

# 000 001 002 003 004 005 AOT\*: EFFICIENT SYNTHESIS PLANNING VIA LLM- 006 EMPOWERED AND-OR TREE SEARCH 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027

## ABSTRACT

028  
029  
030 Retrosynthesis planning enables the discovery of viable synthetic routes for target  
031 molecules, playing a crucial role in domains like drug discovery and materials de-  
032 sign. Multi-step retrosynthetic planning remains computationally challenging due  
033 to exponential search spaces and inference costs. While Large Language Models  
034 (LLMs) demonstrate chemical reasoning capabilities, their application to synthe-  
035 sis planning faces constraints on efficiency and cost. To address these challenges,  
036 we introduce AOT\*, a framework that transforms retrosynthetic planning by in-  
037 tegrating LLM-generated chemical synthesis pathways with systematic AND-OR  
038 tree search. To this end, AOT\* atomically maps the generated complete synthesis  
039 routes onto AND-OR tree components, with a mathematically sound design of  
040 reward assignment strategy and retrieval-based context engineering, thus enabling  
041 LLMs to efficiently navigate in the chemical space. Experimental evaluation on  
042 multiple synthesis benchmarks demonstrates that AOT\* achieves SOTA perfor-  
043 mance with significantly improved search efficiency. AOT\* exhibits competitive  
044 solve rates using 3-5 $\times$  fewer iterations than existing LLM-based approaches, with  
045 the performance advantage becoming more pronounced on complex molecular tar-  
046 gets. Our code is available at [https://anonymous.4open.science/r/](https://anonymous.4open.science/r/AOTstar-31FD/)  
047 AOTstar-31FD/.

## 1 INTRODUCTION

048 Retrosynthetic planning, the decomposition of target molecules into commercially available build-  
049 ing blocks, is a fundamental challenge in organic chemistry that requires navigating an exponentially  
050 growing search space of chemical transformations (Corey & Wipke, 1969; Nicolaou & Chen, 2009;  
051 Grzybowski et al., 2009; Lewell et al., 1998). While early rule-based expert systems demonstrated  
052 the feasibility of computer-aided synthesis planning (CASP), they suffered from extensive manual  
053 curation requirements and brittle performance on novel molecular scaffolds (Law et al., 2009; Boda  
054 et al., 2007; Coley et al., 2017). The advent of deep learning has enabled neural networks to automati-  
055 cally learn chemical transformations from large reaction databases, achieving remarkable progress  
056 in single-step reaction prediction (Segler et al., 2018; Schwaller et al., 2019; Segler & Waller, 2017;  
057 Liu et al., 2017; Schwaller et al., 2020; Dai et al., 2019; Chen & Jung, 2021). However, extending  
058 these successes to multi-step synthesis planning remains computationally challenging, as it requires  
059 sophisticated search strategies to efficiently explore the combinatorial space while maintaining reac-  
060 tion feasibility and synthetic accessibility (Christ et al., 2012; Bøgevig et al., 2015; Genheden et al.,  
061 2020; Saigiridharan et al., 2024; Thakkar et al., 2021; Tu et al., 2025; Dong et al., 2022).

062 Current neural approaches to multi-step synthesis planning face several challenges that limit their  
063 practical deployment (Maziarz et al., 2025; Genheden & Bjerrum, 2022). First, the computational  
064 overhead of repeated neural network inference creates significant bottlenecks, particularly problem-  
065 atic for high-throughput screening applications where thousands of molecules must be evaluated  
066 within tight time constraints (Andronov et al., 2025; Zhao et al., 2024; Hong et al., 2023). Second,  
067 these methods require extensive high-quality training data of validated synthesis routes to learn ef-  
068 fective search strategies, yet when data is insufficient, they may exhibit limited performance and bias  
069 toward well-explored chemical spaces (Lin et al., 2022; Liu et al., 2023; Kim et al., 2021; Tripp et al.,  
070 2023; Yu et al., 2024). Third, the tree search algorithms underlying multi-step planning frequently  
071 suffer from redundant explorations and limited generalization beyond their training distributions, as

054 they cannot leverage broader chemical knowledge without explicit supervision (Kishimoto et al.,  
 055 2019; Chen et al., 2020; Hong et al., 2023; Zhao et al., 2024).

056 The recent emergence of Large Language Models (LLMs) has opened new frontiers in chemical  
 057 informatics, offering unprecedented capabilities for chemical reasoning (Boiko et al., 2023; White  
 058 et al., 2023; Jablonka et al., 2024; M. Bran et al., 2024; Jablonka et al., 2024; Mirza et al., 2025). Re-  
 059 cent work has demonstrated that LLMs can achieve remarkable performance in single-step retrosyn-  
 060 thesis prediction when augmented with domain-specific fine-tuning or reasoning capabilities (Ed-  
 061 wards et al., 2022; Liu et al., 2025; Yang et al., 2024; Zhang et al., 2024; 2025a; Lin et al., 2025;  
 062 Deng et al., 2025). Pioneer efforts in LLM-based multi-step planning have emerged, such as the  
 063 LLM-Syn-Planner framework (Wang et al., 2025), which employs evolutionary algorithms with  
 064 mutation operators to generate and optimize complete retrosynthetic routes (Bran et al., 2025).  
 065 However, extending these successes to practical multi-step synthesis planning remains challeng-  
 066 ing due to the computational expense of LLM inference, limited search efficiency with constrained  
 067 iteration budgets, and the difficulty of incorporating chemical knowledge into the search process  
 068 effectively (Guo et al., 2023; Kambhampati et al., 2024; Wang et al., 2024; Song et al., 2025).

069 To address these fundamental limitations, we introduce AOT\*, a novel framework that harnesses the  
 070 superior reasoning capabilities of LLMs while maintaining the computational efficiency required for  
 071 practical synthesis planning (Jončev et al., 2025). Our approach builds upon the classical AND-OR  
 072 tree representation of multi-step synthesis pathways, where OR nodes represent molecules and AND  
 073 nodes represent reactions connecting products to their reactants (Chen et al., 2020; Schreck et al.,  
 074 2019; Shi et al., 2020; Somnath et al., 2021). The key innovation of AOT\* lies in its systematic  
 075 integration of pathway-level LLM generation with AND-OR tree search, where complete synthesis  
 076 routes are atomically mapped to tree structures, enabling efficient exploration through intermediate  
 077 reuse and structural memory that reduces search complexity while preserving the strategic coherence  
 078 of generated pathways.

079 Our contributions are threefold: (1) We present AOT\*, a framework that integrates LLM-generated  
 080 synthesis pathways with AND-OR tree search, enabling systematic exploration by atomically map-  
 081 ping pathways to tree structures that preserves synthetic coherence while exploiting structural reuse.  
 082 (2) We demonstrate 3-5 $\times$  efficiency improvements over existing approaches, with particularly strong  
 083 performance on complex molecular targets where the tree-structured search effectively navigates  
 084 challenging synthetic spaces that require sophisticated multi-step strategies. (3) We show consistent  
 085 performance gains across diverse LLM architectures and benchmark datasets, confirming that the  
 086 efficiency advantages stem from the algorithmic framework rather than model-specific capabilities,  
 087 enabling practical deployment under various computational constraints.

## 090 2 RELATED WORK

### 092 2.1 SEARCH FOR RETROSYNTHESIS PLANNING

095 Multi-step retrosynthesis planning leverages search algorithms to discover complete synthetic path-  
 096 ways. Monte Carlo Tree Search (MCTS) (Segler et al., 2018; Segler & Waller, 2017) pioneered  
 097 neural-guided synthesis planning, with variants including Experience-Guided MCTS (Hong et al.,  
 098 2023), hybrid MEEA combining MCTS with A\* search (Zhao et al., 2024), and alternatives like  
 099 Nested Monte Carlo Search and Greedy Best-First Search (Roucaïrol & Cazenave, 2024). The  
 100 Retro\* algorithm (Chen et al., 2020) introduced AND-OR tree representations with neural-guided  
 101 A\* search (Schreck et al., 2019), leading to extensions including PDVN with dual value net-  
 102 works (Liu et al., 2023), self-improving procedures (Kim et al., 2021), uncertainty-aware plan-  
 103 ning (Tripp et al., 2023), depth-first proof-number search (Kishimoto et al., 2019), and double-ended  
 104 search (Yu et al., 2024). Beyond tree search, recent approaches also employ beam search (Schwaller  
 105 et al., 2020; Andronov et al., 2025), graph neural networks (Wang et al., 2023; Zhao et al., 2025),  
 106 iterative string editing (Han et al., 2024), and neurosymbolic programming (Zhang et al., 2025c).  
 107 Since retrosynthesis has broad applicability for molecular discovery, many platforms exist encompassing  
 industrial (Bøgevig et al., 2015; Grzybowski et al., 2018) and open-source platforms (Gen-  
 heden et al., 2020; Saigiridharan et al., 2024; Coley et al., 2017; Tu et al., 2025).

108  
109

## 2.2 LLMs FOR CHEMICAL REASONING AND SYNTHESIS PLANNING

110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123

Large language models have demonstrated remarkable capabilities in encoding chemical knowledge and performing sophisticated reasoning about molecular properties and transformations (Edwards et al., 2022; White et al., 2023; Jablonka et al., 2024). These capabilities have been leveraged through various approaches including domain-specific fine-tuning (Yang et al., 2024; Zhang et al., 2024), instruction-tuning for chemical tasks (Lin et al., 2025), and development of experimental planning agents (Boiko et al., 2023; M. Bran et al., 2024; Wang et al., 2024). Transformer models like RSGPT (Deng et al., 2025) achieve strong performance through pre-training on billions of synthetic reactions. Recently, LLMs have been applied directly to multi-step synthesis planning. DeepRetro (Sathyanarayana et al., 2025) combines iterative LLM reasoning with chemical validation and human feedback, while RetroDFM-R (Zhang et al., 2025b) uses reinforcement learning to train LLMs for explainable retrosynthetic reasoning. Ma et al. (2025) construct knowledge graphs from literature for macromolecule retrosynthesis planning. The LLM-Syn-Planner framework (Wang et al., 2025) employs evolutionary algorithms to iteratively refine complete pathways.

124  
125  
126  
127

## 3 METHODOLOGY

128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138

We formulate retrosynthetic planning as a generative AND-OR tree search problem as follows. Given a target molecule  $t$  and a set of available building blocks  $\mathcal{B}$ , we seek to construct an AND-OR tree  $\mathcal{T} = (\mathcal{V}, \mathcal{E})$  where OR nodes  $v \in \mathcal{V}_{OR}$  represent molecules and AND nodes  $a \in \mathcal{V}_{AND}$  represent reactions. Each OR node can have multiple child AND nodes (alternative reactions), while each AND node connects to its parent OR node (product) and child OR nodes (reactants). We employ a generative function  $g : \mathcal{M} \times \mathcal{S} \rightarrow \mathcal{P}$  that maps molecules and retrieved similar synthesis routes to reaction pathways. Here,  $\mathcal{M}$  denotes the space of molecules,  $\mathcal{S}$  represents retrieved synthesis examples, and  $\mathcal{P}$  is the space of multi-step pathways where each pathway  $p = \langle r_1, \dots, r_n \rangle$  consists of sequential reaction steps, with each  $r_i = (P_i \rightarrow \{R_{i,1}, \dots, R_{i,k_i}\})$  transforming a product molecule  $P_i$  into a set of reactants  $\{R_{i,1}, \dots, R_{i,k_i}\}$  (denoted  $R_i$  for brevity). The objective is to find a valid synthesis tree  $\mathcal{T}^*$  satisfying:

139  
140

$$\mathcal{T}^* \in \mathcal{T}_{valid} \quad \text{s.t.} \quad \forall v \in \text{Leaves}(\mathcal{T}^*), v \in \mathcal{B} \quad (1)$$

141  
142  
143  
144  
145

where  $\mathcal{T}_{valid}$  denotes chemically valid trees and  $\text{Leaves}(\mathcal{T})$  refers to terminal OR nodes. To guide the search efficiently, we employ a cost function  $C(\mathcal{T})$  encoding synthetic complexity. Generated pathways are mapped onto the tree as subgraphs  $\mathcal{G}_p \subseteq \mathcal{T}$ , maintaining consistency between the linear pathway structure and the hierarchical tree representation.

146  
147

## 3.2 PATHWAY-TO-TREE MAPPING: HANDLING STRUCTURAL CONSTRAINTS

148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161

The mapping from LLM-generated linear pathways to AND-OR tree structures presents unique challenges that require careful algorithmic design. We formalize this as a tree construction problem with consistency constraints (Fontana, 1990). For a generated pathway  $p$  with reaction steps  $r_i$ , we construct a subtree  $\mathcal{G}_p \subseteq \mathcal{T}$  that maintains three principal constraints: (1) Each molecule maps to exactly one OR node in the tree, enforced through SMILES canonicalization (Weininger, 1988; O’Boyle, 2012):  $\forall m_1, m_2 \in \mathcal{M} : \text{canon}(m_1) = \text{canon}(m_2) \Rightarrow \text{OR}(m_1) = \text{OR}(m_2)$ . (2) Reaction mappings preserve parent-child relationships across pathway steps—when step  $r_i$  decomposes molecule  $m$  appearing in step  $r_j$  ( $j < i$ ), we enforce:  $m \in R_j \wedge P_i = m \Rightarrow \text{AND}(r_i) \in \text{Children}(\text{OR}(m))$ . (3) All generated reactions map to the tree, but orphaned steps targeting already-solved molecules are pruned:  $\text{Map}(r_i) = \text{AND}(r_i)$  if  $\neg \text{IsSolved}(P_i)$ , otherwise  $\emptyset$ . The mapping algorithm processes pathways recursively, starting from the first step connected to the target and matching subsequent steps to unsolved molecules through canonicalized SMILES comparison. Invalid pathways are discarded during template-based validation while valid ones proceed to tree integration. Atomically mapping complete pathways to tree structures preserves the strategic coherence of LLM-generated routes, contrasting with incremental methods that expand individual reactions without global synthetic strategy.

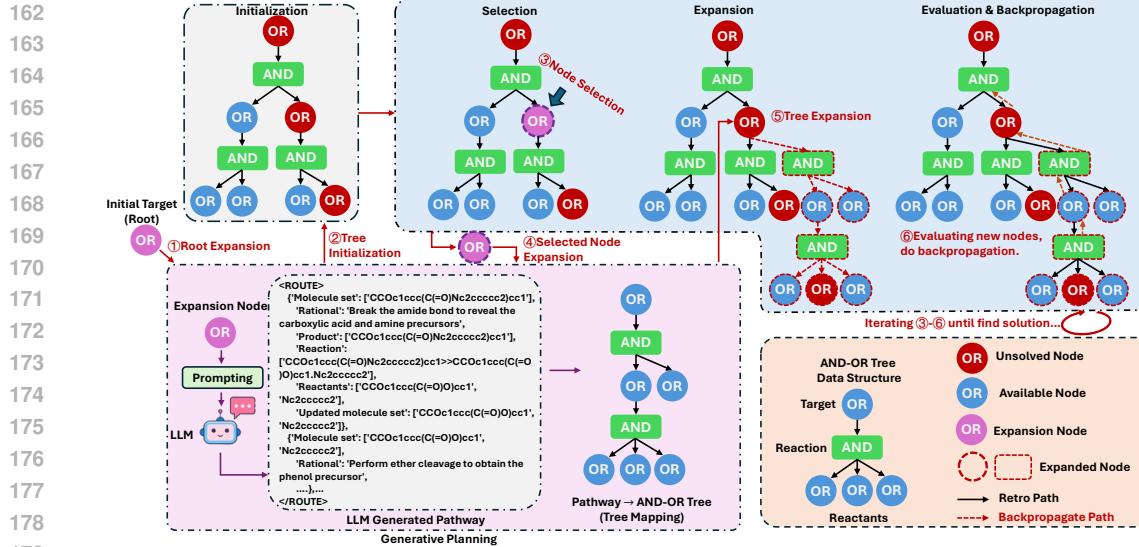


Figure 1: AOT\* framework overview. The framework operates in four phases: (1) Initialization with root expansion via LLM-generated pathways, (2) Selection phase identifying promising nodes through exploration-exploitation balancing, (3) Expansion where selected OR nodes prompt LLM to generate multi-step pathways that are validated and mapped to tree structure, and (4) Evaluation and backpropagation to update node statistics. Blue circles indicate purchasable molecules, red circles represent unsolved targets, and green squares show AND reaction nodes. The generative process transforms LLM output into structured AND-OR tree branches while maintaining chemical validity.

### 3.3 AOT\*: AND-OR TREE SEARCH WITH GENERATIVE EXPANSION

#### 3.3.1 PATHWAY-LEVEL GENERATION FRAMEWORK

AOT\* integrates LLM-based pathway generation with systematic AND-OR tree search. The framework transforms retrosynthetic planning through strategic generation of complete synthesis pathways guided by tree exploration. During node expansion, the framework prompts an LLM to generate complete multi-step synthesis routes for selected molecules:  $\mathcal{P}_{\text{gen}} = \arg \max_{p \in \mathcal{P}} P(p | m, \mathcal{S}, \theta)$  where  $m$  denotes the selected unsolved molecule,  $\mathcal{S}$  represents retrieved similar synthesis routes, and  $\theta$  parameterizes the LLM. The tree state  $\mathcal{T}$  guides molecule selection but does not directly condition pathway generation. The generation process leverages the LLM’s implicit chemical knowledge to propose routes that systematically reduce molecular complexity while maintaining synthetic feasibility. Each generated pathway decomposes the target through a sequence of transformations, producing complete routes. To incorporate chemical precedent, the framework employs retrieval-augmented generation (Lewis et al., 2020). For each selected molecule, structurally similar compounds are retrieved from a database of validated synthesis routes:  $\mathcal{S}_{\text{similar}} = \text{top-}k_{s \in \mathcal{D}} \{ \text{Tanimoto}(m, s) \}$  where similarity is computed using Tanimoto coefficient on Morgan fingerprints (Bajusz et al., 2015). These examples provide in-context demonstrations, guiding generation toward feasible strategies. The retrieved routes supply reaction precedents and strategic patterns while maintaining exploration flexibility. Generated pathways undergo template-based validation to verify chemical validity (Coley et al., 2019; Wang et al., 2025). Valid routes are mapped onto the AND-OR tree structure, creating subtrees that preserve pathway coherence. This mapping maintains both local reaction validity and global synthetic strategy consistency.

#### 3.3.2 TREE SEARCH WITH GENERATIVE EXPANSION

Building upon the pathway-level generation framework, AOT\* implements a systematic tree search framework that coordinates the exploration of the AND-OR tree structure with LLM generative expansion. The framework maintains exploration guarantees while leveraging the efficiency gains from pathway-level generation. The search process operates through four integrated phases:

216 **Selection Phase.** The selection procedure identifies the most promising leaf AND node for ex-  
 217 pansion utilizing the Upper Confidence Bound (UCB) criterion (Auer et al., 2002):  $UCB(a) =$   
 218  $\bar{v}_a + c\sqrt{\frac{\ln N_{parent}}{n_a}}$  where  $\bar{v}_a$  denotes the empirical mean value computed from previous expansions,  
 219  $N_{parent}$  represents the cumulative visitation count across sibling AND nodes, and  $c$  constitutes the  
 220 exploration-exploitation trade-off parameter. The selection mechanism targets expandable leaf AND  
 221 nodes—those containing unsolved reactants and residing at depths below the predefined thresh-  
 222 old—thereby allocating computational resources to the active search frontier.  
 223

224 **Expansion Phase.** Given a selected AND node  $a$ , the algorithm identifies constituent unsolved  
 225 reactant molecules and generates synthesis pathways. When multiple unsolved reactants exist, the  
 226 least-explored molecule is selected. The generative process employs an LLM conditioned on the  
 227 selected molecule and retrieval-augmented examples:  $p \sim P(p \mid v, \mathcal{S}(v), \theta)$  where  $v$  denotes the  
 228 selected molecule,  $\mathcal{S}(v)$  represents retrieved similar synthesis routes, and  $\theta$  parameterizes the LLM.  
 229 For fair comparison considerations, we adopt the prompt design and RAG methodology from Wang  
 230 et al. (2025). Detailed prompt templates and RAG implementation can be found in Appendix B.3.  
 231 Generated pathways undergo template-based validation to ensure chemical feasibility. Valid path-  
 232 ways are mapped to the tree structure through a hierarchical construction process. For a generated  
 233 pathway  $p = \langle r_1, \dots, r_n \rangle$  where  $r_i = (P_i \rightarrow \{R_{i,1}, \dots, R_{i,k_i}\})$ , the algorithm constructs AND  
 234 nodes for each reaction and OR nodes for each molecule:  
 235

$$\Psi(p) = \bigcup_{i=1}^n \left\{ OR(P_i) \xrightarrow{AND(r_i)} \{OR(R_{i,j})\}_{j=1}^{k_i} \right\} \quad (2)$$

236 This mapping generates subtrees where each AND node maintains parent-child relationships with  
 237 corresponding OR nodes, preserving pathway coherence by connecting initial reactions to targets  
 238 and recursively expanding unsolved intermediates.  
 239

240 **Evaluation Phase.** Generated AND nodes undergo evaluation via a composite reward function:  
 241  $R(a) = \alpha \cdot f_{avail}(a) + (1 - \alpha) \cdot f_{chem}(a)$  where  $f_{avail}(a) \in [0, 1]$  quantifies the fraction of commercially  
 242 available reactants,  $f_{chem}(a) \in [0, 1]$  assesses chemical feasibility through synthetic complexity  
 243 (SC) score evaluation (Coley et al., 2018),  $\alpha$  is the availability-feasibility weight. This formulation  
 244 balances synthetic accessibility with chemical viability.  
 245

246 **Backpropagation Phase.** Value estimates propagate through the tree structure following parent-  
 247 child relationships:  $\bar{v}_a^{(t+1)} = \frac{n_a \cdot \bar{v}_a^{(t)} + R(a_{child})}{n_a + 1}$ . Upon molecular resolution (through commercial  
 248 availability or complete synthesis), the solved status propagates throughout the tree. The algorithm  
 249 marks solved OR nodes with corresponding solving AND paths, re-evaluates affected parent reac-  
 250 tions, and prunes solved subtrees from the active search space. This update mechanism incorporates  
 251 newly available intermediates across all branches of the search tree.  
 252

253 **Termination.** The search process terminates when: (i) a complete solution is found where  $\forall v \in$   
 254  $\text{Leaves}(\mathcal{T}), v \in \mathcal{B}$ , (ii) computational budget limits are reached (maximum iterations), or (iii) the  
 255 search space is exhausted with no remaining expandable nodes. Upon termination, the process  
 256 returns either the complete synthesis tree or a partial solution with the most promising incomplete  
 257 branches.  
 258

### 3.4 THEORETICAL ANALYSIS

259 Retrosynthetic planning requires searching through a combinatorial space with branching factor  $b$   
 260 and depth  $d$ , resulting in  $\mathcal{O}(b^d)$  complexity for exhaustive search. LLM-based methods using evo-  
 261 lutionary algorithms operate through local mutations requiring  $\mathcal{O}(\mu \cdot g)$  evaluations where  $\mu$  is pop-  
 262 ulation size and  $g$  is generations (Beyer & Schwefel, 2002; Wang et al., 2025). AOT\* reduces this  
 263 complexity to  $\mathcal{O}(k \cdot d)$  where  $k \ll b$  by replacing node-wise enumeration with pathway-level gen-  
 264 eration. The method leverages systematic tree search to explore the reduced search space. However,  
 265 this approach inherits limitations from the exploration strategy employed. Let  $q$  denote the LLM’s  
 266 generation quality—the fraction of generated pathways that are chemically valid and useful. When  
 267  $q < 1$ , we need approximately  $1/q$  times more generations to find good solutions, giving effective  
 268 complexity  $\mathcal{O}(k/q \cdot d)$ . Moreover, UCB only guarantees finding near-optimal solutions: the regret  
 269 bound grows as  $\mathcal{O}(\sqrt{n \log n})$  where  $n$  is the number of expansions (Bubeck et al., 2012), meaning  
 we cannot guarantee finding the truly optimal synthesis route. This transforms combinatorial opti-

270 mization into structured sampling from  $P(p | m, \mathcal{T}, \theta)$  (Sun et al., 2023). Each LLM call explores  
 271 a chemically-constrained subspace, achieving empirical efficiency gains of  $3\text{-}5\times$  over evolutionary  
 272 methods (see Sec. 4.4 for details). The pathway-level coherence enables rapid convergence to good  
 273 solutions, though performance fundamentally depends on LLM generation quality  $q$ .  
 274

## 275 4 EXPERIMENTS

### 277 4.1 EXPERIMENTAL SETUP

279 **Datasets.** We evaluate our methods on four retrosynthesis benchmarks. **USPTO-Easy** and **USPTO-190**  
 280 (Chen et al., 2020) are derived from the USPTO dataset, containing 200 and 190 molecules  
 281 respectively, with former representing simpler synthesis problems. **Pistachio Reachable** (**Pistachio**  
 282 **Reach.**) and **Pistachio Hard** are from the Pistachio dataset<sup>1</sup>, containing 150 and 100 molecules  
 283 respectively, with Pistachio Hard presenting more challenging synthesis tasks. Following Wang  
 284 et al. (2025), we use a route database constructed from training and validation sets of Retro\* (no  
 285 overlap with test molecules), while the reaction database is a processed version of USPTO-Full. We  
 286 use 231 million purchasable compounds in eMolecules as building blocks (Chen et al., 2020).

287 **Baselines.** We compare against three categories of methods: (1) *Template-based search algorithms*  
 288 including Graph2Edits (Zhong et al., 2023), RootAligned (Zhong et al., 2022), and Local-  
 289 Retro (Chen & Jung, 2021) with both MCTS (Segler et al., 2018) and Retro\* (Chen et al., 2020)  
 290 search; (2) *Constrained Search (Constr.)* including DESP (Yu et al., 2024) using bidirectional search  
 291 and Tango\* (Jončev et al., 2025) guiding search towards specified starting materials; (3) *LLM-  
 292 based approaches* (3) *LLM-based approaches* including (i) LLM (MCTS/Retro\*) following Wang  
 293 et al. (2025) where LLMs act as single-step reaction predictors using template selection and self-  
 294 consistency sampling within traditional search algorithms; (ii) LLM-Syn-Planner (LLM-S.P.) (Wang  
 295 et al., 2025) which employs evolutionary search to optimize the synthesis routes iteratively. For fair  
 296 comparison, all methods use the same building block inventory and reaction templates. Notably,  
 297 LLM-Syn-Planner (Wang et al., 2025) was provided with identical RAG and prompting strategies  
 298 as AOT\*, ensuring comparisons reflect algorithmic design rather than prompt engineering.

299 **Metrics.** We report *solve rate* (SR) as the primary metric, measuring the percentage of target  
 300 molecules successfully synthesized within the search budget. We evaluate efficiency through: (1)  
 301 *Solve rates* at multiple budgets: N (iterations)=100, 300, 500, to assess search efficiency; (2)  
 302 *Iteration-to-solution* (Iters) analysis at fine-grained intervals: N=20, 40, 60, 80, 100, to measure  
 303 convergence speed; (3) *Difficulty-stratified performance* by SC score (Coley et al., 2018) quartiles  
 304 (Q1-Q4, from simplest to most complex) to examine efficiency across molecular complexity levels.

305 **Implementation Details.** To ensure fair comparison, we follow Wang et al. (2025) and evaluate  
 306 AOT\* using GPT-4o (Hurst et al., 2024) and DeepSeek-V3 (Liu et al., 2024) as the primary LLM  
 307 models (We denote GPT-4o as "GPT" and DeepSeek-V3 as "DS" hereafter for brevity). We maintain  
 308 main LLM configurations and prompts with Wang et al. (2025) to isolate algorithmic improvements.  
 309 Framework-specific parameters include UCB exploration parameter  $c = 0.5$ , maximum search depth  
 310 of 16 steps, and the availability-feasibility weight  $\alpha = 0.4$ ; Throughout our experiments, N denotes  
 311 the number of search iterations while n represents the number of RAG samples. Results reported in  
 312 this section use 100 iterations (N = 100) as the default search budget unless otherwise specified.

### 313 4.2 MAIN RESULTS

315 Table 1 demonstrates AOT\*'s superior efficiency in retrosynthetic search. At low computational  
 316 budgets (N=100), AOT\* achieves solve rates matching or exceeding competing methods' 500-  
 317 iteration performance. On USPTO-190, AOT\* (DS) reaches 93.1% at N=300, while LLM-Syn-  
 318 Planner (DS) requires 500 iterations to achieve comparable performance (92.6%). This advantage  
 319 is most pronounced on Pistachio Hard, where AOT\* achieves 85-86% solve rates at N=100, while  
 320 LLM-Syn-Planner requires 300-500 iterations to reach comparable performance (84-86%), demon-  
 321 strating a  $3\text{-}5\times$  efficiency gain. Direct LLM integration (MCTS/Retro\*) fails catastrophically with  
 322  $\leq 5\%$  solve rates, validating that pathway-level generation fundamentally outperforms single-step  
 323 prediction. The performance gaps at N=100 (20% + on USPTO-190, 10% + on Pistachio Hard)

<sup>1</sup><https://www.nextmovesoftware.com/pistachio.html>

324 Table 1: Comparison of solve rates (%) across different search budgets on four benchmark datasets.  
 325 Best results are **bolded** and top-3 are underlined.  
 326

|                   | Method                            | USPTO-190   |             |             | Pistachio Hard |             |             | USPTO-Easy   |              |              | Pistachio Reachable |             |             |
|-------------------|-----------------------------------|-------------|-------------|-------------|----------------|-------------|-------------|--------------|--------------|--------------|---------------------|-------------|-------------|
|                   |                                   | N=100       | 300         | 500         | N=100          | 300         | 500         | N=100        | 300          | 500          | N=100               | 300         | 500         |
| Single-step       | Graph2Edits (MCTS)                | 42.7        | 54.7        | 63.5        | 26.0           | 41.0        | 62.0        | 90.0         | 93.5         | 96.5         | 77.3                | 88.4        | 94.2        |
|                   | RootAligned (MCTS)                | 79.4        | 81.1        | 81.1        | <u>83.0</u>    | 85.0        | 85.0        | 98.0         | 98.5         | <u>98.5</u>  | <b>99.3</b>         | <b>99.3</b> | <b>99.3</b> |
|                   | LocalRetro (MCTS)                 | 44.3        | 50.9        | 58.3        | 52.0           | 55.0        | 62.0        | 92.5         | 94.5         | <u>95.5</u>  | 86.7                | 90.0        | 95.3        |
|                   | Graph2Edits (Retro*)              | 51.1        | 59.4        | 80.0        | 71.0           | 74.0        | 82.0        | 92.0         | 95.5         | 97.5         | 94.0                | 95.0        | 97.5        |
|                   | RootAligned (Retro*) <sup>†</sup> | <b>86.8</b> | 88.9        | 88.9        | 78.0           | 82.0        | 82.0        | <u>99.0</u>  | <u>99.0</u>  | <u>99.0</u>  | <u>98.7</u>         | <u>98.7</u> | <u>98.7</u> |
|                   | LocalRetro (Retro*)               | 51.0        | 65.8        | 73.7        | 63.0           | 69.0        | 72.0        | 95.5         | 97.5         | 98.0         | <u>97.3</u>         | <b>99.3</b> | <b>99.3</b> |
| LLM-based Constr. | DESP                              | 30.0        | 35.3        | 39.5        | 44.0           | 50.0        | —           | —            | —            | —            | 90.0                | 96.0        | —           |
|                   | Tango*                            | 33.2        | 45.3        | 53.7        | 59.0           | 63.0        | —           | —            | —            | —            | 95.3                | <b>99.3</b> | —           |
|                   | LLM (MCTS)                        | 25.8        | 27.2        | 31.3        | 0.0            | 4.0         | 5.0         | 54.5         | 68.5         | 75.5         | 12.7                | 17.3        | 20.7        |
|                   | LLM (Retro*)                      | 23.2        | 26.8        | 30.6        | 0.0            | 2.0         | 5.0         | 56.0         | 69.0         | 75.5         | 14.7                | 19.3        | 13.3        |
|                   | LLM-Syn-Planner (GPT)             | 64.7        | 91.1        | 92.1        | 72.0           | <u>86.0</u> | <u>87.0</u> | 91.0         | <u>99.5</u>  | <b>100.0</b> | 93.3                | <u>98.0</u> | <u>98.0</u> |
|                   | LLM-Syn-Planner (DS)              | 62.1        | <u>92.1</u> | <u>92.6</u> | 74.0           | 84.0        | 86.0        | 93.0         | <u>99.5</u>  | <b>100.0</b> | 96.7                | <b>99.3</b> | <b>99.3</b> |
| Ours              | AOT* (GPT)                        | <u>82.1</u> | <u>92.6</u> | <u>93.1</u> | <u>85.0</u>    | <u>88.0</u> | <b>93.0</b> | <u>98.5</u>  | <b>100.0</b> | <b>100.0</b> | 96.7                | <b>99.3</b> | <b>99.3</b> |
|                   | AOT* (DS)                         | <u>86.3</u> | <b>93.1</b> | <u>93.6</u> | <u>86.0</u>    | <u>89.0</u> | <u>93.0</u> | <b>100.0</b> | <b>100.0</b> | <b>100.0</b> | <u>98.7</u>         | <b>99.3</b> | <b>99.3</b> |

340  
 341 demonstrate our AND-OR tree’s systematic exploration advantages over iterative evolutionary opti-  
 342 mization. While template-based methods like RootAligned show limited gains (2.1% improvement  
 343 from N=100 to N=500 on Pistachio Hard), AOT\* with DeepSeek-V3 achieves +7.3% improvement,  
 344 highlighting the generative approach’s broader solution space.

### 346 4.3 DIFFICULTY-STRATIFIED PERFORMANCE ANALYSIS

347 Table 2 reveals that AOT\*’s efficiency  
 348 advantage increases with molecular com-  
 349 plexity across all datasets. Both methods  
 350 handle simple molecules (Q1) well, but  
 351 AOT\* generally requires 3-5× fewer it-  
 352 erations while maintaining comparable or  
 353 better solve rates. On challenging datasets  
 354 (USPTO-190 and Pistachio Hard), the  
 355 performance gap becomes substantial at  
 356 higher complexity. For Q4 molecules,  
 357 LLM-Syn-Planner’s solve rates drop to  
 358 27.6% and 56.0% respectively, while  
 359 AOT\* maintains 78.7% and 76.0%. De-  
 360 spite using fewer iterations than LLM-Syn-Planner (38.51 vs 45.79 on USPTO-190), AOT\* achieves  
 361 nearly 3× better solve rates on the most complex targets. On simpler datasets (USPTO-Easy and  
 362 Pistachio Reachable), both methods maintain high solve rates even for Q4 molecules, but AOT\*  
 363 still demonstrates superior efficiency. These demonstrate that AOT\*’s tree-structured search scales  
 364 better than evolutionary approaches, which suffer from redundant pathway exploration.

### 365 4.4 EFFICIENCY ANALYSIS

366 **Iteration Efficiency.** Table 3 demonstrates AOT\*’s superior search efficiency across all bench-  
 367 marks. With DeepSeek-V3, AOT\* achieves 56.3% solve rate at 20 iterations on USPTO-190, sur-  
 368 passing LLM-Syn-Planner’s performance at 60 iterations (46.8%). This efficiency gap is most pro-  
 369 nounced on Pistachio Hard, where AOT\* reaches 67.0% at 20 iterations while LLM-Syn-Planner  
 370 achieves only 13.0%, representing a 5× improvement. Across all datasets, AOT\* requires 3-5×  
 371 fewer iterations to reach comparable solve rates, from 1.6× on simpler targets (USPTO-Easy) to over  
 372 5× on complex ones. This iteration efficiency stems from the AND-OR tree’s ability to systemati-  
 373 cally exploit discovered intermediates and prune redundant branches, whereas LLM-Syn-Planner’s  
 374 evolutionary approach explores pathways independently without structural memory. The per-  
 375 formance gains persist across both GPT-4o and DeepSeek-V3, with DeepSeek-V3 consistently slightly  
 376 outperforming GPT-4o, confirming that our algorithmic framework effectively leverages diverse  
 377 LLM capabilities.

Table 2: Performance breakdown by SC score quar-  
 tiles: AOT\* v.s. LLM-Syn-Planner.

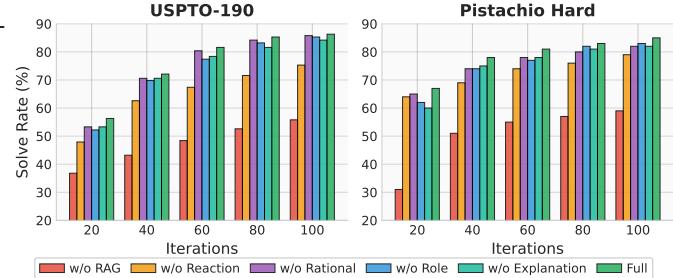
| Method   | USPTO Easy   |             | Pistachio Reach. |              | Pistachio Hard |               | USPTO-190    |               |
|----------|--------------|-------------|------------------|--------------|----------------|---------------|--------------|---------------|
|          | Iters        | SR          | Iters            | SR           | Iters          | SR            | Iters        | SR            |
| LLM-S.P. | 10.33        | <b>100%</b> | 14.04            | <b>100%</b>  | 34.83          | 92.0%         | 33.06        | 91.6%         |
| Q1 AOT*  | <b>2.78</b>  | <b>100%</b> | <u>4.82</u>      | <b>100%</b>  | <u>5.76</u>    | <b>100.0%</b> | <u>18.85</u> | <b>100.0%</b> |
| LLM-S.P. | 28.10        | 98%         | 23.81            | 97.3%        | 36.50          | 80.0%         | 35.86        | 74.4%         |
| Q2 AOT*  | <b>9.10</b>  | <b>100%</b> | <u>9.54</u>      | <b>100%</b>  | <u>13.92</u>   | <b>88.0%</b>  | <u>26.45</u> | <b>85.1%</b>  |
| LLM-S.P. | 31.68        | 92%         | 26.58            | 93.3%        | 47.11          | 68.0%         | 41.18        | 54.1%         |
| Q3 AOT*  | <b>10.26</b> | <b>100%</b> | <u>9.73</u>      | <b>97.3%</b> | <u>28.68</u>   | <b>80.0%</b>  | <u>35.48</u> | <b>81.2%</b>  |
| LLM-S.P. | 44.67        | 82%         | 27.75            | 93.3%        | 56.60          | 56.0%         | 45.79        | 27.6%         |
| Q4 AOT*  | <b>15.65</b> | <b>100%</b> | <u>12.08</u>     | <b>97.4%</b> | <u>32.92</u>   | <b>76.0%</b>  | <u>38.51</u> | <b>78.7%</b>  |

378

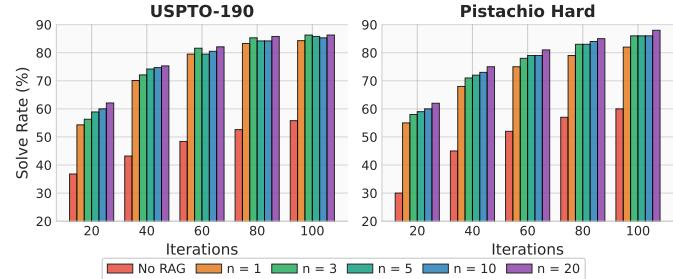
379

Table 3: Solve rates (%) at different iteration thresholds.

|                  |       | GPT      |      | DeepSeek |              |
|------------------|-------|----------|------|----------|--------------|
| Dataset          | Iter. | LLM-S.P. | AOT* | LLM-S.P. | AOT*         |
| Pistachio Hard   | 20    | 9.0      | 64.0 | 13.0     | <b>67.0</b>  |
|                  | 40    | 25.0     | 76.0 | 33.0     | <b>78.0</b>  |
|                  | 60    | 50.0     | 79.0 | 55.0     | <b>81.0</b>  |
|                  | 80    | 65.0     | 81.0 | 69.0     | <b>83.0</b>  |
|                  | 100   | 72.0     | 85.0 | 74.0     | <b>86.0</b>  |
| USPTO-190        | 20    | 9.5      | 55.7 | 10.5     | <b>56.3</b>  |
|                  | 40    | 33.7     | 69.5 | 31.0     | <b>72.1</b>  |
|                  | 60    | 52.6     | 78.4 | 46.8     | <b>81.6</b>  |
|                  | 80    | 57.3     | 80.5 | 55.7     | <b>85.3</b>  |
|                  | 100   | 64.7     | 82.1 | 62.1     | <b>86.3</b>  |
| Pistachio Reach. | 20    | 65.0     | 84.7 | 66.7     | <b>87.3</b>  |
|                  | 40    | 80.7     | 90.0 | 81.3     | <b>95.3</b>  |
|                  | 60    | 85.3     | 94.0 | 88.0     | <b>97.3</b>  |
|                  | 80    | 91.0     | 95.3 | 94.0     | <b>98.7</b>  |
|                  | 100   | 93.3     | 96.7 | 96.7     | <b>98.7</b>  |
| USPTO-Easy       | 20    | 54.0     | 89.0 | 55.3     | <b>90.0</b>  |
|                  | 40    | 71.3     | 93.5 | 72.0     | <b>94.5</b>  |
|                  | 60    | 81.7     | 95.5 | 85.3     | <b>96.5</b>  |
|                  | 80    | 88.3     | 96.5 | 90.0     | <b>99.0</b>  |
|                  | 100   | 91.0     | 98.5 | 93.0     | <b>100.0</b> |



(a) Impact of prompt engineering strategies.



(b) RAG sample number (n) effects on search performance.

Figure 2: Component analysis on Pistachio Hard, USPTO-190.

**Component Ablation Analysis.** We further decompose the prompt into several components: role description, task description, planning requirement, explanation requirement, rational field, and detailed requirements parts. We conduct ablation studies on these prompt components together with RAG to analyze their individual contributions. Figure 2a and 2b reveal how each component contributes to AOT\*'s search efficiency. RAG emerges as most critical, with its removal degrading solve rates by approximately 20-40% at early iterations and 20-30% at N=100. The method requires 2-3 $\times$  more iterations for comparable performance without RAG. Optimal RAG configuration varies by target complexity: USPTO-190 saturates at 5 samples while Pistachio Hard continues improving to 10 samples, reflecting greater precedent requirements for complex natural products. Prompt engineering components (role, rationale, explanation) show modest individual impact but collectively accelerate search by 10-20 iterations. Their effect is most pronounced early (N=20-60) where AOT\* establishes its efficiency advantage. These components work synergistically, with RAG providing chemical precedents, prompt engineering guiding exploration, and tree structure enabling intermediate reuse. This combination enables AOT\* to identify viable synthesis routes 5-6 $\times$  faster than evolutionary approaches lacking structural memory.

#### 4.5 ABLATION STUDIES

**Hyperparameter Sensitivity.** Table 4 examines search hyperparameters on Pistachio Hard, revealing robust performance across configurations. The exploration parameter  $c$  performs optimally at 0.5, achieving 84-86% solve rates across temperatures. Higher  $c$  values yield diminishing returns, particularly when combined with high temperature ( $T=0.9$ ), where performance drops to 77% at  $c=1.414$ . Temperature shows a sweet spot at 0.7 for  $c=0.5/1.0$ . The narrow performance range (77-86%) demonstrates AOT\*'s stability—even sub-optimal settings maintain reasonable solve rates. The best configuration ( $c=0.5$ ,  $T=0.7$ ) achieves 86%, only marginally better than alternatives, indicating relatively modest tuning requirements for practical deployment. Lower exploration parameters consistently outperform higher ones, suggesting LLM-generated pathways provide sufficient diversity without aggressive exploration.

Table 4: Hyperparameter sensitivity analysis on Pistachio Hard.

| $c$   | Temperature |      |             |      |
|-------|-------------|------|-------------|------|
|       | 0.3         | 0.5  | 0.7         | 0.9  |
| 0.5   | 84.0        | 85.0 | <b>86.0</b> | 85.0 |
| 1.0   | 83.0        | 83.0 | 84.0        | 79.0 |
| 1.414 | 84.0        | 80.0 | 80.0        | 77.0 |
| 2.0   | 83.0        | 83.0 | 82.0        | 78.0 |

432 **RAG Samples v.s. Token Usage.** Figure 3 quantifies the  
 433 trade-off between retrieval-augmented generation effectiveness  
 434 and computational cost. The analysis reveals a sharp per-  
 435 formance plateau after 3 samples: solve rate increases from  
 436 60% (No RAG) to 86% (3 samples), then remains nearly flat  
 437 despite token usage continuing to grow exponentially. Spec-  
 438 ifically, increasing from 3 to 20 samples yields only 2% perfor-  
 439 mance gain while inflating token consumption by 177% (from  
 440 1,478 to 4,091 tokens). This diminishing returns pattern val-  
 441 idates our default configuration of 3 samples, which achieves  
 442 86% solve rate on Pistachio Hard while using only 36% of  
 443 the tokens required at 20 samples. The rapid saturation sug-  
 444 gests that a small set of high-quality chemical precedents suf-  
 445 ficiently grounds the LLM’s pathway generation, with additional examples providing redundant  
 446 information rather than novel strategic insights.

#### 447 4.6 CROSS-MODEL CONSISTENCY AND COST-PERFORMANCE TRADE-OFFS

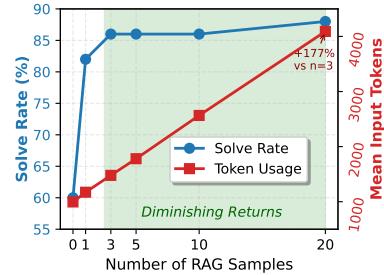
449 Table 5 demonstrates AOT\*’s efficiency and cost-  
 450 performance advantage across diverse LLM ar-  
 451 chitectures. Cost-performance analysis reveals  
 452 that budget models achieve cost-competitive  
 453 results: GPT-4o-mini (\$0.15/\$0.60 per mil-  
 454 lion tokens) reaches 32% solve rate at N=20,  
 455 while premium models like Claude-4-Sonnet  
 456 (\$3.00/\$15.00) achieve 63% despite 20× higher  
 457 costs. DeepSeek-V3 emerges as the opti-  
 458 mal choice, achieving 67% at N=20 and 86%  
 459 at N=100 with moderate pricing (\$0.56/\$1.68),  
 460 matching or exceeding expensive alternatives.  
 461 The consistent 5-6× efficiency gap between AOT\* and LLM-Syn-Planner across all models con-  
 462 firms that performance gains stem from our algorithmic framework, enabling practical cost-effective  
 463 model deployment while maintaining superior efficiency.

#### 464 4.7 FURTHER RESULTS AND VISUALIZATIONS

466 We provide comprehensive supplementary materials in the Appendices. Appendix B details dataset  
 467 statistics, LLM configurations, and hyperparameter settings. The complete AOT\* pseudocode, re-  
 468 action validation details, baselines’ descriptions, detailed comparisons with LLM-Syn-Planner, and  
 469 detailed prompt usage are also included. Appendix C presents extended experimental results in-  
 470 cluding performance comparisons across 11 LLM models, iteration efficiency analysis, additional  
 471 difficulty-stratified performance breakdowns results, detailed cost-performance trade-offs results,  
 472 along with additional ablation studies, hyperparameter sensitivity analyses, and visualization show-  
 473 cases of both success and failure synthesis trees cases. We provided LLMs usage statement at  
 474 Appendix A, and discussions for limitations and future work at Appendix D.

## 475 5 CONCLUSION

477 In this work, we introduce AOT\*, a novel framework that enhances the efficiency of multi-step  
 478 retrosynthetic planning by integrating Large Language Models with AND-OR tree search. Our  
 479 key innovation lies in atomically mapping LLM-generated synthesis pathways to AND-OR tree  
 480 structures, preserving strategic coherence and enabling systematic intermediate reuse. This ap-  
 481 proach, combined with retrieval-augmented generation and systematic tree exploration, transforms  
 482 the search process from iterative pathway optimization to structured exploration with pathway-level  
 483 generation and achieves satisfying performance within constrained budgets. Extensive experiments  
 484 demonstrate that AOT\* achieves superior efficiency, requiring much fewer iterations than existing  
 485 approaches to discover viable synthesis pathways while maintaining competitive solve rates across  
 multiple synthesis benchmarks.



447 Figure 3: Performance saturation  
 448 and input token usage with varying  
 449 RAG samples on Pistachio Hard.

450 Table 5: Performance across LLM architectures  
 451 on Pistachio Hard. Cost: \$/1M tokens.

| Model                  | Solve Rate (%) |       | API Cost |        |
|------------------------|----------------|-------|----------|--------|
|                        | N=20           | N=100 | Input    | Output |
| GPT-4o-mini (AOT*)     | 32.0           | 65.0  | 0.15     | 0.60   |
| DeepSeek-V3 (AOT*)     | 67.0           | 86.0  | 0.56     | 1.68   |
| GPT-4o (AOT*)          | 64.0           | 85.0  | 2.50     | 10.00  |
| Claude-4-Sonnet (AOT*) | 63.0           | 79.0  | 3.00     | 15.00  |
| Gemini-2.5 Pro (AOT*)  | 66.0           | 84.0  | 1.25     | 10.00  |
| DeepSeek-V3 (LLM-S.P.) | 13.0           | 74.0  | 0.56     | 1.68   |
| GPT-4o (LLM-S.P.)      | 9.0            | 72.0  | 2.50     | 10.00  |

486   **Ethics Statement** We confirm that this research complies with all applicable ethical guidelines  
 487 and does not present any ethical issues.  
 488

489   **Reproducibility Statement** To ensure reproducibility, we provide anonymized source code  
 490 through the link in the abstract. Complete details regarding datasets, experimental settings, and  
 491 implementation are documented in Appendix B.  
 492

493   **REFERENCES**  
 494

495   Mikhail Andronov, Natalia Andronova, Michael Wand, Jürgen Schmidhuber, and Djork-Arné Clev-  
 496   ert. Fast and scalable retrosynthetic planning with a transformer neural network and speculative  
 497   beam search. *arXiv preprint arXiv:2508.01459*, 2025.

498   Anthropic. Claude Opus 4 & Claude Sonnet 4 - System Card, 2025.

499

500   Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit  
 501   problem. *Machine learning*, 47(2):235–256, 2002.

502   Dávid Bajusz, Anita Rácz, and Károly Héberger. Why is tanimoto index an appropriate choice for  
 503   fingerprint-based similarity calculations? *Journal of cheminformatics*, 7(1):20, 2015.

504

505   Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies—a comprehensive introduction.  
 506   *Natural computing*, 1(1):3–52, 2002.

507   Krisztina Boda, Thomas Seidel, and Johann Gasteiger. Structure and reaction based evaluation of  
 508   synthetic accessibility. *Journal of computer-aided molecular design*, 21(6):311–325, 2007.

509

510   Anders Bøgevig, Hans-Jurgen Federsel, Fernando Huerta, Michael G Hutchings, Hans Kraut,  
 511   Thomas Langer, Peter Low, Christoph Oppawsky, Tobias Rein, and Heinz Saller. Route design in  
 512   the 21st century: the ic synth software tool as an idea generator for synthesis prediction. *Organic  
 513   Process Research & Development*, 19(2):357–368, 2015.

514   Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research  
 515   with large language models. *Nature*, 624(7992):570–578, 2023.

516

517   Andres M Bran, Theo A Neukomm, Daniel P Armstrong, Zlatko Jončev, and Philippe Schwaller.  
 518   Chemical reasoning in llms unlocks steerable synthesis planning and reaction mechanism eluci-  
 519   dation. *arXiv preprint arXiv:2503.08537*, 2025.

520   Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-  
 521   armed bandit problems. *Foundations and Trends® in Machine Learning*, 5(1):1–122, 2012.

522

523   Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro\*: learning retrosynthetic planning  
 524   with neural guided a\* search. In *International conference on machine learning*, pp. 1608–1616.  
 525   PMLR, 2020.

526   Shuan Chen and Yousung Jung. Deep retrosynthetic reaction prediction using local reactivity and  
 527   global attention. *JACS Au*, 1(10):1612–1620, 2021.

528

529   Clara D Christ, Matthias Zentgraf, and Jan M Kriegl. Mining electronic laboratory notebooks:  
 530   analysis, retrosynthesis, and reaction based enumeration. *Journal of chemical information and  
 531   modeling*, 52(7):1745–1756, 2012.

532   Connor W Coley, Luke Rogers, William H Green, and Klavs F Jensen. Computer-assisted retrosyn-  
 533   thesis based on molecular similarity. *ACS central science*, 3(12):1237–1245, 2017.

534

535   Connor W Coley, Luke Rogers, William H Green, and Klavs F Jensen. Scescore: synthetic com-  
 536   plexity learned from a reaction corpus. *Journal of chemical information and modeling*, 58(2):  
 537   252–261, 2018.

538   Connor W Coley, William H Green, and Klavs F Jensen. Rdchiral: An rdkit wrapper for handling  
 539   stereochemistry in retrosynthetic template extraction and application. *Journal of chemical infor-  
 540   mation and modeling*, 59(6):2529–2537, 2019.

540 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit  
 541 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the  
 542 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-  
 543 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

544 Elias James Corey and W Todd Wipke. Computer-assisted design of complex organic syntheses:  
 545 Pathways for molecular synthesis can be devised with a computer and equipment for graphical  
 546 communication. *Science*, 166(3902):178–192, 1969.

548 Hanjun Dai, Chengtao Li, Connor Coley, Bo Dai, and Le Song. Retrosynthesis prediction with  
 549 conditional graph logic network. *Advances in Neural Information Processing Systems*, 32, 2019.

551 Yafeng Deng, Xinda Zhao, Hanyu Sun, Yu Chen, Xiaorui Wang, Xi Xue, Liangning Li, Jianfei Song,  
 552 Chang-Yu Hsieh, Tingjun Hou, et al. Rsgpt: a generative transformer model for retrosynthesis  
 553 planning pre-trained on ten billion datapoints. *Nature Communications*, 16(1):7012, 2025.

554 Jingxin Dong, Mingyi Zhao, Yuansheng Liu, Yansen Su, and Xiangxiang Zeng. Deep learning in  
 555 retrosynthesis planning: datasets, models and tools. *Briefings in Bioinformatics*, 23(1), 2022.

556 Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation  
 557 between molecules and natural language. In *Proceedings of the 2022 Conference on Empirical  
 558 Methods in Natural Language Processing*, pp. 375–413, 2022.

560 Walter Fontana. Algorithmic chemistry. Technical report, Los Alamos National Lab., NM (USA),  
 561 1990.

562 Samuel Genheden and Esben Bjerrum. Paroutes: towards a framework for benchmarking retrosyn-  
 563 thesis route predictions. *Digital Discovery*, 1(4):527–539, 2022.

565 Samuel Genheden, Amol Thakkar, Veronika Chadimová, Jean-Louis Reymond, Ola Engkvist, and  
 566 Esben Bjerrum. Aizynthfinder: a fast, robust and flexible open-source software for retrosynthetic  
 567 planning. *Journal of cheminformatics*, 12(1):70, 2020.

568 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad  
 569 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd  
 570 of models. *arXiv preprint arXiv:2407.21783*, 2024.

572 Bartosz A Grzybowski, Kyle JM Bishop, Bartłomiej Kowalczyk, and Christopher E Wilmer.  
 573 The’wired’universe of organic chemistry. *Nature Chemistry*, 1(1):31–36, 2009.

574 Bartosz A Grzybowski, Sara Szymkuć, Ewa P Gajewska, Karol Molga, Piotr Dittwald, Agnieszka  
 575 Wołos, and Tomasz Klucznik. Chematica: a story of computer code that started to think like a  
 576 chemist. *Chem*, 4(3):390–398, 2018.

578 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,  
 579 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms  
 580 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

581 Taicheng Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh Chawla, Olaf Wiest, Xiangliang  
 582 Zhang, et al. What can large language models do in chemistry? a comprehensive benchmark on  
 583 eight tasks. *Advances in Neural Information Processing Systems*, 36:59662–59688, 2023.

585 Yuqiang Han, Xiaoyang Xu, Chang-Yu Hsieh, Keyan Ding, Hongxia Xu, Renjun Xu, Tingjun Hou,  
 586 Qiang Zhang, and Huajun Chen. Retrosynthesis prediction with an iterative string editing model.  
 587 *Nature Communications*, 15(1):6404, 2024.

588 Siqi Hong, Hankz Hankui Zhuo, Kebing Jin, Guang Shao, and Zhanwen Zhou. Retrosynthetic  
 589 planning with experience-guided monte carlo tree search. *Communications Chemistry*, 6(1):120,  
 590 2023.

592 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-  
 593 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint  
 594 arXiv:2410.21276*, 2024.

594 Kevin Maik Jablonka, Philippe Schwaller, Andres Ortega-Guerrero, and Berend Smit. Leverag-  
 595 ing large language models for predictive chemistry. *Nature Machine Intelligence*, 6(2):161–169,  
 596 2024.

597 Zlatko Jončev, Jeff Guo, Philippe Schwaller, et al. Tango\*: Constrained synthesis planning using  
 598 chemically informed value functions. *Digital Discovery*, 2025.

600 Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant  
 601 Bhambri, Lucas Saldyt, and Anil Murthy. Llms can't plan, but can help planning in llm-modulo  
 602 frameworks. *arXiv preprint arXiv:2402.01817*, 2024.

603 Junsu Kim, Sungsoo Ahn, Hankook Lee, and Jinwoo Shin. Self-improved retrosynthetic planning.  
 604 In *International Conference on Machine Learning*, pp. 5486–5495. PMLR, 2021.

606 Akihiro Kishimoto, Beat Buesser, Bei Chen, and Adi Botea. Depth-first proof-number search with  
 607 heuristic edge cost and application to chemical synthesis planning. *Advances in Neural Informa-*  
 608 *tion Processing Systems*, 32, 2019.

609 James Law, Zsolt Zsoldos, Aniko Simon, Darryl Reid, Yang Liu, Sing Yoong Khew, A Peter John-  
 610 son, Sarah Major, Robert A Wade, and Howard Y Ando. Route designer: a retrosynthetic analysis  
 611 tool utilizing automated retrosynthetic rule generation. *Journal of chemical information and mod-*  
 612 *eling*, 49(3):593–602, 2009.

614 Xiao Qing Lewell, Duncan B Judd, Stephen P Watson, and Michael M Hann. Recap retrosynthetic  
 615 combinatorial analysis procedure: a powerful new technique for identifying privileged molecular  
 616 fragments with useful applications in combinatorial chemistry. *Journal of chemical information and*  
 617 *computer sciences*, 38(3):511–522, 1998.

618 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,  
 619 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-  
 620 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:  
 621 9459–9474, 2020.

622 Min Htoo Lin, Zhengkai Tu, and Connor W Coley. Improving the performance of models for one-  
 623 step retrosynthesis through re-ranking. *Journal of cheminformatics*, 14(1):15, 2022.

625 Xuan Lin, Qingrui Liu, Hongxin Xiang, Daojian Zeng, and Xiangxiang Zeng. Enhancing chemical  
 626 reaction and retrosynthesis prediction with large language model and dual-task learning. *arXiv*  
 627 *preprint arXiv:2505.02639*, 2025.

628 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,  
 629 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*  
 630 *arXiv:2412.19437*, 2024.

632 Bowen Liu, Bharath Ramsundar, Prasad Kawthekar, Jade Shi, Joseph Gomes, Quang Luu Nguyen,  
 633 Stephen Ho, Jack Sloane, Paul Wender, and Vijay Pande. Retrosynthetic reaction prediction using  
 634 neural sequence-to-sequence models. *ACS central science*, 3(10):1103–1113, 2017.

635 Gang Liu, Michael Sun, Wojciech Matusik, Meng Jiang, and Jie Chen. Multimodal large language  
 636 models for inverse molecular design with retrosynthetic planning. In *International Conference on*  
 637 *Learning Representations*, 2025.

639 Guoqing Liu, Di Xue, Shufang Xie, Yingce Xia, Austin Tripp, Krzysztof Maziarz, Marwin Segler,  
 640 Tao Qin, Zongzhang Zhang, and Tie-Yan Liu. Retrosynthetic planning with dual value networks.  
 641 In *International conference on machine learning*, pp. 22266–22276. PMLR, 2023.

642 Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe  
 643 Schwaller. Augmenting large language models with chemistry tools. *Nature Machine Intelli-*  
 644 *gence*, 6(5):525–535, 2024.

646 Qinyu Ma, Yuhao Zhou, and Jianfeng Li. Automated retrosynthesis planning of macromolecules  
 647 using large language models and knowledge graphs. *Macromolecular Rapid Communications*,  
 pp. 2500065, 2025.

648 Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński, Philipp  
 649 Seidl, and Marwin HS Segler. Re-evaluating retrosynthesis algorithms with syntheseus. *Faraday  
 650 Discussions*, 256:568–586, 2025.

651 Adrian Mirza, Nawaf Alampara, Sreekanth Kunchapu, Martíño Ríos-García, Benedict Emoek-  
 652 abu, Aswanth Krishnan, Tanya Gupta, Mara Schilling-Wilhelmi, Macjonathan Okereke, Anagha  
 653 Aneesh, et al. A framework for evaluating the chemical knowledge and reasoning abilities of  
 654 large language models against the expertise of chemists. *Nature Chemistry*, pp. 1–8, 2025.

655 KC Nicolaou and Jason S Chen. The art of total synthesis through cascade reactions. *Chemical  
 656 Society Reviews*, 38(11):2993–3009, 2009.

657 Noel M O’Boyle. Towards a universal smiles representation-a standard method to generate canonical  
 658 smiles based on the inchi. *Journal of cheminformatics*, 4(1):22, 2012.

659 Milo Roucaïrol and Tristan Cazenave. Comparing search algorithms on the retrosynthesis problem.  
 660 *Molecular Informatics*, 43(7), 2024.

661 Lakshidaa Saigiridharan, Alan Kai Hassen, Helen Lai, Paula Torren-Peraire, Ola Engkvist, and  
 662 Samuel Genheden. Aizynthfinder 4.0: developments based on learnings from 3 years of industrial  
 663 application. *Journal of cheminformatics*, 16(1):57, 2024.

664 Shreyas Vinaya Sathyanarayana, Sharanabasava D Hiremath, Rahil Shah, Rishikesh Panda, Rahul  
 665 Jana, Riya Singh, Rida Irfan, Ashwin Murali, and Bharath Ramsundar. Deepretro: Retrosynthetic  
 666 pathway discovery using iterative lilm reasoning. *arXiv preprint arXiv:2507.07060*, 2025.

667 John S Schreck, Connor W Coley, and Kyle JM Bishop. Learning retrosynthetic planning through  
 668 simulated experience. *ACS central science*, 5(6):970–981, 2019.

669 Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A Hunter, Costas  
 670 Bekas, and Alpha A Lee. Molecular transformer: a model for uncertainty-calibrated chemical  
 671 reaction prediction. *ACS central science*, 5(9):1572–1583, 2019.

672 Philippe Schwaller, Riccardo Petraglia, Valerio Zullo, Vishnu H Nair, Rico Andreas Haeuselmann,  
 673 Riccardo Pisoni, Costas Bekas, Anna Iuliano, and Teodoro Laino. Predicting retrosynthetic path-  
 674 ways using transformer-based models and a hyper-graph exploration strategy. *Chemical science*,  
 675 11(12):3316–3325, 2020.

676 Marwin HS Segler and Mark P Waller. Neural-symbolic machine learning for retrosynthesis and  
 677 reaction prediction. *Chemistry—A European Journal*, 23(25):5966–5971, 2017.

678 Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep neural  
 679 networks and symbolic ai. *Nature*, 555(7698):604–610, 2018.

680 Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, and Jian Tang. A graph to graphs framework  
 681 for retrosynthesis prediction. In *International conference on machine learning*, pp. 8818–8827.  
 682 PMLR, 2020.

683 Vignesh Ram Somnath, Charlotte Bunne, Connor Coley, Andreas Krause, and Regina Barzilay.  
 684 Learning graph models for retrosynthesis prediction. *Advances in Neural Information Processing  
 685 Systems*, 34:9405–9415, 2021.

686 Xiaozhuang Song, Shufei Zhang, and Tianshu Yu. Rekg-mcts: Reinforcing lilm reasoning on knowl-  
 687 edge graphs via training-free monte carlo tree search. In *Findings of the Association for Compu-  
 688 tational Linguistics: ACL 2025*, pp. 9288–9306, 2025.

689 Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting  
 690 sampling for combinatorial optimization. In *International Conference on Machine Learning*, pp.  
 691 32859–32874. PMLR, 2023.

692 Qwen Team. Qwen3-max: Just scale it, 2025.

693 Amol Thakkar, Veronika Chadimová, Esben Jannik Bjerrum, Ola Engkvist, and Jean-Louis Rey-  
 694 mond. Retrosynthetic accessibility score (rascore)—rapid machine learned synthesizability classi-  
 695 fication from ai driven retrosynthetic planning. *Chemical science*, 12(9):3339–3349, 2021.

702 Austin Tripp, Krzysztof Maziarz, Sarah Lewis, Marwin Segler, and José Miguel Hernández-Lobato.  
 703    Retro-fallback: retrosynthetic planning in an uncertain world. *arXiv preprint arXiv:2310.09270*,  
 704    2023.

705 Zhengkai Tu, Sourabh J Choure, Mun Hong Fong, Jihye Roh, Itai Levin, Kevin Yu, Joonyoung F  
 706    Joung, Nathan Morgan, Shih-Cheng Li, Xiaoqi Sun, et al. Askcos: Open-source, data-driven  
 707    synthesis planning. *Accounts of Chemical Research*, 58(11):1764–1775, 2025.

708 Haorui Wang, Jeff Guo, Lingkai Kong, Rampi Ramprasad, Philippe Schwaller, Yuanqi Du, and  
 709    Chao Zhang. Llm-augmented chemical synthesis and design decision programs. *arXiv preprint*  
 710    *arXiv:2505.07027*, 2025.

711 Jiapu Wang, Sun Kai, Linhao Luo, Wei Wei, Yongli Hu, Alan Wee-Chung Liew, Shirui Pan, and  
 712    Baocai Yin. Large language models-guided dynamic adaptation for temporal knowledge graph  
 713    reasoning. *Advances in Neural Information Processing Systems*, 37:8384–8410, 2024.

714 Yu Wang, Chao Pang, Yuzhe Wang, Junru Jin, Jingjie Zhang, Xiangxiang Zeng, Ran Su, Quan Zou,  
 715    and Leyi Wei. Retrosynthesis prediction with an interpretable deep-learning framework based on  
 716    molecular assembly tasks. *Nature Communications*, 14(1):6155, 2023.

717 David Weininger. Smiles, a chemical language and information system. 1. introduction to method-  
 718    ology and encoding rules. *Journal of chemical information and computer sciences*, 28(1):31–36,  
 719    1988.

720 Andrew D White, Glen M Hocky, Heta A Gandhi, Mehrad Ansari, Sam Cox, Geemi P Wellawatte,  
 721    Subarna Sasmal, Ziyue Yang, Kangxin Liu, Yuvraj Singh, et al. Assessment of chemistry knowl-  
 722    edge in large language models that generate code. *Digital Discovery*, 2(2):368–376, 2023.

723 xAI. Grok 4. <https://x.ai/news/grok-4>, 2025.

724 Yifei Yang, Runhan Shi, Zuchao Li, Shu Jiang, Bao-Liang Lu, Yang Yang, and Hai Zhao. Batgpt-  
 725    chem: A foundation large model for retrosynthesis prediction. *arXiv preprint arXiv:2408.10285*,  
 726    2024.

727 Kevin Yu, Jihye Roh, Ziang Li, Wenhao Gao, Runzhong Wang, and Connor Coley. Double-ended  
 728    synthesis planning with goal-constrained bidirectional search. *Advances in Neural Information*  
 729    *Processing Systems*, 37:112919–112949, 2024.

730 Chonghuan Zhang, Qianghua Lin, Biwei Zhu, Haopeng Yang, Xiao Lian, Hao Deng, Jiajun Zheng,  
 731    and Kuangbiao Liao. Synask: unleashing the power of large language models in organic synthesis.  
 732    *Chemical science*, 16(1):43–56, 2025a.

733 Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang,  
 734    Xiangyu Yue, Wanli Ouyang, et al. Chemllm: A chemical large language model. *arXiv preprint*  
 735    *arXiv:2402.06852*, 2024.

736 Situo Zhang, Hanqi Li, Lu Chen, Zihan Zhao, Xuanze Lin, Zichen Zhu, Bo Chen, Xin Chen, and  
 737    Kai Yu. Reasoning-driven retrosynthesis prediction with large language models via reinforcement  
 738    learning. *arXiv preprint arXiv:2507.17448*, 2025b.

739 Xuefeng Zhang, Haowei Lin, Muhan Zhang, Yuan Zhou, and Jianzhu Ma. A data-driven group  
 740    retrosynthesis planning model inspired by neurosymbolic programming. *Nature Communications*,  
 741    16(1):192, 2025c.

742 Dengwei Zhao, Shikui Tu, and Lei Xu. Efficient retrosynthetic planning with mcts exploration  
 743    enhanced a\* search. *Communications Chemistry*, 7(1):52, 2024.

744 Peng-Cheng Zhao, Xue-Xin Wei, Qiong Wang, Qi-Hao Wang, Jia-Ning Li, Jie Shang, Cheng Lu,  
 745    and Jian-Yu Shi. Single-step retrosynthesis prediction via multitask graph representation learning.  
 746    *Nature Communications*, 16(1):814, 2025.

747 Weihe Zhong, Ziduo Yang, and Calvin Yu-Chian Chen. Retrosynthesis prediction using an end-to-  
 748    end graph generative architecture for molecular graph editing. *Nature Communications*, 14(1):  
 749    3009, 2023.

756 Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Min Wu, Tingjun  
 757 Hou, and Mingli Song. Root-aligned smiles: a tight representation for chemical reaction predic-  
 758 tion. *Chemical Science*, 13(31):9023–9034, 2022.

## 760 A USE OF LLMs

763 Large Language Models were used as assistive tools in the preparation of this manuscript. We  
 764 employed LLMs for grammar checking, LaTeX formatting, improving the clarity of technical de-  
 765 scriptions, and assisting with experimental code refactoring and implementation. The core scientific  
 766 contributions and conclusions presented in this paper originate from the authors' work.

## 768 B REPRODUCTIVITY

### 769 B.1 EXPERIMENTAL SETUP

#### 772 B.1.1 DATASET STATISTICS

774 Table 6 summarizes the key characteristics that differentiate the datasets in terms of molecular com-  
 775 plexity.

776 Table 6: Detailed statistics of benchmark datasets including molecular complexity metrics.

| Metric                | USPTO-Easy | USPTO-190 | Pistachio Reachable | Pistachio Hard |
|-----------------------|------------|-----------|---------------------|----------------|
| Number of molecules   | 200        | 190       | 150                 | 100            |
| Avg. molecular weight | 382.1      | 458.6     | 446.2               | 467.4          |
| Avg. number of rings  | 3.12       | 3.83      | 3.55                | 3.66           |
| Avg. chiral centers   | 0.51       | 1.83      | 0.77                | 1.71           |
| Avg. SC score         | 2.77       | 3.57      | 3.08                | 3.62           |

785 The statistics reveal that USPTO-Easy and Pistachio Reachable contains simpler molecules with  
 786 lower molecular weight and SC scores, while USPTO-190 and Pistachio Hard feature more complex  
 787 structures with higher chiral complexity, aligning with their intended difficulty levels.

#### 789 B.1.2 LLM MODELS

791 To evaluate the generalizability of our AOT\* framework across different language model architec-  
 792 tures, we tested multiple state-of-the-art LLM APIs including GPT-4o (gpt-4o-20250514) and GPT-  
 793 4o-mini (Hurst et al., 2024), DeepSeek-V3 and DeepSeek-R1 (Liu et al., 2024; Guo et al., 2025),  
 794 Claude-4-Sonnet (claude-sonnet-4-20250514) (Anthropic, 2025), Gemini-2.5 Pro (Comanici et al.,  
 795 2025), Grok-4 (xAI, 2025), Qwen-3-MAX (Qwen-3-MAX-preview) (Team, 2025), and Llama-3.1-  
 796 405B/Llama-3.1-70B (Grattafiori et al., 2024).

#### 798 B.1.3 HYPERPARAMETER SETTINGS

800 Our AOT\* implementation uses the following hyperparameters: UCB exploration parameter  $c =$   
 801 0.5, maximum search depth of 16. For LLM configuration, we set temperature  $T=0.7$ , maximum  
 802 tokens of 4096, and use 3 RAG examples. The evaluation function weights availability at  $\alpha =$   
 803 0.4. System-level parameters include 40 parallel threads for molecular planning searches until task  
 804 completion. For DeepSeek-R1, we set maximum tokens to 32768 to accommodate its reasoning  
 805 process and prevent output truncation (see Table 13 for output token statistics). All models were  
 806 accessed through their respective commercial APIs with default parameters except for temperature  
 807 and maximum tokens as specified.

#### 808 B.1.4 ALGORITHM IMPLEMENTATION

809 **AOT\* pseudocode** Algorithm 1 presents the complete pseudocode for our AOT\* framework.

---

810   **Algorithm 1** AOT\*: AND-OR Tree Search with Generative Expansion.

811   **Require:** Target molecule  $t$ , building blocks  $\mathcal{B}$ , LLM generator  $g$ , database  $\mathcal{D}$ , max iterations  $I_{\max}$ ,  
812    max depth  $d_{\max}$

813   **Ensure:** Synthesis tree  $\mathcal{T}^*$  or partial solution

814    1: **Initialize:**  $\mathcal{T} = (\mathcal{V}_{OR} = \{t\}, \mathcal{V}_{AND} = \emptyset, \mathcal{E} = \emptyset)$

815    2:  $\mathcal{L} \leftarrow \emptyset$  {Leaf AND nodes}

816    3:  $\mathcal{S}(t) \leftarrow \text{RetrieveSimilar}(t, \mathcal{D}, k)$  {Top- $k$  similar routes}

817    4:  $\mathcal{P}_t \leftarrow g(t, \mathcal{S}(t))$  {Generate initial pathways}

818    5:  $\mathcal{A}_{\text{init}} \leftarrow \Psi(\mathcal{P}_t, \mathcal{T})$  {Map pathways to tree}

819    6: **for**  $a \in \mathcal{A}_{\text{init}}$  **do**

820      7:  $\bar{v}_a \leftarrow R(a) = \alpha \cdot f_{\text{avail}}(a) + (1 - \alpha) \cdot f_{\text{chem}}(a)$

821      8:  $n_a \leftarrow 1$

822      9:  $\mathcal{L} \leftarrow \mathcal{L} \cup \{a\}$  if  $a$  has unsolved reactants

823    10: **end for**

824    11:  $iter \leftarrow 0$

825    12: **while**  $\neg \text{IsSolved}(t, \mathcal{T})$  and  $iter < Iter_{\max}$  **do**

826      13:   **Selection:**

827       14:    $\mathcal{L}_{\text{expand}} \leftarrow \{a \in \mathcal{L} : d(a) < d_{\max} \wedge \exists v \in \text{Children}(a) : v \notin \mathcal{B}\}$

828       15:   **if**  $|\mathcal{L}_{\text{expand}}| = 0$  **then**

829         16:    **break** {No expandable nodes}

830        17:   **end if**

831       18:     $a^* \leftarrow \arg \max_{a \in \mathcal{L}_{\text{expand}}} \text{UCB}(a)$  where

832       19:     $\text{UCB}(a) = \bar{v}_a + c \sqrt{\frac{\ln N_{\text{parent}}}{n_a}}$

833      20:   **Expansion:**

834       21:     $\mathcal{U} \leftarrow \{v \in \text{Children}(a^*) : v \notin \mathcal{B} \wedge \neg \text{IsSolved}(v)\}$

835       22:     $v^* \leftarrow \text{SelectTarget}(\mathcal{U})$  {Select least-explored molecule}

836       23:     $\mathcal{S}(v^*) \leftarrow \text{RetrieveSimilar}(v^*, \mathcal{D}, k)$

837       24:     $\mathcal{P}_{v^*} \leftarrow g(v^*, \mathcal{S}(v^*))$  {Generate pathways for  $v^*$ }

838       25:     $\mathcal{A}_{\text{new}} \leftarrow \Psi(\mathcal{P}_{v^*}, \mathcal{T})$  {Map to subtree}

839      26:   **Evaluation:**

840       27:    **for**  $a \in \mathcal{A}_{\text{new}}$  **do**

841        28:     $r \leftarrow R(a) = \alpha \cdot f_{\text{avail}}(a) + (1 - \alpha) \cdot f_{\text{chem}}(a)$

842        29:     $\bar{v}_a \leftarrow r, n_a \leftarrow 1$

843        30:     $\mathcal{L} \leftarrow \mathcal{L} \cup \{a\}$  if  $a$  has unsolved reactants

844      31:   **end for**

845      32:   **Backpropagation:**

846       33:   **for**  $a \in \mathcal{A}_{\text{new}}$  **do**

847        34:    Propagate value  $r$  to ancestors:  $\forall a_p \in \text{Ancestors}(a)$ :

848        35:     $\bar{v}_{a_p} \leftarrow \frac{n_{a_p} \cdot \bar{v}_{a_p} + r}{n_{a_p} + 1}$

849        36:     $n_{a_p} \leftarrow n_{a_p} + 1$

850        37:   **end for**

851       38:     $\text{UpdateSolvedStatus}(\mathcal{T}, \mathcal{B})$  {Propagate solved status}

852       39:     $\mathcal{L} \leftarrow \mathcal{L} \setminus \{a : \text{IsSolved}(a)\}$  {Remove solved nodes}

853       40:     $iter \leftarrow iter + 1$

854    41: **end while**

855    42: **if**  $\text{IsSolved}(t, \mathcal{T})$  **then**

856      43:    **return**  $\text{ExtractCompleteSolution}(\mathcal{T}, t)$

857    44: **else**

858      45:    **return**  $\text{ExtractPartialSolution}(\mathcal{T}, t)$  {Return best partial tree}

859    46: **end if**

---

860   **Pathway-to-Tree Mapping** Algorithm 2 details the mapping procedure  $\Psi$  that transforms LLM-  
861   generated pathways into AND-OR tree structures while maintaining consistency constraints.

862   **Subtree Pruning** Algorithm 3 describes the pruning procedure that removes solved subtrees from  
863   the active search space after molecules are resolved.

---

864 **Algorithm 2** Pathway-to-Tree Mapping  $\Psi$ .

865

866 **Require:** Pathway  $p = \langle r_1, \dots, r_n \rangle$ , AND-OR tree  $\mathcal{T}$ , base depth  $d$

867 **Ensure:** Set of new AND nodes  $\mathcal{A}_{\text{new}}$

868 1:  $\mathcal{A}_{\text{new}} \leftarrow \emptyset$

869 2: **for**  $i = 1$  to  $n$  **do**

870 3: Parse  $r_i = (P_i \rightarrow \{R_{i,1}, \dots, R_{i,k_i}\})$

871 4:  $P_{\text{canon}} \leftarrow \text{Canonicalize}(P_i)$  {SMILES canonicalization}

872 5: **Find target OR node:**

873 6: **if**  $P_{\text{canon}} \in \mathcal{V}_{\text{OR}}$  **then**

874 7:  $v_{\text{product}} \leftarrow \mathcal{V}_{\text{OR}}[P_{\text{canon}}]$

875 8: **else**

876 9: **continue** {Skip orphaned steps}

877 10: **end if**

878 11: **if**  $\text{IsSolved}(v_{\text{product}})$  **then**

879 12: **continue** {Skip solved molecules}

880 13: **end if**

881 14: **Create AND node:**

882 15:  $a_{\text{new}} \leftarrow \text{ANDNode}(r_i, v_{\text{product}}, d + i)$

883 16:  $\text{Children}(v_{\text{product}}) \leftarrow \text{Children}(v_{\text{product}}) \cup \{a_{\text{new}}\}$

884 17: **Create/link reactant OR nodes:**

885 18: **for**  $j = 1$  to  $k_i$  **do**

886 19:  $R_{\text{canon}} \leftarrow \text{Canonicalize}(R_{i,j})$

887 20: **if**  $R_{\text{canon}} \notin \mathcal{V}_{\text{OR}}$  **then**

888 21:  $v_{\text{reactant}} \leftarrow \text{ORNode}(R_{\text{canon}})$

889 22:  $\mathcal{V}_{\text{OR}} \leftarrow \mathcal{V}_{\text{OR}} \cup \{v_{\text{reactant}}\}$

890 23:  $\text{IsSolved}(v_{\text{reactant}}) \leftarrow R_{\text{canon}} \in \mathcal{B}$

891 24: **else**

892 25:  $v_{\text{reactant}} \leftarrow \mathcal{V}_{\text{OR}}[R_{\text{canon}}]$

893 26: **end if**

894 27:  $\text{Children}(a_{\text{new}}) \leftarrow \text{Children}(a_{\text{new}}) \cup \{v_{\text{reactant}}\}$

895 28:  $\text{Parents}(v_{\text{reactant}}) \leftarrow \text{Parents}(v_{\text{reactant}}) \cup \{a_{\text{new}}\}$

896 29: **end for**

897 30:  $\mathcal{V}_{\text{AND}} \leftarrow \mathcal{V}_{\text{AND}} \cup \{a_{\text{new}}\}$

898 31:  $\mathcal{A}_{\text{new}} \leftarrow \mathcal{A}_{\text{new}} \cup \{a_{\text{new}}\}$

899 32: **end for**

900 33: **return**  $\mathcal{A}_{\text{new}}$

---

900 **RAG Database and Reaction Validation** Our retrieval-augmented generation utilizes a comprehensive reaction database constructed from USPTO training and validation sets (Wang et al., 2025). Table 7 summarizes the database statistics.

903  
904 Table 7: RAG database statistics  
905

| 906 <b>Property</b>            | 907 <b>Value</b> |
|--------------------------------|------------------|
| 908 Total synthesis routes     | 364,555          |
| 909 Unique target molecules    | 363,943          |
| 910 Single-step routes         | 192,710 (52.9%)  |
| 911 Two-step routes            | 85,958 (23.6%)   |
| 912 Three-step routes          | 43,592 (12.0%)   |
| 913 Routes with $\geq 4$ steps | 42,295 (11.6%)   |

914 Besides, we followed the reaction validation method in (Wang et al., 2025), which employs a multi-  
915 level matching strategy: LLM-generated reactions are first searched for exact matches in the USPTO  
916 reaction database containing over 270k reaction templates; if no exact match is found, the top 100  
917 most similar reactions are retrieved based on reaction fingerprint similarity and filtered by assessing  
chemical feasibility for the given product molecule, with the most similar valid reaction retained to

---

918 **Algorithm 3** Pruning Solved Subtrees.  
 919  
 920 **Require:** Set of newly solved molecules  $\mathcal{M}_{\text{solved}}$ , leaf nodes  $\mathcal{L}$   
 921 **Ensure:** Updated leaf set  $\mathcal{L}'$   
 922 1: **function** PruneRecursive( $a$ ):  
 923 2:   **for**  $v \in \text{Children}(a)$  **do**  
 924 3:      $\mathcal{U} \leftarrow \{a' \in \text{Parents}(v) : \neg \text{IsSolved}(a')\}$   
 925 4:     **if**  $|\mathcal{U}| = 0$  **then** {No unsolved parents}  
 926 5:       **for**  $a' \in \text{Children}(v)$  **do**  
 927 6:          $\mathcal{L} \leftarrow \mathcal{L} \setminus \{a'\}$   
 928 7:         PruneRecursive( $a'$ ) {Recursive cleanup}  
 929 8:       **end for**  
 930 9:     **end if**  
 931 10:   **end for**  
 932 11: **end function**  
 933 12:  
 934 13: **for**  $m \in \mathcal{M}_{\text{solved}}$  **do**  
 935 14:    $v \leftarrow \mathcal{V}_{\text{OR}}[m]$   
 936 15:   **for**  $a \in \text{Children}(v)$  **do**  
 937 16:      $\mathcal{L} \leftarrow \mathcal{L} \setminus \{a\}$  {Remove from leaf set}  
 938 17:     PruneRecursive( $a$ )  
 939 18:   **end for**  
 940 19: **end for**  
 941 20: **return**  $\mathcal{L}$

---

942 replace the LLM’s original proposal; reactions without valid matches are labeled as non-existent.  
 943 The method performs reaction mapping to ground the LLM generated routes against template set,  
 944 effectively preventing hallucinated reactions by constraining outputs to verified chemical transfor-  
 945 mations. During tree expansion, generated pathways undergo three possible validation outcomes:  
 946 (i) complete mapping success where all reactions match existing templates and the entire pathway is  
 947 integrated into the tree structure; (ii) partial validation where only initial reaction steps successfully  
 948 map to templates, with the valid portion incorporated while subsequent invalid steps are discarded;  
 949 (iii) complete validation failure where no reactions match templates, causing the pathway expansion  
 950 to be skipped without further processing. AND nodes  $a \in \mathcal{V}_{\text{AND}}$  that repeatedly fail to produce  
 951 valid pathways through the generative function  $g$  are marked as non-expandable and excluded from  
 952 future selection, ensuring the search focuses on productive regions of  $\mathcal{T}$ .

953 **B.2 BASELINE METHODS**

954  
 955 **Graph2Edits** (Zhong et al., 2023) is a template-free graph generative model that directly edits  
 956 molecular graphs to predict reactants from products. The method learns to systematically transform  
 957 the target molecule’s graph structure through a sequence of graph editing operations, including bond  
 958 deletions, bond additions, and atom modifications. By treating retrosynthesis as a graph generation  
 959 problem, Graph2Edits can handle diverse reaction types without relying on predefined templates,  
 960 enabling it to generalize to novel reactions not seen during training.

961 **RootAligned** (Zhong et al., 2022) takes an alternative template-free approach by enforcing strict  
 962 one-to-one correspondence between product and reactant SMILES representations. The method  
 963 aligns both product and reactant molecules to a shared root atom, maintaining structural consistency  
 964 throughout the retrosynthetic transformation. This alignment strategy ensures that the model learns  
 965 meaningful chemical transformations while preserving the underlying molecular topology, leading  
 966 to more interpretable and chemically valid predictions.

967 **LocalRetro** (Chen & Jung, 2021) adopts a template-based strategy that decomposes the retrosynthe-  
 968 sis problem into two stages: local reaction center identification and global reactant completion. The  
 969 method first predicts local templates describing atom and bond editing patterns at the reaction center,  
 970 then employs a global attention mechanism to complete the full reactant structures by capturing non-  
 971 local molecular effects. This hierarchical approach combines the interpretability of template-based  
 972 methods with the flexibility to handle complex long-range dependencies in molecular structures.

972 These single-step models are integrated with two classical search algorithms. MCTS (Segler et al.,  
973 2018) performs Monte Carlo Tree Search to navigate the retrosynthesis space, iteratively building  
974 a search tree that balances exploration of new synthetic routes with exploitation of promising path-  
975 ways. Retro\* (Chen et al., 2020) performs best-first search on AND-OR trees where OR nodes  
976 represent molecules and AND nodes represent reactions, using neural networks to estimate node  
977 costs and prioritize the most promising pathways.

978 **DESP** (Yu et al., 2024) employs a bidirectional search strategy that simultaneously explores syn-  
979 synthetic routes from both the target molecule (backward) and available starting materials (forward).  
980 The method uses neural networks to predict reactions in both directions and identifies viable syn-  
981 thesis plans when the forward and backward search frontiers meet, effectively reducing the search  
982 space by leveraging complementary information from both ends of the synthetic pathway.

983 **Tango\*** guides retrosynthetic search from target molecules towards specified starting materials using  
984 the TANGO value function based on TANimoto Group Overlap. The method combines molecular  
985 similarity measures with retrosynthetic cost estimates to navigate the search space and identify syn-  
986 thesis pathways connecting the desired starting materials to target molecules.

987 Additionally, we compare against LLM-based approaches. **LLM (MCTS/Retro\*)** (Wang et al.,  
988 2025) directly employs large language models as single-step reaction predictors within traditional  
989 search frameworks, using the LLM’s chemical knowledge to propose reaction templates and pre-  
990 dict feasible transformations at each step. **LLM-Syn-Planner** (Wang et al., 2025) also generates  
991 complete multi-step retrosynthetic routes using LLMs with retrieval augmentation, then iteratively  
992 refines them through evolutionary algorithms with mutation and selection operators. Both LLM-  
993 Syn-Planner and AOT\* leverage LLMs for pathway-level generation with RAG; the key distinction  
994 lies in their search strategies—evolutionary optimization versus systematic AND-OR tree explo-  
995 ration with intermediate reuse. Here we further clarify AOT\*’s architectural advantages by directly  
996 comparing with LLM-Syn-Planner (Wang et al., 2025), the current state-of-the-art in LLM-based  
997 retrosynthesis planning. Table 8 summarizes the key architectural differences between the two ap-  
998 proaches.

999  
1000 Table 8: Architectural comparison between AOT\* and LLM-Syn-Planner.

| 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 172100 172101 172102 172103 172104 172105 172106 172107 172108 172109 172110 172111 172112 172113 172114 172115 172116 172117 172118 172119 172120 172121 172122 172123 172124 172125 172126 172127 172128 172129 172130 172131 172132 172133 172134 172135 172136 172137 172138 172139 172140 172141 172142 172143 172144 172145 172146 172147 172148 172149 172150 172151 172152 172153 172154 172155 172156 172157 172158 172159 172160 172161 172162 172163 172164 172165 172166 172167 172168 172169 172170 172171 172172 172173 172174 172175 172176 172177 172178 172179 172180 172181 172182 172183 172184 172185 172186 172187 172188 172189 172190 172191 172192 172193 172194 172195 172196 172197 172198 172199 172200 172201 172202 172203 172204 172205 172206 172207 172208 172209 172210 172211 172212 172213 172214 172215 172216 172217 172218 172219 172220 172221 172222 172223 172224 172225 172226 172227 172228 172229 172230 172231 172232 172233 172234 172235 172236 172237 172238 172239 172240 172241 172242 172243 172244 172245 172246 172247 172248 172249 172250 172251 172252 172253 172254 172255 172256 172257 172258 172259 172260 172261 172262 172263 172264 172265 172266 172267 172268 172269 172270 172271 172272 172273 172274 172275 172276 172277 172278 172279 172280 172281 172282 172283 172284 172285 172286 172287 172288 172289 172290 172291 172292 172293 172294 172295 172296 172297 172298 172299 1722100 1722101 1722102 1722103 1722104 1722105 1722106 1722107 1722108 1722109 1722110 1722111 1722112 1722113 1722114 1722115 1722116 1722117 1722118 1722119 1722120 1722121 1722122 1722123 1722124 1722125 1722126 1722127 1722128 1722129 1722130 1722131 1722132 1722133 1722134 1722135 1722136 1722137 1722138 1722139 1722140 1722141 1722142 1722143 1722144 1722145 1722146 1722147 1722148 1722149 1722150 1722151 1722152 1722153 1722154 1722155 1722156 1722157 1722158 1722159 1722160 1722161 1722162 1722163 1722164 1722165 1722166 1722167 1722168 1722169 1722170 1722171 1722172 1722173 1722174 1722175 1722176 1722177 1722178 1722179 1722180 1722181 1722182 1722183 1722184 1722185 1722186 1722187 1722188 1722189 1722190 1722191 1722192 1722193 1722194 1722195 1722196 1722197 1722198 1722199 1722200 1722201 1722202 1722203 1722204 1722205 1722206 1722207 1722208 1722209 1722210 1722211 1722212 1722213 1722214 1722215 1722216 1722217 1722218 1722219 1722220 1722221 1722222 1722223 1722224 1722225 1722226 1722227 1722228 1722229 17222210 17222211 17222212 17222213 17222214 17222215 17222216 17222217 17222218 17222219 17222220 17222221 17222222 17222223 17222224 17222225 17222226 17222227 17222228 17222229 172222210 172222211 172222212 172222213 172222214 172222215 172222216 172222217 172222218 172222219 172222220 172222221 172222222 172222223 172222224 172222225 172222226 172222227 172222228 172222229 1722222210 1722222211 1722222212 1722222213 1722222214 1722222215 1722222216 1722222217 1722222218 1722222219 1722222220 1722222221 1722222222 1722222223 1722222224 1722222225 1722222226 1722222227 1722222228 1722222229 17222222210 17222222211 17222222212 17222222213 17222222214 17222222215 17222222216 17222222217 17222222218 17222222219 17222222220 17222222221 17222222222 17222222223 17222222224 17222222225 17222222226 17222222227 17222222228 17222222229 172222222210 172222222211 172222222212 172222222213 172222222214 172222222215 172222222216 172222222217 172222222218 172222222219 172222222220 172222222221 172222222222 172222222223 172222222224 172222222225 172222222226 172222222227 172222222228 172222222229 1722222222210 1722222222211 1722222222212 1722222222213 1722222222214 1722222222215 1722222222216 1722222222217 1722222222218 1722222222219 1722222222220 1722222222221 1722222222222 1722222222223 1722222222224 1722222222225 1722222222226 1722222222227 1722222222228 1722222222229 17222222222210 17222222222211 17222222222212 17222222222213 17222222222214 17222222222215 17222222222216 17222222222217 17222222222218 17222222222219 17222222222220 17222222222221 17222222222222 17222222222223 17222222222224 17222222222225 17222222222226 17222222222227 17222222222228 17222222222229 172222222222210 172222222222211 172222222222212 172222222222213 172222222222214 172222222222215 172222222222216 172222222222217 172222222222218 172222222222219 172222222222220 172222222222221 172222222222222 172222222222223 172222222222224 172222222222225 172222222222226 172222222222227 172222222222228 172222222222229 1722222222222210 1722222222222211 1722222222222212 1722222222222213 1722222222222214 1722222222222215 1722222222222216 1722222222222217 1722222222222218 1722222222222219 1722222222222220 1722222222222221 1722222222222222 1722222222222223 1722222222222224 1722222222222225 1722222222222226 1722222222222227 1722222222222228 1722222222222229 17222222222222210 17222222222222211 17222222222222212 17222222222222213 17222222222222214 17222222222222215 17222222222222216 17222222222222217 17222222222222218 172222 |
| --- |

1026

## Role Information Component

1027

1028

You are a professional chemist specializing in synthesis analysis.

1029

1030

1031

Figure 4: Role information component.

1032

1033

## Task Description Component

1034

1035

Your task is to propose a retrosynthesis route for a target molecule provided in SMILES format.

1036

1037

## Definition:

1038

1039

A retrosynthesis route is a sequence of backward reactions that starts from the target molecules and ends with commercially purchasable building blocks.

1040

1041

## Key concepts:

1042

- Molecule set: The working set of molecules at any given step. Initially, it contains only the target molecule.

1043

1044

- Commercially purchasable: Molecules that can be directly bought from suppliers (permitted building blocks).

1045

1046

- Non-purchasable: Molecules that must be further decomposed via retrosynthesis steps.

1047

1048

- Reaction source: All reactions must be derived from the USPTO dataset, and stereochemistry (e.g., E/Z isomers, chiral centers) must be preserved.

1049

1050

## Process:

1051

1. Initialization: Start with the molecule set = [target molecule].

1052

## 2. Iteration:

1053

- Select one non-purchasable molecule from the molecule set (the product).

1054

- Apply a valid backward reaction from the USPTO dataset to decompose it into reactants.

1055

- Remove the product molecule from the set.

1056

- Add the reactants to the set.

1057

- 3. Termination: Continue until all molecules in the set are commercially purchasable.

1058

1059

1060

1061

1062

1063

1064

Figure 5: Task description component.

1065

**RAG Integration Component** The RAG component retrieves similar synthesis routes to guide generation (Figure 6).

1066

1067

## RAG Integration Component

1068

1069

My target molecule is: {target\_smiles}

1070

1071

To assist you with the format, example retrosynthesis routes are provided:

1072

1073

{examples}

1074

1075

Please propose {rag\\_examples} different retrosynthesis routes for my target molecule.

1076

1077

1078

1079

Figure 6: RAG integration with retrieved examples.

1080  
 1081 **Planning Requirement Component** The planning component requires strategic analysis before  
 1082 route generation (Figure 7).  
 1083

1084 **Planning Requirement Component**

1085 analyze the target molecule and make a retrosynthesis plan in the  
 1086 <PLAN></PLAN> before proposing the route.  
 1087  
 1088 <PLAN>: Analyze the target molecule and plan for each step in the  
 1089 route. </PLAN>

1090  
 1091 Figure 7: Planning requirement component.  
 1092  
 1093  
 1094

1095 **Explanation Requirement Component** The explanation component requires justification of the  
 1096 proposed plan (Figure 8).  
 1097

1098 **Explanation Requirement Component**

1099 After making the plan, you should explain the plan in the  
 1100 <EXPLANATION></EXPLANATION>.  
 1101  
 1102 <EXPLANATION>: Explain the plan. </EXPLANATION>

1103  
 1104 Figure 8: Explanation requirement component.  
 1105  
 1106  
 1107

1108 **Structured Output Format with Rational Field** The output format defines the route structure  
 1109 with optional rational field (Figure 9).  
 1110

1111 **Structured Output Format**

1112 The route should be a list of steps wrapped in <ROUTE></ROUTE>.  
 1113 Each step in the list should be a dictionary.  
 1114 At the first step, the molecule set should be the target molecules  
 1115 set given by the user. Here is an example:  
 1116

1117 <ROUTE>  
 1118 [  
 1119 {  
 1120 'Molecule set': "[Target Molecule]",  
 1121 'Rational': "Step analysis", # Ablated with no\_rational  
 1122 'Product': "[Product molecule]",  
 1123 'Reaction': "[Reaction template]", # Ablated with no\_reaction  
 1124 'Reactants': "[Reactant1, Reactant2]",  
 1125 'Updated molecule set': "[Reactant1, Reactant2]"  
 1126 }  
 1127 ]  
 1128 </ROUTE>

1129  
 1130 Figure 9: Structured output format.  
 1131  
 1132

1133 **Detailed Requirements Section** The detailed requirements provide field-by-field specifications,  
 1134 dynamically built based on ablation settings (Figure 10).

1134 Detailed Requirements

1135

1136 1. The 'Molecule set' contains molecules we need to synthesize at  
1137 this stage. In the first step, it should be the target molecule.  
1138 In the following steps, it should be the 'Updated molecule set'  
1139 from the previous step.

1140 2. The 'Rational' part in each step should be your analysis for  
1141 synthesis planning in this step. It should be in the string  
1142 format wrapped with ''

1143 3. 'Product' is the molecule we plan to synthesize in this step.  
1144 It should be from the 'Molecule set'. The molecule should be a  
1145 molecule from the 'Molecule set' in a list. The molecule smiles  
1146 should be wrapped with ''.

1147 4. 'Reaction' is a backward reaction which can decompose the product  
1148 molecule into its reactants. The reaction should be in a list.  
1149 All the molecules in the reaction template should be in SMILES  
1150 format. [Only if no\_reaction is False; simplified format  
1151 available via simple\_reaction\_format]

1152 5. 'Reactants' are the reactants of the reaction. It should be in  
1153 a list. The molecule smiles should be wrapped with ''.

1154 6. The 'Updated molecule set' should be molecules we need to purchase  
1155 or synthesize after taking this reaction. To get the 'Updated  
1156 molecule set', you need to remove the product molecule from the  
1157 'Molecule set' and then add the reactants in this step into it.  
1158 In the last step, all the molecules in the 'Updated molecule set'  
1159 should be purchasable.

1160 7. In the <PLAN>, you should analyze the target molecule and plan  
1161 for the whole route. [Only if no\_plan is False]

1162 8. In the <EXPLANATION>, you should analyze the plan.  
1163 [Only if no\_explanation is False]

1164

1165

Figure 10: Detailed requirements section dynamically constructed based on ablation flags. Requirements are numbered sequentially with conditional inclusion.

## C EXTENDED EXPERIMENTAL RESULTS

Results reported in this section use 100 iterations ( $N = 100$ ) as the default search budget unless otherwise specified.

### C.1 EXTENDED LLM MODEL COMPARISON

Table 9 presents AOT\* performance with 11 different LLMs on Pistachio Hard and USPTO-190 datasets.

### C.1.1 MAIN PERFORMANCE COMPARISON

Table 9 presents solve rates across different search budgets for various LLM architectures. DeepSeek-R1 achieves the highest performance, with 89.0% solve rate on Pistachio Hard and 90.5% on USPTO-190 at N=100 iterations. A cluster of models including GPT-4o, GPT-5, DeepSeek-V3, Gemini-2.5 Pro, and Grok-4 achieve similar performance ranging from 83-86% on both datasets at N=100. Claude-4-Sonnet and Llama-3.1-405B perform moderately lower at 74-79%, while smaller models show significant performance gaps: GPT-4o-mini achieves 65.0% and 54.2%, and Llama-3.1-70B reaches only 73.0% and 63.2% on the two benchmarks respectively. Increasing the search

1188 budget from  $N=100$  to  $N=300$  provides substantial improvements for most models. However, fur-  
 1189 ther expansion to  $N=500$  yields diminishing returns, typically adding only 2-4% additional solve  
 1190 rate. This saturation pattern is consistent across model scales, with most architectures reaching their  
 1191 performance ceiling around  $N=300$ . The results indicate that AOT\*'s algorithmic framework main-  
 1192 tains effectiveness across diverse LLM models, though absolute performance may correlate with  
 1193 model capability.

1194  
 1195 Table 9: Comparison of solve rates (%) across different LLM architectures on challenging bench-  
 1196 marks. Best results are **bolded** and top-3 are underlined.

| Model           | Pistachio Hard |             |             | USPTO-190   |             |             |
|-----------------|----------------|-------------|-------------|-------------|-------------|-------------|
|                 | N=100          | N=300       | N=500       | N=100       | N=300       | N=500       |
| GPT-4o          | <u>85.0</u>    | 87.0        | <u>93.0</u> | 82.1        | <u>92.6</u> | <u>93.1</u> |
| GPT-4o-mini     | <u>65.0</u>    | 68.0        | <u>72.0</u> | 54.2        | <u>67.4</u> | 71.6        |
| GPT-5           | <u>86.0</u>    | <u>88.0</u> | <u>93.0</u> | <u>84.7</u> | 90.5        | 92.1        |
| DeepSeek-V3     | <u>86.0</u>    | <u>89.0</u> | <u>93.0</u> | <u>86.3</u> | <u>93.1</u> | <u>93.7</u> |
| DeepSeek-R1     | <b>89.0</b>    | <b>93.0</b> | <b>94.0</b> | <b>90.5</b> | <b>94.2</b> | <b>95.3</b> |
| Claude-4-Sonnet | 79.0           | 81.0        | 83.0        | 74.7        | 84.2        | 86.8        |
| Gemini-2.5 Pro  | 84.0           | 86.0        | 89.0        | 78.4        | 86.3        | 88.9        |
| Grok-4          | <u>85.0</u>    | 87.0        | 91.0        | 83.2        | 88.4        | 91.6        |
| Qwen-3-MAX      | 83.0           | 86.0        | <u>92.0</u> | 80.0        | 87.9        | 91.1        |
| Llama-3.1-405B  | 79.0           | 81.0        | 83.0        | 74.7        | 85.3        | 87.9        |
| Llama-3.1-70B   | 73.0           | 74.0        | 75.0        | 63.2        | 75.8        | 78.9        |

### C.1.2 ITERATION EFFICIENCY ANALYSIS

1212 Table 10 shows solve rates at different iteration thresholds (20, 40, 60, 80, 100) for each model.  
 1213 DeepSeek-R1 demonstrates the highest efficiency, achieving 76.0% solve rate within 20 iterations  
 1214 on Pistachio Hard and 67.9% on USPTO-190. GPT-5 and DeepSeek-V3 follow closely with 71.0%  
 1215 and 67.0% respectively on Pistachio Hard at 20 iterations. In contrast, smaller models exhibit signif-  
 1216 icantly lower early-stage efficiency: GPT-4o-mini reaches only 32.0% on Pistachio Hard and 24.7%  
 1217 on USPTO-190 at 20 iterations, while Llama-3.1-70B achieves 51.0% and 31.6% respectively. The  
 1218 efficiency gap between models narrows as iterations increase. At 40 iterations, most full-scale mod-  
 1219 els achieve 73-82% solve rates on Pistachio Hard, while GPT-4o-mini and Llama-3.1-70B remain  
 1220 at 45.0% and 60.0%. By 60 iterations, the leading models approach their performance plateaus,  
 1221 with DeepSeek-R1 at 85.0% and GPT-5 at 82.0% on Pistachio Hard. GPT-4o-mini requires approx-  
 1222 imately 60 iterations to reach solve rates that other models achieve at 20 iterations, indicating a  $3\times$   
 1223 efficiency difference. On USPTO-190, DeepSeek-R1 maintains its efficiency advantage, reaching  
 1224 80.5% at 40 iterations compared to other models. Most models show minimal improvement beyond  
 1225 80 iterations, with solve rates increasing by only 2-4% from iteration 80 to 100, suggesting that  
 1226 additional iterations provide limited benefit regardless of model architecture.

### C.1.3 DIFFICULTY-STRATIFIED PERFORMANCE

1228 Tables 11 and 12 break down model performance by SC score quartiles (Q1: simplest, Q4: most  
 1229 complex). All models exhibit consistent performance degradation as molecular complexity in-  
 1230 creases, with solve rates typically dropping 20-30% from Q1 to Q4. Most full-scale models achieve  
 1231 near-perfect performance on simple molecules (Q1: 92-100%), while their performance on the  
 1232 most complex quartile varies significantly based on model capability. DeepSeek-R1 maintains the  
 1233 strongest performance across all complexity levels, achieving 80.0% solve rate on Pistachio Hard Q4  
 1234 and 83.0% on USPTO-190 Q4. This represents only a 20% drop from its Q1 performance, compared  
 1235 to larger degradations in other models. Smaller models show particular vulnerability to increasing  
 1236 complexity: GPT-4o-mini drops from 84.0% to 52.0% on Pistachio Hard and from 72.9% to 38.3%  
 1237 on USPTO-190, while Llama-3.1-70B falls to 60.0% and 46.8% respectively on Q4 molecules.

1238 Iteration requirements also scale with molecular complexity. Simple molecules (Q1) typically re-  
 1239 quire fewer than 20 iterations across all models, while complex molecules (Q4) demand 30-70 it-  
 1240 erations depending on model capability. This scaling effect is more pronounced in weaker models:

1242 Table 10: Comparison of solve rates (%) at different iteration thresholds across LLM architectures.  
 1243 Best results are **bolded** and top-3 are underlined.

| Model           | Pistachio Hard |             |             |             |             | USPTO-190   |             |             |             |             |
|-----------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                 | 20             | 40          | 60          | 80          | 100         | 20          | 40          | 60          | 80          | 100         |
| GPT-4o          | 64.0           | <u>76.0</u> | 79.0        | 81.0        | <u>85.0</u> | 55.7        | 69.5        | 78.4        | 80.5        | 82.1        |
| GPT-4o-mini     | 32.0           | <u>45.0</u> | 55.0        | 62.0        | <u>65.0</u> | 24.7        | 34.7        | 41.6        | 47.9        | 54.2        |
| GPT-5           | <u>71.0</u>    | <u>78.0</u> | <u>82.0</u> | <u>83.0</u> | <u>85.0</u> | <u>57.9</u> | <u>73.7</u> | <u>80.0</u> | <u>82.6</u> | <u>84.7</u> |
| DeepSeek-V3     | <u>67.0</u>    | <u>78.0</u> | 81.0        | <u>83.0</u> | <u>86.0</u> | <u>56.3</u> | <u>72.1</u> | 81.6        | <u>85.3</u> | <u>86.3</u> |
| DeepSeek-R1     | <b>76.0</b>    | <b>82.0</b> | <b>85.0</b> | <b>87.0</b> | <b>89.0</b> | <b>67.9</b> | <b>80.5</b> | <b>85.8</b> | <b>88.9</b> | <b>90.5</b> |
| Claude-4-Sonnet | 63.0           | 67.0        | 70.0        | 75.0        | 79.0        | 41.6        | 55.8        | 64.7        | 70.0        | 74.7        |
| Gemini-2.5 Pro  | 66.0           | <u>78.0</u> | 81.0        | <u>83.0</u> | 84.0        | 46.8        | 62.6        | 70.5        | 74.7        | 78.4        |
| Grok-4          | 65.0           | 76.0        | <u>83.0</u> | <u>84.0</u> | <u>85.0</u> | 52.6        | 68.9        | 75.8        | 80.0        | 83.2        |
| Qwen-3-MAX      | 65.0           | 73.0        | 77.0        | 80.0        | 83.0        | 47.9        | 61.6        | 70.5        | 75.8        | 80.0        |
| Llama-3.1-405B  | 58.0           | 69.0        | 76.0        | 79.0        | 79.0        | 38.9        | 51.6        | 62.6        | 68.9        | 74.7        |
| Llama-3.1-70B   | 51.0           | 60.0        | 71.0        | 72.0        | 73.0        | 31.6        | 42.6        | 52.6        | 57.9        | 63.2        |

1259  
 1260 GPT-4o-mini requires 64.3 iterations for Pistachio Hard Q4 compared to DeepSeek-R1's 25.8 iterations.  
 1261 The iteration efficiency gap between models widens substantially as complexity increases,  
 1262 reinforcing that model capability becomes increasingly critical for challenging synthesis problems.

1263  
 1264 Table 11: Performance breakdown by SC score quartiles for Pistachio Hard dataset. Best results are  
 1265 **bolded** and top-3 are underlined.

| Model           | Solve Rate (%) |             |             |             | Avg SR      | Iterations |             |             |             | Avg Iter.   |
|-----------------|----------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|
|                 | Q1             | Q2          | Q3          | Q4          |             | Q1         | Q2          | Q3          | Q4          |             |
| GPT-4o          | <b>100.0</b>   | <u>88.0</u> | 80.0        | 72.0        | <u>85.0</u> | 5.8        | 18.3        | <u>26.0</u> | 39.0        | 22.3        |
| GPT-4o-mini     | 84.0           | <u>68.0</u> | 56.0        | 52.0        | <u>65.0</u> | 22.5       | 51.2        | <u>65.8</u> | 64.3        | 50.9        |
| GPT-5           | <b>100.0</b>   | <u>88.0</u> | <u>80.0</u> | <u>72.0</u> | <u>85.0</u> | 4.4        | 16.8        | <u>21.4</u> | 34.0        | <u>19.1</u> |
| DeepSeek-V3     | <b>100.0</b>   | <u>88.0</u> | <u>80.0</u> | <u>76.0</u> | <u>86.0</u> | 5.8        | <u>13.9</u> | 28.7        | <u>32.9</u> | <u>20.3</u> |
| DeepSeek-R1     | <b>100.0</b>   | <b>92.0</b> | <b>84.0</b> | <b>80.0</b> | <b>89.0</b> | <b>3.8</b> | <b>12.5</b> | <b>18.6</b> | <b>25.8</b> | <b>15.2</b> |
| Claude-4-Sonnet | <u>96.0</u>    | <u>88.0</u> | 68.0        | 64.0        | 79.0        | 4.9        | 22.4        | 39.5        | 52.3        | 29.8        |
| Gemini-2.5 Pro  | <b>100.0</b>   | <b>92.0</b> | <u>76.0</u> | 68.0        | 84.0        | 4.7        | 20.1        | 31.5        | <u>32.7</u> | 22.3        |
| Grok-4          | <b>100.0</b>   | <b>92.0</b> | <u>80.0</u> | 68.0        | <u>85.0</u> | 6.3        | <u>13.0</u> | 30.0        | 35.1        | 21.1        |
| Qwen-MAX        | 92.0           | <u>88.0</u> | <b>84.0</b> | 68.0        | 83.0        | 10.8       | 15.4        | 26.4        | 37.8        | 22.6        |
| Llama-3.1-405B  | <u>92.0</u>    | <b>92.0</b> | <u>76.0</u> | 56.0        | 79.0        | 8.8        | 20.4        | 39.6        | 51.0        | 29.9        |
| Llama-3.1-70B   | <u>96.0</u>    | 84.0        | 44.0        | 60.0        | 71.0        | 13.9       | 25.0        | 60.8        | 53.9        | 38.4        |

1279  
 1280 Table 12: Performance breakdown by SC score quartiles for USPTO-190 dataset. Best results are  
 1281 **bolded** and top-3 are underlined.

| Model           | Solve Rate (%) |             |             |             | Avg SR      | Iterations  |             |             |             | Avg Iter.   |
|-----------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                 | Q1             | Q2          | Q3          | Q4          |             | Q1          | Q2          | Q3          | Q4          |             |
| GPT-4o          | 97.9           | <u>89.4</u> | 77.1        | 63.8        | 82.1        | <u>16.2</u> | <u>27.3</u> | 39.9        | 45.5        | 32.2        |
| GPT-4o-mini     | 72.9           | 59.6        | <u>45.8</u> | 38.3        | 54.2        | 34.8        | 45.2        | 58.6        | 67.3        | 51.5        |
| GPT-5           | <u>97.9</u>    | <u>87.2</u> | <u>79.2</u> | <u>76.6</u> | <u>85.3</u> | <u>14.7</u> | <u>24.1</u> | 35.8        | 41.2        | <u>28.9</u> |
| DeepSeek-V3     | <b>100.0</b>   | 85.1        | <u>81.2</u> | <u>78.7</u> | <u>86.3</u> | 18.9        | 27.7        | <u>36.8</u> | 40.3        | <u>29.9</u> |
| DeepSeek-R1     | <b>100.0</b>   | <b>91.5</b> | <b>87.5</b> | <b>83.0</b> | <b>90.5</b> | <b>11.3</b> | <b>19.8</b> | <b>26.4</b> | <b>31.7</b> | <b>22.3</b> |
| Claude-4-Sonnet | 91.7           | 80.9        | 70.8        | 61.7        | 76.3        | 21.4        | 33.7        | 46.9        | 56.2        | 39.5        |
| Gemini-2.5 Pro  | 93.8           | 85.1        | 75.0        | 63.8        | 79.5        | 19.8        | 31.4        | 43.7        | 50.6        | 36.4        |
| Grok-4          | <u>97.9</u>    | 83.0        | 77.1        | 74.5        | 83.2        | 17.6        | 29.3        | 40.8        | 47.1        | 33.7        |
| Qwen-3-MAX      | <u>95.8</u>    | 83.0        | 75.0        | 72.3        | 81.6        | 24.3        | 36.8        | 48.9        | 58.4        | 42.1        |
| Llama-3.1-405B  | 81.2           | 76.6        | <u>79.2</u> | 61.7        | 74.7        | 32.0        | 39.5        | 47.1        | 54.8        | 43.3        |
| Llama-3.1-70B   | 79.2           | 68.1        | 58.3        | 46.8        | 63.2        | 36.5        | 49.7        | 62.1        | 69.8        | 54.5        |

1296  
1297

## C.1.4 COST-PERFORMANCE ANALYSIS

1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305

Table 13 compares API costs and performance across models. DeepSeek-V3 offers the best value at \$0.56/\$1.68 per million tokens (input/output) with 86% solve rate, while GPT-4o-mini is cheapest (\$0.15/\$0.60) but achieves only 65% solve rate. DeepSeek-R1 matches DeepSeek-V3’s pricing but generates 10× more output tokens due to its reasoning traces. Among premium models (\$2.50+ per million input tokens), performance differences are minimal (79-85% solve rate). These results demonstrate that DeepSeek-V3 provides the optimal cost-performance balance for the testing experiments, achieving competitive performance without the substantial token overhead from thinking processes or the premium pricing of other models.

1306  
1307  
1308  
1309

Table 13: Cost-performance trade-offs across different LLM architectures on benchmark datasets. Best results are **bolded** and top-3 are underlined. **Green** indicates low cost/tokens, **red** indicates high cost/tokens.

1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319

| Model           | Token Cost (\$/1M) |              | SR (%)      | Pistachio Hard |               | SR (%)      | USPTO-190   |               |
|-----------------|--------------------|--------------|-------------|----------------|---------------|-------------|-------------|---------------|
|                 | Input              | Output       |             | Avg Iter.      | Avg Output    |             | Avg Iter.   | Avg Output    |
| GPT-4o-mini     | <b>0.15</b>        | <b>0.60</b>  | 65.0        | 50.9           | <b>1,078</b>  | 54.2        | 51.5        | <b>1,039</b>  |
| DeepSeek-V3     | <b>0.56</b>        | <b>1.68</b>  | <u>86.0</u> | <u>20.3</u>    | 1,221         | <u>86.3</u> | <u>29.9</u> | 1,611         |
| DeepSeek-R1     | <b>0.56</b>        | <b>1.68</b>  | <b>89.0</b> | <b>15.2</b>    | <b>12,109</b> | <b>90.5</b> | <b>22.3</b> | <b>12,298</b> |
| GPT-5           | 1.25               | <b>10.00</b> | <u>85.0</u> | <u>19.1</u>    | 1,862         | <u>84.7</u> | <u>28.9</u> | 1,502         |
| Gemini-2.5 Pro  | 1.25               | <b>10.00</b> | 84.0        | 22.3           | 2,689         | 78.4        | 36.4        | 2,735         |
| Qwen-3-MAX      | 1.20               | 6.00         | 83.0        | 22.6           | 2,462         | 80.0        | 42.1        | 2,051         |
| GPT-4o          | 2.50               | <b>10.00</b> | <u>85.0</u> | 22.3           | 1,437         | 82.1        | 32.2        | 1,343         |
| Claude-4-Sonnet | <b>3.00</b>        | <b>15.00</b> | 79.0        | 29.8           | 1,616         | 74.7        | 39.5        | 1,702         |
| Grok-4          | <b>3.00</b>        | <b>15.00</b> | <u>85.0</u> | 21.1           | 2,949         | 83.2        | 33.7        | 2,184         |

1320

## C.2 ADDITIONAL COMPONENT ANALYSIS RESULTS

1321  
1322  
1323  
1324

We provide additional experimental results on component analysis in this section.

1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334

## C.2.1 FURTHER PROMPT ABLATION RESULTS

Figure 11 extends the prompt ablation analysis to the USPTO-Easy and Pistachio Reachable datasets, complementing the results from the more challenging benchmarks presented in the main text. On these simpler datasets, all configurations achieve high solve rates (>90%) by 100 iterations, but RAG removal still causes the most substantial early-stage degradation, with approximately 10-15% lower solve rates at 20 iterations. The performance gaps between ablated configurations narrow more rapidly compared to challenging datasets, with most differences becoming negligible beyond 60 iterations, suggesting that prompt components primarily accelerate convergence rather than determine ultimate performance ceilings on simpler synthesis problems.

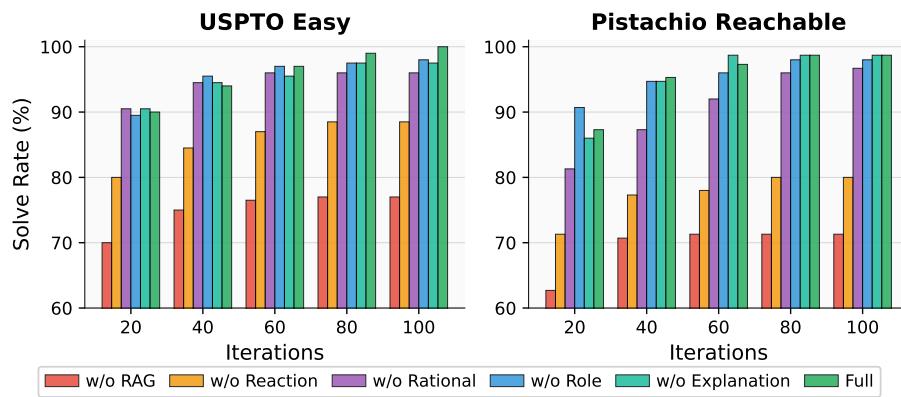
1335  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
13471348  
1349

Figure 11: Impact of prompt components on solve rates for USPTO-Easy and Pistachio Reachable, N = 100.

1350 **Difficulty-Stratified Ablation Analysis.** Tables 14, 15, 16, and 17 show how prompt ablations  
 1351 affect molecules of different complexities. RAG retrieval is critical across all difficulty lev-  
 1352 els—removing it drops Q4 performance by 32% on USPTO-190 and 28% on Pistachio Hard. Simple  
 1353 molecules (Q1) maintain high solve rates even without RAG (83-92%), while complex molecules  
 1354 (Q4) suffer dramatically without it (47-57%). Other components show minimal impact.  
 1355

1356 Table 14: Prompt ablation performance by SC score quartiles on USPTO-190.  
 1357

| Configuration  | Solve Rate (%) |      |      |      | Avg. SR | Q1   | Iterations |      |      | Avg Iter. |
|----------------|----------------|------|------|------|---------|------|------------|------|------|-----------|
|                | Q1             | Q2   | Q3   | Q4   |         |      | Q2         | Q3   | Q4   |           |
| Full Prompt    | 100.0          | 85.1 | 81.2 | 78.7 | 86.3    | 18.9 | 26.5       | 35.5 | 38.5 | 29.9      |
| No RAG         | 83.3           | 46.8 | 45.8 | 46.8 | 55.8    | 19.8 | 29.0       | 36.4 | 29.9 | 28.8      |
| No Explanation | 97.9           | 83.0 | 79.2 | 76.6 | 84.2    | 23.1 | 30.5       | 35.2 | 39.0 | 31.9      |
| No Rational    | 100.0          | 85.1 | 79.2 | 78.7 | 85.8    | 16.1 | 24.4       | 28.2 | 34.9 | 25.9      |
| No Role Info   | 100.0          | 85.1 | 79.2 | 76.6 | 85.3    | 16.6 | 28.7       | 35.4 | 48.5 | 32.3      |
| No Reaction    | 97.9           | 78.7 | 68.8 | 55.3 | 75.3    | 17.6 | 25.0       | 38.2 | 35.4 | 29.1      |

1366 Table 15: Prompt ablation performance by SC score quartiles on Pistachio Hard.  
 1367

| Configuration  | Solve Rate (%) |      |      |      | Avg. SR | Q1   | Iterations |      |      | Avg Iter. |
|----------------|----------------|------|------|------|---------|------|------------|------|------|-----------|
|                | Q1             | Q2   | Q3   | Q4   |         |      | Q2         | Q3   | Q4   |           |
| Full Prompt    | 100.0          | 88.0 | 80.0 | 76.0 | 86.0    | 5.8  | 13.9       | 28.7 | 32.9 | 20.3      |
| No RAG         | 84.0           | 56.0 | 52.0 | 48.0 | 60.0    | 15.5 | 26.7       | 26.4 | 23.2 | 23.0      |
| No Explanation | 88.0           | 88.0 | 76.0 | 80.0 | 83.0    | 4.3  | 17.9       | 38.4 | 22.9 | 20.9      |
| No Rational    | 92.0           | 88.0 | 76.0 | 76.0 | 83.0    | 7.2  | 13.9       | 27.4 | 32.8 | 20.3      |
| No Role Info   | 92.0           | 88.0 | 88.0 | 68.0 | 84.0    | 3.5  | 17.2       | 22.1 | 40.6 | 20.9      |
| No Reaction    | 88.0           | 92.0 | 72.0 | 68.0 | 80.0    | 4.3  | 13.3       | 29.6 | 33.9 | 20.3      |

1378 Table 16: Prompt ablation performance by SC score quartiles on Pistachio Reachable.  
 1379

| Configuration  | Solve Rate (%) |       |       |      | Avg. SR | Q1  | Iterations |      |      | Avg Iter. |
|----------------|----------------|-------|-------|------|---------|-----|------------|------|------|-----------|
|                | Q1             | Q2    | Q3    | Q4   |         |     | Q2         | Q3   | Q4   |           |
| Full Prompt    | 100.0          | 100.0 | 97.3  | 97.4 | 98.7    | 4.8 | 9.5        | 9.7  | 12.1 | 9.0       |
| No RAG         | 92.1           | 76.3  | 59.5  | 56.8 | 71.3    | 6.9 | 9.1        | 10.8 | 10.6 | 9.4       |
| No Explanation | 97.4           | 100.0 | 100.0 | 97.3 | 98.7    | 7.1 | 6.1        | 8.3  | 14.7 | 9.1       |
| No Rational    | 100.0          | 97.4  | 97.3  | 91.9 | 96.7    | 5.7 | 9.8        | 14.4 | 28.6 | 14.6      |
| No Role Info   | 100.0          | 100.0 | 100.0 | 91.9 | 98.0    | 4.9 | 9.2        | 6.4  | 18.1 | 9.6       |
| No Reaction    | 84.2           | 81.6  | 89.2  | 64.9 | 80.0    | 5.8 | 7.9        | 13.5 | 16.8 | 11.0      |

1390 **Cost of Prompt Components.** Table 18 shows the token-performance trade-off for each prompt  
 1391 component. Removing RAG reduces input tokens by approximately one-third but causes the largest  
 1392 performance degradation, dropping solve rates by over 25%. Role information also contributes  
 1393 substantially to token count (27% reduction when removed) with moderate performance impact.  
 1394 Minor components like reaction and rationale fields account for less than 5% of tokens each and  
 1395 show minimal effect on performance. The analysis reveals that token efficiency cannot be achieved  
 1396 through simple prompt reduction, as the most token-intensive components are also the most critical  
 1397 for maintaining search effectiveness.  
 1398

1399 

### C.3 IMPACT OF RAG SAMPLE SIZE

  
 1400

1401 Figure 12 illustrates the relationship between the number of RAG examples and solve rates for the  
 1402 USPTO-Easy and Pistachio Reachable datasets, demonstrating that performance gains plateau after  
 1403 3-5 examples even for these simpler benchmarks.

Table 17: Prompt ablation performance by SC score quartiles on USPTO Easy.

| Configuration  | Solve Rate (%) |       |       |       | Avg. SR | Iterations |      |      |      | Avg Iter. |
|----------------|----------------|-------|-------|-------|---------|------------|------|------|------|-----------|
|                | Q1             | Q2    | Q3    | Q4    |         | Q1         | Q2   | Q3   | Q4   |           |
| Full Prompt    | 100.0          | 100.0 | 100.0 | 100.0 | 100.0   | 2.8        | 9.1  | 10.3 | 15.7 | 9.5       |
| No RAG         | 92.0           | 80.0  | 80.0  | 56.0  | 77.0    | 2.9        | 9.3  | 8.8  | 9.9  | 7.7       |
| No Explanation | 100.0          | 96.0  | 98.0  | 96.0  | 97.5    | 1.8        | 11.0 | 6.5  | 13.1 | 8.1       |
| No Rational    | 98.0           | 96.0  | 100.0 | 90.0  | 96.0    | 2.8        | 9.4  | 6.5  | 14.1 | 8.2       |
| No Role Info   | 100.0          | 96.0  | 100.0 | 96.0  | 98.0    | 1.6        | 9.3  | 6.7  | 14.4 | 8.0       |
| No Reaction    | 96.0           | 84.0  | 88.0  | 86.0  | 88.5    | 1.0        | 5.2  | 9.5  | 17.5 | 8.3       |

Table 18: Comprehensive ablation study results with token statistics and performance metrics.

| Configuration  | Input Tokens |     | Token Reduction (%) | Performance |        |
|----------------|--------------|-----|---------------------|-------------|--------|
|                | Mean         | Std |                     | Avg Iter.   | SR (%) |
| No RAG         | 995          | 19  | -32.7               | 22.4        | 60.0   |
| No Role Info   | 1078         | 95  | -27.1               | 14.1        | 84.0   |
| No Explanation | 1328         | 245 | -10.1               | 14.1        | 83.0   |
| No Rational    | 1428         | 305 | -3.4                | 15.3        | 83.0   |
| No Reaction    | 1448         | 315 | -2.0                | 13.8        | 80.0   |
| Full Prompt    | 1478         | 328 | -                   | 14.4        | 86.0   |

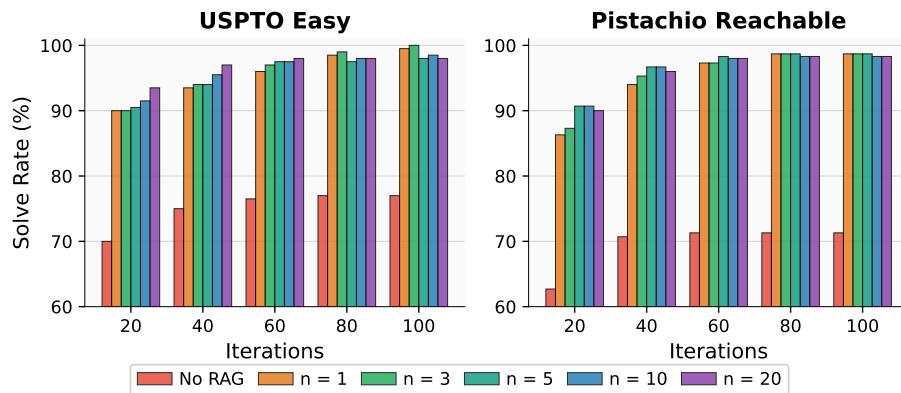


Figure 12: Impact of RAG sample number (n) on solve rates for USPTO-Easy and Pistachio Reachable, N = 100.

**Cost of RAG Samples.** Table 19 shows the diminishing returns of increasing RAG samples on Pistachio hard. Using 3 examples achieves 86% solve rate with 1,478 tokens, while 20 examples only improves performance by 2% but increases token usage by 177%. The sweet spot is 3-5 examples—beyond this, token costs grow exponentially with negligible performance gains.

#### C.4 MOLECULAR WEIGHT-STRATIFIED ANALYSIS

Table 20 shows how performance degrades with increasing molecular weight. We divide each dataset into quartiles based on molecular weight distribution, where Q1 represents the smallest molecules and Q4 the largest. Larger molecules (Q4) consistently require more iterations and achieve lower solve rates across all datasets. The effect is most pronounced on challenging benchmarks—Pistachio Hard drops from 100% (Q1) to 76% (Q4).

#### C.5 MOLECULAR WEIGHT-STRATIFIED ANALYSIS

Table 20 presents molecular weight statistics and corresponding performance metrics across all datasets. Performance consistently degrades with increasing molecular weight, with Q4 molecules

1458 Table 19: RAG sample size impact on token usage and performance metrics, Pistachio Hard.  
1459

| RAG Samples | Mean | Input Std | Tokens Min | Max   | Token Change (%) | Performance Avg Iter. | SR (%) |
|-------------|------|-----------|------------|-------|------------------|-----------------------|--------|
| 0 (No RAG)  | 995  | 19        | 965        | 1077  | -32.7            | 22.4                  | 60.0   |
| 1           | 1172 | 135       | 1026       | 1718  | -20.7            | 15.0                  | 82.0   |
| 3           | 1478 | 328       | 1104       | 3063  | 0.0              | 14.4                  | 86.0   |
| 5           | 1780 | 517       | 1195       | 4318  | +20.4            | 15.7                  | 86.0   |
| 10          | 2566 | 1024      | 1366       | 8492  | +73.6            | 12.4                  | 86.0   |
| 20          | 4091 | 2038      | 2035       | 17223 | +176.7           | 12.5                  | 88.0   |

1469  
1470  
1471 requiring significantly more iterations and achieving lower solve rates compared to Q1. This degra-  
1472 dation is particularly severe in challenging benchmarks, where Pistachio Hard’s solve rate decreases  
1473 by 24% from the smallest (Q1: 100%) to largest (Q4: 76%) molecules.  
1474

1475 Table 20: Molecular weight (MW) quartile statistics and performance breakdown across datasets.  
1476

| Dataset             | MW Average (g/mol) |       |       |       | MW Range (g/mol) |         |         |          |
|---------------------|--------------------|-------|-------|-------|------------------|---------|---------|----------|
|                     | Q1                 | Q2    | Q3    | Q4    | Q1               | Q2      | Q3      | Q4       |
| Pistachio Hard      | 267.6              | 395.8 | 501.3 | 702.7 | 163-354          | 354-448 | 448-561 | 561-1171 |
| USPTO-190           | 288.1              | 379.3 | 465.1 | 698.3 | 181-346          | 346-417 | 417-519 | 519-954  |
| USPTO-Easy          | 246.0              | 348.1 | 416.2 | 516.6 | 182-299          | 299-388 | 388-447 | 447-686  |
| Pistachio Reachable | 267.3              | 397.2 | 484.2 | 634.2 | 127-342          | 342-439 | 439-533 | 533-1307 |

| Dataset             | Solve Rate (%) |       |       |       | Iterations |       |       |       |
|---------------------|----------------|-------|-------|-------|------------|-------|-------|-------|
|                     | Q1             | Q2    | Q3    | Q4    | Q1         | Q2    | Q3    | Q4    |
| Pistachio Hard      | 100.0          | 88.0  | 84.0  | 80.0  | 9.72       | 12.16 | 24.96 | 34.44 |
| USPTO-190           | 93.8           | 89.4  | 87.2  | 75.0  | 30.79      | 26.38 | 22.74 | 39.04 |
| USPTO-Easy          | 100.0          | 100.0 | 100.0 | 100.0 | 6.54       | 6.90  | 7.20  | 16.00 |
| Pistachio Reachable | 100.0          | 100.0 | 97.3  | 97.4  | 7.76       | 9.62  | 8.68  | 10.08 |

1487  
1488  
1489 C.6 HYPERPARAMETER SENSITIVITY ANALYSIS  
1490

1491 We analyze the sensitivity of AOT\* to key hyperparameters on the Pistachio Hard dataset. All ex-  
1492 periments use N=100 iterations with results stratified by molecular complexity (SC score quartiles).  
1493

1494 C.6.1 LLM GENERATION PARAMETERS  
1495

1496 Table 21 shows the impact of LLM temperature on route generation quality. Temperature T=0.7  
1497 achieves optimal performance, balancing exploration and exploitation. Lower temperatures (T=0.1)  
1498 reduce diversity, causing poor performance on complex molecules (Q4: 60%), while higher temper-  
1499 atures (T $\geq$ 0.9) generate inconsistent routes despite maintaining reasonable solve rates.  
1500

1501 Table 21: Temperature parameter impact on solve rates and iterations.  
1502

| T   | Solve Rate (%) |      |      |      | Avg SR | Iterations |       |       |       | Avg Iter. |
|-----|----------------|------|------|------|--------|------------|-------|-------|-------|-----------|
|     | Q1             | Q2   | Q3   | Q4   |        | Q1         | Q2    | Q3    | Q4    |           |
| 0.1 | 96.0           | 88.0 | 84.0 | 60.0 | 82.0   | 3.44       | 17.60 | 31.20 | 43.68 | 23.98     |
| 0.3 | 96.0           | 92.0 | 80.0 | 68.0 | 84.0   | 7.80       | 13.36 | 31.08 | 36.56 | 22.20     |
| 0.5 | 100.0          | 92.0 | 84.0 | 64.0 | 85.0   | 7.52       | 16.44 | 30.48 | 38.92 | 23.34     |
| 0.7 | 100.0          | 88.0 | 80.0 | 76.0 | 86.0   | 5.76       | 13.92 | 28.68 | 32.92 | 20.32     |
| 0.9 | 100.0          | 88.0 | 76.0 | 76.0 | 85.0   | 9.32       | 9.92  | 32.16 | 27.72 | 19.78     |
| 2.0 | 96.0           | 84.0 | 72.0 | 76.0 | 82.0   | 5.36       | 16.32 | 31.96 | 36.60 | 22.56     |

1512 C.6.2 SEARCH STRATEGY PARAMETERS  
1513

1514 Table 22 evaluates the UCB exploration parameter  $c$ , which controls the exploration-exploitation  
1515 trade-off in tree search. The optimal value  $c = 0.5$  maintains consistent performance across all  
1516 complexity levels. Higher values ( $c \geq 1.0$ ) cause excessive exploration, particularly harming high-  
1517 complexity molecules (Q4: drops to 52% at  $c = 5.0$ ).

1518 Table 22: UCB exploration parameter  $c$  impact.  
1519

| $c$ Value | Solve Rate (%) |      |      |      | Avg SR | Iterations |       |       |       | Avg Iter. |
|-----------|----------------|------|------|------|--------|------------|-------|-------|-------|-----------|
|           | Q1             | Q2   | Q3   | Q4   |        | Q1         | Q2    | Q3    | Q4    |           |
| 0.2       | 96.0           | 88.0 | 88.0 | 72.0 | 86.0   | 5.36       | 13.88 | 27.72 | 35.72 | 20.67     |
| 0.5       | 100.0          | 88.0 | 80.0 | 76.0 | 86.0   | 5.76       | 13.92 | 28.68 | 32.92 | 20.32     |
| 1.0       | 100.0          | 88.0 | 76.0 | 72.0 | 84.0   | 3.60       | 22.28 | 32.64 | 28.60 | 21.78     |
| 1.414     | 100.0          | 88.0 | 72.0 | 60.0 | 80.0   | 6.28       | 15.88 | 35.36 | 42.48 | 25.00     |
| 2.0       | 92.0           | 92.0 | 76.0 | 68.0 | 82.0   | 9.24       | 16.72 | 31.48 | 39.40 | 24.21     |
| 5.0       | 96.0           | 84.0 | 72.0 | 52.0 | 76.0   | 5.84       | 18.76 | 50.52 | 37.60 | 28.18     |

1530 C.6.3 REWARD FUNCTION WEIGHTS  
1531

1532 Table 23 analyzes the availability weight  $\alpha$  in the reward function. The optimal value  $\alpha = 0.4$   
1533 balances immediate building block availability with long-term synthesis feasibility. Pure feasibility  
1534 scoring ( $\alpha = 0.0$ ) degrades performance by 3%, while pure availability scoring ( $\alpha = 1.0$ ) shows  
1535 7% reduction, confirming that both components are essential for effective search guidance.

1536 Table 23: Availability weight  $\alpha$  impact on performance metrics.  
1537

| $\alpha$ value | Solve Rate (%) |      |      |      | Avg SR | Iterations |       |       |       | Avg Iter. |
|----------------|----------------|------|------|------|--------|------------|-------|-------|-------|-----------|
|                | Q1             | Q2   | Q3   | Q4   |        | Q1         | Q2    | Q3    | Q4    |           |
| 0.0            | 100.0          | 92.0 | 72.0 | 68.0 | 83.0   | 4.96       | 13.56 | 23.16 | 30.40 | 18.02     |
| 0.2            | 100.0          | 88.0 | 76.0 | 72.0 | 84.0   | 4.72       | 9.56  | 32.04 | 43.00 | 22.33     |
| 0.4            | 100.0          | 88.0 | 80.0 | 76.0 | 86.0   | 5.76       | 13.92 | 28.68 | 32.92 | 20.32     |
| 0.6            | 96.0           | 92.0 | 80.0 | 68.0 | 84.0   | 6.20       | 14.81 | 30.23 | 34.69 | 21.47     |
| 0.8            | 96.0           | 92.0 | 76.0 | 68.0 | 83.0   | 8.64       | 10.32 | 29.36 | 35.00 | 20.83     |
| 1.0            | 92.0           | 88.0 | 72.0 | 64.0 | 79.0   | 7.80       | 15.25 | 32.44 | 38.25 | 23.40     |

1548 C.7 ROUTE CHARACTERISTICS ANALYSIS  
15491550 C.7.1 ROUTE LENGTH DISTRIBUTION  
1551

1552 Tables 24 and 25 show how route length correlates with molecular complexity across all bench-  
1553 marks. Complex molecules require longer routes—average length increases from 3.64 steps (Q1)  
1554 to 6.86 steps (Q4) on Pistachio Hard. Notably, 76% of simple molecules (Q1) are solved in 1-4  
1555 steps, while complex molecules (Q4) predominantly require 5-8 steps. USPTO-190 shows simi-  
1556 lar patterns but with consistently longer routes (5.52-6.35 steps), reflecting its focus on multi-step  
1557 pharmaceuticals rather than simpler organic molecules.

1558 C.8 SUCCESS CASE: COMPLEX NATURAL PRODUCT  
1559

1560 We provide AOT\* visualizations of successful cases across diverse pharmaceutical-relevant  
1561 molecules with high synthetic complexity. Figures 13-15 showcase the effectiveness on drug-like  
1562 molecules from the USPTO-190 dataset, containing diverse functional groups such as nitriles,  
1563 oxiranes, indoles, and iodinated aromatics. These pharmaceutically relevant structures represent signif-  
1564 icant synthetic challenges, yet AOT\* consistently identifies multiple viable routes through focused  
1565 tree expansion. The compact tree structures, characterized by strategic branching patterns and high-  
confidence pathways, demonstrate the efficiency gains from LLM-guided generation. AOT\*'s ability

1566 Table 24: Route length distribution by molecular complexity for challenging benchmarks.  
1567

| Metric         | USPTO-190 |      |      |      | Pistachio Hard |      |      |      |
|----------------|-----------|------|------|------|----------------|------|------|------|
|                | Q1        | Q2   | Q3   | Q4   | Q1             | Q2   | Q3   | Q4   |
| Solve Rate (%) | 100.0     | 85.1 | 81.2 | 78.7 | 100.0          | 88.0 | 80.0 | 76.0 |
| Avg. Length    | 5.52      | 5.71 | 6.33 | 6.35 | 3.64           | 4.88 | 5.41 | 6.86 |
| 1-4 steps (%)  | 47.9      | 29.3 | 32.5 | 32.5 | 76.0           | 45.8 | 13.6 | 36.4 |
| 5-8 steps (%)  | 37.5      | 56.1 | 47.5 | 42.5 | 24.0           | 54.2 | 59.1 | 59.1 |
| 9+ steps (%)   | 14.6      | 14.6 | 20.0 | 25.0 | 0.0            | 0.0  | 27.3 | 4.5  |

1576  
1577 Table 25: Route length distribution by molecular complexity for simpler benchmarks.  
1578

| Metric         | USPTO Easy |       |       |       | Pistachio Reachable |       |      |      |
|----------------|------------|-------|-------|-------|---------------------|-------|------|------|
|                | Q1         | Q2    | Q3    | Q4    | Q1                  | Q2    | Q3   | Q4   |
| Solve Rate (%) | 100.0      | 100.0 | 100.0 | 100.0 | 100.0               | 100.0 | 97.3 | 97.4 |
| Avg. Length    | 2.14       | 3.29  | 3.56  | 4.53  | 3.45                | 3.97  | 4.30 | 4.46 |
| 1-4 steps (%)  | 90.0       | 79.2  | 79.6  | 53.2  | 76.3                | 64.9  | 72.2 | 62.2 |
| 5-8 steps (%)  | 10.0       | 12.5  | 16.3  | 36.2  | 21.1                | 29.7  | 27.8 | 32.4 |
| 9+ steps (%)   | 0.0        | 8.3   | 4.1   | 10.6  | 2.6                 | 5.4   | 0.0  | 5.4  |

1590 to balance exploration and exploitation is particularly evident in how it handles structural complexity—  
1591 maintaining synthetic feasibility while discovering creative disconnection strategies through  
1592 the integration of generative models with systematic tree search.

1593 The Pistachio Hard dataset examples (Figures 16-18) further validate AOT\*’s ability to handle chal-  
1594 lenging targets including molecules featuring complex heterocyclic scaffolds, multiple stereocen-  
1595 ters, and elaborate ring systems. The search trees reveal how AOT\* efficiently navigates vast chemi-  
1596 cal spaces through strategic pathway generation rather than exhaustive enumeration. Notably, AOT\*  
1597 successfully decomposes these intricate structures—ranging from triazole-piperidine conjugates to  
1598 spirocyclic fluorinated fragments—into commercially available building blocks while maintaining  
1599 reasonable synthesis depths. The visualizations illustrate the framework’s adaptive search behavior,  
1600 where computational resources are allocated based on molecular complexity, enabling both rapid  
1601 convergence for simpler substructures and thorough exploration for challenging disconnections.

### 1602 1603 C.9 FAILURE ANALYSIS

1604 While AOT\* demonstrates strong performance overall, certain molecules with exceptionally high  
1605 synthetic complexity expose current limitations. Figures 19-21 illustrate challenging cases where  
1606 extensive exploration fails to complete synthesis routes from Pistachio Hard and USPTO-190. All  
1607 three failures exhibit similar patterns: dense and deep search trees with extensive branching, and  
1608 numerous reaction attempt. All explore many pathways but struggles to find routes to available  
1609 building blocks, suggesting insufficient guidance for prioritizing promising directions.

1610 These failures highlight clear improvement opportunities: incorporating domain-specific reac-  
1611 tion knowledge, developing escape mechanisms from unproductive search regions, and enhanc-  
1612 ing strategic flexibility when standard approaches fail. However, such limitations affect only a  
1613 small fraction of targets. AOT\* successfully solves the vast majority of complex pharmaceutical  
1614 molecules, demonstrating robust performance across diverse structural classes. By combining LLM-  
1615 guided generation with systematic tree search, the framework achieves both efficiency and reliabil-  
1616 ity—offering chemists a powerful tool that discovers novel synthetic strategies while maintaining  
1617 chemical validity. The algorithm’s ability to handle molecules ranging from simple heterocycles to  
1618 elaborate natural products validates its practical utility for automated synthesis planning.

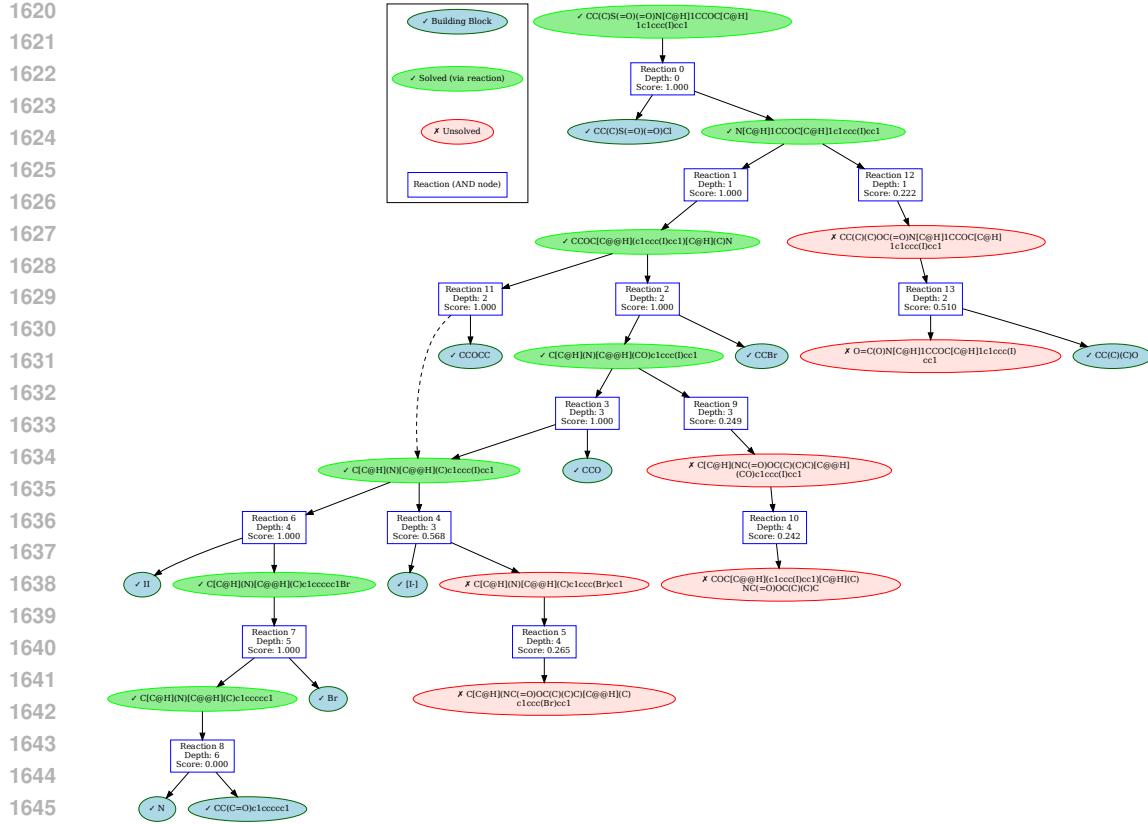


Figure 13:  $\text{CC}(\text{C})\text{S}(=\text{O})(=\text{O})\text{N}[\text{C}@\text{H}]1\text{CCOC}[\text{C}@\text{H}]1\text{c}1\text{ccc}(\text{I})\text{cc}1$ , USPTO-190, Visualization of  $\text{AOT}^*$  search tree.

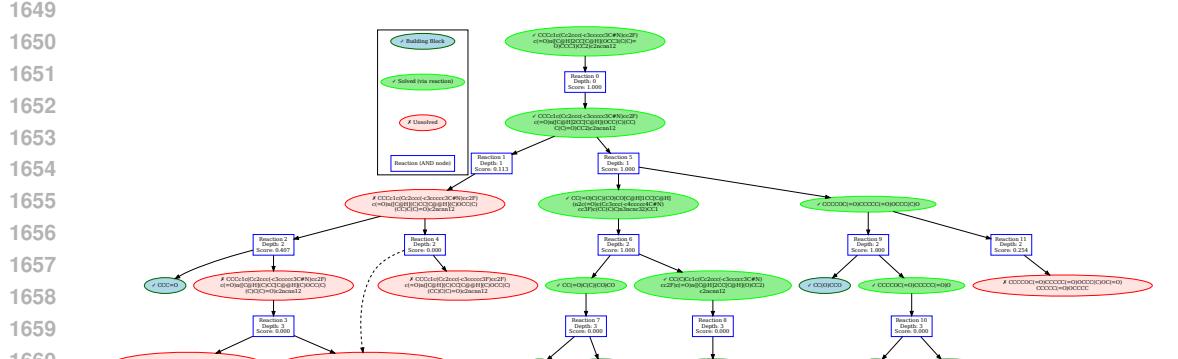


Figure 14:  $\text{CCCc1c}(\text{Cc2ccc}(-\text{c}3\text{cccc}3\text{C}\#\text{N})\text{cc}2\text{F})\text{c}(=\text{O})\text{n}([\text{C}@\text{H}]2\text{CC}[\text{C}@\text{H}](\text{OCC3}(\text{C}(\text{C})=\text{O})\text{CCC3})\text{CC}2)\text{c}2\text{ncnn}12$ , USPTO-190, Visualization of  $\text{AOT}^*$  search tree.

## D LIMITATIONS AND FUTURE WORK

Despite  $\text{AOT}^*$ 's efficiency improvements, several limitations remain. The framework depends on the underlying LLM's chemical knowledge, which may not capture specialized transformations well. Complex natural products can still cause unproductive search expansions, indicating that tree search cannot fully compensate for gaps in chemical understanding. Moreover, the current framework lacks mechanisms for controllable multi-objective search and uncertainty quantification—features essential for deployment where failed reactions incur significant costs. Future work should address these limitations by developing approaches that generalize beyond training distributions, incorporate

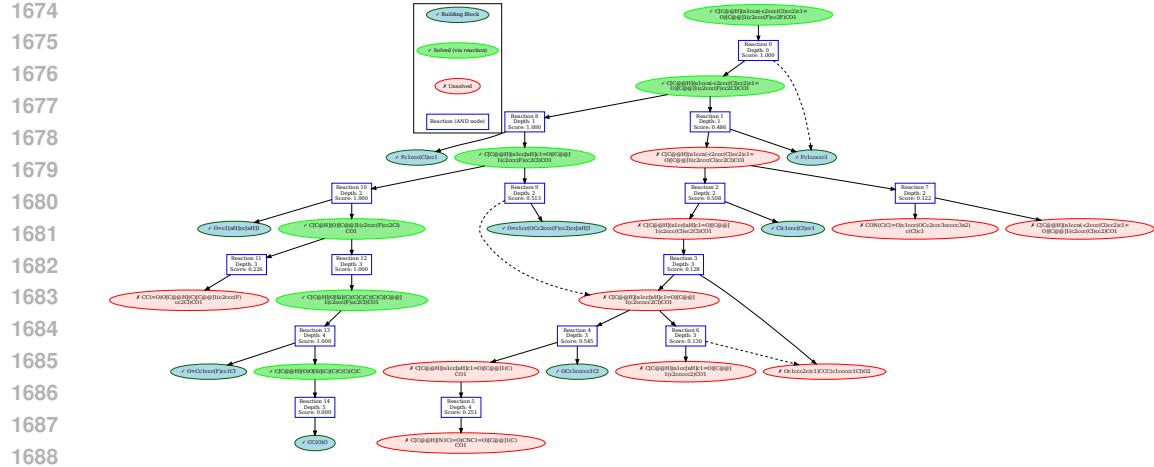


Figure 15:  $\text{C}[\text{C}@\text{H}](\text{n1ccn}(\text{-c}2\text{ccc}(\text{Cl})\text{cc2})\text{c1=O})[\text{C}@\text{@}]\text{l}(\text{c}2\text{ccc}(\text{F})\text{cc2F})\text{CO1}$ , USPTO-190, Visualization of AOT\* search tree.

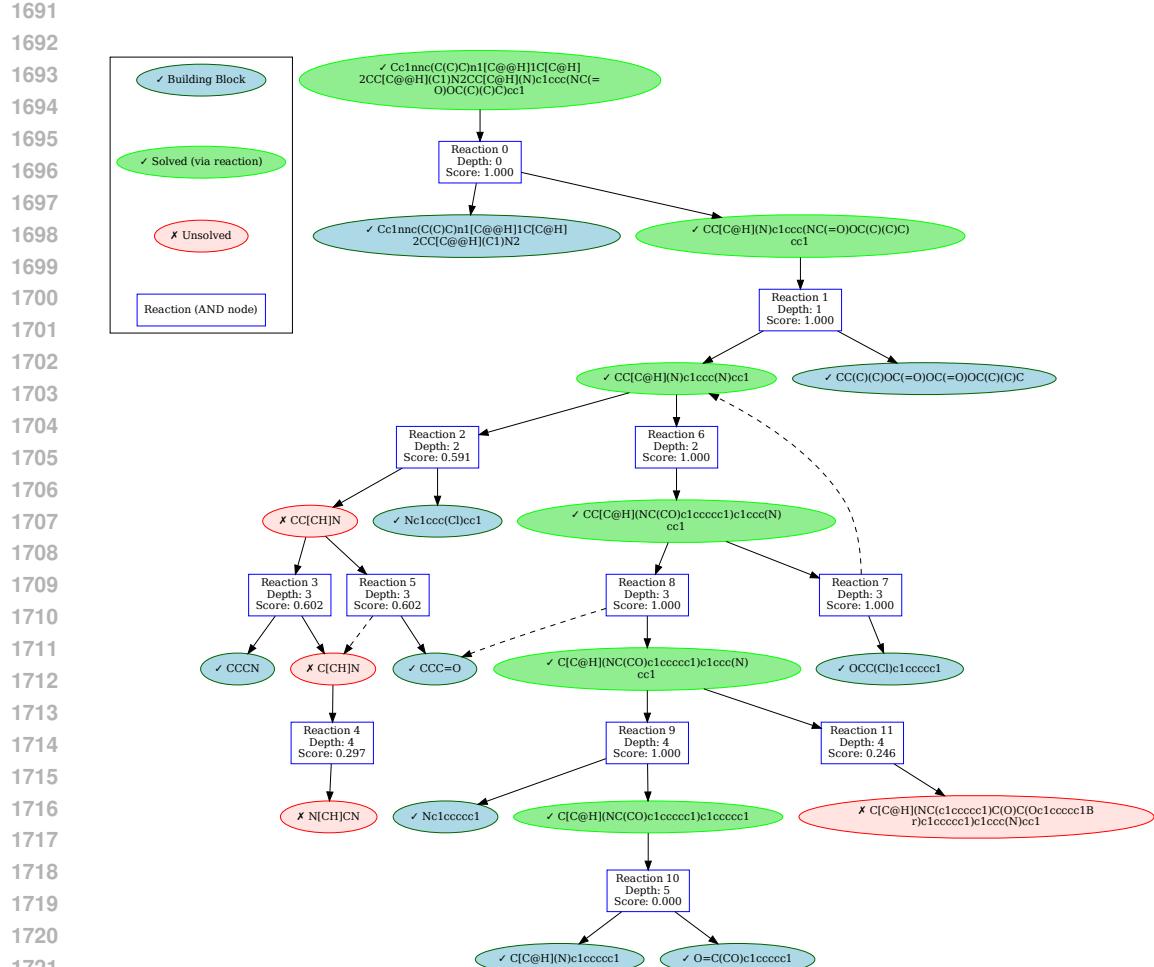


Figure 16:  $\text{Cc1nncc(C(C)C)n1[C@H]1C[C@H]2CC[C@H](C1)N2CC[C@H](N)c1ccc(NC(=O)OC(C)C)cc1}$ , Pistachio Hard, Visualization of AOT\* search tree.

controlable generation for diverse synthetic priorities, and integrate uncertainty estimates to guide practical decision-making in chemical synthesis.

1728  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1740  
1741  
1742  
1743

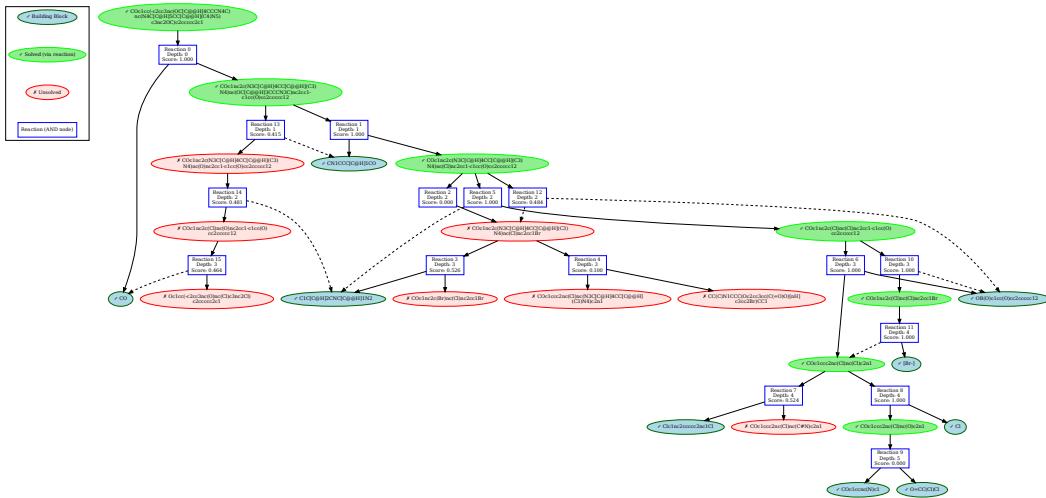


Figure 17: COc1cc(-c2cc3nc(OC[C@H]4CCCN4C)nc(N4C[C@H]5CC[C@H](C4)N5)c3nc2OC)c2cccc2c1, Pistachio Hard, Visualization of AOT\* search tree.

1747  
1748  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1760  
1761

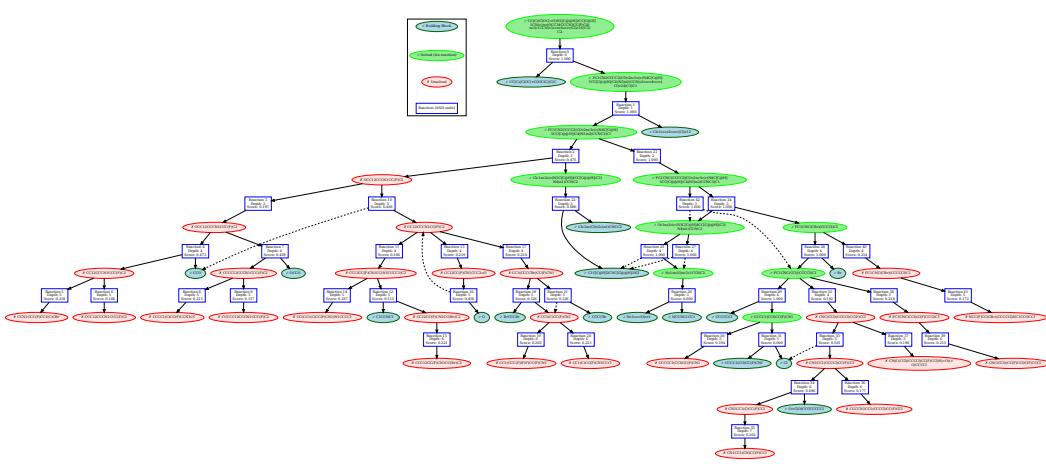
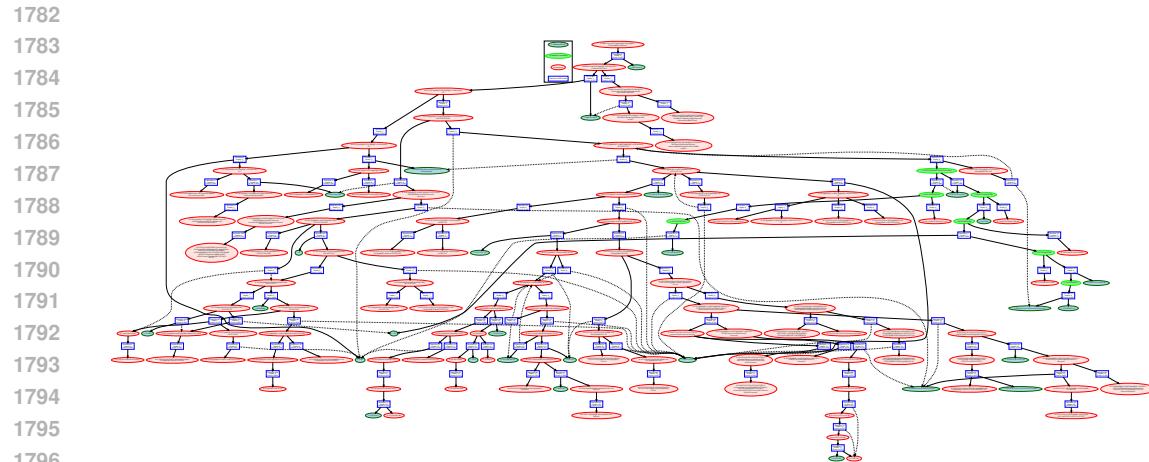


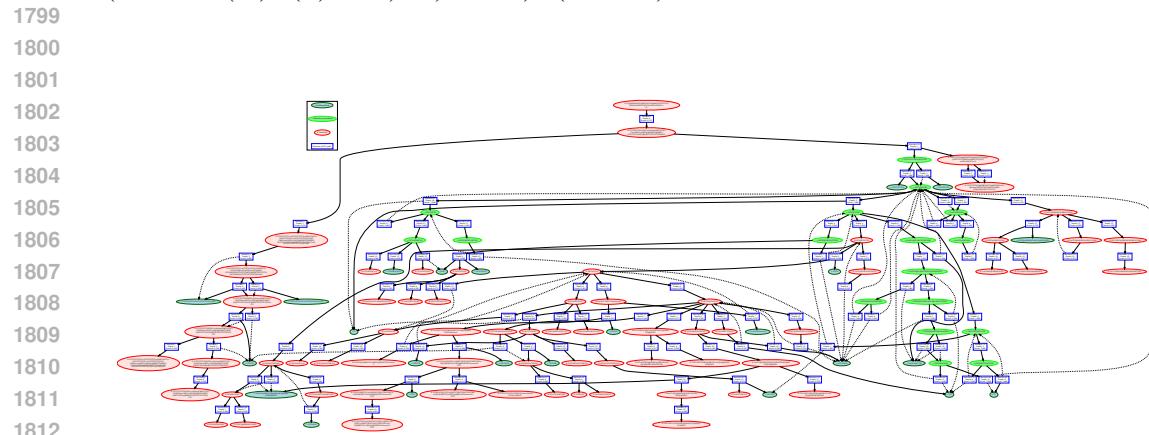
Figure 18: CC(C)(C)OC(=O)N1[C@@H]2CC[C@H]1CN(c1nc(OCC34CCCN3CC(F)C4)nc3c1CCN(c1cccc4cccc(Cl)c14)C3)C2, Pistachio Hard, Visualization of AOT\* search tree.

1764  
1765  
1766  
1767  
1768  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781

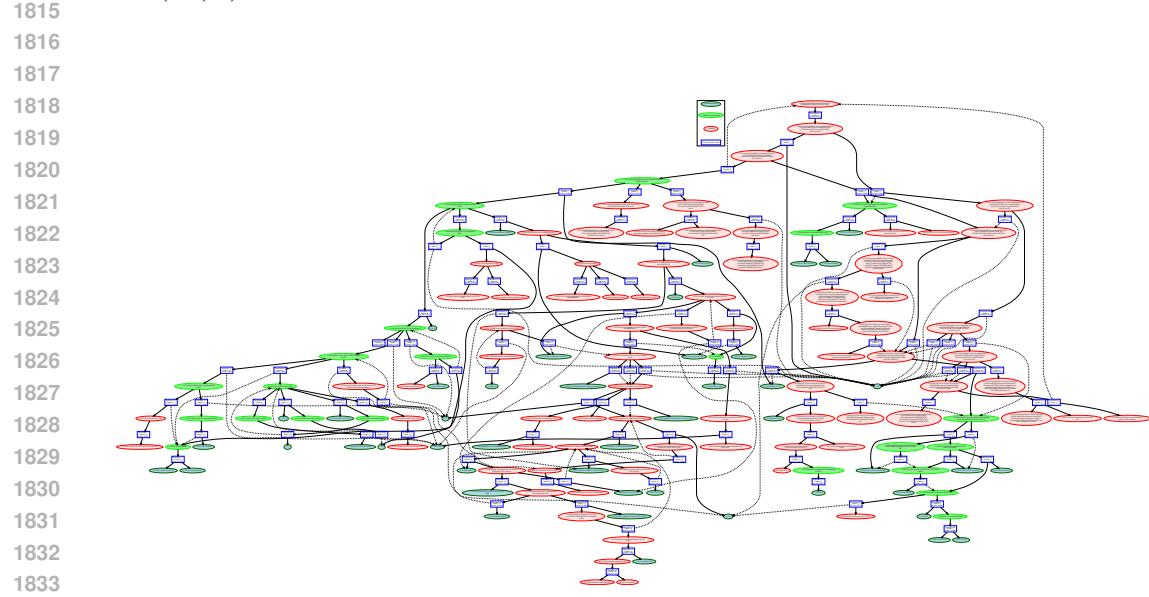
Future work could address these limitations through several directions. Development of specialized chemical LLMs through distillation from general models could significantly reduce computational costs while maintaining performance—our experiments show that general-purpose LLMs incur substantial token overhead that specialized models might avoid. Enhanced reasoning capabilities integrated with tree search could help the system recognize and articulate when it ventures into uncertain chemical territory, potentially reducing unproductive expansions. Adaptive search strategies that dynamically adjust between exploration and exploitation based on molecular complexity could better allocate computational resources. Finally, incorporating multi-objective optimization into the tree search framework would enable practitioners to specify trade-offs between synthesis length, yield, and safety constraints, making the system more applicable to real-world synthesis planning where such considerations are paramount.



1797 Figure 19: Failure case: COCCCCc1cc(CN(C(=O)[C@H]2CN(C(=O)OC(C)(C)C)CC[C@H]2c2ccc  
 1798 (OCCOc3c(Cl)cc(C)cc3Cl)cc2)C2CC2)cc(OCCOC)c1.



1813 Figure 20: Failure case: C[C@H](O)C[C@H]1OC[C@H](C2CCCCC2)N(c2cc(C#CC(C)(C)C  
 1814 sc2C(=O)O)C1=O.



1834 Figure 21: Failure case: C[Si](C)(C)CCOCn1cc(C2CCc3c(C(=O)O)nn(COCC[Si](C)(C)C)c3C2)cn1.  
 1835