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ABSTRACT

Learning mappings between functional spaces, also known as function-on-function
regression, plays a crucial role in functional data analysis and has broad appli-
cations, e.g., spatiotemporal forecasting, curve prediction, and climate modeling.
Existing approaches, such as functional linear models and neural operators, either
fall short of capturing complex nonlinearities or lack reliable uncertainty quantifi-
cation under noisy, sparse, and irregularly sampled data. To address these issues,
we propose Deep Gaussian Processes for Functional Maps (DGPFM). Our method
designs a sequence of GP-based linear and nonlinear transformations, leveraging
integral transforms of kernels, GP interpolation, and nonlinear activations sampled
from GPs. A key insight simplifies implementation: under fixed locations, discrete
approximations of kernel integral transforms collapse into direct functional integral
transforms, enabling flexible incorporation of various integral transform designs.
To achieve scalable probabilistic inference, we use inducing points and whitening
transformations to develop a variational learning algorithm. Empirical results on
real-world and PDE benchmark datasets demonstrate that the advantage of DGPFM
in both predictive performance and uncertainty calibration.

1 Introduction

Function-on-function regression (Ramsay & Dalzell, 1991; Morris, 2015) extends standard regression
into functional spaces, where both input and output variables are functions — objects that are
infinite-dimensional in nature. It serves as a fundamental tool in functional data analysis (Ramsay
& Silverman, 2002) and has found widespread applications such as temporal, spatiotemporal, and
curve prediction in econometrics (Rust, 2022), brain imaging (Wang et al., 2014; Wang, 2013),
energy and utility consumption forecasting (Fumo & Biswas, 2015), and weather and climate
modeling (Holmstrom et al., 2016; Masselot et al., 2018).

Despite the success of existing methods, most of them have focused on functional linear regres-
sion (Yao et al., 2005; Manrique, 2016), which predicts the output function by integrating the input
function against a (parameterized) regression function. This effectively performs a linear transfor-
mation in an infinite-dimensional space. While intuitive and elegant, simple linear transformations
often fall short in capturing the complex nonlinear relationships arising in real-world applications. In
scientific machine learning, neural network models — often referred to as neural operators (Li et al.,
2020; Azizzadenesheli et al., 2024) — have been proposed to learn the operators of partial differ-
ential equations (PDEs), which can be viewed as a special case of function-on-function regression.
Although successful, these methods typically rely on high-quality, noise-free, regularly sampled data
generated from numerical simulations. Moreover, they focus primarily on point estimation and lack
mechanisms for uncertainty quantification. In practical settings, however, data are often noisy, sparse,
and irregularly sampled, necessitating models that are not only highly expressive but also robust and
capable of providing well-calibrated uncertainty estimates.

To overcome these limitations, we propose DGPFM, a deep Gaussian process model for functional
maps. DGPFM is flexible enough to capture complex, highly nonlinear relationships and, importantly,
enables principled probabilistic inference, offering reliable uncertainty quantification. Specifically,
we model the input function as a Gaussian process (GP) and represent the mapping from inputs to
outputs as a sequence of GP-based linear and nonlinear transformations in functional space. The
linear transformation is implemented via an integral transform of the kernel to obtain the cross-
covariance, followed by GP interpolation, while the nonlinear transformation is realized through a
GP activation function. We further identify a key insight of our design: under fixed locations, any
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discrete approximation of the kernel integral transform causes the intermediate covariance and cross-
covariance matrices to cancel out during GP interpolation. This leaves the integral transform being
applied directly to the discretized functions, eliminating the need to track complex kernel structures
across layers and greatly simplifying model implementation. As a result, our framework can flexibly
incorporate arbitrary discrete integral transform designs without requiring explicit computation of the
resulting covariance functions. In particular, we propose a simple dimension-wise integral transform,
either based on 1D quadrature rules or through the use of the convolution theorem and Fourier
transformations inspired by the neural operator literature. Finally, to enable efficient training and
probabilistic inference, we introduce a set of inducing points for each GP activation function and use
a whitening transformation to construct a variational posterior of the inducing variables. We then
develop a stochastic variational inference algorithm for scalable training.

For evaluation, we assess DGPFM on three numerical simulation datasets and three real-world
applications. DGPFM nearly always achieves the best prediction accuracy in terms of normalized
root mean square error (NRMSE). More importantly, it outperforms alternative methods in test log-
likelihood scores, demonstrating substantially better uncertainty calibration than Bayesian version of
neural operators trained with popular methods such as Stochastic Gradient Langevin Dynamics and
Monte Carlo dropout. Visualizations of prediction examples further confirm that DGPFM produces
reliable and well-calibrated uncertainty estimates.

2 Background

Functional Linear Regression. Function-on-function regression aims to estimate the mapping
between two functional spaces F1 and F2. Given an input function f(·) ∈ F1 and output function
u(·) ∈ F2, functional linear regression (FLR) (Yao et al., 2005) introduces a linear mapping:
u(x) =

∫
w(x,x′)f(x′)dx′, where w(x,x′) is the coefficient function, extending standard linear

regression to an infinite dimensional space. To make estimation tractable, FLR typically employs basis
function expansions to represent f , u, andw in finite-dimensional forms, e.g., u(x) =

∑K
k=1 ckφk(x),

f(x′) =
∑L

l=1 αlψl(x
′), and w(x,x′) =

∑K
k=1

∑L
l=1 ωklφk(x)ψl(x

′), where {φk} and {ψl} are
basis functions, and ωkl are the coefficients of the regression surface. The model can then be expressed
as multi-variate linear regression. Commonly used bases include B-spines, Fourier bases, and others.

Gaussian Processes (GPs). Gaussian processes offer a powerful probabilistic framework for
function estimation. Let f : Rd → R denote the target function. A GP places a prior
over f such that: f(·) ∼ GP(m(·), cov(·, ·)), where m(·) is the mean function and cov(·, ·) is
the covariance function, often specified as a kernel function k(x,x′). In practice, m is usu-
ally set to zero. Given input locations X = [x1, . . . ,xN ]>, the corresponding function values
f = [f(x1), . . . , f(xN )], follow a multi-variate Gaussian distribution, p(f) = N (f |0,K) where
[K]ij = cov(f(xi), f(xj)) = k(xi,xj). This projection is fundamental to GP inference. Sup-
pose f is known, and we want to predict the function value at a new location x. Since f and
f(x) also follow a multi-variate Gaussian distribution, we immediately obtain a conditional Gaus-
sian as the predictive distribution, p(f(x)|f) = N

(
f(x)|µ(x), σ2(x)

)
, where the conditional

mean gives an interpolation estimate, µ(x) = cov(f(x), f)K−1f , and the conditional variance
σ2(x) = cov(f(x), f(x)) − cov(f(x), f)K−1cov(f , f(x)) quantifies the prediction uncertainty,
cov(f(x), f) = k(x,X) = [k(x,x1), . . . , k(x,xN )] and X = [x1, . . . ,xN ]>.

3 Model

We now introduce DGPFM, our deep GP model for learning mappings between functions. Given an
input function f(·) and an output function u(·), we model f as a GP, and construct the mapping from
f to u through a sequence of intermediate conditional GP layers, which realize successive linear and
nonlinear transformations in functional space.

3.1 GP-based Linear and Nonlinear Transformation

Specifically, LetC denote the number of GPs in each layer. At a layer l, denote each GP i (1 ≤ i ≤ C)
as hl,i(·) and the associated kernel/covariance function as κl,i(·, ·). Note that these GPs are defined
conditionally on the latent functions of the preceding layer; when marginalized over previous layers,
they do not necessarily remain GPs. To perform a linear transformation, we introduce a coefficient
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function wl(·, ·), and model

hl+1,i(x) =

∫
wl(x,x

′)hl,i(x
′)dx′, (1)

which is similar to FLR. Since hl,i(·) is a GP, its integral transform hl+1,i(·) is also a GP; the
covariance and cross-covariance functions1 are given by

κl+1,i(x,x
′) = cov (hl+1,i(x), hl+1,i(x

′)) =

∫∫
wl(x, z)κl,i(z, z

′)wl(z
′,x′)dzdz′, (2)

cl,i(x,x
′) = cov (hl+1,i(x), hl,i(x

′)) =

∫
wl(x, z)κl,i(z,x

′)dz. (3)

To perform nonlinear transform, we instead model hl+1,i as a nonlinear activation function of the
value of hl,i, and the activation function is sampled from a GP:

hl+1,i(x) = al (hl,i(x)) , al ∼ GP (0, ϑl(z, z
′)) , (4)

where ϑl(·, ·) is the covariance function of al. The covariance of hl+1,i conditioned on hl(·) is

κl+1,i(x,x
′) = ϑl(hl,i(x), hl,i(x

′)). (5)

3.2 Model Framework

In general, we assume the input function f : Ω → Rd0 is observed (sampled) at a set of locations
Xin = {xin,j}Nin

j=1 and the output function u : Ω → Rd1 sampled at Xout = {xout,j}Nout
j=1. Notably,

Xin and Xout can be different or even non-overlapping. These locations can be sparse and irregular,
and may vary across different input-output function pairs during both training and testing.

To flexibly accommodate varying sampling locations, and to enable tractable computation of the
GP layers, we introduce a set of fixed locations XQ to serve as the projection points for each GP
layer. We first assign a GP prior over each component of f : f j ∼ GP(0, νj(·, ·)) where f j is j-th
component of f with covariance function νj . Let f j , f jQ, and f̂ j denote the values of fj at Xin, XQ,

and the noisy observations at Xin, respectively. Define F̂ = [̂f1, . . . , f̂d0 ], F = [f1, . . . , fd0 ], and
FQ = [f1

Q, . . . , f
d0

Q ]. Their joint distribution factorizes as p(F̂,F,FQ) = p(F)p(F̂|F)p(FQ|F) =∏d0

j=1N (f j |0, νj(Xin,Xin))N (f̂ j |f j , σ2
j I)p(f

j
Q|fj) where σ2

j is the noise variance, and p(f jQ|fj) is
conditional Gaussian. Marginalizing out F yields

p(F̂,FQ) = p(F̂)p(FQ|F̂) =
∏

j
N
(
f̂j |0, νj(Xin,Xin) + σ2

j I
)
N (f jQ|mj ,Sj), (6)

where mj = νj(XQ,Xin)K−1
j f̂j , Sj = νj(XQ,XQ)− νj(XQ,Xin)K−1

j νj(Xin,XQ), and Kj =

νj(Xin,Xin) + σ2
j . To enrich representation, we then introduce a weight matrix W0 ∈ Rd0×C to

mix the d0 input channels: H1 = FQW0 ∈ RQ×C , where each of the C columns correspond to a
GP projection formed as a linear combination of the d0 components of f(·), evaluated at XQ.

Next, we apply a sequence of linear and nonlinear transformation as described in Section 3.1. To
simplify training and avoid the costly, complex computation of conditional covariance matrices, we
model the linear transformation using the GP conditional mean (interpolation) rather than the full
conditional Gaussian distribution. Specifically, p(Hl+1|Hl) =

∏C
i=1 p(hl+1,i|hl,i), and

p(hl+1,i|hl,i) = δ
(
hl+1,i − cl,i(XQ,XQ)κl,i(XQ,XQ)−1hl,i

)
(7)

where hl+1,i and hl,i denote the i-th columns of Hl+1, and Hl, respectively, representing the latent
functions hl+1,i(·) and hl,i(·)’s projections at XQ, and δ(·) denotes the Dirac-delta prior. To perform
nonlinear transformation, for each GP activation function al(·) in (4), we introduce inducing locations
β = [β1, . . . , βS ]> ∈ R, with corresponding inducing values ηl = [al(β1), . . . , al(βS)]>. These
follow the prior: p(ηl) = N (ηl | 0, ϑl(β,β)). We then model the nonlinear transformation as

p(Hl+1|Hl,ηl) = N
(
vec(Hl+1)|ϑl (vec(Hl),β)ϑl(β,β)−1ηl,Tl

)
, (8)

1Please see Appendix section A for the detailed derivation.
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where Tl = ϑl(vec(Hl), vec(Hl))−ϑl(vec(Hl),β)ϑl(β,β)−1ϑl(β, vec(Hl)), and vec(·) denotes
vectorization.

The final layer HL is obtained via linear transform as in (7), but projected onto the observed locations
Xout. We then apply a weight matrix W1 ∈ RC×d1 to aggregate the C latent channels into the
output space: U = HLW1 ∈ RNout×d1 . Let Y denote the observed outputs. We adopt a Gaussian
likelihood, p(Y|U) =

∏d1

i=1N (yi|ui, viI), where yi is the i-th component of the output function
observed at the Nout locations, ui is the i-th column of U, and vi is the corresponding noise variance.
In Appendix Section E, we present the conditional GP priors defined by our model in function space.

4 Algorithm

4.1 Discrete Approximation of Integral Transforms

A critical challenge in implementing our model lies in computing and tracking the covariance function
κl,i(·, ·) for each GP layer (l = 1, 2, . . .) and the cross-covariance function cl,i(·, ·) required during
linear transformations. These computations involve repeated integral transforms (see (2) and (3)) and
nested compositions (see (5)), making closed-form derivations intractable and computation highly
inefficient. To address this challenge, we adopt a discrete approximation of the integral transform
for computing the cross-covariance (see (3)). This leads to a striking insight: the covariance and
cross-covariance matrices cancel out, dramatically simplifying the implementation.

Specifically, we consider a quadrature rule to approximate the integral transform. Let α =
[α1, . . . , αM ]> denote the quadrature weights and X = {xj}Mj=1 the corresponding nodes. The
cross-covariance function in (3) is then approximated as

cl,i(x,x
′) ≈

∑M

m=1
αm · wl(x,xm)κl,i(xm,x

′). (9)

According to (7), the values of hl+1,i(·) at the projection points XQ are given by

hl+1,i = cl,i(XQ,XQ)κl,i(XQ,XQ)−1hl,i. (10)

Substituting (9) into (10), we obtain: hl+1,i = Wl · diag(α) · κl,i(X,XQ)κl,i(XQ,XQ)−1hl,i,
where Wl denotes the evaluations of the weight function wl(·, ·) over the Cartesian product XQ×X.
Now, if we set the projection points XQ = X, the cross-covariance and covariance matrices cancel
out, yielding:

hl+1,i = Wl · diag(α) · hl,i, (11)

which is a discrete approximation applied directly to the integral transform of hl,i(·) as defined in (1).

This observation holds for any discrete approximation for the cross-covariance function (3): as long
as we set the projection points XQ to the locations used for the approximation, the GP interpolation
in (7) reduces to the form of (11). That means, we never need to explicitly compute or track the
covariance function at intermediate GP layers. The only required covariance functions are: νj(·, ·)
for the input function f (see (6)) and ϑl for constructing each GP activation (see (4)). This insight
not only greatly streamlines the model implementation, but also enables flexible choices of integral
transform approximation.

We proposed two approximation methods. The first follows the quadrature-based approach described
in (9) and (11). Rather than specifying a parametric form for the weight function wl(x,x

′), we
directly estimate Wl—the function values over the grid XQ ×XQ. However, since the input to wl

is twice the dimensionality of the function hl,i(x), the size of Wl grows exponentially with input
dimension. This leads to high computational and memory costs. To address this issue, we propose a
dimension-wise integral transform. For illustration, consider x = [x1, x2] ∈ R2. We introduce two
separate weight functions, w1

l (x1, x
′
1) and w2

l (x2, x
′
2), and design the transformation as:

hl+1,i(x1, x2) =

∫
w1

l (x1, x
′
1)hl,i(x

′
1, x2)dx′1 +

∫
w2

l (x2, x
′
2)hl,i(x1, x

′
2)dx′2. (12)

We approximate each integral in (12) using 1D quadrature rules. As a result, we only need to estimate
two 2D matrices, W1

l and W2
l , which represent the values of w1

l (·, ·) and w2
l (·, ·) over the Cartesian

4
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products of the respective quadrature nodes. This method generalizes naturally to higher-dimensional
inputs and scales linearly with the input dimension, enabling substantial efficiency gains.

For the second approximation, we leverage the idea of Fourier Neural Operators (Li et al., 2020;
Tran et al., 2021). We assume each weight function is stationary, i.e., wj

l (xj , x
′
j) = wj

l (xj − x′j),
and set the projection points XQ on a regular grid in each dimension. Using the convolution
theorem (Bracewell & Kahn, 1966), each integration in R.H.S of (12) can be computed as:∫
w1

l (x1, x
′
1)hl,i(x

′
1, x2)dx′1 =

∫
w1

l (x1 − x′1)hl,i(x
′
1, x2)dx′1 = F−1

[
F [w1

l (·)] · F [hl,i(·, x2)]
]
,∫

w2
l (x2, x

′
2)hl,i(x1, x

′
2)dx′2 = F−1

[
F [w2

l (·)] · F [hl,i(x1, ·)]
]
, (13)

where F [·] and F−1[·] denote the Fourier and inverse Fourier transforms, respectively. Similar to (12),
this formulation generalizes directly to higher-dimensional inputs. We approximate (13) by applying
the discrete Fourier transform (DFT) to hl,i on XQ (along each dimension), multiplying the result
with the discretized spectrum of w1

l , w
2
l , . . ., and then applying the inverse DFT to obtain hl+1,i.

While this dimension-wise approximate integral transform may bring up additional errors relative
to (1), it substantially reduces the number of mode parameters and alleviates the risk of overfitting in
practice. In Appendix Section D, we provide a mathematical analysis of the discrete approximation
error, and ablation studies in Appendix Section F further confirm the advantage of our approach.

4.2 Stochastic Variational Learning

To enable uncertainty quantification via probabilistic inference, we develop an efficient variational
learning algorithm (Wainwright et al., 2008; Hensman et al., 2013). Let F̂ and Y denote an observed
pair of input and output functions. As described in Section 3.2, the joint probability of our model is

p(joint) = p(F̂)p(FQ|F̂)
∏

l+1∈Γlin
p(Hl+1|Hl)p(Wl)

∏
l+1∈Γnon

p(ηl)p(Hl+1|Hl,ηl) · p(Y|U),

where Γlin and Γnon denote the set of linear and nonlinear layers, respectively, and p(Wl) is the
prior over the weight function values, which can also be specified as GPs. For clarity of exposition,
we present the method using a single training instance, though the extension to multiple instances
is straightforward. Given the training dataset D, our goal is to infer the posterior distribution of
the inducing variables {ηl} together with the point estimates of the kernel parameters and weight
function values Wl, and noise variances. Since each Hl is determined by these parameters, ηl,
and the proceeding layer Hl−1 (see (7) and (8)), posterior inference reduces to sampling {ηl}. At
prediction, we draw posterior samples of each ηl, propagate them through the model, and obtain
predictive samples U , thereby enabling uncertainty quantification.

However, direct inference over ηl faces two challenges. First, ηl and the kernel parameters are tightly
coupled, making joint optimization inefficient and prone to poor local optima (Long et al., 2022).
Second, computing p(Hl+1|Hl,ηl) in (8) requires evaluating a covariance matrix at all the latent
function values Hl (size NQC), which is computationally expensive. To address these issues, we
first adopt a whitening transformation (Murray & Adams, 2010):

ηl = Alηl, p(ηl) = N (0, I), AlA
>
l = ϑl(β,β), (14)

where Al is the Cholesky factor of the covariance matrix. Note the standard Gaussian prior over ηl
follows from p(ηl) = N (0, ϑl(β,β)). We then construct a variational posterior approximation:

p({ηl}|D) ≈ q({ηl}) ∝
∏

l+1∈Snon
q(ηl)p(Hl+1|Hl,Alηl). (15)

Following the variational inference framework, the evidence lower bound (ELBO), L = Eq

[
p(Joint)
q({ηl})

]
,

becomes

L = Eq

[
p(F̂)p(FQ|F̂)

∏
l+1∈Slin

p(Hl+1|Hl)p(Wl)
∏

l+1∈Snon
p(ηl)

hhhhhhhhp(Hl+1|Hl,Alηl) · p(Y|U)∏
l+1∈Snon

q(ηl)
hhhhhhhhp(Hl+1|Hl,Alηl)

]
,

where all conditional terms p(Hl+1|Hl,Alηl) cancel, substantially simplifying the computation.
The ELBO reduces to L =

∑
l∈Snon

KL (q(ηl)‖N (0, I)) + Eq [log(other-terms)]. We use the repa-
rameterization trick (Kingma & Welling, 2013) to compute unbiased estimates of the expectations
and their gradient, and optimize the ELBO using stochastic gradient descent.
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Computational Complexity: The time complexity of our training method is O(dN2
QBL) for the

quadrature-based dimension-wise integral transform (12) and O(dNQ logNQBL) for the Fourier
transform approach (13) (via FFT). Here, d is the input dimension, NQ the number of quadrature
nodes or sampling collocations, L the number of layers, S the number of inducing points, and B is
the mini-batch size for stochastic training. In both cases, the time complexity scales linearly with
input dimensionality. The space complexity is O(L(dN2

Q +BNQC + S2)) for the quadrature-based
approach, and O(L(dNQ +BNQC + S2)) for the Fourier-based method, accounting for the storage
of weight function values, the hidden function valuesHi, and the variational posterior q({ηl}).

5 Related Work

Functional data analysis (FDA) has been a prominent area of statistical research for several decades,
tracing back to foundational works such as Ramsay & Dalzell (1991); Faraway (1997). Key topics in
this field include functional regression (Morris, 2015) and functional principal component analysis
(FPCA) (Silverman, 1996; Hall & Hosseini-Nasab, 2006). Functional regression refers to a class
of regression models in which the predictors and/or the response are functions. A major subfield is
function-on-function regression, where both the predictors and the response are functional. Other
widely studied formulations include scalar-on-function regression (Goldsmith & Scheipl, 2014; Reiss
et al., 2017; Hullait et al., 2021), function-on-scalar regression (Reiss et al., 2010; Bauer et al., 2018),
as well as hybrid or mixed cases. A variety of function-on-function regression methods have been
developed (Yao et al., 2005; Manrique, 2016; Kim et al., 2018; Luo & Qi, 2019; Beyaztas & Shang,
2020; Aneiros et al., 2022; Wang et al., 2022; Dette & Tang, 2024), with most of them grounded in
the functional linear regression framework, an intuitive extension of classical linear regression. These
methods primarily differ in their choice of basis functions, normalization, regularization, etc.

In scientific machine learning, operator learning has emerged as an vibrant field aimed at learning
mappings between function spaces governed by PDEs. These mappings — often referred to as
operators — represent relationships involving derivatives and integrals. Many neural architectures
have been specifically designed for learning such PDE operators. One of the most prominent
classes of operator learning models are the Fourier Neural Operators (FNO) (Li et al., 2020) and
their extensions (Tran et al., 2021; Lingsch et al., 2024), which perform functional transformations
through Fourier layers combined with standard neural network activations such as GeLU. Other
notable operator learning models include the Multiwavelet Neural Operator (Gupta et al., 2021),
CNO (Raonic et al., 2023), DeepONet (Lu et al., 2021), and transformer-based approaches (Cao,
2021; Li et al., 2022a; Hao et al., 2023), among others.

The classical Deep GP framework (Damianou & Lawrence, 2013), is designed to learn a single
function from its observed values across various input locations, aligning with standard GP regression
setting. In contrast, our formulation extends this paradigm by considering both the input and output as
functions, aiming to learn their relationship directly in the functional space. Our variational inference
approach is similar to (Salimbeni & Deisenroth, 2017), where for each GP activation, we introduce a
set of inducing variables to facilitate tractable function estimation. However, we further leverage the
whitening transformation, which reparameterizes the prior over the inducing variables as a standard
Gaussian distribution. This reparameterization decouples the typically strong correlation between the
kernel parameters and inducing variables, thereby easing the optimization of variational ELBO.

6 Experiment

We evaluated DGPFM on three numerical PDE simulation scenarios and three real-world applications.
The PDE simulation scenarios represent the central focus of neural operator methods. To further
demonstrate the versatility of our approach, we extended our evaluation to real-world applications
characterized by sparse, noisy, and irregularly sampled data. This comprehensive evaluation examines
the robustness and adaptability of our method across both controlled and practical settings.

The simulation scenarios are as follows. (1) 1D Burgers’ Equation (Lu et al., 2022): learning a
mapping from the initial condition u0(x) to the solution at time t = 1, u1(x), where u0, u1 : (0, 1)→
R. (2) 2D Darcy Flow, a two-dimensional Darcy flow equation (Lu et al., 2022), predicting the
pressure field u : [0, 1]2 → R from the given permeability field c : [0, 1]2 → R. (3) 3D Compressible
Navier-Stokes (NS) Equations. The third scenario involves three-dimensional compressible fluid
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dynamics governed by the compressive NS equations (Takamoto et al., 2022). The task is to predict
the velocity field v1 at the first time step from the initial velocity field v0, where v0, v1 : [0, 1]3 → R.
For the 1D Burgers’ equation and 2D Darcy flow, we used 1,000 training examples and 200 test
examples. For the 3D compressible NS equations, only 100 examples are available; we used 90 for
training and 10 for testing . Detailed simulation settings are provided in Appendix Section B.

We also tested on the following real-world applications. (1) Beijing-Air2, including hourly mea-
surements of several air pollutants in Beijing from 2014 to 2017. The task is to predict the hourly
concentration of CO over the following week based on the previous week’s measurements of SO2,
CO, PM2.5, and PM10. This constitutes a 1D function-to-function regression task. We randomly
selected 5,000 weeks for training and 1,000 weeks for testing. (2) SLC-Precipitation, compiled
from daily precipitation records collected by weather stations distributed across the Great Salt Lake
area from 1954 to 2023. The prediction task is to infer the next day’s precipitation based on the
current day’s readings. The weather stations are sparsely and irregularly distributed, with substantial
missing data. We randomly selected 128 stations, and formulated the task as 2D function-to-function
regression. We used 5,000 examples for training and 1,000 for testing. (3) Quasar Reverberation
Mapping, derived from the Zwicky Transient Facility (ZTF) (Bellm et al., 2019) at the Palomar
Observatory. The objective is to model the relationship between a quasar’s central continuum emis-
sion and the delayed response from surrounding emitting regions, which is known as reverberation
mapping (Blandford & McKee, 1982; Peterson, 1993). The dataset consists of 793 pairs of irregularly
sampled light curves, with distinct sampling locations for input and output functions. The task is
formulated as a 1D function-on-function regression problem. We used 650 examples for training and
143 for testing. More details are provided in Appendix Section B.4.

We compared DGPFM with the following methods: (1) Functional Linear Regression (FLR) (Morris,
2015), the mainstream function-on-function regression method that extends linear regression into
functional spaces. We employed two popular basis expansions: one with Fourier bases (denoted as
LFR-Fourier) and the other with B-splines (LFR-BSpline). (2) Fourier Neural Operator (FNO) (Li
et al., 2022b), the most widely used neural operator model that introduces Fourier layers to perform
linear functional transformations. However, FNO requires inputs and output functions to be sampled
on a uniform grid due to its reliance on Fast Fourier Transform (FFT). (3) DSE-FNO (Lingsch et al.,
2024), a most recent variant of FNO, which uses non-uniform discrete Fourier transforms (NUDFT)
to enable direct spectral evaluations on irregular domains. However, DSE-FNO still assumes that
both input and output functions share identical sampling locations to main the consistency between
NUDFT and its inverse. (4) GNOT (Hao et al., 2023), a transformer-based neural operator capable of
flexibly handling arbitrarily irregular sampling in both input and output functions via cross-attention
mechanisms (Vaswani et al., 2017). (5) LFR-GP, a baseline model that uses a single integral GP
transform layer with Gauss-Legendre quadrature (see (11)), effectively representing a simplified
version of DGPFM with one GP layer. We evaluated two versions of our method: DGPFM-QR,
which performs dimension-wise integral transforms using numerical quadrature rules (see (12));
DGPFM-FT, which leverages the convolution theorem and Fourier transform to compute the integral
transforms (see (13)). For each method on each task, we used a separate validation set to select the
optimal hyperparameters based on one training dataset. These hyperparameters were then fixed, and
the model was trained and tested across five independent runs. We report both the mean prediction
error and the standard deviation to assess performance stability and accuracy. We leave the details
about the hyperparameter selection for each method in Appendix Section C.

Prediction Accuracy. We first evaluated the normalized root-mean-square error (NRMSE) for each
method. As shown in Table 1, our method (DGPFM-FT/-QR) consistently achieves the highest
prediction accuracy, with the exception of the NS dataset, where FLR-Fourier/-BSpline outperform
all methods. This exception may be due to the NS dataset’s difficulty — characterized by a high
Mach number — and the limited number of training examples (only 90 available). In such cases,
linear models with simple basis functions can offer more robust predictive performance. Nevertheless,
DGPFM still outperforms all the other methods by a considerable margin. On 1D-Burgers and
2D-Darcy , DGPFM-FT surpasses highly optimized neural operator models, while DGPFM-QR
achieves comparable error levels. Notably, across all three real-world applications, both DGPFM-
FT and DGPFM-QR significantly outperform all competing methods, with statistical significance
exceeding the 95% confidence level. Furthermore, neural operators such as FNO and DSE-FNO

2https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+
quality+data
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Table 1: Normalized Root-Mean-Square (NRMSE) error. The top two results are highlighted in bold. N/A
indicates that the method is not applicable3.

(a) Simulation datasets.

Method 1D-Burgers 2D-Darcy 3D-NS

FLR-Fourier 3.76e-1 ± 1.90e-3 4.58e-1 ± 6e-4 4.51e-1 ± 2.22e-2
FLR-BSpline 4.08e-1 ± 2.00e-3 4.54e-1 ± 6e-4 4.52e-1 ± 2.26e-2

FLR-GP 3.36e-1 ± 1.00e-3 5.54e-1 ± 1.70e-3 6.17e-1 ± 4.61e-2
GNOT 8.90e-3 ± 1.40e-4 2.58e-2 ± 3.40e-4 8.15e-1 ± 2.18e-2
FNO 2.76e-3 ± 4.17e-5 1.79e-2 ± 2.49e-4 5.81e-1 ± 4.77e-2

DSE-FNO 6.69e-2 ± 9.89e-4 3.63e-2 ± 1.70e-4 N/A
DGPFM-FT 1.79e-3 ± 1.86e-4 1.67e-2 ± 1.40e-4 4.67e-1 ± 2.02e-3
DGPFM-QR 7.66e-3 ± 6.21e-4 1.83e-2 ± 5.17e-4 4.85e-1 ± 1.83e-3

(b) Real-world datasets.

Method Beijing-Air Quasar SLC-Precipitation

FLR-Fourier 0.636 ± 3.00e-3 0.008 ± 1.00e-3 1.02 ± 3.40e-3
FLR-BSpline 0.639 ± 3.00e-3 0.008 ± 1.00e-4 1.02 ± 3.50e-3

FLR-GP 0.552 ± 1.90e-3 0.0079 ± 1.00e-4 1.03 ± 1.06e-3
GNOT 0.553 ± 1.80e-3 0.0054 ± 1.00e-4 0.836 ± 6.76e-3
FNO 0.403 ± 2.10e-3 N/A N/A

DSE-FNO 0.529 ± 1.34e-3 N/A N/A
DGPFM-FT 0.304 ± 1.16e-3 0.0047 ± 6.06e-5 0.776 ± 4.64e-3
DGPFM-QR 0.263 ± 9.13e-3 0.0045 ± 6.20e-5 0.777 ± 4.15e-3

Table 2: Mean Negative Log-Likelihood (MNLL). The top two results are highlighted in bold.

(a) Simulation datasets.

Method 1D-Burgers 2D-Darcy 3D-NS

GNOT-MCDropout 2.02 ±0.031 2.84 ±0.104 4.47e+4 ±6.48e+3
FNO-MCDropout 312.46 ± 19.32 111.11 ±4.10 102.8 ± 31.3

GNOT-SGLD 5.33 ±3.50e-3 13.29 ± 0.022 578.6 ± 101.6
FNO-SGLD 12.05 ±2.96 13.24 ± 4.62 40.0 ± 23.18
DGPFM-FT -4.27 ±0.101 -3.50 ± 0.025 9.58 ± 1.88
DGPFM-QR -3.29 ± 0.066 -4.13 ± 0.042 11.2 ± 2.01

(b) Real-world datasets.

Method Beijing-Air Quasar SLC-Precipitation

GNOT-MCDropout 464.7± 35.1 54.3 ±5.97 404.5 ± 16.9
FNO-MCDropout 171.1 ± 6.12 N/A N/A

GNOT-SGLD 10.38 ± 1.10e-3 17.06 ± 0.03 5298.74 ± 943.705
FNO-SGLD 18.66 ± 3.08 N/A N/A
DGPFM-FT 7.78 ± 5.81e-2 -0.534 ±6.69e-2 17.3 ± 2.18
DGPFM-QR 8.01 ± 9.36e-2 -0.924 ±1.71e-2 25.9 ± 4.82

are limited by regular or fixed sampling locations, making them unsuitable for real-world scenarios
involving arbitrary observation points. For instance, neither FNO nor DSE-FNO can be applied to the
Quasar and SLC-Precipitation datasets, where the number and locations of sampling points vary not
only between the input and output functions but also across different training and testing instances.
Together the results highlight the strong flexibility and predictive performance of DGPFM.

Uncertainty Quantification. Next, we evaluated our method from a probabilistic perspective by
examining the Mean Negative Log-Likelihood (MNLL). For comparison, we trained FNO and GNOT

3FNO is not applicable to irregularly sampled locations, while DSE-FNO cannot be used when the input
and output functions are sampled at different locations, leading to missing results on several datasets. Since the
official DSE-FNO implementation does not support 3D functional mappings (required in 3D-NS ), we developed
our own version. However, it produced unreasonably large errors, and thus the corresponding results are omitted.
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Figure 1: Prediction examples of DGPFM on Beijing-Air dataset. The shaded regions indicate one predictive
standard deviation. The top row shows the prediction of DGPFM-FT and the bottom row DGPFM-QR.

using two widely adopted Bayesian neural network training approaches: Stochastic Gradient Langevin
Dynamics (SGLD) (Welling & Teh, 2011) and Monte Carlo Dropout (MCDropout) (Gal & Ghahra-
mani, 2016). For SGLD, the initial learning rate was chosen from the range {10−6, 10−5, . . . , 10−2},
while for MCDropout, the dropout rate was tuned across {0.1, 0.2, . . . , 0.5}. As shown in Table 2,
both variants of our method —DGPFM-FT and DGPFM-QR— consistently achieve the lowest
MNLL across all the datasets, largely outperforming the competing methods. These results highlight
the strength of our method not only in predictive accuracy but also in uncertainty quantification.

We further investigated the probabilistic predictions of our method. Specifically, we randomly selected
four test examples respectively from two real-world applications: Beijing-Air and Quasar, as well as
two test examples respectively from simulation applications: 2D Darcy and 1D Burgers. Figure 1 and
Appendix Figure 2 display the predictive means and standard deviations produced by DGPFM-FT
and DGPFM-QR at each input location. As observed, in regions where the predicted mean closely
matches the ground truth, the shaded region—representing the predictive standard deviation (STD)
—is relatively narrow. Conversely, in regions where the discrepancy between the predictive mean
and the ground truth is larger, the shaded area expands, indicating higher predictive uncertainty. It is
interesting to observe that the predictive standard deviation produced by DGPFM-FT is smoother
than that of DGPFM-QR. This may be because DGPFM-QR freely learns the weight function at
the quadrature nodes, whereas DGPFM-FT leverages Fourier transforms to retain primarily low-
frequency components, resulting in smoother uncertainty estimates. Appendix Figure 3 compares
predictive STD with point-wise error and their normalized counterparts. In both cases, larger errors
(or relative errors) generally correspond to larger predictive STDs. After normalization, however,
regions with large absolute errors often exhibit smaller relative errors and thus smaller normalized
STDs. This indicates that predictive STD naturally scales with the magnitude of ground-truth values,
which is reasonable. Additional examples are shown in Figure 4 (Appendix), where very small errors
(NMSE: 0.005) correspond to very small predictive STDs.

Overall, the standard deviation outputs from our method appropriately reflect the quality of the
predictions, confirming that DGPFM provides well-calibrated uncertainty estimates.

Ablation Studies. We conducted extensive ablation studies to further evaluate DGPFM, examining
various hyperparameter choices, the number of projection points, integral transforms, and the effec-
tiveness of GP activation function. We also analyzed the learned weight functions, and evaluated the
training efficiency. Details are provided in Appendix Section F, G, and H.

7 Conclusion

We have presented DGPFM, a deep Gaussian process model designed for learning mappings between
functions. The model comprises a sequence of GP layers that perform linear transformations and
nonlinear activations in functional space. DGPFM is capable of handling sparse, noisy, and arbitrarily
irregularly sampled data, while providing probabilistic inference for effective uncertainty quantifica-
tion. Its performance on both simulated and real-world datasets is encouraging, outperforming or
performing on par with classical functional linear regression and recent neural operator methods.
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Ivezić, Edward Jackson, Lynne Jones, Mario Juric, Mansi M. Kasliwal, S. Kaspi, Stephen Kaye,
Michael S. P. Kelley, Marek Kowalski, Emily Kramer, Thomas Kupfer, Walter Landry, Russ R.
Laher, Chien-De Lee, Hsing Wen Lin, Zhong-Yi Lin, Ragnhild Lunnan, Matteo Giomi, Ashish
Mahabal, Peter Mao, Adam A. Miller, Serge Monkewitz, Patrick Murphy, Chow-Choong Ngeow,
Jakob Nordin, Peter Nugent, Eran Ofek, Maria T. Patterson, Bryan Penprase, Michael Porter,
Ludwig Rauch, Umaa Rebbapragada, Dan Reiley, Mickael Rigault, Hector Rodriguez, Jan van
Roestel, Ben Rusholme, Jakob van Santen, S. Schulze, David L. Shupe, Leo P. Singer, Maayane T.
Soumagnac, Robert Stein, Jason Surace, Jesper Sollerman, Paula Szkody, F. Taddia, Scott Terek,
Angela Van Sistine, Sjoert van Velzen, W. Thomas Vestrand, Richard Walters, Charlotte Ward,
Quan-Zhi Ye, Po-Chieh Yu, Lin Yan, and Jeffry Zolkower. The Zwicky Transient Facility: System
Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific,
131(995):018002, January 2019. doi: 10.1088/1538-3873/aaecbe.

Ufuk Beyaztas and Han Lin Shang. On function-on-function regression: Partial least squares approach.
Environmental and ecological statistics, 27(1):95–114, 2020.

R. D. Blandford and C. F. McKee. Reverberation mapping of the emission line regions of Seyfert
galaxies and quasars. Astrophysical Journal, 255:419–439, April 1982. doi: 10.1086/159843.

Ron Bracewell and Peter B Kahn. The Fourier transform and its applications. American Journal of
Physics, 34(8):712–712, 1966.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940, 2021.

Andreas Damianou and Neil Lawrence. Deep gaussian processes. In Artificial Intelligence and
Statistics, pp. 207–215, 2013.

Holger Dette and Jiajun Tang. Pivotal inference for function-on-function linear regression via self-
normalization. In Recent Advances in Econometrics and Statistics: Festschrift in Honour of Marc
Hallin, pp. 557–574. Springer, 2024.

Julian J Faraway. Regression analysis for a functional response. Technometrics, 39(3):254–261,
1997.

Eric Wim Flesch. The million quasars (milliquas) catalogue, v8. The Open Journal of Astrophysics,
6, December 2023. ISSN 2565-6120. doi: 10.21105/astro.2308.01505. URL http://dx.doi.
org/10.21105/astro.2308.01505.

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning programs via
high-level tracing. Systems for Machine Learning, 4(9), 2018.

10

http://dx.doi.org/10.21105/astro.2308.01505
http://dx.doi.org/10.21105/astro.2308.01505


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nelson Fumo and MA Rafe Biswas. Regression analysis for prediction of residential energy con-
sumption. Renewable and sustainable energy reviews, 47:332–343, 2015.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Jeff Goldsmith and Fabian Scheipl. Estimator selection and combination in scalar-on-function
regression. Computational Statistics & Data Analysis, 70:362–372, 2014.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. Advances in neural information processing systems, 34:24048–24062, 2021.

Peter Hall and Mohammad Hosseini-Nasab. On properties of functional principal components
analysis. Journal of the Royal Statistical Society Series B: Statistical Methodology, 68(1):109–
126, 2006.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng,
Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In
International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data. In Uncertainty
in Artificial Intelligence, pp. 282. Citeseer, 2013.

Mark Holmstrom, Dylan Liu, and Christopher Vo. Machine learning applied to weather forecasting.
Meteorol. Appl, 10(1):1–5, 2016.

Harjit Hullait, David S Leslie, Nicos G Pavlidis, and Steve King. Robust function-on-function
regression. Technometrics, 63(3):396–409, 2021.

Janet S Kim, Ana-Maria Staicu, Arnab Maity, Raymond J Carroll, and David Ruppert. Additive
function-on-function regression. Journal of Computational and Graphical Statistics, 27(1):234–
244, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Shibo Li, Xin Yu, Wei Xing, Robert Kirby, Akil Narayan, and Shandian Zhe. Multi-resolution active
learning of fourier neural operators. In International Conference on Artificial Intelligence and
Statistics, pp. 2440–2448. PMLR, 2024.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. arXiv preprint arXiv:2205.13671, 2022a.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential
equations. In International Conference on Learning Representations, 2020.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for PDEs on general geometries. arXiv preprint arXiv:2207.05209,
2022b.

Levi E Lingsch, Mike Yan Michelis, Emmanuel De Bezenac, Sirani M Perera, Robert K Katzschmann,
and Siddhartha Mishra. Beyond regular grids: Fourier-based neural operators on arbitrary domains.
In International Conference on Machine Learning, pp. 30610–30629. PMLR, 2024.

Da Long, Zheng Wang, Aditi Krishnapriyan, Robert Kirby, Shandian Zhe, and Michael Mahoney. Au-
toIP: A united framework to integrate physics into Gaussian processes. In International Conference
on Machine Learning, pp. 14210–14222. PMLR, 2022.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with prac-
tical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineering,
393:114778, 2022.

Ruiyan Luo and Xin Qi. Interaction model and model selection for function-on-function regression.
Journal of Computational and Graphical Statistics, 28(2):309–322, 2019.

M Tito Manrique. Functional Linear Regression Models. Application to High-throughput Plant
Phenotyping Functional Data. PhD thesis, Université de Montpellier, 2016.

Frank J. Masci, Russ R. Laher, Ben Rusholme, David L. Shupe, Steven Groom, Jason Surace,
Edward Jackson, Serge Monkewitz, Ron Beck, David Flynn, Scott Terek, Walter Landry, Eugean
Hacopians, Vandana Desai, Justin Howell, Tim Brooke, David Imel, Stefanie Wachter, Quan-Zhi
Ye, Hsing-Wen Lin, S. Bradley Cenko, Virginia Cunningham, Umaa Rebbapragada, Brian Bue,
Adam A. Miller, Ashish Mahabal, Eric C. Bellm, Maria T. Patterson, Mario Jurić, V. Zach Golkhou,
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Appendix

A GP Covariance for Integral Transformation

Suppose a stochastic function f is sampled from a GP prior with covariance function as a kernel
function κ(·, ·),

f ∼ GP(0, κ(x,x′)).

From the weight space view (Rasmussen & Williams, 2006), we can represent:

f(x) = φ(x)>w,

where φ(x) is the implicit feature mapping of the kernel, i.e., κ(x,x′) = φ(x)>φ(x′), and w ∼
N (0, I). Note that the feature mapping φ(·) can be infinitely dimensional. Suppose function h is a
linear transformation of f ,

h(x) =

∫
Ω

W(x, z)f(z)dz =

∫
Ω

W(x, z)φ(z)>wdz, (16)

whereW is the coefficient (or weight) function. We can accordingly compute the cross-covariance
function between h and f at any pair of inputs (x,x′) by

cov(h(x), f(x′)) = E [h(x)f(x′)]− E[h(x)]E[f(x′)]

=

∫
Ω

W(x, z)φ(z)>E
[
ww>

]
φ(x′)dz

=

∫
Ω

W(x, z)φ(z)>φ(x′)dz

=

∫
Ω

W(x, z)κ(z,x′)dz. (17)

Similarly, we can derive the covariance function of h:

cov(h(x), h(x′)) =

∫
Ω

∫
Ω

W(x, z)κ(z, z′)W(z′,x′)dzdz′. (18)

From (17) and (18) we can see that these (cross-) covariance functions are non-stationary even if both
W and κ are stationary, namely whenW(x, z) =W(x− z) and κ(z,x′) = κ(z− x′).

B Dataset Details

B.1 1D Burgers’s equation

We first considered a 1D Burger’s equation:

ut + uxx = νuxx, u(x, 0) = u0(x), (19)

where (x, t) ∈ [0, 1]2, and u0(x) is the initial condition, and ν = 0.1 is the viscosity. We aim to learn
a mapping from the initial condition to the solution at t = 1, namely, u0 → u1(x)

∆
= u(x, 1). The

initial condition u0 is sampled from a Gauss random field, N (0, 625(−∆ + 25I)−2). The dataset
was generated in (Lu et al., 2022), with each pair of input and output functions sampled at the same
set of 128 equally spaced locations across the spatial domain.

B.2 2D Darcy Flow

We then employed a 2D Darcy flow equation in a rectangle domain:

−∇(c(x)∇u(x)) = 1, (20)

where x ∈ [0, 1]2, c(x) > 0 is the permeability field, and u(x) = 0 at the boundary. The goal is
to predict the solution field from the permeability field: c → u. The permeability field c a piece-
wise constant function derived by first sampling a continuous function from a Gauss random field
N (0, (−∆ + 9I)2), and then mapping the positive values to 12 and the negative values to 3. Every
input-output function pair is discretized on a 29× 29 uniform grid over the input domain. The dataset
was generated and shared by Lu et al. (2022).
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B.3 3D Compressible Naiver-Stoke (NS) Equations

The third scenario involves 3D compressible NS equations:

∂tρ+∇ · (ρv) = 0,

ρ (∂tv + v · ∇v) = −∇p+ η∆v + (ζ + η/3)∇(∇ · v),

∂t

[
ε+

ρv2

2

]
+∇ ·

[(
ε+ p+

ρv2

2

)
v − v · σ′

]
= 0, (21)

where ρ is the mass density, v is the velocity, p is the gas pressure, ε = p/(Γ − 1) is the internal
energy, Γ = 5/3, σ′ is the viscous stress tensor, and η, ζ are the shear and bulk viscosity, respectively.
The behavior of the fluid is sensitive to the Mach number M = |v|/cs, where cs =

√
Γp/ρ. The

data were generated and made available through PDEBench (Takamoto et al., 2022), a widely used
benchmark dataset for scientific machine learning. We considered the high Mach number case
(M = 1.0), where the fluid behavior is complex, making the learning task challenging. The input and
output functions are discretized on a uniform grid of size 64× 64× 64.

B.4 Quasar Reverberation Mapping

In astronomy, understanding the relationship between the central continuum emission of a quasar and
the subsequent response from surrounding emitting regions is key to inferring its physical properties,
structure, and kinematics — a process known as reverberation mapping (Blandford & McKee, 1982;
Peterson, 1993). This task is often modeled via an unknown transfer function that links the response
emission to the driving continuum emission, naturally framing the problem as function-on-function
regression.

The Zwicky Transient Facility (ZTF) (Bellm et al., 2019), located at the Palomar Observatory, is an
automated time-domain survey utilizing a 4-foot Schmidt telescope equipped with a 47.2-square-
degree field-of-view camera. ZTF scans the entire Northern sky with a cadence of approximately
three nights during Phase I (May 2018–September 2020) and two nights during Phase II (December
2020–present) for its custom g-band and r-band photometric filters, with a four-night cadence for the
i-band.

To construct a dataset aligned with this task, we collected g-band and r-band light curves from the
most recent ZTF data release (DR23) (Masci et al., 2018), focusing on the first 18,000 objects in the
Million Quasars catalogue (Flesch, 2023). In this setting, we treat the shorter-wavelength g-band
light curve as the input function driving the response observed in the r-band light curve, which serves
as the output function.

We preprocessed the raw data following the methodology of (Sánchez-Sáez et al., 2021). Specifically,
we retained light curves with mean magnitudes slightly brighter than the ZTF limiting magnitude
of 20.6 and fainter than 13.5 to avoid saturated measurements. We excluded observations with
magnitude errors exceeding one and with non-zero catflags quality scores. However, we did not filter
light curves based on variability features.

We further restricted the data to observations within the first 2,000 days and randomly sampled up to
500 time points from each light curve, provided sufficient data existed. This resulted in 793 pairs
of irregularly sampled light curves, with differing time points across the input and output functions
for each example—thereby offering a suitable testbed for function-on-function regression. For our
experiments, we randomly split the dataset into 650 training and 143 testing examples.

C Hyperparameter Selection

Here we provide hyperparameter selection details for each method.

• FLR: We adopted the implementation from the Scikit-FDA library4 for LFR-Fourier and
LFR-BSpline. The primary hyperparameter is the number of bases, which was selected
from {2, 3, . . . , 30}. The range of each basis function is set to a minimum range that
covers the observed output function values, e.g., [0, 1] for 1D Burgers and 2D Darcy.

4https://fda.readthedocs.io/en/latest/
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The intercept parameter was jointly estimated with the basis coefficients. We employ the
second order differential operator regularization, which is the default choice of the library.
The implementation of FLR-GP is directly from that of DGPFM. The selection of the
hyperparameters is shared with that for DGPFM, except we fixed the number of GP layers
to one, and there is not any hyperparameter tuning for GP activation functions.

• FNO5: The hyperparameters include the number of modes, which varies from {8, 10, 12, 16,
20}, the number of channels for channel lifting, which varies from {8, 16, 32, 64, 128, 256},
and the number of Fourier layers, which varies from {2, 3, 4}. We used GELU activation,
the default choice in the official library.

• GNOT6: the hyperparameters include the number of attention layers, varying from {3, 4,
5}, the dimensions of the embeddings, varying from {8, 16, 32, 64}, and the inclusion of
mixture-of-expert-based gating, specified as either {yes, no}. We used GeLU activation, the
default choice of the official library.

• DSE-FNO7: The set of hyperparameters are the same as FNO, including the number of
modes chosen from {8, 10, 12, 16, 20}, the number of latent channels from {8, 16, 32, 64,
128, 256}, and the number of integration layers from {2, 3, 4}. The activation was chosen
from {GeLU, ReLU, SiLU}.

• DGPFM: Our method was implemented using JAX (Frostig et al., 2018). We used the
ADAM optimizer, with the initial learning rate selected from {5e-5, 1e-4, 5e-4}, and a
cyclical cosine annealing schedule with the max learning rate as 0.001. The number of
training epochs was chosen from {100, 250, 500, 1000, 5000, 10000}. The number of GP
layers was varied from {2, 3, 4}. All the kernel functions for both the input and output
GPs, as well as the GP activation, were the Square Exponential (SE) kernel or a weighted
combination of two Matérn kernels with degrees of freedom 5/2 and 13/2. The number of
inducing points for each GP activation was selected from {32, 64, 128, 256, 512}, and the
column dimension of the weight matrices W0 and W1 from {4, 8, 16, 32, 64, 128, 256}. For
DGPFM-FT on datasets sampled at regular grids, we kept the number of projection locations
the same as the number of locations in the original functions, and on the irregular sampled
datasets searched over {32, 64, . . . , 512} (using their tensor product for higher dimensional
problems). In a similar capacity, for DGPFM-QR we used a trapezoidal quadrature rule at
the function locations when handling problems on a regular grid, and for the irregular grid
problems, used a tensor-product Gauss-Legendre rule with the number of one-dimensional
nodes as selected from {32, 64, . . . , 512}.

All the neural operator methods (FNO, GNOT, DSE-FNO) used ADAM optimization with learning
rate selected from {10−5, 5× 10−5, 10−4, 4× 10−3, 10−3}. The maximum number of epochs was
set to 10000, which ensures convergence. The batch size was set to 500 for Beijing-Air dataset and
100 for all the other datasets. We ran all the methods on NCSA Delta GPU cluster8, with NAVIDA
A40 GPUs.

D Error Analysis of Discrete Integral Transform

To perform discrete integral transforms, we used several classical numerical approximation methods:
Gauss–Legendre (GL) Qudrature, Trapezoidal (TR) Rules, and Fourier-based Convolution. Their
theoretical error properties are well established and summarized as follows. Specifically, for a given
function f ,

• Gauss–Legendre Quadrature:

– An N -point GL rule is exact for polynomials up to degree 2N − 1.
– For f ∈ Ck, error is O(1/Nk) (no periodicity constraint for this like in Trapezoidal

rule); for analytic f , error is O(e−cN ).

• Trapezoidal Rule:

5https://github.com/neuraloperator/neuraloperator
6https://github.com/HaoZhongkai/GNOT
7https://github.com/camlab-ethz/DSE-for-NeuralOperators
8https://www.ncsa.illinois.edu/research/project-highlights/delta/
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Figure 2: Prediction examples of DGPFM on Quasar dataset. The shaded regions indicate one predictive
standard deviation. The top row shows the prediction of DGPFM-FT and the bottom row DGPFM-QR.

Figure 3: Prediction examples of DGPFM-QR on 2D Darcy, σ denotes the predictive standard deviation (STD).
The last two columns show the point-wise predictive std normalized by the ground-truth.

Figure 4: Prediction examples of DGPFM-FT on 1D Burgers.
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– On [a, b], the error is O(1/N2) if f ′′ exists and is continuous; degrades to O(1/N) if
f ∈ C0.

– For periodic f ∈ Cm, error improves to O(1/Nm); analytic periodic functions yield
exponential convergence.

• Fourier-based Convolution:
– If f is periodic and Cm, FFT convolution matches TR’s periodic rates: O(1/Nm) or

exponential if analytic.
– If f is non-periodic, the implicit periodic extension introduces boundary jumps, causing

error stuck at O(1/N) regardless of interior smoothness.

Our model applies a dimension-wise integral transform instead of performing a full-dimensional one.
If we consider the full-dimensional transform as the ground truth, the approximation error introduced
by our dimension-wise approach can be expressed (in the 2D case) as:

∆1 =
(
(T − T̃ )h

)
(x1, x2) =

∫∫
{w(x1, x2, y1, y2)− [w1(x1, y1) + w2(x2, y2)]}h(y1, y2) dy1 dy2.

If the full weight function w(·) can be decomposed as the sum of independent components w1 and
w2, the error vanishes, i.e., ∆1 = 0. Otherwise, a gap remains. However, since w(·), w1, and w2 are
unknown a priori and must be learned from data, the approximation error is inherently data-dependent.

From a modeling perspective, our approach adopts a reduced model space (or equivalently, a simpler
inductive bias) to represent the weight function(s) in the integral transform, which is not necessarily a
limitation. Instead, the dimension-wise transform enables the model’s parameter complexity to scale
linearly with input dimensionality. In contrast, using a full-dimensional transform causes exponential
growth in the number of parameters needed to learn the weight function, significantly increasing
training cost and the risk of overfitting. Our ablation study has confirmed this point. See Table 7.

The total error regarding our discrete dimension-wise integral transform can be decomposed as
two parts. The first one is the aforementioned ∆1. The second part comes from the numerical
approximation error. Each of the dimension-wise integrals (e.g., those involving w1 and w2) is then
approximated using numerical quadrature or discrete Fourier transforms, introducing a separate
approximation error, denoted as ∆2. The analysis of ∆2 has already been provided. The total error
can be expressed as ∆ = |∆1|+ |∆2|.

E GP Priors in Functional Space

Our model constructs a sequence of conditional GP prior in the functional space. Specifically, at each
layer l, When hl,i → hl+1,i is a nonlinear transformation (see (8)), it implies

hl+1,i(·) | hl,i(·),ηl ∼ GP, (22)

with covariance function,

cov (hl+1,i(x), hl+1,i(x
′) | hl,i(·),ηl)

= ϑl (hl,i(x), hl,i(x
′))− ϑl (hl,i(x),β)ϑl (β,β)

−1
ϑl (β, hl,i(x

′)) . (23)

When hl,i → hl+1,i is a linear transformation as in (7), it induces a conditional GP prior:

hl+1,i(·) | hl−1,i(·) ∼ GP, (24)

with covariance function,

cov(hl+1,i(x), hl+1,i(x
′) | hl−1,i(·))

= cl,i(x,XQ)kl,i(XQ,XQ)−1cov (hl,i | hl−1,i(·)) kl,i(XQ,XQ)−1cl,i(XQ,x
′). (25)

F Ablation Studies

We conducted a series of ablation studies to further evaluate our method.

Various Hyperparameters. We performed two comprehensive ablation studies — one on the
real-world dataset Beijing-Air and the other on the simulated dataset 2D-Darcy — to investigate
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Table 3: DGPFM-FT ablations on Beijing-Air. The base model uses 4 integration layers, 10 Fourier modes, 256
channels, 32 inducing points, and a weighted Matern kernel (DOF 5/2 and 13/2). Best results are shown in bold.

(a) The number of integration layers.

#Int Layers 1 2 3 4 5 6

NRMSE 0.583 0.539 0.373 0.288 0.263 0.253
NLL N/A 21.97 7.84 7.80 8.12 8.37

(b) The number of latent channels C.

Channels (C) 8 16 32 64 128 256 512

NRMSE 0.521 0.491 0.462 0.411 0.375 0.288 0.242
NLL 9.40 8.47 8.45 8.24 8.40 7.80 8.78

(c) The number of inducing points S.

Inducing Points (S) 4 8 16 32 64 128

NRMSE 0.271 0.311 0.269 0.288 0.270 0.273
NLL 20.04 8.99 8.73 7.80 8.54 9.09

(d) Number of Fourier modes.

Modes 4 8 12 16 32 64

NRMSE 0.391 0.305 0.277 0.255 0.224 0.219
NLL 7.94 8.38 7.91 8.13 7.81 8.30

(e) Choice of kernels.

GP Kernel Squared Exp Matérn 5/2 Matérn 13/2 Weighted Matérn (5/2+13/2)

NRMSE 0.321 0.289 0.308 0.288
NLL 8.26 8.26 8.21 7.80

the influence of hyperparameter choices. For Beijing-Air, we examined all major DGPFM-FT
hyperparameters, including the number of integration (linear) layers, Fourier modes, latent channels
(C), inducing points (S), and kernel/covariance choices. The base model consisted of 4 integration
layers, 10 Fourier modes, 256 channels, 32 inducing points, and a weighted Matérn kernel (DOF
5/2 and 13/2). We varied each hyperparameter independently while fixing the others and evaluated
performance using normalized root mean square error (NRMSE) and negative log-likelihood (NLL).
To ensure statistical reliability, each configuration was run five times, and we report mean NRMSE
and NLL values. The second study ablated DGPFM-QR hyperparameters on the Darcy Flow problem,
with a base model of 5 integration layers, 64 latent channels, 64 inducing points, and the same kernel
setup. Results are summarized in Table 3 and Table 4.

The ablations show that DGPFM-FT’s expressivity improves with additional integration layers,
channels, and Fourier modes, as reflected in NRMSE. However, beyond four integration layers
or larger model sizes, NLL improvements diminish — likely due to the increasing difficulty of
variational inference optimization. Varying the number of inducing points produced no clear trend,
suggesting this hyperparameter should be tuned per dataset. Matérn kernels consistently outperformed
the Squared Exponential, indicating that kernel smoothness has a significant impact on performance.

For DGPFM-QR, performance improved with more layers, channels, and inducing points, but NLL
began to degrade once the number of inducing points exceeded 16. As with DGPFM-FT, finitely
smooth kernels were advantageous; interestingly, the Matérn 5/2 kernel outperformed the 13/2 variant
— the opposite of what we observed on Beijing-Air. This discrepancy, seen across datasets, motivated
our use of weighted combinations of Matérn kernels to allow the model to adaptively learn optimal
smoothness. As before, increasing model size improved NRMSE but yielded diminishing returns in
NLL beyond a certain point.
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Table 4: DGPFM-QR ablations on Darcy-Flow. The base model uses 5 integration layers, 64 channels, 64
inducing points, and a weighted Matern kernel (DOF 5/2 and 13/2). Best results are shown in bold.

(a) The number of integration layers.

#Int Layers 1 2 3 4 5 6

NRMSE 9.97e-2 2.67e-2 2.27e-2 1.97e-2 1.86e-2 1.80e-2
NLL N/A 2.04 -2.97 -3.71 -4.06 -4.13

(b) The number of latent channels C.

Channels (C) 8 16 32 64 128 256

NRMSE 2.47e-2 2.29e-2 1.99e-2 1.86e-2 1.72e-2 1.89e-2
NLL -2.46 -3.64 -3.94 -4.06 -3.07 -3.61

(c) The number of inducing points S.

Inducing Points (S) 4 8 16 32 64 128

NRMSE 1.82e-2 1.83e-2 1.87e-2 1.87e-2 1.86e-2 1.95e-2
NLL -3.34 -3.97 -4.19 -3.27 -4.06 -4.18

(d) Choice of kernels.

GP Kernel Squared Exp Matérn 13/2 Matérn 5/2 Weighted Matérn (5/2+13/2)

NRMSE 2.78e-2 1.92e-2 2.05e-2 1.86e-2
NLL -2.98 -3.43 -3.52 -4.06

Projection Points. Next, we examined the effect of the number of projection points, i.e., the
quadrature nodes or sampling locations used across GP layers. We performed an ablation study on the
1D Burgers’ equation with varying numbers of projection points, using Gauss–Legendre quadrature.
The quadrature resolution directly determines the dimensionality of the weight function and thus the
number of trainable parameters.

As shown in Table 5, model performance degrades when the number of projection points is too
small (e.g., 8 or 16). However, beyond a certain threshold (64), additional points provide little to no
improvement while substantially increasing the parameter count and computational cost.

Table 5: Performance of DGPFM-QR with Gauss-Legendre quadrature on 1D Burgers’ equation.

#Project Points 8 16 32 64 128 256

NRMSE (%) 13.684 2.755 0.982 0.676 0.796 0.892

GP Activation. To assess the benefit of our GP-based activation, we conducted ablation studies
comparing it against standard non-probabilistic activations commonly used in neural networks (ReLU
and Tanh), as well as against the case with no nonlinear activation.

As shown in Table 6, the GP-based activation substantially improves both training and test errors
relative to ReLU and Tanh (by more than 10%), with the sole exception of Beijing-Air, where the test
error is marginally higher (a relative increase of 1.8%). Removing the nonlinear activation entirely
results in a large increase in test error, underscoring its critical role in model performance.

Table 7: Performance of DGPFM-QR with different integral transforms on 2D Darcy.

Dimension-wise Full-dimensional

Training NRMSE (%) 1.247 0.0830
Test NRMSE (%) 1.824 3.669
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Table 6: DGPFM with different activate functions. The base models are the same in Table 3 and 4

(a) DGPFM-FT on Beijing Air.

Activation ReLU Tanh GP Activation No Activation

Training NRMSE(%) 0.6916 0.6953 0.028901 53.275
Test NRMSE(%) 26.363 37.402 26.854 57.615

(b) DGPFM-QR on 2D Darcy.

Activation ReLU Tanh GP Activation No Activation

Training NRMSE (%) 1.581 1.737 1.247 5.395
Test NRMSE (%) 2.131 2.0292 1.824 6.703

Dimension-Wise and Full Integral Transform. To evaluate the effectiveness of our dimension-
wise discrete integral transform, we trained a DGPFM-QR model on 2D-Darcy with and without
the dimension-wise transform, using five integration layers, 64 channels, 64 inducing points, and a
weighted Matérn kernel (DOF 5/2 and 13/2). The trapezoidal rule with 29 projection points per input
dimension was employed. As shown in Table 7, the full-dimensional transform fits the training data
more closely but performs substantially worse on the test set, indicating clear overfitting.

Figure 5: The Singular values of learned weight function values (matrices) versus randomly initialized matrices
for running DGPFM-QR on 2D Darcy.

G Visualization of Learned Weight Functions

To better understand the representations learned by the weight functions, we applied DGPFM-QR to
the 2D Darcy problem and analyzed the weight matrices in the integration (linear) layers. Specifically,
we performed Singular Value Decomposition (SVD) on the weight matrix associated with each input
dimension. As shown in Figure 5, in the early layers the singular values decay slowly, indicating that
the weight matrices remain close to full rank and thus capture diverse, information-rich features. In
contrast, in the layers closer to the output, the singular values decay more rapidly, suggesting the
emergence of low-rank structures. This progression highlights a representational shift: early layers
emphasize broad feature extraction, while later layers distill these features into more compact and
structured representations tailored for prediction.
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H Running Time

To evaluate training efficiency, we compared our method with the neural operator models GNOT and
FNO on the 3D NS and 2D Darcy datasets. All experiments were conducted in the same computing
environment: a Linux workstation equipped with an NVIDIA GeForce RTX 4080 GPU. We measured
both the training time per epoch and the total training time (i.e., until the stopping criterion was
satisfied). The results are summarized in Table 8. We observe that DGPFM (including both DGPFM-
FT and DGPFM-QR) and FNO achieve comparable performance in terms of both per-epoch time and
overall training time. On 3D NS, DGPFM (both variants) is faster than FNO, while on 2D Darcy,
DGPFM is slightly slower. In contrast, on both datasets, GNOT is around an order of magnitude
slower than either DGPFM or FNO, likely due to the overhead introduced by its attention mechanism.
Taken together, these results confirm the efficiency of our method: despite performing Bayesian
learning, it remains nearly as efficient as neural network models that only conduct point estimation.

Table 8: Training time comparison. All the methods were run on a Linux workstation with a NVIDIA GeForce
RTX 4080 GPU.

(a) 3D NS

Method Per-epoch (seconds) / Step Total (min)

GNOT 0.2213 3319.611
FNO 0.0383 570.375
DGPFM-FT 0.0218 326.947
DGPFM-QR 0.0221 331.990

(b) 2D Darcy

Method Per-epoch (seconds) Total (min)

GNOT 0.133 220.844
FNO 0.00945 15.750
DGPFM-FT 0.0241 40.239
DGPFM-QR 0.0184 30.622

I Limitation

Our current designs of the discrete integral transform are relatively simple and may be limited in
scope. The associated weight functions are global over the domain and thus may struggle to capture
local, nonstationary patterns. In future work, we aim to explore richer classes of transforms, such as
spline-based or orthogonal basis functions, as well as localized sparse functions. These alternatives
could further reduce model complexity, improve expressiveness, and provide finer control over the
granularity of integration, thereby enabling the model to adapt more effectively to heterogeneous or
highly localized structures in functional data.
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