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ABSTRACT

Molecular modeling, a central topic in quantum mechanics, aims to accurately
calculate the properties and simulate the behaviors of molecular systems. The
molecular model is governed by physical laws, which impose geometric constraints
such as invariance and equivariance to coordinate rotation and translation. While
numerous deep learning approaches have been developed to learn molecular
representations under these constraints, most of them are built upon heuristic and
costly modules. We argue that there is a strong need for a general and flexible
framework for learning both invariant and equivariant features. In this work, we
introduce a novel Transformer-based molecular model called GeoMFormer to
achieve this goal. Using the standard Transformer modules, two separate streams
are developed to maintain and learn invariant and equivariant representations.
Carefully designed cross-attention modules bridge the two streams, allowing
information fusion and enhancing geometric modeling in each stream. As a general
and flexible architecture, we show that many previous architectures can be viewed
as special instantiations of GeoMFormer. Extensive experiments are conducted
to demonstrate the power of GeoMFormer. All empirical results show that
GeoMFormer achieves strong performance on both invariant and equivariant tasks
of different types and scales. Code and models will be made publicly available.

1 INTRODUCTION

Deep learning approaches have emerged as a powerful tool for a wide range of tasks, such as image
classification and language understanding (He et al., 2016; Devlin et al., 2019; Brown et al., 2020).
Recently, researchers have started investigating whether the power of neural networks could help
solve problems in physics and chemistry, such as predicting the property of molecules with 3D
coordinates and simulating how each atom moves in Euclidean space (Schütt et al., 2018; Gasteiger
et al., 2020b; Satorras et al., 2021). These molecular modeling tasks require the learned model
to satisfy general physical laws, such as the invariance and equivariance conditions: The model’s
prediction should react physically when the input coordinates change according to the transformation
of the coordinate system, such as rotation and translation.

A variety of methods have been proposed to design neural architectures that intrinsically satisfy the in-
variance or equivariance conditions (Thomas et al., 2018; Schütt et al., 2021; Batzner et al., 2022). To
satisfy the invariant condition, several approaches incorporate invariant features, such as the relative
distance between each atom pair, into classic neural networks (Schütt et al., 2018; Shi et al., 2022).
However, this may hinder the model from effectively extracting the molecular structural information.
For example, computing dihedral angles from coordinates is straightforward but requires much more
nonlinear operations using relative distances. To satisfy the equivariant condition, several works
design neural networks with equivariant operation only, such as tensor product between irreducible rep-
resentations (Thomas et al., 2018; Fuchs et al., 2020; Batzner et al., 2022) and vector operations (Sator-
ras et al., 2021; Schütt et al., 2021; Thölke & De Fabritiis, 2022). However, the number of such oper-
ations is limited, and they are either costly to scale or lead to fairly complex network architecture de-
signs to guarantee sufficient expressive power. More importantly, many real-world applications require
a model that can effectively perform both invariant and equivariant prediction with strong performance
at the same time. While some recent works study this direction (Schütt et al., 2021; Thölke & De Fab-
ritiis, 2022), most proposed networks are designed heuristically and lack general design principles.

We argue that developing a general and flexible architecture to effectively learn both invariant and
equivariant representations is essential. In this work, we introduce GeoMFormer to achieve this
goal. GeoMFormer uses a standard Transformer-based architecture (Vaswani et al., 2017) but with
two streams. An invariant stream learns invariant representations, and an equivariant stream learns
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equivariant representations. Each stream is composed of invariant/equivariant self-attention and
feed-forward layers. The key design in GeoMFormer is to use cross-attention mechanisms between
the two streams, letting each stream incorporate the information from the other and enhance itself. In
each layer of the invariant stream, we develop an invariant-to-equivariant cross-attention module,
where the invariant representations are used to query key-value pairs in the equivariant stream. An
equivariant-to-invariant cross-attention module is designed similarly in the equivariant stream. We
show that the design of all self-attention and cross-attention modules is flexible and how to satisfy
the invariant/equivariant conditions effectively.

Our proposed architecture has several advantages compared to previous works. GeoMFormer decom-
poses the invariant/equivariant representation learning through self-attention and cross-attention mod-
ules. By interacting the two streams using cross-attention modules, the invariant stream receives more
structural signals (from the equivariant stream), and the equivariant stream obtains more non-linear
transformation (from the invariant stream), which allows simultaneously and completely modeling in-
teratomic interactions within/across feature spaces in a unified manner. Furthermore, we demonstrate
that the proposed decomposition is general by showing that many existing methods can be regarded as
special cases in our framework. For example, PaiNN(Schütt et al., 2021) and TorchMD-NET(Thölke
& De Fabritiis, 2022) can be formulated as a special instantiation by following the design philosophy
of GeoMFormer and using proper instantiations of key building components. From this perspective,
we believe our architecture can offer many different options in different scenarios in real applications.

We evaluate our architecture on diverse datasets with both invariant and equivariant targets. On the
Open Catalyst 2020 (OC20) dataset (Chanussot et al., 2021), which contains large atomic systems
composed of an adsorbate and a catalyst, our architecture is able to predict the system’s energy
(invariant) and relaxed structure (equivariant) with high accuracy. Additionally, our architecture
achieves state-of-the-art performance for predicting homo-lumo energy gap (invariant) of a molecule
on PCQM4Mv2 (Hu et al., 2021) and Molecule3D (Xu et al., 2021) datasets, both of which consist of
molecules collected from the chemical database (Maho, 2015; Nakata & Shimazaki, 2017). Moreover,
we conduct an N-body simulation experiment where our architecture can precisely forecast the
positions (equivariant) for a set of particles controlled by physical rules. All the empirical results
highlight the generality and effectiveness of our approach.

2 RELATED WORKS

Invariant Representation Learning. In recent years, invariance has been recognized as one of the
fundamental principles guiding the development of molecular models. To describe the properties of a
molecular system, the model’s prediction should remain unchanged if we conduct any rotation or trans-
lation actions on the coordinates of the whole system. Previous works usually rely on relative struc-
tural signals from the coordinates, which intrinsically preserve the invariance. In SchNet (Schütt et al.,
2018), the interatomic distances are encoded via radial basis functions, which serve as the weights
of the developed continuous-filter convolutional layers. PhysNet (Unke & Meuwly, 2019) similarly
incorporated both atomic features and interatomic distances in its interaction blocks. Graphormer-
3D (Shi et al., 2022) developed a Transformer-based model by encoding the relative distance as
attention bias terms, which perform well on large-scale datasets (Chanussot et al., 2021).

Beyond the interatomic distance, other works further incorporate high-order invariant signals. Based
on PhysNet, DimeNet (Gasteiger et al., 2020b) and DimeNet++ (Gasteiger et al., 2020a) addi-
tionally encode the bond angle information using Fourier-Bessel basis functions. Moreover, Gem-
Net (Gasteiger et al., 2021) and GemNet-OC (Gasteiger et al., 2022) carefully studied the connections
between spherical representations and directional information, which inspired to leverage the di-
hedral angles, i.e., angles between planes formed by bonds. SphereNet (Liu et al., 2022b) and
ComENet (Wang et al., 2022) consider the torsional information to augment the molecular models.
During the development in the literature, more complex features are incorporated due to the lossy struc-
tural information when purely learning invariant representations, while largely increasing the costs.
Moreover, these invariant models are generally unable to directly perform equivariant prediction tasks.

Equivariant Representation Learning. Instead of building invariant blocks only, there are various
works that aim to learn equivariant representations. In real-world applications, there are also many
molecular tasks that require the model to perform equivariant predictions, e.g., predicting the force,
position, velocity, and other tensorized properties in dynamic simulation tasks. If a rotation action
is performed on each position, then these properties should also correspondingly rotate. One classical
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approach (Thomas et al., 2018; Fuchs et al., 2020; Batzner et al., 2022; Musaelian et al., 2023)
to encoding the equivariant constraints is using irreducible representations (irreps) via spherical
harmonics (Goodman & Wallach, 2000). With equivariant convolutions based on tensor products
between irreps, each block of the model preserves the equivariance. However, these models do not
always significantly outperform invariant models on invariant tasks. Besides, their operations are
in general costly (Schütt et al., 2021; Satorras et al., 2021; Frank et al., 2022), which largely hinders
the model from deploying on large-scale molecular systems.

On the other hand, several recent works maintain both invariant and equivariant representations. To
this end, EGNN (Satorras et al., 2021) proposed a simple framework. Its invariant representations
encode type information and relative distance, and are further used in vector scaling functions to trans-
form the equivariant representations. PaiNN (Schütt et al., 2021) extended the framework of EGNN
to include the Hardamard product operation to transform the equivariant representations. Based on the
operations of PaiNN, TorchMD-Net (Thölke & De Fabritiis, 2022) further proposed a modified ver-
sion of the self-attention modules to update invariant representations and achieved better performance
on invariant tasks. Allegro (Musaelian et al., 2023) instead uses tensor product operations to update
equivariant features and interacts equivariant and invariant features by using weight-generation mod-
ules. In contrast, our GeoMFormer is developed based on a general design philosophy to learn both
invariant and equivariant representations, which enables simultaneously and completely modeling
interatomic interactions within/across feature spaces in a unified manner. as introduced in Section 4.1.

3 PRELIMINARY

3.1 NOTATIONS & GEOMETRIC CONSTRAINTS

We denote a molecular system as M, which is made up of a collection of atoms held together by
attractive forces. Let X ∈ Rn×d denote the atoms with features, where n is the number of atoms,
and d is the feature dimension. Given atom i, we use ri ∈ R3 to denote its cartesian coordinate in the
three-dimensional Euclidean space. We define M = (X, R), where R = {r1, ..., rn}.

In nature, molecular systems are subject to physical laws that impose geometric constraints on
their properties and behaviors. For instance, if the position of each atom in a molecular system is
translated by a constant vector in Euclidean space, the total energy of the system remains unchanged.
If a rotation is applied to each position, the direction of the force on each atom will also rotate.
Mathematically, these geometric constraints are directly related to the concepts of invariance and
equivariance in group theory (Cotton, 1991; Cornwell, 1997; Scott, 2012).

Formally, let ϕ : X → Y denote a function mapping between vector spaces. Given a group G, let ρX
and ρY denote its group representations. A function ϕ : X → Y is said to be equivariant/invariant if
it satisfies the following conditions respectively:

Equivariance: ρY(g)[ϕ(x)] = ϕ
(
ρX (g)[x]

)
, for all g ∈ G, x ∈ X

Invariance: ϕ(x) = ϕ
(
ρX (g)[x]

)
, for all g ∈ G, x ∈ X

(1)

Intuitively, an equivariant function mapping transforms the output predictably in response to trans-
formations on the input, whereas an invariant function mapping produces an output that remains un-
changed by transformations applied to the input. For further details on the background of group theory,
we refer readers to the appendix of (Thomas et al., 2018; Anderson et al., 2019; Fuchs et al., 2020).

Molecular systems are naturally located in the three-dimensional Euclidean space, and the group
related to translations and rotations is known as SE(3). For each element g in the SE(3) group, its
representation on R3 can be parameterized by pairs of translation vectors t ∈ R3 and orthogonal
transformation matrices R ∈ R3×3,det(R) = 1, i.e., g = (t,R). Given a vector x ∈ R3, we have
ρR

3

(g)[x] := Rx+ t. For molecular modeling, it is essential to learn molecular representations that
encode the rotation equivariance and translation invariance constraints. Formally, let VM denote the
space of molecular systems, for each atom i, we define equivariant representation ϕE and invariant rep-
resentation ϕI if ∀ g = (t,R) ∈ SE(3),M = (X, R) ∈ VM, the following conditions are satisfied:

ϕE : VM → R3×d, RϕE(X, {r1, ..., rn}) = ϕE(X, {Rr1, ...,Rrn})
ϕE : VM → R3×d, ϕE(X, {r1, ..., rn}) = ϕE(X, {r1 + t, ..., rn + t})
ϕI : VM → Rd, ϕI(X, {r1, ..., rn}) = ϕI(X, {Rr1 + t, ...,Rrn + t})

(2)
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3.2 ATTENTION MODULE

The attention module lies at the core of the Transformer architecture (Vaswani et al., 2017), and it is for-
mulated as querying a dictionary with key-value pairs, e.g., Attention(Q,K, V ) = softmax(QKT

√
d
)V ,

where d is the hidden dimension, and Q (Query), K (Key), V (Value) are specified as the hidden
representations of the previous layer. The multi-head variant of the attention module is widely used,
as it allows the model to jointly attend to information from different representation subspaces. It
is defined as follows:

Multi-head(Q,K, V ) = Concat(head1, · · · , headH)WO

headk = Attention(QWQ
k ,KW

K
k , V WV

k ), (3)

where WQ
k ∈ Rd×dH ,WK

k ∈ Rd×dH ,WV
k ∈ Rd×dH , and WO ∈ RHdH×d are learnable matrices,

H is the number of heads. dH is the dimension of each attention head.

Serving as a generic building block, the attention module can be used in various ways. On the one
hand, the self-attention module specifies Query, Key, and Value as the same hidden representation,
thereby extracting contextual information for the input. It has been one of the key components in
Transformer-based foundation models across various domains (Devlin et al., 2019; Brown et al.,
2020; Dosovitskiy et al., 2021; Liu et al., 2021; Ying et al., 2021a; Jumper et al., 2021). On the
other hand, the cross-attention module specifies the hidden representation from one space as Query,
and the representation from the other space as Key-Value pairs, e.g. encoder-decoder attention
for sequence-to-sequence learning. As the cross-attention module bridges two representation
spaces, it has been also widely used beyond Transformer for information fusion and improving
representations (Lee et al., 2018; Huang et al., 2019; Jaegle et al., 2021b;a).

4 GEOMFORMER

In this section, we introduce GeoMFormer, a novel Transformer-based molecular model for learning
invariant and equivariant molecular representations. We begin by elaborating on the key designs of Ge-
oMFormer, which form a general framework to guide the development of geometric molecular models
(Section 4.1), Next we thoroughly discuss the implementation details of GeoMFormer (Section 4.2).

4.1 A GENERAL DESIGN PHILOSOPHY

As previously mentioned, several existing works learned invariant representations using invariant
features, such as distance information, which may have difficulty in extracting other useful structural
signals. Some other works developed equivariant models via equivariant operations, which are
either heuristic or costly. Instead, we aim to develop a general design principle, which guides the
development of a model instance that addresses the disadvantages aforementioned in both invariant
and equivariant representation learning.

We call our model GeoMFormer, which is a two-stream Transformer model to encode invariant and
equivariant information. Each stream is built up using stacked Transformer blocks, each of which con-
sists of a self-attention module and a cross-attention module, followed by a feed-forward network. For
each atom k ∈ [n], we use zIk ∈ Rd and zEk ∈ R3×d to denote its invariant and equivariant representa-
tions respectively. Let ZI = [zI1

⊤
; ...; zIn

⊤
] ∈ Rn×d and ZE = [zE1 ; ...; z

E
n ] ∈ Rn×3×d, the invariant

(colored in red) and equivariant (colored in blue) representations are updated in the following manner:

Invariant Stream


Z′I,l = ZI,l + Inv-Self-Attn(QI,l,KI,l,VI,l)

Z′′I,l = Z′I,l + Inv-Cross-Attn(QI,l,KI_E,l,VI_E,l)

ZI,l+1 = Z′′I,l + Inv-FFN(Z′′I,l)

Equivariant Stream


Z′E,l

= ZE,l + Equ-Self-Attn(QE,l,KE,l,VE,l)

Z′′E,l
= Z′E,l

+ Equ-Cross-Attn(QE,l,KE_I,l,VE_I,l)

ZE,l+1 = Z′′E,l
+ Equ-FFN(Z′′E,l

)

(4)

where l denotes the layer index. In this framework, the self-attention modules and feed-forward
networks are used to iteratively update representations in each stream. The cross-attention modules
use representations from one stream to query Key-Value pairs from the other stream. By using
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this mechanism, a bidirectional bridge is established between invariant and equivariant streams.
Besides the contextual information from the invariant stream itself, the invariant representations can
freely attend to more geometrical signals from the equivariant stream. Similarly, the equivariant
representations can benefit from using more non-linear transformations in the invariant representations.
With the cross-attention modules, the expressiveness of both invariant and equivariant representation
learning is largely improved, which allows simultaneously and completely modeling interatomic
interactions within/across feature spaces in a unified manner. In this regard, as highlighted by different
colors, the Query, Key, and Value in the self-attention modules (Inv-Self-Attn,Equ-Self-Attn) and
the cross-attention modules (Inv-Cross-Attn,Equ-Cross-Attn) are differently specified, which
should carefully encode the geometric constraints mentioned in Section 3.1, as introduced below.

Desiderata for Invariant Self-Attention. Given the invariant representation ZI , the Query, Key
and Value in Inv-Self-Attn are calculated via a function mapping ψI : Rn×d → Rn×d, i.e., QI =
ψI
Q(Z

I),KI = ψI
K(ZI),VI = ψI

V (Z
I). Essentially, the attention module linearly transforms the

Value VI , with the weights being calculated from the dot product between the Query and Key (i.e., at-
tention scores). In this regard, if both VI and the attention scores preserve the invariance, then the out-
put satisfies the invariant constraint, i.e., ψI is required to be invariant. Under this condition, it is easy
to check the output representation of this module keeps the invariance, which is proved in the appendix.

Desiderata for Equivariant Self-Attention. Similarly, given the equivariant input ZE , the Query,
Key and Value in Equ-Self-Attn are calculated via a function mapping ψE : Rn×3×d → Rn×3×d,
i.e., QE = ψE

Q(Z
E),KE = ψE

K(ZE),VE = ψE
V (Z

E). Similarly, ψE is required to be equivariant.
However, this still cannot guarantee the module to be equivariant if standard attention is used. We mod-
ified αij =

∑d
k=1 Q

E
[i,:,k]K

E
[j,:,k]

⊤, where QE
[i,:,k] ∈ R3 denotes the k-th dimension of the atom

i’s Query. It is straightforward to check the equivariance is preserved, which is proved in the appendix.

Desiderata for Cross-attentions between the two Streams. In each stream, the cross-attention mod-
ule is used to leverage information from the other stream. We call the cross attention in the invariant
stream invariant-cross-equivariant attention, and call the cross attention in the equivariant stream
equivariant-cross-invariant attention, i.e., Inv-Cross-Attn and Equ-Cross-Attn. The difference
between the two cross attention lies in how the query, key, value are specified:

Invariant-cross-Equivariant QI_E = ψI
Q(Z

I),KI_E = ψI_E
K (ZI ,ZE),VI_E = ψI_E

V (ZI ,ZE)

Equivariant-cross-Invariant QE_I = ψE
Q(ZE),KE_I = ψE_I

K (ZE ,ZI),VE_I = ψE_I
V (ZE ,ZI)

(5)

First, for Query QI_E and QE_I , the requirement to ψI and ψE remains the same as previously stated.
Moreover, as distinguished by different colors, the Key-Value pairs and the Query are calculated in
different ways, for which the requirement should be separately considered. Note that both VI_E and
VE_I are still linearly transformed by the cross-attention modules. If VI_E preserves the invariance
and VE_I preserves the equivariance, then the remaining condition is to keep the invariance of the
attention score calculation. That is to say, for the Inv-Cross-Attn, both ψI and ψI_E are required
to be invariant. It is similar to the Equ-Cross-Attn that both ψE and ψE_I are required to be
equivariant. In this way, the outputs of both cross-attention modules are under the corresponding
geometric constraints, which is proved in the appendix.

Discussion. The carefully designed blocks outlined above provide a general design philosophy for en-
coding the geometric constraints and bridging the invariant and equivariant molecular representations,
which lie at the core of our framework. Note that the translation invariance can be easily preserved by
encoding relative structure signals of the input. It is also worth pointing out that we do not restrict the
specific instantiation of each component, and various design choices can be adopted as long as they
meet the requirements mentioned above. Moreover, we prove that our framework can include many
previous models as an instantiation, e.g., PaiNN (Schütt et al., 2021) and TorchMD-Net (Thölke &
De Fabritiis, 2022), can be extended to encode additional geometric constraints (Cornwell, 1997),
which are presented in the appendix. In this work, we present a simple yet effective model instance
that implements this design philosophy, which we will thoroughly introduce in the next subsection.

4.2 IMPLEMENTATION DETAILS OF GEOMFORMER

Following the design guidance in Section 4.1, we propose Geometric Molecular Transformer
(GeoMFormer). The overall architecture of GeoMFormer is shown in Figure 1, which is composed
of stacked GeoMFormer blocks (Eqn.(5)). We introduce the instantiations of the self-attention,
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Figure 1: An illustration of our GeoMFormer model architecture.

cross-attention and FFN modules below and prove the properties they satisfy in the appendix. We
also incorporate widely used modules like Layer Normalization (Ba et al., 2016) and Structural
Encodings (Shi et al., 2022) for better empirical performance. Due to the space limits, we refer
readers to the appendix for further details.

Instantiation of Self-Attention. In GeoMFormer, the linear function is used to implement both
ψI : Rn×d → Rn×d and ψE : Rn×3×d → Rn×3×d:

QI = ψI
Q(Z

I) = ZIW I
Q, KI = ψI

K(ZI) = ZIW I
K , VI = ψI

V (Z
I) = ZIW I

V

QE = ψE
Q(Z

E) = ZEWE
Q , KE = ψE

K(ZE) = ZEWE
K , VE = ψE

V (Z
E) = ZEWE

V
(6)

where W I
Q,W

I
K ,W

I
V ,W

E
Q ,W

E
K ,W

E
V ∈ Rd×dH are learnable parameters.

Instantiation of Cross-Attention. As previously stated, both ψI_E and ψE_I in the cross-attention
modules fuse representations from different spaces (invariant & equivariant) into target spaces. In the
Invariant-cross-Equivariant attention module (Inv-Cross-Attn), to obtain the Key-Value pairs, the
equivariant representations are mapped to the invariant space. For the sake of simplicity, we use the
dot-product operation < ·, · > to instantiate ψI_E . Given X,Y ∈ Rn×3×d, Z =< X,Y >∈ Rn×d,
where Z[i,k] = X[i,:,k]

⊤Y[i,:,k]. Then the Key-Value pairs in Inv-Cross-Attn are calculated as:

KI_E = ψI_E
K (ZI ,ZE) =< ZEW I_E

K,1 ,Z
EW I_E

K,2 >, VI_E = ψI_E
V (ZI ,ZE) =< ZEW I_E

V,1 ,Z
EW I_E

V,2 >
(7)

where W I_E
K,1 ,W

I_E
K,2 ,W

I_E
V,1 ,W

I_E
V,2 ∈ Rd×dH for Key and Value are learnable parameters. On the

other hand, the invariant representations are mapped to the equivariant space in the Equivariant-
cross-Invariant attention module (Equ-Cross-Attn). To achieve this goal, we use the scalar product
⊙ to instantiate ψE_I . Given X ∈ Rn×3×d, Y ∈ Rn×d, Z = X ⊙ Y ∈ Rn×3×d, where Z[i,j,k] =
X[i,j,k] · Y[i,k]. Using this operation, the Key-Value pairs in Equ-Cross-Attn are calculated as:

KE_I = ψE_I
K (ZE ,ZI) = ZEWE_I

K,1 ⊙ ZIWE_I
K,2 , VE_I = ψE_I

V (ZE ,ZI) = ZEWE_I
V,1 ⊙ ZIWE_I

V,2

(8)
where WE_I

K,1 ,W
E_I
K,2 ,W

E_I
V,1 ,W

E_I
V,2 ∈ Rd×dH are learnable parameters.

Instantiation of Feed-Forward Networks. Besides the attention modules, the feed-forward networks
also play important roles in refining contextual representations. In the invariant stream, the feed-
forward network is kept unchanged from the standard Transformer model, i.e., Inv-FFN(Z′′I) =
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GELU(Z′′IW I
1 )W

I
2 , where W I

1 ∈ Rd×r,W I
2 ∈ Rr×d and r denotes the hidden dimension of the

FFN layer. In the equivariant stream, it is worth noting that commonly used non-linear activation
functions break the equivariant constraints. In our GeoMFormer, we use the invariant representations
as a gating function to non-linearly activate the equivariant representations, i.e., Equ-FFN(Z′′E) =

(Z′′EWE
1 ⊙GELU(Z′′IW I

2 ))W
E
3 , where WE

1 ,W
I
1 ∈ Rd×r,WE

2 ∈ Rr×d.

Input Layer. Given a molecular system M = (X, R), we set the invariant representation at the
input as ZI,0 = X, where Xi ∈ Rd is a learnable embedding vector indexed by the atom i’s type.
For the equivariant representation, we set ZE,0

i = r̂′ig(||r′i||)
⊤ ∈ R3×d, where we consider both

the direction r̂′i ∈ R3 and the scale g(||r′i||) ∈ Rd of the each atom’s mean-centered position r′i.
g : R → Rd is instantiated by the Gaussian Basis Kernel, i.e., g(||r′i||) = ψiW , ψi = [ψ1

i ; ...;ψ
d
i ]

⊤,

ψk
i = − 1√

2π|σk| exp

(
− 1

2

(
γi∥r′i∥+βi−µk

|σk|

)2)
, k = 1, ..., d, where W ∈ Rd×d is learnable, γi, βi

are learnable scalars indexed by the atom type, and µk, σk are learnable kernel center and scaling
factor of the k-th Kernel. Note that our GeoMFormer is not restricted to these choices, which can
encode additional features if the constraints are satisfied, as discussed in the appendix.

5 EXPERIMENTS

In this section, we empirically investigate our GeoMFormer on extensive tasks. In particular, we
carefully design five experiments covering different types of tasks (invariant & equivariant), data
(simple molecules & adsorbate-catalyst complexes & particle systems), and scales, as shown in Table
1. Due to space limits, we present more results (MD17, Ablation Studies) in Appendix D.

Table 1: Summarization of empirical evaluation setup.

Dataset Task Description Task Type Data Type Training set size
OC20, IS2RE (Chanussot et al., 2021) Equilibrium Energy Prediction (Sec 5.1.1) Invariant Adsorbate-Catalyst complex 460,328
OC20, IS2RS (Chanussot et al., 2021) Equilibrium Structure Prediction (Sec 5.1.2) Equivariant Adsorbate-Catalyst complex 460,328
PCQM4Mv2 (Hu et al., 2021) HOMO-LUMO Gap Prediction (Sec 5.2) Invariant Simple molecule 3,378,606
Molecule3D (Wang et al., 2022) HOMO-LUMO Gap Prediction (Sec 5.3) Invariant Simple molecule 2,339,788
N-Body Simulation (Satorras et al., 2021) Position Prediction (Sec 5.4) Equivariant Particle System 3,000
MD17 (Chmiela et al., 2017) Force Field Modeling (Sec D.6) Inv/Equ Simple molecule 950

5.1 OC20 PERFORMANCE (INVARIANT & EQUIVARIANT)

The Open Catalyst 2020 (OC20) dataset (Chanussot et al., 2021) was created for catalyst discovery and
optimization, which has great significance to advance renewable energy processes for crucial social
and energy challenges. Each data is in the form of the adsorbate-catalyst complex. Given the initial
structure of a complex, Density Functional Theory (DFT) tools are used to accurately simulate the
relaxation process until achieving equilibrium. In practical scenarios, the relaxed energy and structure
of the complex are of great interest for catalyst discovery. In this regard, we focus on two significant
tasks: Initial Structure to Relaxed Energy (IS2RE) and Initial Structure to Relaxed Structure (IS2RS),
which require a model to directly predict the relaxed energy and structure given the initial structure
as input respectively1. The training set for both tasks is composed of over 460,328 catalyst-adsorbate
complexes. To better evaluate the model’s performance, the validation and test sets consider the in-
distribution (ID) and out-of-distribution settings which uses unseen adsorbates (OOD-Ads), catalysts
(OOD-Cat) or both (OOD-Both), containing approximately 200,000 complexes in total.

5.1.1 IS2RE PERFORMANCE (INVARIANT)

As an energy prediction task, the IS2RE task evaluates how well the model learns invariant
representations. We follow the experimental setup of Graphormer-3D (Shi et al., 2022). The metric of
the IS2RE task is the Mean Absolute Error (MAE) and the percentage of data instances in which the
predicted energy is within a 0.02 eV threshold (EwT). We choose several strong baselines covering
geometric molecular models using different approaches. Due to space limits, the detailed description
of training settings and baselines is presented in the appendix. The results are shown in Table 2. Our

1Instead of using the iterative relaxation setting that requires massive single-point structure-to-energy-force
data to training a force-field model (Chanussot et al., 2021), here we focus on the direct prediction setting that
only uses initial-relaxed structure pairs data as the input and label, which is efficient while more challenging.
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Table 2: Results on OC20 IS2RE validation set. We report the official results of baselines from the
original paper. Bold values indicate the best performance.

Energy MAE (eV) ↓ EwT (%) ↑
Model ID OOD Ads. OOD Cat. OOD Both Average ID OOD Ads. OOD Cat. OOD Both Average
CGCNN (Xie & Grossman, 2018) 0.6203 0.7426 0.6001 0.6708 0.6585 3.36 2.11 3.53 2.29 2.82
SchNet (Schütt et al., 2018) 0.6465 0.7074 0.6475 0.6626 0.6660 2.96 2.22 3.03 2.38 2.65
DimeNet++ (Gasteiger et al., 2020a) 0.5636 0.7127 0.5612 0.6492 0.6217 4.25 2.48 4.4 2.56 3.42
GemNet-T (Gasteiger et al., 2021) 0.5561 0.7342 0.5659 0.6964 0.6382 4.51 2.24 4.37 2.38 3.38
SphereNet (Liu et al., 2022b) 0.5632 0.6682 0.5590 0.6190 0.6024 4.56 2.70 4.59 2.70 3.64
Graphormer-3D (Shi et al., 2022) 0.4329 0.5850 0.4441 0.5299 0.4980 - - - - -
GNS (Pfaff et al., 2020) 0.47 0.51 0.48 0.46 0.4800 - - - - -
Equiformer (Liao & Smidt, 2022) 0.4156 0.4976 0.4165 0.4344 0.4410 7.47 4.64 7.19 4.84 6.04
GeoMFormer (ours) 0.3883 0.4562 0.4037 0.4083 0.4141 11.26 6.70 9.97 6.42 8.59

GeoMFormer outperforms the compared baselines significantly, achieving impressive performance
especially on the out-of-distribution validation sets. In particular, the improvement on the Energy
within Threshold (EwT) metric is also significant considering the challenging task. The results
indeed demonstrate the effectiveness of our GeoMFormer on learning invariant representations.

5.1.2 IS2RS PERFORMANCE (EQUIVARIANT)

Table 3: Results on OC20 IS2RS validation set. All
models are trained and evaluated under the direct
prediction setting. Bold values indicate the best.

ADwT (%) ↑
Model ID OOD Ads OOD Cat OOD Both Average
PaiNN (Schütt et al., 2021) 3.29 2.37 3.10 2.33 2.77
TorchMD-Net (Thölke & De Fabritiis, 2022) 3.32 3.35 2.94 2.89 3.13
Spinconv (Shuaibi et al., 2021) 5.81 4.88 5.63 4.84 5.29
GemNet-dT (Gasteiger et al., 2021) 6.87 7.10 6.03 7.08 6.77
GemNet-OC (Gasteiger et al., 2022) 11.31 12.20 4.40 5.55 8.36
GeoMFormer (ours) 11.45 10.52 9.94 10.78 10.67

Furthermore, we use the IS2RS task to evalu-
ate the model’s ability to perform the equivari-
ant prediction task. The metric of the IS2RS
task is the Average Distance within Thresh-
old (ADwT) across different thresholds. The
Distance within Threshold is computed as the
percentage of structures with the atom position
MAE below the threshold. We re-implement
several competitive baselines under the direct
prediction setting for comparison. We refer the
readers to the appendix for more details on the
settings. From Table 3, we can see that the IS2RS task under the direct prediction setting is rather diffi-
cult. The compared baseline models consistently achieve low ADwT. Our GeoMFormer achieves the
best, which indeed verifies the superior ability of our model to perform equivariant molecular tasks.

5.2 PCQM4MV2 PERFORMANCE (INVARIANT)

Table 4: Results on PCQM4Mv2. The evaluation
metric is the Mean Absolute Error (MAE). We
report the official results of baselines. ∗ indicates
the best performance achieved by models with the
same complexity (n denotes the number of atoms).

Model Complexity # param. Valid MAE ↓
MLP-Fingerprint (Hu et al., 2021)

O(n)

16.1M 0.1735
GINE-VN (Brossard et al., 2020; Gilmer et al., 2017) 13.2M 0.1167
GCN-VN (Kipf & Welling, 2016; Gilmer et al., 2017) 4.9M 0.1153
GIN-VN (Xu et al., 2019; Gilmer et al., 2017) 6.7M 0.1083
DeeperGCN-VN (Li et al., 2020; Gilmer et al., 2017) 25.5M 0.1021*
TokenGT (Kim et al., 2022)

O(n2)

48.5M 0.0910
EGT (Hussain et al., 2022) 89.3M 0.0869
GRPE (Park et al., 2022) 46.2M 0.0867
Graphormer (Ying et al., 2021a; Shi et al., 2022) 47.1M 0.0864
GraphGPS (Rampavsek et al., 2022) 19.4M 0.0858
GPS++ (Masters et al., 2022) 44.3M 0.0778
Transformer-M (Luo et al., 2022) 47.1M 0.0787
GEM-2 (Liu et al., 2022a) O(n3)

32.1M 0.0793
Uni-Mol+ (Lu et al., 2023) 52.4M 0.0708*
GeoMFormer (ours) O(n2) 54.5M 0.0734*

PCQM4Mv2 is one of the largest quantum
chemical property datasets from the OGB Large-
Scale Challenge (OGB-LSC (Hu et al., 2021)).
Given a molecule, its HOMO-LUMO energy
gap of the equilibrium structure is required to
predict, which evaluates the model’s ability of
invariant prediction. This property is highly
related to reactivity, photoexcitation, charge
transport, and other real applications. DFT tools
are used to calculate the HOMO-LUMO gap
for ground-truth labels. The total number of
training samples is around 3.37 million.

In a practical setting, the DFT-calculated equilib-
rium geometric structure of each training sample
is provided, while only initial structures can be
generated by efficient but inaccurate tools (e.g.,
RDKit (Landrum, 2016)) for each validation sample. In this regard, we adopt one recent approach
(Uni-Mol+ (Lu et al., 2023)) to handle this task. During training, the model receives RDKit-generated
initial structures as the input, and predicts both the HOMO-LUMO energy gap and the equilibrium
structure by using both invariant and equivariant representations. After training, the model can be
used to predict the HOMO-LUMO gap target by only using the initial structure, which meets the
requirement of the settings. We compare various baselines in the leaderboard for comparison. More
details of the settings are presented in the appendix.
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Table 5: Results on Molecule3D for both random
and scaffold splits. We report the official results of
baselines. Bold values indicate the best.

MAE ↓
Model Random Scaffold
GIN-Virtual (Hu et al., 2021) 0.1036 0.2371
SchNet (Schütt et al., 2018) 0.0428 0.1511
DimeNet++ (Gasteiger et al., 2020a) 0.0306 0.1214
SphereNet (Liu et al., 2022b) 0.0301 0.1182
ComENet (Wang et al., 2022) 0.0326 0.1273
PaiNN (Schütt et al., 2021) 0.0311 0.1208
TorchMD-Net (Thölke & De Fabritiis, 2022) 0.0303 0.1196
GeoMFormer (ours) 0.0252 0.1045

Table 6: Results on N-body System Simulation
experiment. We report the official results of base-
lines. Bold values indicate the best.

Model MSE ↓
SE(3) Transformer (Fuchs et al., 2020) 0.0244
Tensor Field Network (Thomas et al., 2018) 0.0155
Graph Neural Network (Gilmer et al., 2017) 0.0107
Radial Field (Köhler et al., 2019) 0.0104
EGNN (Satorras et al., 2021) 0.0071
GeoMFormer(ours) 0.0047

From Table 4. Our GeoMFormer achieves the lowest MAE among the quadratic models, e.g., 6.7%
relative MAE reduction compared to the previous best model. Besides, compared to the best model
Uni-Mol+ (Lu et al., 2023), our GeoMFormer achieves competitive performance while keeping the ef-
ficiency (O(n2) complexity), which can be more broadly applied to large molecular systems. Overall,
the results further verify the effectiveness of GeoMFormer on invariant representation learning.

5.3 MOLECULE3D PERFORMANCE (INVARIANT)

Molecule3D (Xu et al., 2021) is a newly proposed large-scale dataset curated from the PubChemQC
project (Maho, 2015; Nakata & Shimazaki, 2017). Each molecule has the DFT-calculated equilibrium
geometric structure. The task is to predict the HOMO-LUMO energy gap, which is the same as
PCQM4Mv2. The dataset contains 3,899,647 molecules in total and is split into training, validation,
and test sets with the splitting ratio 6 : 2 : 2. In particular, both random and scaffold splitting
methods are adopted to thoroughly evaluate the in-distribution and out-of-distribution performance
of geometric molecular models. Following (Wang et al., 2022), we compare our GeoMFormer
with several competitive baselines. Detailed descriptions of the training settings and baselines are
presented in the appendix. It can be easily seen from Table 5 that our GeoMFormer consistently
outperforms all baselines on both random and scaffold split settings, e.g., 16.3% and 11.6% relative
MAE reduction compared to the previous best model respectively.

5.4 N-BODY SIMULATION PERFORMANCE (EQUIVARIANT)

Simulating dynamical systems consisting of a set of geometric objects interacting under physical
laws is crucial in many applications, e.g. molecular dynamic simulation. Following (Fuchs et al.,
2020; Satorras et al., 2021), we use a synthetic n-body system simulation task as an extension of
molecular modeling tasks. This task requires the model to forecast the positions of a set of particles,
which are modeled by simple interaction rules, yet can exhibit complex dynamics. Thus, the model’s
ability to perform equivariant prediction tasks is carefully evaluated. In this dataset, the simulated
system consists of 5 particles, each of which carries a positive or negative charge and has an initial
position and velocity in the three-dimensional Euclidean space. The system is controlled by physical
rules involving attractive and repulsive forces. The dataset contains 3.000 trajectories for training,
2.000 trajectories for validation, and 2.000 trajectories for testing. We compare several competitive
baselines following (Satorras et al., 2021). Due to space limits, the detailed descriptions of the data
generation, training settings and baselines are presented in the appendix. The results are shown in
Table 6. Our GeoMFormer achieves the best performance compared to all baselines. In particular,
the significant 33.8% MSE reduction indeed demonstrates the GeoMFormer’s superior ability on
learning equivariant representations.

6 CONCLUSION

In this paper, we propose a general and flexible architecture, called GeoMFormer, for learning
geometric molecular representations. Using the standard Transformer backbone, two streams are
developed for learning invariant and equivariant representations respectively. In particular, the cross-
attention mechanism is used to bridge these two streams, letting each stream leverage contextual
information from the other stream and enhance its representations. This simple yet effective design
significantly boosts both invariant and equivariant modeling. Within the newly proposed framework,
many existing methods can be regarded as special instances, showing the generality of our method.
We conduct extensive experiments covering diverse tasks, data and scales. All the empirical results
show that our GeoMFormer can achieve strong performance in different scenarios. The potential of
our GeoMFormer can be further explored in a broad range of applications in molecular modeling.
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Rubanova, Petar Veličković, James Kirkpatrick, and Peter Battaglia. Simple gnn regularisation for
3d molecular property prediction & beyond. arXiv preprint arXiv:2106.07971, 2021.

Roe Goodman and Nolan R Wallach. Representations and invariants of the classical groups.
Cambridge University Press, 2000.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A
large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

Zilong Huang, Xinggang Wang, Lichao Huang, Chang Huang, Yunchao Wei, and Wenyu Liu. Ccnet:
Criss-cross attention for semantic segmentation. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 603–612, 2019.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as
a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655–665, 2022.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A
general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021a.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021b.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and
Seunghoon Hong. Pure transformers are powerful graph learners. arXiv preprint arXiv:2207.02505,
2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: sampling configurations for multi-body
systems with symmetric energies. arXiv preprint arXiv:1910.00753, 2019.

Greg Landrum. Rdkit: Open-source cheminformatics software. Github, 2016. URL https:
//github.com/rdkit/rdkit/releases/tag/Release_2016_09_4.

Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xiaodong He. Stacked cross attention for
image-text matching. In Proceedings of the European conference on computer vision (ECCV), pp.
201–216, 2018.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train
deeper gcns. arXiv preprint arXiv:2006.07739, 2020.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs. arXiv preprint arXiv:2206.11990, 2022.

11

https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4


Under review as a conference paper at ICLR 2024

Lihang Liu, Donglong He, Xiaomin Fang, Shanzhuo Zhang, Fan Wang, Jingzhou He, and Hua Wu.
Gem-2: Next generation molecular property prediction network by modeling full-range many-body
interactions, 2022a.

Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical
message passing for 3d molecular graphs. In International Conference on Learning Representations
(ICLR), 2022b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021.

Shuqi Lu, Zhifeng Gao, Di He, Linfeng Zhang, and Guolin Ke. Highly accurate quantum chemical
property prediction with uni-mol+, 2023.

Shengjie Luo, Tianlang Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. One
transformer can understand both 2d & 3d molecular data. arXiv preprint arXiv:2210.01765, 2022.

Nakata Maho. The pubchemqc project: A large chemical database from the first principle calculations.
In AIP conference proceedings, volume 1702, pp. 090058. AIP Publishing LLC, 2015.

Dominic Masters, Josef Dean, Kerstin Klaser, Zhiyi Li, Samuel Maddrell-Mander, Adam Sanders,
Hatem Helal, Deniz Beker, Ladislav Rampavsek, and D. Beaini. Gps++: An optimised hybrid
mpnn/transformer for molecular property prediction. ArXiv, abs/2212.02229, 2022.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai
Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
dynamics. Nature Communications, 14(1):579, 2023.

Maho Nakata and Tomomi Shimazaki. Pubchemqc project: a large-scale first-principles electronic
structure database for data-driven chemistry. Journal of chemical information and modeling, 57(6):
1300–1308, 2017.

Wonpyo Park, Woong-Gi Chang, Donggeon Lee, Juntae Kim, et al. Grpe: Relative positional
encoding for graph transformer. In ICLR2022 Machine Learning for Drug Discovery, 2022.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Ladislav Rampavsek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. arXiv preprint
arXiv:2205.12454, 2022.

Víctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International Conference on Machine Learning, pp. 9323–9332. PMLR, 2021.

Bernhard Scholkopf, Kah-Kay Sung, Christopher JC Burges, Federico Girosi, Partha Niyogi, Tomaso
Poggio, and Vladimir Vapnik. Comparing support vector machines with gaussian kernels to radial
basis function classifiers. IEEE transactions on Signal Processing, 45(11):2758–2765, 1997.

Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
of tensorial properties and molecular spectra. In International Conference on Machine Learning,
pp. 9377–9388. PMLR, 2021.

Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
Schnet–a deep learning architecture for molecules and materials. The Journal of Chemical Physics,
148(24):241722, 2018.

William Raymond Scott. Group theory. Courier Corporation, 2012.

Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang Liu,
Di He, and Tie-Yan Liu. Benchmarking graphormer on large-scale molecular modeling datasets.
arXiv preprint arXiv:2203.04810, 2022.

12



Under review as a conference paper at ICLR 2024

Muhammed Shuaibi, Adeesh Kolluru, Abhishek Das, Aditya Grover, Anuroop Sriram, Zachary Ulissi,
and C Lawrence Zitnick. Rotation invariant graph neural networks using spin convolutions. arXiv
preprint arXiv:2106.09575, 2021.

Philipp Thölke and Gianni De Fabritiis. Torchmd-net: equivariant transformers for neural network
based molecular potentials. arXiv preprint arXiv:2202.02541, 2022.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.
arXiv preprint arXiv:1802.08219, 2018.

Oliver T Unke and Markus Meuwly. Physnet: A neural network for predicting energies, forces, dipole
moments, and partial charges. Journal of chemical theory and computation, 15(6):3678–3693,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 6000–6010, 2017.

Limei Wang, Yi Liu, Yuchao Lin, Haoran Liu, and Shuiwang Ji. Comenet: Towards complete and
efficient message passing for 3d molecular graphs. arXiv preprint arXiv:2206.08515, 2022.

Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Physical review letters, 120(14):145301, 2018.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Zhao Xu, Youzhi Luo, Xuan Zhang, Xinyi Xu, Yaochen Xie, Meng Liu, Kaleb Dickerson, Cheng
Deng, Maho Nakata, and Shuiwang Ji. Molecule3d: A benchmark for predicting 3d geometries
from molecular graphs. arXiv preprint arXiv:2110.01717, 2021.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021a.

Chengxuan Ying, Mingqi Yang, Shuxin Zheng, Guolin Ke, Shengjie Luo, Tianle Cai, Chenglin Wu,
Yuxin Wang, Yanming Shen, and Di He. First place solution of kdd cup 2021 & ogb large-scale
challenge graph prediction track. arXiv preprint arXiv:2106.08279, 2021b.

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km


Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS OF GEOMFORMER

Layer Normalizations. Being a Transformer-based model, GeoMFormer also adopts the layer
normalization (LN) (Ba et al., 2016) module for training stability. In the invariant stream, the
LN module remains unchanged from the standard design (Ba et al., 2016; Xiong et al., 2020). In
particular, we specialized the LN module as Equ-LN in the equivariant stream to satisfy the geometric
constraints. Formally, given the equivariant representation zEi ∈ R3×d of the atom i, Equ-LN(zEi ) =

U(zEi − µ1⊤)⊙ γ, where µ = 1
d

∑d
k=1 Z

E
[i,:,k] ∈ R3, γ ∈ Rd is a learnable vector, and U ∈ R3×3

denotes the inverse square root of the covariance matrix, i.e., U−2 =
(zE

i −µ1⊤)(zE
i −µ1⊤)⊤

d .

Structural Encodings. We follow (Shi et al., 2022) to incorporate the 3D structural encod-
ing, which serves as the bias term in the softmax attention module. In particular, we con-
sider the Euclidean distance ||ri − rj || between atom i and j. The Gaussian Basis Kernel
function (Scholkopf et al., 1997) is used to encode the interatomic distance, i.e., bk(i,j) =

− 1√
2π|σk| exp(−

1
2 (

γ(i,j)||ri−rj ||+β(i,j)−µk

|σk| )2), k = 1, ...,K, where K is the number of Gaussian

Basis kernels. The 3D structural encoding is obtained by Bij = GELU(b(i,j)W
1
D)W 2

D, where
b(i,j) = [b1(i,j); ...; b

K
(i,j)]

⊤, W 1
D ∈ RK×K ,W 2

D ∈ RK×1 are learnable parameters. γ(i,j), β(i,j) are
learnable scalars indexed by the pair of atom types, and µk, σk are learnable kernel center and learn-
able scaling factor of the k-th Gaussian Basis Kernel. Denote B as the matrix form of the 3D distance
encoding, whose shape is n×n. Then the attention probability is calculated by softmax(QK⊤

√
d

+B),
where Q and K are the query and key introduced in Section 3.

B PROOF OF GEOMETRIC CONSTRAINTS

In this section, we provide thorough proof of the aforementioned conditions in Section 4 that satisfy
the geometric constraints. For the sake of convenience, we restate the notations and geometric
constraints here. Formally, let VM denote the space of molecular systems, for each atom i, we
define equivariant representation ϕE and invariant representation ϕI if ∀ g = (t,R) ∈ SE(3),M =
(X, R) ∈ VM, the following conditions are satisfied:

ϕE : VM → R3×d, RϕE(X, {r1, ..., rn}) = ϕE(X, {Rr1, ...,Rrn}) (9a)

ϕE : VM → R3×d, ϕE(X, {r1, ..., rn}) = ϕE(X, {r1 + t, ..., rn + t}) (9b)

ϕI : VM → Rd, ϕI(X, {r1, ..., rn}) = ϕI(X, {Rr1 + t, ...,Rrn + t}) (9c)

where t ∈ R3,R ∈ R3×3,det(R) = 1 and X ∈ Rn×d denotes the atoms with features, R =
{r1, ..., rn}, ri ∈ R3 denotes the cartesian coordinate of atom i. We present the proof of the General
Design Philosophy (Section B.1) and our GeoMFormer model (Section B.2) respectively.

B.1 PROOF OF THE GENERAL DESIGN PHILOSOPHY.

Given invariant and equivariant representations ZI,0 ∈ Rn×d,ZE,0 ∈ Rn×3×d at the in-
put, we prove that the update rules shown in Eqn.(4) satisfy the above constraints in proper
conditions. In particular, we first separately study each component of the block, i.e.,
Inv-Self-Attn, Equ-Self-Attn, Inv-Cross-Attn, Equ-Cross-Attn, and then check the properties
of the whole framework.

Invariant Self-Attention. Given invariant representation ZI,l ∈ Rn×d, QI,l = ψI,l
Q (ZI,l),KI,l =

ψI,l
K (ZI,l),VI,l = ψI,l

V (ZI,l), as stated in Section 4.1, where ψI,l : Rn×d → Rn×d is invari-
ant. In this regard, ∀g = (t,R) ∈ SE(3), QI,l,KI,l,VI,l remain unchanged, which means that
Inv-Self-Attn(QI,l,KI,l,VI,l) also remains unchanged. Then the invariance of the output repre-
sentations is preserved.
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Equivariant Self-Attention. Given equivariant representation ZE,l ∈ Rn×3×d, QE,l =

ψE,l
Q (ZE,l),KE,l = ψE,l

K (ZE,l),VE,l = ψE,l
V (ZE,l), as stated in Section 4.1, where

ψE,l : Rn×3×d → Rn×3×d is equivariant. Besides, the attention score is
modified as αij =

∑d
k=1 Q

E
[i,:,k]K

E
[j,:,k]

⊤, where QE
[i,:,k] ∈ R3 denotes the

k-th dimension of the atom i’s Query. First, we check the rotation equivari-
ance of the Equ-Self-Attn. Given any orthogonal transformation matrix R ∈
R3×3,det(R) = 1, we have

∑d
k=1 Q

E
[i,:,k]R(KE

[j,:,k]R)⊤ =
∑d

k=1 Q
E
[i,:,k]RR⊤KE

[j,:,k]
⊤
=∑d

k=1 Q
E
[i,:,k]K

E
[j,:,k]

⊤
= αij , which preserves the invariance. As ψE,l is equivariant, we

have ψE,l([RZE,l
1 ; , ..., ;RZE,l

n ]) = [RψE,l(ZE,l)1; , ..., ;Rψ
E,l(ZE,l)n]. Since the output equiv-

ariant representation of atom i preserves the equivariance, i.e.,
∑n

j=1
exp(αij)∑n

j′=1
exp(αij′ )

RVE,l
j =

R(
∑n

j=1
exp(αij)∑n

j′=1
exp(αij′ )

VE,l
j ), the rotation equivariance is satisfied. Moreover, since the equiv-

ariant representation ZE,l preserves the translation invariance (Eqn.(9b)), the output equivariant
representation of Equ-Self-Attn naturally satisfies this constraint.

Cross-Attention modules. As stated in Section 4.1, the Query, Key, and Value of
Inv-Cross-Attn are specified as QI_E,l = ψI,l

Q (ZI,l),KI_E,l = ψI_E,l
K (ZI,l,ZE,l),VI_E,l =

ψI_E,l
V (ZI,l,ZE,l), where ψI,l, ψI_E,l are invariant. That is to say, ∀g = (t,R) ∈

SE(3), QI_E,l,KI_E,l,VI_E,l remain unchanged. Then the invariance of its out-
put representations is preserved as in Inv-Self-Attn. On the other hand, the Query,
Key, and Value of Equ-Cross-Attn are specified as QE_I,l = ψE,l

Q (ZE,l),KE_I,l =

ψE_I,l
K (ZE,l,ZI,l),VE_I,l = ψE_I,l

V (ZE,l,ZI,l), where ψE,l, ψE_I,l are equivariant, i.e.,
ψE_I,l([RZE,l

1 ; , ..., ;RZE,l
n ],ZI,l) = [RψE_I,l(ZE,l,ZI,l)1; , ..., ;Rψ

E,l(ZE,l,ZI,l)n] and
ψE,l([RZE,l

1 ; , ..., ;RZE,l
n ]) = [RψE,l(ZE,l)1; , ..., ;Rψ

E,l(ZE,l)n]. As stated in Equ-Self-Attn,
the output equivariant representations of Equ-Cross-Attn preserve the rotation equivariance. Simi-
larly, the translation invariance property is also naturally satisfied.

Feed-Forward Networks. As Inv-FFN and Equ-FFN satisfy the invariance and equivariance
constraints respectively, we can directly obtain that ∀g = (t,R) ∈ SE(3), the output of
Inv-FFN remains unchanged, and the output of Equ-FFN preserves the rotation equivariance,
i.e., Equ-FFN([RZE,l

1 ; , ..., ;RZE,l
n ]) = [REqu-FFN(ZE,l)1; , ..., ;REqu-FFN(ZE,l)n]. The

translation invariance is also naturally preserved by Equ-FFN.

With the above analysis, the update rules stated in Eqn.(4) satisfy the geometric constraints (Eqn.(9a),
Eqn.(9b) and Eqn.(9c)). As our model is composed of stacked blocks, the invariant and equivariant
output representations of the whole model also preserve the constraints.

B.2 PROOF OF THE GEOMFORMER

Next, we provide proof of the instantiation of our GeoMFormer in Section 4.2 that satisfies the
geometric constraints. Similarly, we separately check the properties of each component as our
GeoMFormer is composed of stacked GeoMFormer blocks. Once the constraints are satisfied by each
component, the output invariant and equivariant representations of the whole model naturally satisfy
the geometric constraints (Eqn.(9a), Eqn.(9b) and Eqn.(9c)).

Input layer. As stated in Section 4.2, the invariant representation at the input is set as ZI,0 = X,
where Xi ∈ Rd is a learnable embedding vector indexed by the atom i’s type. Since ZI,0 does
not contain any information from R = {r1, ..., rn}, it naturally satisifies the invariance constraint
(Eqn.(9c)). The equivariant representation at the input is set as ZE,0

i = r̂′ig(||r′i||)
⊤ ∈ R3×d, where

r′i denotes the mean-centered position of atom i, i.e., r′i = ri − 1
n

∑n
k=1 rk, r̂′i =

r′i
||r′i||

, and

g : R → Rd is instantiated by the Gaussian Basis Kernel function. First, the translation invariance
constraint (Eqn.(9b)) is satisfied. Given any translation vector t ∈ R3, ri + t− 1

n

∑n
k=1(rk + t) =

ri − 1
n

∑n
k=1 rk, and ZE,0

i remains unchanged. Second, the rotation equivariance (Eqn.(9a)) is
also preserved. Given any orthogonal transformation matrix R ∈ R3×3,det(R) = 1, we have

15



Under review as a conference paper at ICLR 2024

||Rr′i|| = ||r′i||. With Rri as the input, we have Rri − 1
n

∑n
k=1 Rrk = R(ri − 1

n

∑n
k=1 rk) = Rr′i

and g(||Rr′i||) = g(||r′i||), which means that the rotation equivariance constraint is satisfied.

Self-Attention modules. For Inv-Self-Attn and Equ-Self-Attn, we use the linear function to
implement both ψI and ψE , i.e., QI = ψI

Q(Z
I) = ZIW I

Q,K
I = ψI

K(ZI) = ZIW I
K ,V

I =

ψI
V (Z

I) = ZIW I
V and QE = ψE

Q(Z
E) = ZEWE

Q ,K
E = ψE

K(ZE) = ZEWE
K ,V

E = ψE
V (Z

E) =

ZEWE
V . It is straightforward that the conditions mentioned in Section B.1 are satisfied. The linear

function keeps the invariance of ZI (Eqn.(9c)) and the rotation equivariance of ZE (Eqn.(9a)), e.g.,
∀R ∈ R3×3,det(R) = 1, (RZE

i )W
E
Q = R(ZE

i W
E
Q ) = RZE

i . Note that the translation invariance
of ZE (Eqn.(9b)) is not changed by the linear function.

Cross-Attention modules. For Inv-Cross-Attn, we use the linear function to implement
ψI
Q, which satisfies the constraints as previously stated. Besides, we instantiate KI_E and

VI_E as KI_E = ψI_E
K (ZI ,ZE) =< ZEW I_E

K,1 ,Z
EW I_E

K,2 >,VI_E = ψI_E
V (ZI ,ZE) =<

ZEW I_E
V,1 ,Z

EW I_E
V,2 >. Here we prove that such instantiation preserve the invariance.

First, given any orthogonal transformation matrix R ∈ R3×3,det(R) = 1, we have
< ([RZE

1 ; ...;RZE
n ])W

I_E
K,1 , ([RZE

1 ; ...;RZE
n ])W

I_E
K,2 >=< ZEW I_E

K,1 ,Z
EW I_E

K,2 >. The
reason is that given X,Y ∈ Rn×3×d, Z =< X,Y >∈ Rn×d, where Z[i,k] = X[i,:,k]

⊤Y[i,:,k] =

X[i,:,k]
⊤R⊤RY[i,:,k] = (RX[i,:,k])

⊤(RY[i,:,k]). The translation invariance of ZE is also preserved.

For Equ-Cross-Attn, we also use the linear function to implement ψE
Q , which satisfies the con-

straints as previously stated. Besides, we instantiate KE_I and VE_I as KE_I = ψE_I
K (ZE ,ZI) =

ZEWE_I
K,1 ⊙ ZIWE_I

K,2 ,V
E_I = ψE_I

V (ZE ,ZI) = ZEWE_I
V,1 ⊙ ZIWE_I

V,2 . First, given any or-
thogonal transformation matrix R ∈ R3×3, we have ([RZE

1 ; ...;RZE
n ])W

E_I
K,1 ⊙ ZIWE_I

K,2 =

[R(ZEWE_I
K,1 ⊙ ZIWE_I

K,2 )1; ...;R(ZEWE_I
K,1 ⊙ ZIWE_I

K,2 )n], which preserves the rotation equiv-
ariance. The reason lies in that given X ∈ Rn×3×d, Y ∈ Rn×d, Zi = RXi ⊙ Yi ∈ R3×d, where
Z[i,:,k] = (RX[i,:,k]) · Y[i,k] = R(X[i,:,k] · Y[i,k]). Additionally, the translation invariance of both
KE_I and VE_I is preserved because of the translation invariance of ZE and ZI . In this way, the
instantiations of cross-attention modules satisfy the geometric constraints.

Feed-Forward Networks. For Inv-FFN(Z′′I) = GELU(Z′′IW I
1 )W

I
2 , the invariance constraint

(Eqn. 9c) is naturally preserved. For Equ-FFN(Z′′E) = (Z′′EWE
1 ⊙ GELU(Z′′IW I

2 ))W
E
3 , the

rotation equivariance constraint is also similarly preserved as in Equ-Cross-Attn. Besides, the
translation invariance of Equ-FFN(Z′′E) is also preserved with the property of Z′′E and Z′′I .

Layer Normalizations. As introduced in Section A, we use the layer normalization modules for
both invariant and equivariant streams. For the invariant stream, the layer normalization remains
unchanged, and the invariance constraint is naturally preserved. For the equivariant stream, given the
equivariant representation zEi ∈ R3×d of the atom i, Equ-LN(zEi ) = U(zEi −µ1⊤)⊙ γ, where µ =
1
d

∑d
k=1 Z

E
[i,:,k] ∈ R3, γ ∈ Rd is a learnable vector, and U ∈ R3×3 denotes the inverse square root of

the covariance matrix, i.e., U−2 =
(zE

i −µ1⊤)(zE
i −µ1⊤)⊤

d . First, given any orthogonal transformation

matrix R ∈ R3×3,det(R) = 1, (RzE
i −Rµ1⊤)(RzE

i −Rµ1⊤)⊤

d =
(RzE

i −Rµ1⊤)(RzE
i −Rµ1⊤)⊤

d =

R
(zE

i −µ1⊤)(zE
i −µ1⊤)⊤

d R⊤ = RU−2R⊤ = RU−1R⊤RU−1R⊤ = (RUR⊤)−2, then we have
Equ-LN(RzEi ) = RUR⊤(RzEi −Rµ1⊤) ⊙ γ = R(U(zEi − µ1⊤)) = REqu-LN(zEi ), which
preserves the rotation equivariance (Eqn.(9a)). The translation invariance of ZE is also preserved.

Structural Encodings. As introduced in Section A, the structural encodings serve as the bias term
in the softmax attention module. Since only the relative distance ||ri − rj ||,∀i, j ∈ [n] is used, the
invariance constraint is preserved, i.e., given ∀g = (t,R) ∈ SE(3), ||Rri+t−Rrj+t|| = ||ri−rj ||.
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C DISCUSSIONS

C.1 CONNECTIONS TO PREVIOUS APPROACHES

In this section, we present a detailed discussion of how previous models (PaiNN (Schütt et al.,
2021) and TorchMD-Net (Thölke & De Fabritiis, 2022)) can be viewed as special instantiations
by extending the design philosophy described in Section 4.1. Without loss of generality, we omit
the cutoff conditions used in these works for readability, which can be naturally included in our
framework.

PaiNN (Schütt et al., 2021). Both invariant representations ZI = [zI1
⊤
; ...; zIn

⊤
] ∈ Rn×d and

equivariant representations ZE = [zE1 ; ...; z
E
n ] ∈ Rn×3×d are maintained in PaiNN, where zIi ∈ Rd

and zEi ∈ R3×d are the invariant and equivariant representations for atom i, respectively. In each
layer, the representations are updated as follows:

Z′I,l = ZI,l +Message-Block-Inv(ZI,l)

Z′E,l
= ZE,l +Message-Block-Equ(ZI,l,ZE,l)

ZI,l+1 = Z′I,l +Update-Block-Inv(Z′I,l,Z′E,l
)

ZE,l+1 = Z′E,l
+Update-Block-Equ(Z′I,l,Z′E,l

)

(10)

In the message block, the invariant and equivariant representations are updated in the following
manner. For brevity, we omit the layer index l.

Message-Block-Inv(zIi ) =
∑
j

ϕs(z
I
j ) ◦Ws(||ri − rj ||)

Message-Block-Equ(zIi , z
E
i ) =

∑
j

zEj ⊙
(
ϕvv(z

I
j ) ◦Wvv(||ri − rj ||)

)
+

ri − rj
||ri − rj ||

(
ϕvs(z

I
j ) ◦W

′
vs(||ri − rj ||)

)⊤
(11)

The scalar product ⊙ is defined the same way as in Section 4.2, i.e., given x ∈ R3×d, y ∈ Rd, z =
x⊙y ∈ R3×d, where z[i,j] = x[i,k]·y[k]. ◦ denotes the element-wise product, ϕs, ϕvv, ϕvs : Rd → Rd

are all 2-layer MLP with the SiLU activation, Ws,Wvv,W ′
vs : R → Rd are instantiated by learnable

radial basis functions. ri−rj
||ri−rj || ∈ R3 denotes the relative direction between atom i’s and j’s positions.

In the update block, the invariant and equivariant representations are updated in the following manner:

Update-Block-Inv(zIi , z
E
i ) = ass(z

I
i , ||zEi V||) + asv(z

I
i , ||zEi V||) ◦ < zEi U, z

E
i V >

Update-Block-Equ(zIi , z
E
i ) = avv(z

I
i , ||zEi V||)⊙ (zEi U)

V,U ∈ Rd×d are learnable parameters. < ·, · > is defined the same way as in Section 4.2, i.e., given
x, y ∈ R3×d, z =< x, y >∈ Rd, where z[k] = x[:,k]

⊤y[:,k]. Norm || · || : R3×d → Rd is calculated
along the spatial dimension, i.e., || · || =< ·, · >. ◦ denotes the element-wise product. ⊙ is also
defined the same as in Section 4.2. a(·, ·) : Rd × Rd → Rd first concatenates the two inputs along
the feature dimension and then apply a 2-layer MLP with SiLU activation.

We prove that both the invariant and equivariant message blocks can be viewed as special instances
by extending the invariant self-attention module and the equivariant cross-attention module of our
framework respectively. In particular, we extend ψI

V , ψ
E_I
V introduced in the Section 4.1 to be query-

dependent, i.e., ψI,i
V , ψE_I,i

V that depends on the atom i’s representations. Concretely, in the invariant
self-attention module, we set ψI, i

V (zIj ) = ϕs(z
I
j )⊙Ws(||ri−rj ||). Similarly, in the equivariant cross-

attention module, we set ψE_I, i
V (zIj , z

E
j ) = zEj ⊙ϕvv(zIj ) ·Wvv(||ri−rj ||)+ϕvs(zIj ) ·W

′

vs
ri−rj

||ri−rj || .
In such way, the invariant self-attention module and the equivariant cross-attention module can express
the invariant and equivariant message blocks respectively, e.g., the parameters to transform Query
and Key are trained/initialized to zero, and the number of atoms can be equipped by initialization,
which is necessary to express the sum operator by using the attention as shown in (Ying et al., 2021a).

Moreover, we prove that the update blocks can also be viewed as special instances by extend-
ing the FFN blocks in our framework. In particular, we set Inv-FFN(zIi ) = ass(z

I
i , ||zEi V||) +
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asv(z
I
i , ||zEi V||) < zEi U, z

E
i V > and Equ-FFN(zEi ) = avv(z

I
i , ||zEi V||)

(
zEi U

)
, then both

Inv-FFN and Equ-FFN can express the update blocks. Note that the parameters of the remaining
blocks (Inv-Cross-Attn,Equ-Self-Attn) can be trained/initialized to be zero. In such way, the
PaiNN model can be instantiated through our design philosophy introduced in Section 4.1.

TorchMD-Net (Thölke & De Fabritiis, 2022). Similarly to PaiNN, both invariant representations
ZI = [zI1

⊤
; ...; zIn

⊤
] ∈ Rn×d and equivariant representations ZE = [zE1 ; ...; z

E
n ] ∈ Rn×3×d are

maintained in TorchMD-Net, where zIi ∈ Rd and zEi ∈ R3×d are the invariant and equivariant
representations for atom i, respectively. In each layer, the representations are updated as follows:

Z′I,l = ZI,l +TorchMD-Inv-Block-1(ZI,l)

ZI,l+1 = Z′I,l +TorchMD-Inv-Block-2(Z′I,l,ZE,l)

ZE,l+1 = ZE,l +TorchMD-Equ-Block(ZI,l,ZE,l)

(12)

The invariant representations in TorchMD-Inv-Block-1 and TorchMD-Inv-Block-2 are updated as
follows. For brevity, we omit the layer index l.

Qi =WQzIi ,Kj =WKzIj ,V
(1)
j =WV (1)zIj

αij = SiLU
(
Q⊤

i

(
Kj ◦DK

ij

))
TorchMD-Inv-Block-1(zIi ) = O1

(∑
j

αij ·V(1)
j ◦DV (1)

ij

)

TorchMD-Inv-Block-2(zIi , z
E
i ) = O2

(∑
j

αij ·V(1)
j ◦DV (1)

ij

)
◦ < zEi U1, z

E
i U2 >

(13)

WQ,WK ,WV (1),U1,U2 ∈ Rd×d are learnable parameters. ◦ denotes the element-wise product.
DK

ij ,D
V (1)
ij : R → Rd takes ||ri − rj || as input and uses radial basis functions followed by a

non-linear activation to transform it. O1, O2 : Rd → Rd are learnable linear transformations. < ·, · >
is defined the same way as in Section 4.2, i.e., given x, y ∈ R3×d, z =< x, y >∈ Rd, where
z[k] = x[:,k]

⊤y[:,k]. On the other hand, the equivariant representations are updated as follows:

V
(2)
j = WV (2)zIj ,V

(3)
j = WV (3)zIj

TorchMD-Equ-Block(zIi , z
E
i ) =

∑
j

(
(V

(2)
j ◦DV (2)

ij )⊙ zEj +
ri − rj

||ri − rj ||
(V

(3)
j ◦DV (3)

ij )⊤
)

+O3

(∑
j

αij ·V(1)
j ◦DV (1)

ij

)
⊙ zEi U3

(14)

WV (2),WV (3),U3 ∈ Rd×d are learnable parameters. ◦ denotes the element-wise product. ⊙ is
defined the same way as in Section 4.2, i.e., given x ∈ R3×d, y ∈ Rd, z = x ⊙ y ∈ R3×d, where
z[i,j] = x[i,k] · y[k]. DV (2)

ij ,DV (3)

ij : R → Rd takes ||ri − rj || as input and use radial basis functions
followed by a non-linear activation to transform it. O3 : Rd → Rd is a learnable linear transformation.
ri−rj

||ri−rj || ∈ R3 denotes the relative direction between atom i’s and j’s positions.

We prove that the TorchMD-Inv-Block-1 and TorchMD-Inv-Block-2 can be viewed as special
instances by extending the invariant self-attention module and invariant cross-attention module of
our framework respectively. Concretely, in the invariant self-attention module, we set ψI

Q(z
I
i ) =

WQzIi , ψ
I, i
K (zIj ) = WKzIj ◦ DK

ij , ψ
I, i
V (zIj ) = O1

(
WV (1)

zIj ◦DV (1)

ij

)
and use SiLU instead of

Softmax for calculating attention probability. By rewriting TorchMD-Inv-Block-1 in the equivalent
form TorchMD-Inv-Block-1(zIi ) =

∑
j αij ·O1

(
V

(1)
j ◦DV (1)

ij

)
, the invariant self-attention module

can express it by equipping the number of atoms for expressing the sum operation using the attention.

In the invariant cross-attention module, we set ψI
Q(z

I
i ) = WQzIi , ψ

I_E, i
K (zIj , z

E
j ) = WKzIj ◦

DK
ij , ψ

I_E, i
V (zIj , z

E
j ) = O2

(
WV (1)

zIj ◦DV (1)

ij

)
◦ < U1z

E
i , U2z

E
i >, and use SiLU instead of
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Softmax for calculating attention probability. By rewriting TorchMD-Inv-Block-2 in the equivalent
form TorchMD-Inv-Block-2(zIi , z

E
i ) =

∑
j αij · O2

(
V

(1)
j ◦DV (1)

ij

)
◦ < U1z

E
i , U2z

E
i >, the

invariant cross-attention module can express it by equipping the number of atoms.

Moreover, we prove that the TorchMD-Equ-Block can be viewed as a special instance by extending
the equivariant cross-attention module of our framework. In particular, we set ψE_I, i

V (zIj , z
E
j ) =

(WV (2)

zIj ◦DV (2)

ij )⊙ zEj +
ri−rj

||ri−rj || (W
V (3)

zIj ◦DV (3)

ij )⊤ + αij ·O3

(
WV (1)

zIj ◦DV (1)

ij

)
⊙ U3z

E
i .

By rewriting TorchMD-Equ-Block in the equivalent form TorchMD-Equ-Block(zIi , z
E
i ) =∑

j

(
(V

(2)
j ◦DV (2)

ij )⊙ zEj +
ri−rj

||ri−rj || (V
(3)
j ◦DV (3)

ij )⊤
)
+
∑

j αij ·O3

(
V

(1)
j ◦DV (1)

ij

)
⊙U3z

E
i =∑

j

(
(V

(2)
j ◦DV (2)

ij )⊙ zEj +
ri−rj

||ri−rj || (V
(3)
j ◦DV (3)

ij )⊤ + αij ·O3

(
V

(1)
j ◦DV (1)

ij

)
⊙ U3z

E
i

)
, it is

straightforward that the equivariant cross-attention module can express the TorchMD-Equ-Block,
e.g., the parameters to transform Query and Key are trained/initialized to zero, and the number
of atoms can be equipped by initialization. Note that the parameters of the remaining blocks
(Equ-Self-Attn, Inv-FFN,Equ-FFN) can be trained/initialized to be zero. In such ways, the
TorchMD-Net model can be instantiated through our design philosophy introduced in Section 4.1.

C.2 EXTENSION TO OTHER GEOMETRIC CONSTRAINTS

In this subsection, we showcase how to extend our framework to encode other geometric constraints.
In particular, we consider the E(3) group, which comprises translation, rotation and reflection.
Formally, let VM denote the space of molecular systems, for each atom i, we define equivariant
representation ϕE and invariant representation ϕI if ∀ g = (t,R) ∈ E(3),M = (X, R) ∈ VM, the
following conditions are satisfied:

ϕE : VM → R3×d, RϕE(X, {r1, ..., rn}) + t1⊤ = ϕE(X, {Rr1 + t, ...,Rrn + t}) (15a)

ϕI : VM → Rd, ϕI(X, {r1, ..., rn}) = ϕI(X, {Rr1 + t, ...,Rrn + t}) (15b)

where t ∈ R3 is a translation vector, R ∈ R3×3,det(R) = ±1 is an orthogonal transformation
matrix and X ∈ Rn×d denotes the atoms with features, R = {r1, ..., rn}, ri ∈ R3 denotes the
cartesian coordinate of atom i. In particular, the additional requirement is to encode the translation
and reflection equivariance of the equivariant representations, which can be achieved by modifying
the conditions of our framework (Eqn.(4)).

With the invariant representation ZI and the equivariant representation ZE that satisfy the
constraints (Eqn.(15a) and Eqn.(15b)), we separately redefine the conditions of each com-
ponent. It is worth noting that the reflection invariance is directly satisfied (RR⊤ =
R⊤R = I) from the analysis in Section B.1 and Section B.2, which is required in (1)
the calculation of attention probability in Equ-Self-Attn,Equ-Cross-Attn; (2) the calcula-
tion of KI_E and VI_E . Thus, we only need to encode the translation equivariance con-
straint. Given the update rules (Eqn.(4)), it can be achieved by simply setting each compo-
nent (Inv-Self-Attn, Inv-Cross-Attn,Equ-Self-Attn,Equ-Cross-Attn, Inv-FFN,Equ-FFN) to
be translation-invariant. In this way, the output equivariant representation can preserve the equivari-
ance to the E(3) group. We extend our framework to achieve this goal, which is introduced below:

Self-Attention modules. For Inv-Self-Attn, the condition remains unchanged. For Equ-Self-Attn,
the additional condition is that ψE should keep the translation invariance. Here we give a simple
instantiation: QE = ψE

Q(Z
E) = (ZE − µZE )WE

Q ,K
E = ψE

K(ZE) = (ZE − µZE )WE
K ,V

E =

ψE
V (Z

E) = (ZE − µZE )WE
V , where µZE ,i =

1
d

∑n
k=1 Z

E
[i,:,k]1

⊤.

Cross-Attention modules. For Inv-Cross-Attn, the condition for ψI remains unchanged, while
ψI_E should keep the translation invariance. For Equ-Cross-Attn, both ψE and ψE_I are required
to be translation-invariant. Here we give an instantiation: QE = ψE

Q(Z
E) = (ZE − µZE )WE

Q , and

KI_E =< (ZE − µZE )W I_E
K,1 , (Z

E − µZE )W I_E
K,2 >, VI_E =< (ZE − µZE )W I_E

V,1 , (Z
E − µZE )W I_E

V,2 >

KE_I = (ZE − µZE )WE_I
K,1 ⊙ ZIWE_I

K,2 , VE_I = (ZE − µZE )WE_I
V,1 ⊙ ZIWE_I

V,2

(16)
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Feed-Forward Networks. Similarly, the condition for Inv-FFN remains unchanged.
For Equ-FFN, it also should keep the translation invariance, e.g., Equ-FFN(Z′′E) =

((Z′′E − µZE )WE
1 ⊙GELU(Z′′IW I

2 ))W
E
3 .

Remark. With the above additional conditions, our framework can additionally be extended to
encode geometric constraints towards E(3) group. Note that the design of the input layer should also
encode the constraints (Eqn.(15a) and Eqn.(15b)). For example, the invariant representation remains
unchanged as ZI,0 = X. while the equivariant representation can be directly set as ZE,0

i = ri. In
this way, the geometric constraints are well satisfied.

D EXPERIMENTAL DETAILS

D.1 OC20 IS2RE

Baselines. We compare our GeoMFormer with several competitive baselines for learning geometric
molecular representations. Crystal Graph Convolutional Neural Network (CGCNN) (Xie & Grossman,
2018) developed novel approaches to modeling periodic crystal systems with diverse features as node
embeddings. SchNet (Schütt et al., 2018) leveraged the interatomic distances encoded via radial basis
functions, which serve as the weights of continuous-filter convolutional layers. DimeNet++ (Gasteiger
et al., 2020a) introduced the directional message passing that encodes both distance and angular
information between triplets of atoms.

GemNet (Gasteiger et al., 2021) embedded all atom pairs within a given cutoff distance based on inter-
atomic directions, and proposed three forms of interaction to update the directional embeddings: Two-
hop geometric message passing (Q-MP), one-hop geometric message passing (T-MP), and atom self-
interactions. An efficient variant named GemNet-T is proposed to use cheaper forms of interaction.

SphereNet (Liu et al., 2022b) used the spherical coordinate system to represent the relative location of
each atom in the 3D space and proposed the spherical message passing. GNS (Pfaff et al., 2020) is a
framework for learning mesh-based simulations using graph neural networks and can handle complex
physical systems. Graphormer-3D (Shi et al., 2022) extended Graphormer(Ying et al., 2021a) to
learn geometric molecular representations, which encodes the interatomic distance as attention bias
terms and performed well on large-scale datasets. Equiformer (Liao & Smidt, 2022) uses the tensor
product operations to build a new scalable equivariant Transformer architecture and outperforms
strong baselines on the large-scale OC20 dataset (Chanussot et al., 2021).

Settings. As introduced in Section 5.1.1, we follow the experimental setup of Graphormer-3D (Shi
et al., 2022) for a fair comparison. Our GeoMFormer model consists of 12 layers. The dimension
of hidden layers and feed-forward layers is set to 768. The number of attention heads is set to 48.
The number of Gaussian Basis kernels is set to 128. We use AdamW as the optimizer and set the
hyper-parameter ϵ to 1e-6 and (β1, β2) to (0.9,0.98). The gradient clip norm is set to 5.0. The peak
learning rate is set to 2e-4. The batch size is set to 128. The dropout ratios for the input embeddings,
attention matrices, and hidden representations are set to 0.0, 0.1, and 0.0 respectively. The weight
decay is set to 0.0. The model is trained for 1 million steps with a 60k-step warm-up stage. After the
warm-up stage, the learning rate decays linearly to zero. Following Liao & Smidt (2022), we also use
the noisy node data augmentation strategy (Godwin et al., 2021) to improve the performance. The
model is trained on 16 NVIDIA Tesla V100 GPUs.

D.2 OC20 IS2RS

Baselines. In this experiment, we choose several competitive baselines that perform well on
equivariant prediction tasks for molecules. PaiNN (Schütt et al., 2021) built upon the framework of
EGNN (Satorras et al., 2021) to maintain both invariant and equivariant representations and further
used the Hardamard product operation to transform the equivariant representations. Specialized tensor
prediction blocks were also developed for different molecular properties. TorchMD-Net (Thölke &
De Fabritiis, 2022) developed an equivariant Transformer architecture by using similar Hardamard
product operations and achieved strong performance on various tasks.
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SpinConv (Shuaibi et al., 2021) encoded angular information with a local reference frame defined
by two atoms and used a spin convolution on the spherical representation to capture rich angular
information while maintaining rotation invariance. An additional prediction head is used to perform
the equivariant prediction task, GemNet-dT (Gasteiger et al., 2021) is a variant of GemNet-T that
can directly perform force prediction and other equivariant tasks, e.g., the relaxed positions in this
experiment. GemNet-OC (Gasteiger et al., 2022) is an extension of GemNet by using more efficient
components and achieved better performance on OC20 tasks.

Settings. As introduced in Section 5.1.2, we adopt the direct prediction setting for comparing the
ability to perform equivariant prediction tasks on OC20 IS2RS. In particular, we re-implemented the
baselines and carefully trained these models for a fair comparison. Our GeoMFormer model consists
of 12 layers. The dimension of hidden layers and feed-forward layers is set to 768. The number of
attention heads is set to 48. The number of Gaussian Basis kernels is set to 128. We use AdamW
as the optimizer and set the hyper-parameter ϵ to 1e-6 and (β1, β2) to (0.9,0.98). The gradient clip
norm is set to 5.0. The peak learning rate is set to 2e-4. The batch size is set to 64. The dropout
ratios for the input embeddings, attention matrices, and hidden representations are set to 0.0, 0.1,
and 0.0 respectively. The weight decay is set to 0.0. The model is trained for 1 million steps with
a 60k-step warm-up stage. After the warm-up stage, the learning rate decays linearly to zero. The
model is trained on 16 NVIDIA Tesla V100 GPUs.

D.3 PCQM4MV2

Baselines. We compare our GeoMFormer with several competitive baselines from the leaderboard
of OGB Large-Scale Challenge (Hu et al., 2021). First, we compare several message-passing neural
network (MPNN) variants. Two widely used models, GCN (Kipf & Welling, 2016) and GIN (Xu
et al., 2019) are compared along with their variants with virtual node (VN) (Gilmer et al., 2017;
Hu et al., 2020). Besides, we compare GINE-VN (Brossard et al., 2020) and DeeperGCN-VN (Li
et al., 2020). GINE is the multi-hop version of GIN. DeeperGCN is a 12-layer GNN model with
carefully designed aggregators. The result of MLP-Fingerprint (Hu et al., 2021) is also reported. The
complexity of these models is generally O(n), where n denotes the number of atoms.

Additionally, we compare with several Graph Transformer models, whose computational complexity
is O(n2). TokenGT (Kim et al., 2022) purely used node and edge representations as the input and
adopted the standard Transformer architecture without graph-specific modifications. EGT (Hussain
et al., 2022) used global self-attention as an aggregation mechanism and utilized edge channels to
capture structural information. GRPE (Park et al., 2022) considered both node-spatial and node-edge
relations and proposed a graph-specific relative positional encoding. Graphormer (Ying et al., 2021a)
developed graph structural encodings and integrated them into a standard Transformer model, which
achieved impressive performance across several world competitions (Ying et al., 2021b; Shi et al.,
2022). GraphGPS (Rampavsek et al., 2022) proposed a framework to integrate the positional and
structural encodings, local message-passing mechanism, and global attention mechanism into the
Transformer model. All these models are designed to learn 2D molecular representations.

There also exist several models capable of utilizing the 3D geometric structure information in the
training set of PCQM4Mv2. Transformer-M (Luo et al., 2022) is a Transformer-based Molecular
model that can take molecular data of 2D or 3D formats as input and learn molecular representations,
which was widely adopted by the winners of the 2nd OGB Large-Scale Challenge. GPS++ (Masters
et al., 2022) is a hybrid MPNN and Transformer model built on the GraphGPS framework (Ram-
pavsek et al., 2022). It follows Transformer-M to utilize 3D atom positions and auxiliary tasks to win
first place in the large-scale challenge.

Last, we include two complex models with O(n3) complexity. GEM-2 (Liu et al., 2022a) used
multiple branches to encode the full-range interactions between many-body objects and designed
an axial attention mechanism to efficiently approximate the interaction with low computational cost.
Uni-Mol+ (Lu et al., 2023) proposed an iterative prediction framework to achieve accurate quantum
property prediction. It first generated 3D geometric structures from the 2D molecular graph using
fast yet inaccurate methods, e.g., RDKit (Landrum, 2016). Given the inaccurate 3D structure as
the input, the model is required to predict the equilibrium structure in an iterative manner. The
predicted equilibrium structure is used to predict the quantum property. Uni-Mol+ simultaneously
maintain both atom representations and pair representations, which induce the triplet complexity
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when updating the pair representations. With the carefully designed training strategy, Uni-Mol+
achieves state-of-the-art performance on PCQM4Mv2 while yielding high computational costs.

Settings. As previously stated, DFT-calculated equilibrium geometric structures are provided for
molecules in the training set. The molecules in the validation set do not have such information. We
follow Uni-Mol+ (Lu et al., 2023) to train our GeoMFormer. In particular, our model takes the
RDKit-generated geometric structures as the input and is required to predict both the HOMO-LUMO
energy gap and the equilibrium structure by leveraging invariant and equivariant representations
respectively. After training, the model is able to predict the HOMO-LUMO gap using the RDKit-
generated geometric structures. We refer the readers to Uni-Mol+ (Lu et al., 2023) for more details
on the training strategies.

Our GeoMFormer model consists of 8 layers. The dimension of hidden layers and feed-forward
layers is set to 512. The number of attention heads is set to 32. The number of Gaussian Basis
kernels is set to 128. We use AdamW as the optimizer, and set the hyper-parameter ϵ to 1e-8 and
(β1, β2) to (0.9,0.999). The gradient clip norm is set to 5.0. The peak learning rate is set to 2e-4. The
batch size is set to 1024. The dropout ratios for the input embeddings, attention matrices, and hidden
representations are set to 0.0, 0.1, and 0.1 respectively. The weight decay is set to 0.0. The model is
trained for 1.5 million steps with a 150k-step warm-up stage. After the warm-up stage, the learning
rate decays linearly to zero. Other hyper-parameters are kept the same as the Uni-Mol+ for a fair
comparison. The model is trained on 16 NVIDIA Tesla V100 GPUs.

D.4 MOLECULE3D

Baselines. We follow (Wang et al., 2022) to use several competitive baselines for comparison
including GIN-Virtual (Hu et al., 2021), SchNet (Schütt et al., 2018), DimeNet++ (Gasteiger et al.,
2020a), SphereNet (Liu et al., 2022b) which have already been introduced in previous sections.
ComENet (Wang et al., 2022) proposed a message-passing layer that operates within the 1-hop neigh-
borhood of atoms and encoded the rotation angles to fulfill global completeness. We also implement
both PaiNN (Schütt et al., 2021) and TorchMD-Net (Thölke & De Fabritiis, 2022) for comparisons.

Settings. Following (Wang et al., 2022), we evaluate our GeoMFormer model on both random and
scaffold splits. Our GeoMFormer model consists of 12 layers. The dimension of hidden layers and
feed-forward layers is set to 768. The number of attention heads is set to 48. The number of Gaussian
Basis kernels is set to 128. We use AdamW as the optimizer, and set the hyper-parameter ϵ to 1e-8
and (β1, β2) to (0.9,0.999). The gradient clip norm is set to 5.0. The peak learning rate is set to 3e-4.
The batch size is set to 1024. The dropout ratios for the input embeddings, attention matrices, and
hidden representations are set to 0.0, 0.1, and 0.1 respectively. The weight decay is set to 0.0. The
model is trained for 1 million steps with a 60k-step warm-up stage. After the warm-up stage, the
learning rate decays linearly to zero. The model is trained on 16 NVIDIA V100 GPUs.

D.5 N-BODY SIMULATION

Baselines. Following (Satorras et al., 2021), we choose several competitive baselines for comparison.
Radial Field (Köhler et al., 2019) developed theoretical tools for constructing equivariant flows and
can be used to perform equivariant prediction tasks. Tensor Field Network (Thomas et al., 2018)
embedded the position of an object in the Cartesian space into higher-order representations via
products between learnable radial functions and spherical harmonics. In SE(3)-Transformer (Fuchs
et al., 2020), the standard attention mechanism was adapted to equivariant features using operations
in the Tensor Field Network model. EGNN (Satorras et al., 2021) proposed a simple framework. Its
invariant representations encode type information and relative distance, and are further used in vector
scaling functions to transform the equivariant representations.

Settings. The input of the model includes initial positions p0 = {p0
1, . . . ,p

0
5} ∈ R5×3 of

five objects, and their initial velocities v0 = {v0
1, . . . ,v

0
5} ∈ R5×3 and respective charges

c = {c1, . . . , c5} ∈ { − 1, 1}5. We encode positions and velocities via separate equivariant streams,
and updated them with separate invariant representations via cross-attention modules. The equivariant
prediction is based on both equivariant representations.
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Table 7: Results on MD trajectories from the MD17 dataset. Scores are given by the MAE of energy
predictions (kcal/mol) and forces (kcal/mol/Å). NequIP does not provide errors on energy, for PaiNN
we include the results with lower force error out of training only on forces versus on forces and
energy. Benzene corresponds to the dataset originally released in Chmiela et al. (2017), which is
sometimes left out from the literature. Our results are averaged over three random splits.

Molecule SchNet PhysNet DimeNet PaiNN NequIP TorchMD-Net GeoMFormer

Aspirin energy 0.37 0.230 0.204 0.167 - 0.123 0.118
forces 1.35 0.605 0.499 0.338 0.348 0.253 0.171

Benzene energy 0.08 - 0.078 - - 0.058 0.052
forces 0.31 - 0.187 - 0.187 0.196 0.146

Ethanol energy 0.08 0.059 0.064 0.064 - 0.052 0.047
forces 0.39 0.160 0.230 0.224 0.208 0.109 0.062

Malondialdehyde energy 0.13 0.094 0.104 0.091 - 0.077 0.071
forces 0.66 0.319 0.383 0.319 0.337 0.169 0.133

Naphthalene energy 0.16 0.142 0.122 0.116 - 0.085 0.081
forces 0.58 0.310 0.215 0.077 0.097 0.061 0.040

Salicylic Acid energy 0.20 0.126 0.134 0.116 - 0.093 0.099
forces 0.85 0.337 0.374 0.195 0.238 0.129 0.098

Toluene energy 0.12 0.100 0.102 0.095 - 0.074 0.078
forces 0.57 0.191 0.216 0.094 0.101 0.067 0.041

Uracil energy 0.14 0.108 0.115 0.106 - 0.095 0.095
forces 0.56 0.218 0.301 0.139 0.173 0.095 0.068

We follow the settings in (Satorras et al., 2021) for a fair comparison. Our GeoMFormer model
consists of 4 layers. The dimension of hidden layers and feed-forward layers is set to 80. The number
of attention heads is set to 8. The number of Gaussian Basis kernels is set to 64. We use Adam as the
optimizer, and set the hyper-parameter ϵ to 1e-8 and (β1, β2) to (0.9,0.999). The learning rate is fixed
to 3e-4. The batch size is set to 100. The dropout ratios for the input embeddings, attention matrices,
activation functions, and hidden representations are all set to 0.4, and the drop path probability is set
to 0.4. The model is trained for 10,000 epochs. The number of training samples is set to 3.000. The
model is trained on 1 NVIDIA V100 GPUs.

D.6 MD17

MD17 (Xu et al., 2021) consists of molecular dynamics trajectories of several small organic molecules.
Each molecule has its geometric structure along with the corresponding energy and force. The task is
to predict both the energy and force of the molecule’s geometric structure in the current state. To
evaluate the performance of models in a limited data setting, all models are trained on only 1,000
samples from which 50 are used for validation. The remaining data is used for evaluation. For
each molecule, we train a separate model on data samples of this molecule only. We set the model
parameter budget the same as Thölke & De Fabritiis (2022). Following (Thölke & De Fabritiis, 2022),
we compare our GeoMFormer with several competitive baselines: (1) SchNet (Schütt et al., 2018);
(2) PhysNet (Unke & Meuwly, 2019); (3) DimeNet (Gasteiger et al., 2020b); (4) PaiNN (Schütt
et al., 2021); (5) NequIP (Batzner et al., 2022); (6) TorchMD-Net (Thölke & De Fabritiis, 2022). The
results are presented in Table 7. It can be easily seen that our GeoMFormer achieves competitive
performance on the energy prediction task (5 best and 1 tie out of 8 molecules) and consistently
outperforms the best baselines by a significantly large margin on the force prediction task, i.e., 30.6%
relative force MAE reduction in average.

D.7 MORE ANALYSIS

In this subsection, we conduct comprehensive experiments for ablation studies on each building
component of our GeoMFormer model, including both self-attention and cross-attention mod-
ules (Inv-Self-Attn,Equ-Self-Attn, Inv-Cross-Attn,Equ-Cross-Attn), feed-forward networks
(Inv-FFN,Equ-FFN), layer normalizations (Inv-LN,Equ-LN) and the structural encoding.
Without loss of generality, we conduct the experiments on the N-body Simulation task.
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Table 8: Impact of the attention modules on GeoMFormer. All other hyperparameters are kept the
same for a fair comparison.

Inv-Self-Attn Inv-Cross-Attn Equ-Self-Attn Equ-Cross-Attn MSE ↓
✓ ✓ ✓ ✓ 0.0047
✗ ✓ ✓ ✓ 0.0051
✓ ✗ ✓ ✓ 0.0051
✓ ✓ ✗ ✓ 0.0056
✓ ✓ ✓ ✗ 0.0054
✗ ✓ ✓ ✗ 0.0054
✓ ✗ ✓ ✗ 0.0057
✗ ✓ ✗ ✓ 0.0055
✓ ✗ ✗ ✓ 0.0057
✗ ✗ ✓ ✗ 0.0059

Table 9: Impact of the FFN
modules on GeoMFormer. All
other hyperparameters are kept
the same for a fair comparison.

Inv-FFN Equ-FFN MSE ↓
✓ ✓ 0.0047
✗ ✓ 0.0049
✓ ✗ 0.0055
✗ ✗ 0.0057

Table 10: Impact of the LN
modules on GeoMFormer. All
other hyperparameters are kept
the same for a fair comparison.

Inv-LN Equ-LN MSE ↓
✓ ✓ 0.0047
✗ ✓ 0.0051
✓ ✗ 0.0077
✗ ✗ 0.0073

Table 11: Impact of structural
encoding on GeoMFormer. All
other hyperparameters are kept
the same for a fair comparison.

Structural Encoding MSE ↓
✓ 0.0047
✗ 0.0072

Impact of the attention modules. As stated in Section 4, our GeoMFormer model consists of four
attention modules. We conduct a series of ablation studies to evaluate their contribution to the overall
performance. In particular, we consider all possible ablation configurations that involve ablating
one or more of the four modules. Note that this is an equivariant prediction task, necessitating the
preservation of at least one equivariant attention module. The results are presented in Table 8, which
indicates that all four attention modules consistently contribute to boosting the model’s performance.

Impact of the FFN. We perform ablation studies to ascertain the contribution of both invariant and
equivariant FFN modules to the model’s performance. Specifically, we examine all possible settings
involving the ablation of one or both of the FFN modules. The results are presented in Table 9, which
demonstrates that both FFN modules positively contribute to enhancing performance.

Impact of the LN. We employ invariant and equivariant LN to stabilize training. To investigate
whether the invariant and equivariant LN modules improve performance, we conduct ablation studies
that encompass all possible settings of ablating one or both LN modules. The results are displayed in
Table 10, demonstrating that both LN modules help to enhance performance.

Impact of the Structural Encoding. We incorporate the structural encoding as a bias term when
calculating attention probability in our GeoMFormer, as described in Section A. We conduct ablation
studies to see if it helps boost performance. Results are shown in Table 11. It can be seen that the
introduction of structural encoding leads to improved performance.

E BROADER IMPACTS AND LIMITATIONS

This work newly proposes a general framework to learn geometric molecular representations, which
has great significance in molecular modeling. Our model has demonstrated considerable positive
potential for various physical and chemical applications, such as catalyst discovery and optimization,
which can significantly contribute to the advancement of renewable energy processes. However,
it is essential to acknowledge the potential negative impacts including the development of toxic drugs
and materials. Thus, stringent measures should be implemented to mitigate these risks.

There also exist some limitations to our work. Serving as a general architecture, the ability to scale up
both the model and dataset sizes is of considerable interest to the community, which has been partially
explored in our extensive experiment. Additionally, our model can also be extended to encompass
additional downstream invariant and equivariant tasks, which we have earmarked for future research.
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