirac delta prior, which can be treated by relaxing our conditions (Dai Pra,
1991). Under the policy given by (16), we can equivalently consider a (discrete-time) setting on the time interval [t1, 1] using a
Gaussian prior with learned mean and variance σ2(t0)∆t0.
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B.3 Numerical analysis

Definition B.1 (Strong convergence). A numerical scheme X̂ = (X̂n)N
n=0 is called strongly convergent of

order γ if
max

n=0,...,N
E
[
∥X̂n −Xtn∥

]
≤ C

(
N−1max
n=0

∆tn

)γ

, (24)

where 0 < C <∞ is independent of N ∈ N and the time discretization 0 = t0 < t1 < · · · < tN = 1.
Definition B.2 (Weak convergence). A numerical scheme X̂ = (X̂n)N

n=0 is called weakly convergent of order
γ if

max
n=0,...,N

∥∥∥E[f(X̂n)]− E[f(Xtn
)]
∥∥∥ ≤ C

(
N−1max
n=0

∆tn

)γ

(25)

for all functions f in a suitable test class, where we consider f ∈ C∞(Rd,R) with at most polynomially
growing derivatives. The constant 0 < C < ∞ is independent of N ∈ N and the time discretization
0 = t0 < t1 < · · · < tN = 1, but may depend on the class of test functions considered.

Note that if f is globally Lipschitz, then strong convergence implies weak convergence. The converse does
not hold.

Let us also consider a continuous version ι(X̂) of the numerical scheme X̂ = (X̂n)N
n=0 defined by ι(X̂)tn = X̂n

and linearly interpolating between the tn, where we note that ι implicitly depends on the discretization.
We can then define the pushforward ι∗P̂ of the distribution P̂ of X̂ on the space of continuous functions
C([0, 1],Rd). We say that ι∗P̂ converges weakly to the path measure P of X if for any bounded, continuous
functional f : C([0, 1],Rd)→ R it holds that

E
X∼ι∗P̂

[f(X)] −→ EX∼P [f(X)] (26)

as maxn ∆tn → 0.

B.4 Subtrajectory balance

Generalizing trajectory balance (7) and detailed balance (8), we can define divergences for subtrajectories of
any length k by multiplying the log-ratios appearing in (8) for several consecutive values of n, which through
telescoping cancellation yields a subtrajectory balance divergence, defined for any 0 ≤ n < n + k ≤ N by

DŴSubTB,n,n+k(P̂, Q̂, p̂) = E
X̂∼Ŵ

log
(

p̂n(X̂n)
∏k−1

i=0
−→π (X̂n+i+1 | X̂n+i)

p̂n+k(X̂n+k)
∏k−1

i=0
←−π (X̂n+i | X̂n+i+1)

)2
 . (27)

The subtrajectory balance (SubTB) divergence generalizes detailed balance and trajectory balance, as one has

DŴSubTB,n,n+1(P̂, Q̂, p̂) = Dn,Ŵ
DB (P̂, Q̂, p̂) and DŴSubTB,0,N (P̂, Q̂, p̂) = DŴTB(P̂, Q̂).

The SubTB divergence was introduced for GFlowNets by Malkin et al. (2022) and studied as a learning
scheme, in which the divergences with different values of k are appropriately weighted, by Madan et al. (2023).
SubTB was tested in the diffusion sampling case by Zhang et al. (2024), although Sendera et al. (2024) found
that it is, in general, not more effective than TB while being substantially more computationally expensive.

B.5 Inductive bias on density estimates

We describe the inductive bias on density estimates used in the FL-DB learning objective. While normally
one parametrizes the log-density as a neural network taking x and t as input:

log p̂(x, t) = NNθ(x, t),

the inductive bias proposed by Wu et al. (2020); Máté & Fleuret (2023) and studied earlier for GFlowNet
diffusion samplers by Zhang et al. (2024); Sendera et al. (2024) writes

log p̂(x, t) = −tE(x) + (1− t) log pref(x) + NNθ(x, t),
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where pref(·, t) is the marginal density at time t of the uncontrolled process, i.e., the SDE (1) that sets −→µ ≡ 0
and has initial condition pprior. Thus a correction is learned to an estimated log-density that interpolates
between the prior at t = 0 and the target at t = 1.

The acronym ‘FL-’ stands for ‘forward-looking’, referring to the technique studied for GFlowNets by Pan
et al. (2023) and understood as a form of reward-shaping scheme in Deleu et al. (2024).

B.6 Proofs of results from the main text

Proposition B.3 (Convergence of functionals). If P,Q,W are path measures of three forward-time SDEs,
the drifts of the SDEs and their derivatives are bounded, and f ∈ C∞(R,R) has at most polynomially growing
derivatives, then

E
X̂∼Ŵ

[
f

(
log dP̂

dQ̂
(X̂)

)]
maxn ∆tn→0−−−−−−−−→ EX∼W

[
f

(
log dP

dQ (X)
)]

.

Proof of Prop. 3.2. As shown in the proof of Lemma B.7, log dP̂
dQ̂

(X̂) can be viewed as a component of the
Euler-Maruyama integration of an Itô process (with space-dependent diffusion) evaluated at time 1. Given
our assumptions on the coefficient functions (see also Appendix B.1), the result follows by weak convergence;
see, e.g., Kloeden & Platen (1992).

Proposition B.4 (Asymptotic consistency of TB and VarGrad). Under the assumptions of Prop. 3.2, the
divergences DŴTB(P̂, Q̂) and DŴLV(P̂, Q̂) converge to DWTB(P,Q) and DWLV(P,Q), respectively.

Proof of Prop. 3.3. Immediate from Prop. 3.2, taking f(x) = x2 and f(x) = x.

Proposition B.5 (Asymptotic equality of DB and FPE). Under the smoothness conditions in Lemma B.8,
−→µ ,←−µ , p̂ jointly satisfy Nelson’s identity (←−µ = −→µ − σ2∇ log p̂) at (xt, t) if and only if

lim
h→0

[
1√
h

∆t→t+h(xt, xt+h)
]

= 0 for almost every z,

where xt+h := xt +−→µ (xt, t)h + σ(t)
√

hz. If in addition

lim
h→0

Ez∼N (0,Id)

[
1
h

∆t→t+h(xt, xt+h)
]

= 0,

then the Fokker-Plank equation is satisfied at (xt, t). If both conditions hold at all (xt, t) ∈ Rd × (0, 1), then
−→µ ,←−µ define a pair of time-reversed processes with marginal density p̂.

Proof of Prop. 3.4. We write p̂t(x), −→µ t(x), σt for p̂(x, t), −→µ (x, t), σ(t) for convenience. By Lemma B.8, the
first condition implies that for almost all z,

⟨z, σ2
t∇ log p̂t(xt)− (−→µ t(xt)−←−µ t(xt))⟩ = 0, (28)

which implies Nelson’s identity at (xt, t), while the second condition implies that

∂t log p̂t(xt) + ⟨−→µ t(xt),∇ log p̂t(xt)⟩+ ⟨∇,←−µ t(xt)⟩+ σ2
t

2

(
∆ log p̂t(xt)−

∥∥∥∥−→µ t(xt)−←−µ t(xt)
σ2

t

∥∥∥∥2
)

= 0. (29)

Substituting the expression (28) into (29) and simplifying, we get

∂t log p̂t(xt) = −⟨∇,−→µ t(xt)⟩ − ⟨−→µ t(xt),∇ log p̂t(xt)⟩+ σ2
t

2
(
∆ log p̂t(xt) + ∥∇ log p̂t(xt)∥2) ,

which gives exactly the logarithmic form of the Fokker-Planck equation.
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Proposition B.6 (DB and FPE for Brownian bridges). The results of Prop. 3.4 hold if σ(t) is constant and
←−π is the discrete-time reversal of the Euler-Maruyama discretization of the process

pprior(x) = N (x; 0, σ0Id), dXt = σ(t) dWt. (20)

Proof of Prop. 3.5. Using the changes of variables x 7→ σx followed t 7→ t − σ0, it suffices to show this for
σ0 = 0, σ = 1, making (20) a standard Brownian motion (the change of bounds for t is insubstantial as the
conditions are local in time).

Let ←−π be the backward policy as originally defined. The reverse drift is ←−µ (x, t) = x
t , so we have

←−π (xt | xt+h) = N
(

xt;
t

t + h
xt+h, h

)
.

Let ←−π ′ be the discrete-time reversal of the forward-discretized Brownian motion. By elementary properties
of Gaussians, we have

←−π ′(xt | xt+h) = N
(

xt;
t

t + h
xt+h,

t

t + h
h

)
.

Let ∆t→t+h(xt, xt+h) and ∆′t→t+h(xt, xt+h) be the discrepancies (18)) defined using ←−π and ←−π ′, respectively.
We will show that replacing ∆ by ∆′ does not affect the asymptotics in Prop. 3.4.

We have

∆t→t+h(xt, xt+h)−∆′t→t+h(xt, xt+h) = log←−π ′(xt | xt+h)− log←−π (xt | xt+h)

= −1
2

[
d log t

t + h
+
∥∥∥∥xt −

t

t + h
xt+h

∥∥∥∥2
(

1
t

t+h h
− 1

h

)]

= −1
2

[
d log

(
1− h

t + h

)
+ 1

t

∥∥∥∥xt − xt+h + h

t + h
xt+h

∥∥∥∥2
]

.

Setting xt+h = xt +−→µ t(xt)h +
√

hz, the above becomes

−1
2

[
−h

t
d + O(h2) + 1

t

(
h∥z∥2 + O(h3/2)

)]
.

For fixed z, the
√

h-order asymptotics of this expression vanish. In expectation over z ∼ N (0, Id), the h-order
asymptotics vanish because Ez∼N (0,Id)

[
∥z∥2] = d.

B.7 Technical lemmas

Lemma B.7 (Convergence of Radon-Nikodym derivatives). (a) Let P(1) and P(2) be the path space mea-
sures defined by SDEs of the form (9) with initial conditions p

(1),(2)
prior and drifts −→µ (1),(2). Let P̂(1),(2) be

the Euler-Maruyama-discretized measures with respect to a time discretization (tn)N
n=0. For P(2)-almost

every X ∈ C([0, 1],Rd), dP̂(1)

dP̂(2)
(Xt0,...,tN

)→ dP(1)

dP(2) (X) as maxn ∆tn → 0, where Xt0,...,tN
is the restriction

of X to the times t0, . . . , tN .

(b) The same is true for a path space measure P defined by a forward SDE with initial conditions and a
measure Q defined by a reverse SDE with terminal conditions: if P̂ and Q̂ are the discrete-time processes
given by Euler-Maruyama and reverse Euler-Maruyama integration, respectively, then for Q-almost
every X ∈ C([0, 1],Rd), as maxn ∆tn → 0, dP̂

dQ̂
(Xt0,...,tN

)→ dP
dQ (X).
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Proof. We first show (a). We have

log dP̂(1)

dP̂(2)
(Xt0,...,tN

) = log
p

(1)
prior(X0)

∏N−1
n=0
−→π n(Xtn+1 | Xtn

)
p

(2)
prior(X0)

∏N−1
n=0
−→π n(Xtn+1 | Xtn

)

= log
p

(1)
prior(X0)

p
(2)
prior(X0)

+
N−1∑
n=0

log
N (Xtn+1 ; Xtn

+−→µ (1)(Xtn
, tn)∆tn, σ(tn)2∆tn)

N (Xtn+1 ; Xtn +−→µ (2)(Xtn , tn)∆tn, σ(tn)2∆tn)

= log
p

(1)
prior(X0)

p
(2)
prior(X0)

+
N−1∑
n=0

[
− ∥
−→µ (1)(Xtn , tn)∥2 − ∥−→µ (2)(Xtn , tn)∥2

2σ(tn)2 ∆tn

+
−→µ (1)(Xtn

, tn)−−→µ (2)(Xtn
, tn)

σ(tn)2 · (Xtn+1 −Xtn
)
]
. (30)

This is precisely the (Riemann) sum for the integral defining the continuous-time Radon-Nikodym derivative
(13); by continuity and our assumptions in Appendix B.1, the sum approaches the integral as maxn ∆tn → 0.

We now show (b) assuming (a). Let P0 be the path measure defined by Gaussian N (0, I) initial conditions
and drift 0 and P̂0 its discretization. Similarly, let Q0 be defined by Gaussian terminal conditions and zero
reverse drift and let Q̂0 be its reverse-time discretization. By absolute continuity, we have

dP
dQ (X) = dP/dP0(X)

dQ/dQ0(X)
dP0

dQ0 (X), dP̂
dQ̂

(Xt0,...,tN
) = dP̂/dP̂0(Xt0,...,tN

)
dQ̂/dQ̂0(Xt0,...,tN

)
dP̂0

dQ̂0
(Xt0,...,tN

).

By (a), dP̂/dP̂0(Xt0,...,tN
) → dP/dP0(X), and similarly for Q. It remains to show that

log dP̂0/dQ̂0(Xt0,...,tN
)→ log dP0/dQ0(X) = logN (X0; 0, I)− logN (X1; 0, I). Indeed, we have

log dP̂0/dQ̂0(Xt0,...,tN
) = log N (X0; 0, I)

N (X1; 0, I) +
N∑

n=1
log
N (Xtn

; Xtn−1 , σ(tn−1)∆tn−1)
N (Xtn−1 ; Xtn

, σ(tn)∆tn−1)

= log N (X0; 0, I)
N (X1; 0, I) +

N∑
n=1

[
∥Xtn −Xtn−1∥2

2∆tn−1

(
1

σ(tn)2 −
1

σ(tn−1)2

)
+ d log σ(tn)

σ(tn−1)

]
a.s.−−→ log N (X0; 0, I)

N (X1; 0, I) + d log σ(1)
σ(0) +

∫ 1

0

dσ(t)2

2 dσ(t)−2

=−d(d log σ(t))

= log N (X0; 0, I)
N (X1; 0, I) . (31)

which coincides with the continuous-time Radon-Nikodym derivative.

Lemma B.8 (Continuous-time asymptotics of the DB discrepancy). Let us define the abbreviations p̂t(x),
−→µ t(x), σt to refer to p̂(x, t), −→µ (x, t), σ(t). Suppose that ←−µ t and ←−µ t are continuously differentiable in x and
once in t and that log p̂t is continuously differentiable once in t and twice in x.

(a) For a given z, the asymptotics of the DB discrepancy at (xt, t) are of order
√

h and are given by

lim
h→0

[
1√
h

∆t→t+h(xt, xt +−→µ t(xt)h + σtz)
]

= σ−1
t ⟨z, σ2

t∇ log p̂t(xt)− (−→µ t(xt)−←−µ t(xt))⟩.
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(b) The expectation of the DB discrepancy over the forward policy ( i.e., over z ∼ N (0, I)) is asymptotically
of order h, with leading term

lim
h→0

Ext+h∼−→π (xt+h|xt)

[
1
h

∆t→t+h(xt, xt+h)
]

= ∂t log p̂t(xt) + ⟨−→µ t(xt),∇ log p̂t(xt)⟩+ ⟨∇,←−µ t(xt)⟩

+ σ2
t

2

(
∆ log p̂t(xt)−

∥∥∥∥−→µ t(xt)−←−µ t(xt)
σ2

t

∥∥∥∥2
)

.

Similarly, the expectation over the backward policy is

lim
h→0

Ext−h∼←−π (xt−h|xt)

[
1
h

∆t−h→t(xt−h, xt)
]

= ∂t log p̂t(xt) + ⟨←−µ t(xt),∇ log p̂t(xt)⟩+ ⟨∇,−→µ t(xt)⟩

− σ2
t

2

(
∆ log p̂t(xt)−

∥∥∥∥−→µ t(xt)−←−µ t(xt)
σ2

t

∥∥∥∥2
)

.

Proof. We will simultaneously show (a) and the first part of (b). The second part of (b) is symmetric, by
reversing time.

Identifying xt+h with xt +−→µ t(xt)h + σt

√
hz, we will analyze the leading asymptotics of the DB discrepancy,

i.e., ∆t→t+h(xt, xt+h) =
√

h⟨z, . . . ⟩+ h(. . . ) +O(h3/2). The coefficient of
√

h will be the scalar product of z
with a term that is independent of z and equals the expression on the right side in (a), and thus vanishes in
expectation over z. The coefficient of h, in expectation over z, will equal the expression on the right side in
(b).

We can show using Taylor expansions that

log p̂t+h(xt+h)
p̂t(xt)

=
√

h ⟨z, σt∇ log p̂t(xt)⟩

+ h

[
∂t log p̂t(xt) + ⟨−→µ t(xt),∇ log p̂t(xt)⟩+ 1

2σ2
t ⟨z,∇2 log p̂t(xt)z⟩

]
+O(h3/2). (32)

Now we are going to analyze the second part of (18), which involves the policies. We have

log
←−π (xt | xt+h)
−→π (xt+h | xt)

= −1
2

[
∥xt − xt+h +←−µ t+h(xt+h)h∥2

σ2
t+hh

− ∥xt+h − xt −−→µ t(xt)h∥2

σ2
t h

+ d log
2πσ2

t+h

2πσ2
t

]
= −1

2

[
∥xt − xt+h +←−µ t+h(xt+h)h∥2

σ2
t+hh

]
+ ∥σt

√
hz∥2

2σ2
t h

− d log σt+h

σt
.

= −1
2

[
∥xt − xt+h +←−µ t+h(xt+h)h∥2

σ2
t+hh

]
+ ∥z∥

2

2 − dh∂t(log σt) + O(h2).

Next we will write

xt − xt+h +←−µ t+h(xt+h)h = xt − xt+h +−→µ t(xt)h− (−→µ t(xt)−←−µ t+h(xt+h))h
= −σt

√
hz − (−→µ t(xt)−←−µ t+h(xt+h))h
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and substitute this into the first term above, yielding

−1
2

[
∥xt − xt+h +←−µ t+h(xt+h)h∥2

σ2
t+hh

]
+ ∥z∥

2

2 − dh∂t(log σt) + O(h2)

= −1
2

[
∥ − σt

√
hz − (−→µ t(xt)−←−µ t+h(xt+h))h∥2

σ2
t+hh

]
+ ∥z∥

2

2 − dh∂t(log σt) + O(h2)

= −∥
−→µ t(xt)−←−µ t+h(xt+h)∥2

2σ2
t+h

h− ⟨σtz,−→µ t(xt)−←−µ t+h(xt+h)⟩
σ2

t+h

√
h

− σ2
t ∥z∥2

2σ2
t+h

+ ∥z∥
2

2 − dh∂t(log σt) + O(h2)

=
√

h

[〈
z,−σ−1

t (−→µ t(xt)−←−µ t(xt))
〉

+ σt⟨z, σt

√
h∇←−µ t(xt)z⟩

σ2
t+h

]

+ h

[
−∥
−→µ t(xt)−←−µ t(xt)∥2

2σ2
t

− d∂t(log σt)
]

+ ∥z∥
2

2

(
1− σ2

t

σ2
t+h

)
=2∂t(log σt)h+O(h2)

+O(h3/2)

=
√

h
〈
z,−σ−1

t (−→µ t(xt)−←−µ t(xt))
〉

+ h

[
−∥
−→µ t(xt)−←−µ t(xt)∥2

2σ2
t

+ ⟨z,∇←−µ t(xt)z⟩ −
(
∥z∥2 − d

)
∂t(log σt)

]
+O(h3/2).

Combining with the terms in (32), we get that the coefficient of
√

h is exactly as desired. For the coefficient
of h, and the terms of the form ⟨z, . . . ⟩ and ∥z∥2 − d vanish in expectation over z. For the terms that are
quadratic in z, Hutchinson’s formula implies that

Ez∼N (0,I) [⟨z,∇←−µ t(xt)z⟩] = ⟨∇,←−µ t(xt)⟩,
Ez∼N (0,I)

[
⟨z,∇2 log p̂t(xt)z⟩

]
= ∆ log p̂t(xt).

Putting these identities together, we obtain that

lim
h→0

Ext+h∼−→π (xt+h|xt)

[
1
h

∆t→t+h(xt, xt+h)
]

= ∂t log p̂t(xt) + ⟨−→µ t(xt),∇ log p̂t(xt)⟩+ 1
2σ2

t ∆ log p̂t(xt)−
∥−→µ t(xt)−←−µ t(xt)∥2

2σ2
t

+ ⟨∇,←−µ t(xt)⟩,

which is equivalent to the expression in (b).

C Experiment details

C.1 Training settings

All models are trained for 25,000 steps using settings identical to those suggested by Sendera et al. (2024)
(https://github.com/GFNOrg/gfn-diffusion). For DB, we use the same learning rates as for SubTB
(10−3 for the drift and 10−2 for the flow function), and for PIS, 10−3 or 10−4 depending on its stability in
the specific case.

Training times are measured by wall time of execution on a large shared cluster, primarily on RTX8000 GPUs.
Although all runs were assigned by the same job scheduler, some variability in results is inevitable due to
inconsistent hardware.

C.2 Discretization schemes

In this section, we define the two nonuniform discretization schemes used in the experiments (see Fig. 7 for
illustration):
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0.00 0.25 0.50 0.75 1.00

Uniform

0.00 0.25 0.50 0.75 1.00

Random

0.00 0.25 0.50 0.75 1.00

Equidistant

Figure 7: Sampled 10-step discretizations of the unit interval using the three schemes considered.

• Random: We sample i.i.d. numbers z0, . . . , zNtrain−1 ∼ U([1, c]), where c is a sufficiently large constant
(we take c = 10). We then define

∆ti = zi∑Ntrain−1
j=0 zj

, ti =
i−1∑
j=0

∆tj .

Thus, the interval lengths sum to 1, and no two have a ratio of lengths greater than c. (Note that we also
tested setting the ti (0 < i < Ntrain) to be i.i.d. random values sampled from U([0, 1]) sorted in increasing
order, but this caused numerical instability when very short intervals were present.)

• Equidistant: We sample t1 ∼ U([ϵ, 2/Ntrain − ϵ]), where for us ϵ = 10−4, then set

ti = t1 + i− 1
Ntrain

for i = 1, . . . , Ntrain − 1. Thus ∆ti = 1
Ntrain

for all 1 < i < Ntrain − 1, i.e., all intervals are of equal length
except possibly the first and last.

D Additional results

D.1 Additional metrics and objectives

In Table 2, we show extended results on the four unconditional sampling benchmarks from Sendera et al.
(2024), reporting the ELBO log Ẑ and importance-weighted ELBO log ẐRW. Specifically, the two are computed
as

log Ẑ := 1
K

K∑
i=1

[
−E(X̂(i)

N ) + log Q̂(X̂(i) | X̂(i)
N )

P̂(X̂(i))

]
= log Z + 1

K

K∑
i=1

[
log Q̂(X̂(i))
P̂(X̂(i))

]
,

log ẐRW := log 1
K

K∑
i=1

exp
[
−E(X̂(i)

N ) + log Q̂(X̂(i) | X̂(i)
N )

P̂(X̂(i))

]
= log Z + log 1

K

K∑
i=1

[
Q̂(X̂(i))
P̂(X̂(i))

]
,

(33)

where X̂(1), . . . X̂(K) ∼ P̂ and we note that E[log Ẑ] = log Z − DKL(P̂, Q̂) ≤ log Z and E[ZRW] = Z. We
take K = 2000 samples and report the difference between the ground truth log Z and the ELBO when log Z
is known.

These results are consistent with the conclusions in the main text. Notably, when combined with local
search, coarse nonuniform discretizations continue to show results comparable to those of 100-step training
discretization in most cases. Table 3 shows results on two additional target energies and on the conditional
VAE task.
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Table 2: ELBOs and IS-ELBOs on 25GMM, Funnel, and Manywell (absolute error from the true value).

25GMM (d = 2)
Training discretization → 10-step random 10-step equidistant 10-step uniform 100-step uniform
Evaluation steps → 10 100 10 100 10 100 100
Algorithm ↓ Metric → ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW

PIS 2.40±0.10 1.02±0.09 1.56±0.10 0.93±0.16 2.39±0.11 0.97±0.10 1.51±0.09 1.01±0.09 2.43±0.12 0.85±0.58 5.62±0.32 1.03±0.14 1.65±0.30 1.12±0.20
TB 2.10±0.05 1.02±0.05 1.23±0.03 1.03±0.03 2.10±0.04 0.96±0.14 1.22±0.03 1.04±0.03 2.10±0.03 0.99±0.11 8.77±0.69 1.02±0.96 1.13±0.01 1.02±0.01
TB + LS 1.71±0.06 0.02±0.17 0.47±0.06 0.002±0.04 1.71±0.04 0.16±0.07 0.42±0.03 0.03±0.02 1.67±0.06 0.05±0.02 10.38±2.78 1.87±0.77 0.16±0.01 0.0004±0.01
VarGrad 2.12±0.04 1.04±0.04 1.22±0.01 1.04±0.01 2.09±0.03 1.04±0.01 1.19±0.03 1.03±0.01 2.12±0.02 1.02±0.04 9.13±0.87 0.92±1.19 1.12±0.01 1.02±0.01
VarGrad + LS 1.68±0.07 0.04±0.09 0.37±0.06 0.02±0.02 1.67±0.01 0.07±0.07 0.33±0.07 0.02±0.01 1.62±0.04 0.06±0.07 8.25±0.95 1.11±0.24 0.15±0.004 0.01±0.01

PIS + LP 2.80±0.07 1.02±0.17 1.98±0.06 0.10±0.42 2.77±0.10 1.00±0.21 1.94±0.03 0.05±0.30 2.77±0.08 1.00±0.20 3.49±0.08 0.14±1.24 1.76±0.02 0.43±0.45
TB + LP 1.57±0.05 0.03±0.18 0.32±0.02 0.02±0.05 1.56±0.03 0.01±0.16 0.36±0.06 0.03±0.03 2.70±2.33 0.11±0.33 5.30±0.80 0.43±0.47 0.16±0.01 0.01±0.01
TB + LS + LP 1.78±0.10 0.02±0.08 0.41±0.06 0.02±0.04 1.82±0.01 0.08±0.06 0.43±0.05 0.07±0.08 1.68±0.09 0.05±0.02 8.37±1.50 1.50±0.46 0.16±0.01 0.01±0.01
VarGrad + LP 1.59±0.04 0.03±0.08 0.35±0.06 0.01±0.02 1.46±0.005 0.07±0.06 0.32±0.04 0.04±0.01 1.53±0.01 0.01±0.01 5.52±0.80 0.53±0.54 0.15±0.01 0.003±0.01
VarGrad + LS + LP 1.68±0.09 0.02±0.08 0.26±0.02 0.01±0.01 1.69±0.05 0.07±0.06 0.24±0.01 0.01±0.01 1.64±0.06 0.04±0.07 7.07±1.50 0.90±0.85 0.16±0.01 0.01±0.005

Funnel (d = 10)
Training discretization → 10-step random 10-step equidistant 10-step uniform 100-step uniform
Evaluation steps → 10 100 10 100 10 100 100
Algorithm ↓ Metric → ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW

PIS 1.11±0.01 0.59±0.03 0.72±0.02 0.09±0.50 1.11±0.01 0.59±0.03 0.72±0.02 0.02±0.58 1.11±0.01 0.58±0.02 8.63±4.20 1.65±0.74 0.52±0.01 0.08±0.54
TB 1.09±0.02 0.51±0.04 0.76±0.02 0.48±0.04 1.09±0.02 0.47±0.10 0.74±0.01 0.45±0.03 1.07±0.01 0.42±0.11 10.86±5.22 2.29±1.35 0.54±0.01 0.26±0.06
TB + LS 1.46±0.02 0.66±0.03 1.13±0.03 0.40±0.02 1.40±0.09 0.62±0.08 1.11±0.18 0.46±0.09 1.41±0.02 0.62±0.07 268.47±327.21 29.70±46.66 1.01±0.03 0.36±0.04
VarGrad 1.09±0.02 0.50±0.05 0.76±0.02 0.42±0.05 1.11±0.01 0.36±0.24 0.76±0.01 0.46±0.06 1.07±0.02 0.46±0.04 9.97±4.49 2.41±1.20 0.53±0.01 0.17±0.18
VarGrad + LS 1.68±0.11 0.65±0.04 1.48±0.21 0.37±0.16 1.58±0.07 0.32±0.22 1.28±0.02 0.45±0.06 1.51±0.06 0.59±0.02 78.04±90.93 3.93±6.23 1.11±0.05 0.02±0.56

PIS + LP 1.11±0.01 0.56±0.07 0.71±0.01 0.28±0.09 1.10±0.01 0.56±0.04 0.69±0.02 0.29±0.05 1.10±0.02 0.57±0.02 8.85±2.48 1.80±0.74 0.50±0.03 0.13±0.17
TB + LP 1.08±0.02 0.40±0.12 0.72±0.03 0.37±0.03 1.54±0.51 0.50±0.12 0.91±0.21 0.44±0.11 1.07±0.02 0.38±0.11 30.07±22.61 9.56±13.27 0.48±0.005 0.25±0.03
TB + LS + LP 1.30±0.02 0.46±0.05 0.90±0.04 0.30±0.05 1.27±0.01 0.45±0.09 0.86±0.04 0.32±0.03 1.26±0.03 0.43±0.03 149.16±187.71 14.23±19.54 0.82±0.04 0.25±0.09
VarGrad + LP 1.08±0.02 0.46±0.17 0.72±0.02 0.37±0.02 1.10±0.01 0.43±0.08 0.74±0.02 0.38±0.04 1.07±0.01 0.43±0.13 48.10±42.22 21.80±30.37 0.48±0.01 0.23±0.04
VarGrad + LS + LP 1.39±0.04 0.46±0.04 0.99±0.05 0.33±0.03 1.44±0.04 0.44±0.08 1.09±0.18 0.36±0.06 1.32±0.05 0.44±0.04 162.54±189.06 10.68±12.41 0.77±0.07 0.25±0.05

Manywell (d = 32)
Training discretization → 10-step random 10-step uniform 100-step uniform
Evaluation steps → 10 100 10 100 100
Algorithm ↓ Metric → ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW ∆ log Z ∆ log ZRW

PIS (lr = 10−3) 14.08±0.14 2.70±0.30 4.74±0.15 2.77±0.05 14.08±0.13 2.97±0.37 69.72±13.41 33.84±11.79 3.87±0.03 2.69±0.03
PIS (lr = 10−4) 14.34±0.28 3.23±0.54 6.37±0.08 2.80±0.20 14.16±0.27 2.86±0.73 75.30±1.89 35.65±1.45 4.17±0.04 2.62±0.06
TB 14.96±0.22 2.92±1.10 5.49±0.43 2.70±0.11 14.81±0.17 2.55±2.05 62.95±10.12 30.07±5.79 4.05±0.05 2.75±0.01
TB + LS 15.24±0.62 1.54±0.77 7.24±0.46 0.55±0.43 14.86±0.60 0.45±0.89 51.08±4.27 16.82±3.08 4.52±0.91 0.37±0.14
VarGrad 14.94±0.28 2.79±1.35 5.64±0.56 2.77±0.05 14.80±0.14 2.86±1.61 71.71±18.54 35.53±11.51 4.04±0.11 2.78±0.04
VarGrad + LS 16.02±0.26 2.84±0.15 7.03±0.56 2.00±0.46 16.08±0.75 3.26±1.10 69.14±12.35 28.45±13.46 6.53±3.56 4.43±2.70

PIS + LP (lr = 10−3) 13.97±0.18 2.15±0.28 4.34±0.25 1.69±0.41 d i v e r g i n g 3.60±0.06 1.37±0.22
PIS + LP (lr = 10−4) 31.98±0.09 4.46±3.45 17.55±0.26 1.39±0.64 31.87±0.21 5.26±3.39 35.96±0.34 8.42±1.61 14.71±0.07 0.50±0.75
TB + LP 14.87±0.36 3.02±1.23 4.72±0.27 2.66±0.03 14.62±0.21 3.27±1.19 19.66±1.49 4.20±0.63 3.66±0.25 2.42±0.32
TB + LS + LP 13.88±0.58 0.60±0.23 2.40±0.39 0.00±0.20 13.67±0.44 0.81±0.51 24.32±1.02 2.10±0.43 1.81±0.05 0.03±0.07
VarGrad + LP 14.79±0.39 3.11±1.11 4.68±0.34 2.71±0.03 14.63±0.20 3.15±0.02 20.72±3.32 3.89±0.72 3.41±0.10 2.09±0.27
VarGrad + LS + LP 16.24±0.70 1.31±0.75 5.12±0.68 0.32±0.21 14.22±0.22 0.35±0.08 22.89±4.12 1.71±1.87 1.77±0.06 0.05±0.06
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Table 3: ELBOs with different numbers of training and integration steps on Credit, Cancer, the conditional VAE,
and LGCP. Training on LGCP was often unstable, consistent with findings of prior work, so fewer methods are
reported.

Credit (d = 25)
Training discretization → 10-step random 10-step equidistant 10-step uniform 100-step uniform
Algorithm ↓ Evaluation steps → 10 100 10 100 10 100 100
PIS -1174.23±14.07 -671.68±8.14 -1181.62±17.17 -667.03±21.25 -1171.35±14.59 -1130.57±20.69 -606.61±0.65
TB -1301.50±9.68 -911.04±16.74 -1318.14±22.13 -898.98±24.18 -1281.31±9.74 -1179.87±30.61 -634.08±2.88
VarGrad -1279.95±14.36 -847.65±22.65 -1288.40±10.49 -838.67±14.12 -1264.02±15.67 -1172.46±32.20 -631.84±3.20

PIS + LP -1175.46±14.14 -671.60±12.01 -1183.60±17.90 -669.30±16.34 -1174.25±17.00 -1114.56±43.56 -608.29±2.12
TB + LP -1342.96±6.77 -943.63±18.37 -1360.68±32.84 -956.97±4.12 -1300.17±8.29 -1165.11±25.76 -666.49±2.79
VarGrad + LP -1303.67±15.11 -876.12±10.70 -1323.16±3.03 -933.40±50.79 -1281.15±6.49 -1186.95±150.69 -651.98±0.18

Cancer (d = 31)
Training discretization → 10-step random 10-step equidistant 10-step uniform 100-step uniform
Algorithm ↓ Evaluation steps → 10 100 10 100 10 100 100
PIS -6.60±1.60 9.51±3.13 -7.73±0.63 9.15±1.45 -8.94±4.87 -4933.64±986.02 17.64±12.51
TB -48.57±23.39 -28.02±18.77 -59.77±45.25 -29.81±18.81 -35.42±8.76 -1096.80±530.21 5.32±6.03
VarGrad -28.97±6.03 -5.84±0.98 -31.83±2.58 -11.76±5.90 -30.09±3.76 -966.70±357.24 9.41±1.77

PIS + LP -12.27±2.99 7.30±1.92 -16.87±3.26 6.35±2.27 -11.51±1.76 -3649.25±629.76 19.47±1.87
TB + LP -25.79±3.04 -4.33±2.77 -41.52±28.79 -12.60±16.39 -24.33±1.48 -2738.75±344.22 11.56±0.59
VarGrad + LP -30.55±0.14 -1.69±1.94 -28.16±4.40 -6.05±4.59 -26.36±1.95 -978.60±140.28 13.41±2.19

VAE (d = 20)
Training discretization → 10-step random 10-step equidistant 10-step uniform 100-step uniform
Algorithm ↓ Evaluation steps → 10 100 10 100 10 100 100
PIS -117.83±1.25 -104.52±0.36 -117.68±1.29 -104.29±0.58 -117.74±1.12 -154.88±6.51 -102.71±0.52
TB -161.97±1.26 -149.86±4.93 -162.72±4.85 -149.76±0.75 -160.49±0.56 -161.90±5.63 -142.88±5.14
VarGrad -122.04±1.62 -109.45±1.40 -170.51±4.78 -159.71±7.46 -120.98±0.96 -133.39±4.98 -104.16±0.67

PIS + LP -115.90±0.64 -100.20±0.33 -115.81±0.31 -100.13±0.06 -115.83±0.82 -120.61±1.41 -99.34±0.40
TB + LP -140.41±2.18 -114.80±1.07 -140.72±1.10 -114.81±1.39 -137.54±2.51 -136.64±2.96 -109.25±1.68
VarGrad + LP -118.52±1.47 -102.24±0.27 -138.51±0.70 -113.49±1.39 -117.35±0.99 -122.22±0.70 -99.01±0.27

LGCP (d = 1600)
Training discretization → 10-step random 10-step uniform 100-step uniform
Algorithm ↓ Evaluation steps → 10 100 10 100 100
PIS -1471.16±6.83 -1467.85±2.59 -1471.49±11.66 -1729.56±103.09 -1465.14±20.76
TB -1618.86±3.01 -1617.35±1.34 -1617.33±6.54 -1666.37±13.78 -1619.89±6.56
TB + LS -1878.87±23.04 -1880.52±13.07 -1877.13±18.69 -1705.60±36.86 -1891.62±4.77

PIS + LP 343.46±0.31 472.24±0.68 343.18±0.33 -211.79±293.49 473.74±1.14
TB + LP 332.16±0.42 461.53±1.16 337.37±0.12 -1931.42±2636.38 468.68±4.13
TB + LS + LP 341.53±0.36 472.43±0.42 341.65±0.16 -77.64±77.72 451.89±3.28
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D.2 Additional figures
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Figure 8: Results extending main text Fig. 4: Credit and Cancer densities.
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Figure 9: Results extending main text Fig. 4 on the conditional VAE target density.
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Figure 10: Comparison of Random and Equidistant distretizations on the 25GMM (unconditional) and VAE
(conditional) targets.
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Figure 11: Results extending main text Fig. 5: Efficiency of nonuniform coarse discretizations on Funnel and 25GMM
densities.
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Figure 12: Results extending main text Fig. 6. Evaluation of models trained with Ntrain = 10 steps using varying
numbers of integration steps.
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D.3 VAE reconstructions

MNIST data VAE reconstruction (pretrained encoder)

10-step Uniform training
Reconstruction from 100-step integration

10-step Uniform training
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10-step Random training
Reconstruction from 100-step integration
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Figure 13: Mode of decoder p(· | z) evaluated on encoded latents z for the VAE experiment: input data x and
reconstruction using z sampled from the pretrained VAE encoder (top row) and reconstructions using z sampled from
diffusion encoders (next three rows).
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