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Abstract

Hypergraphs naturally arise when studying group relations and have been widely used in
the field of machine learning. To the best of our knowledge, the recently proposed edge-
dependent vertex weights (EDVW) modeling (Chitra & Raphael, 2019) is one of the most
generalized modeling methods of hypergraphs, i.e., most existing hypergraph conceptual
modeling methods can be generalized as EDVW hypergraphs without information loss.
However, the relevant algorithmic developments on EDVW hypergraphs remain nascent:
compared to the spectral theories for graphs, its formulations are incomplete, the spectral
clustering algorithms are not well-developed, and the hypergraph Cheeger Inequality is not
well-defined. To this end, deriving a unified random walk-based formulation, we propose
our definitions of hypergraph Rayleigh Quotient, NCut, boundary/cut, volume, and con-
ductance, which are consistent with the corresponding definitions on graphs. Then, we
prove that the normalized hypergraph Laplacian is associated with the NCut value, which
inspires our proposed HyperClus-G algorithm for spectral clustering on EDVW hyper-
graphs. Finally, we prove that HyperClus-G can always find an approximately linearly
optimal partitioning in terms of both NCut1 and conductance 2. Additionally, we provide
extensive experiments to validate our theoretical findings from an empirical perspective.

1 Introduction

Higher-order relations are ubiquitous in nature, such as co-authorship (Feng et al., 2018; Yadati et al.,
2019; Sun et al., 2021), interactions between multiple proteins or chemicals (Feng et al., 2021; Xia et al.,
2022), items that are liked by the same person (Yang & Leskovec, 2015; Wu et al., 2021), and interactions
between multiple species in an ecosystem (Grilli et al., 2017; Sanchez-Gorostiaga et al., 2019). Hypergraphs,
extended from graphs, with the powerful capacity to model group interactions (i.e., higher-order relations),
show extraordinary potential to be applied to many real-world tasks where the connections are beyond pair-
wise. Therefore, hypergraphs have been used widely in recommendation systems (Zhu et al., 2016; Liu et al.,
2022; Gatta et al., 2023), information retrieval (Huang et al., 2009; Zhu et al., 2015) and link prediction
(Huang et al., 2020; Fan et al., 2022).

Hypergraphs modeled by edge-dependent vertex weights (EDVW) were necessitated in a recent work (Chitra
& Raphael, 2019), with a motivating example that in citation networks, each scholar (i.e., node) may
contribute differently to each co-authored publication (i.e., hyperedge). The authors show that hypergraphs
with edge-independent vertex weights (EIVW) do not actually utilize the higher-order relations for the
following two reasons. First, the hypergraph Laplacian matrix proposed by the seminal work (Zhou et al.,
2006), which serves as a basis of many follow-up algorithms, is equal to the Laplacian matrix of a closely
related graph with only pair-wise relations. In this way, all the linear Laplacian operators utilize only pair-
wise relationships between vertices (Agarwal et al., 2006). Second, many hypergraph algorithms (Ma et al.,
2018; Li et al., 2018; Carletti et al., 2020) are based on random walks (Tong et al., 2006), but it has been
proved that for any EIVW hypergraph, there exists a weighted pair-wise graph on which a random walk is
equivalent to that on the original hypergraph (Chitra & Raphael, 2019).

1The NCut of the returned partition N and the optimal NCut of any partition N ∗ satisfy N ≤ O(N ∗).
2The conductance of the returned partition Φ and the optimal conductance Φ∗ satisfy Φ ≤ O(Φ∗)
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Table 1: Properties of graph models/formulations. EDVW hypergraphs generalized EIVW hypergraphs by
allowing each hyperedge to distribute its vertex weights, bringing better formulation flexibility.

Modeling/Formulation undirected graphs EIVW hypergraphs EDVW hypergraphs

edge/hyperedge weights
√ √ √

vertex weights
√ √ √

hyperedges ×
√ √

edge-dependent vertex weights × ×
√

Figure 1: Undirected graphs ⊂ EIVW hypergraphs ⊂ EDVW hypergraphs. Each undirected graph
can be reformulated to an EIVW hypergraph by regarding each pair-wise edge as a hyperedge; each EIVW
hypergraph can be reformulated to an EDVW hypergraph by setting each vertex’s weight to be the same
across hyperedges, yet allowing different vertices to have different weights.

In nature, EDVW hypergraphs are not a special case of hypergraphs, but a more generalized way to model
hypergraphs by allowing flexible weight distribution, as shown in Figure 1. Any algorithm designed for
EDVW hypergraphs, taking EDVW inputs, also works on typical (EIVW) hypergraphs by setting all the
EDVW inputs to 1. In other words, the properties and algorithms of EDVW-formulated hypergraphs can
be applied to all hypergraphs.

In this paper, we focus on further developing the incomplete yet fundamental spectral theories for EDVW
hypergraphs, with a straightforward application on spectral clustering, i.e., k-way global partitioning, where
typically k = 2. To be specific, k-way global partitioning aims to partition an entire graph into k clusters,
where the vertices in one cluster are densely connected within this cluster while having sparser connections
to vertices outside this cluster. On the one hand, although the spectral theories and spectral clustering on
graphs have been well studied, converting the hypergraphs to graphs (by connecting each node in a hyperedge)
and applying those classic graph methods may ignore the higher-order relations and result in sub-optimal
results (Wang & Kleinberg, 2024). On the other hand, despite the advantage of EDVW modeling in terms
of utilizing high-order relations, directly developing a spectral clustering algorithm on EDVW hypergraphs
is still an open question. To this end, for the first time, we propose a provably linearly optimal spectral
clustering algorithm on EDVW hypergraphs, together with theoretical analysis concerning the Rayleigh
Quotient, Normalized Cut (i.e., NCut), and conductance. In the context of EDVW hypergraphs, we bridge
the eigensystem of Laplacian with the NCut value through our proposed Rayleigh Quotient. The proposed
algorithm can also be applied to EIVW hypergraphs by setting all the vertex weights to 1; thus, it generally
works for all hypergraphs.

1.1 Main Results

In this paper, we further develop the spectral hypergraph theory for EDVW hypergraphs, and then study
global partitioning on EDVW hypergraphs.
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Theorem 1. (Algebraic connections among hypergraph NCut, Rayleigh Quotient, and Laplacian) Given any
hypergraph H with vertex set V and hyperedge set E in the EDVW formatting, i.e., H = (V, E , ω, γ) with
positive edge weights ω(·) > 0 and non-negative edge-dependent vertex weights γe(·) for any hyperedge e ∈ E,
we define Normalized Cut NCut(·), Volume of a vertex set vol(·), Rayleigh Quotient R(·), Laplacian L, and
stationary distribution matrix Π as Definition 16, 13, 9, 14, and 7. For any vertex set S ⊆ V, we define a
|V|-dimensional vector x such that

x(u) =

√
vol(S̄)
vol(S) , ∀ u ∈ S,

x(ū) = −

√
vol(S)
vol(S̄)

, ∀ ū ∈ S̄.

(1)

Then,

NCut(S, S̄) = 1
2R(x) = xT Lx

xT Πx
(2)

This is the first work regarding the Rayleigh Quotient on hypergraphs. Inspired by this Theorem, we develop
a spectral clustering algorithm HyperClus-G to optimize the NCut value by relaxing the combinatorial
optimization constraint.
Theorem 2. (Hypergraph Spectral Clustering Algorithm) There exists an algorithm for hypergraph spectral
clustering that can be applied to EDVW-formatted hypergraphs, and always returns approximately linearly
optimal clustering in terms of Normalized Cut and conductance. In other words, approximately, the NCut
of the returned partition N and the optimal NCut of any partition N ∗ satisfy N ≤ O(N ∗).

We name this algorithm as HyperClus-G, whose pseudo code is given in Algorithm 1 with complexity analyzed
in Appendix B. Moreover, to extend the hypergraph spectral theory, for the first time, we give complete
proof regarding the hypergraph Cheeger Inequality. In the meantime, by proving Theorem 3, the previous
result on hypergraph Cheeger Inequality (Theorem 5.1 in (Chitra & Raphael, 2019)) is upgraded.
Theorem 3. (Hypergraph Cheeger Inequality) Let H = (V, E , ω, γ) be any hypergraph in the EDVW for-
matting with positive edge weights ω(·) > 0 and non-negative edge-dependent vertex weights γe(·) for any
e ∈ E. Define Φ(H) = minS⊆V Φ(S). Then the second smallest eigenvector λ of the normalized hypergraph
Laplacian Π− 1

2 LΠ− 1
2 satisfies

Φ(H)2

2 ≤ λ ≤ 2Φ(H) (3)

In fact, this theorem shows that our HyperClus-G is also approximately linearly optimal in terms
of conductance. In other words, the conductance of the returned cluster Φ and the optimal conductance
Φ∗ satisfy Φ ≤ O(Φ∗). It is worth mentioning that the previous non-proved result in (Chitra & Raphael,
2019) regarding hypergraph Cheeger Inequality now can be proved by using normalized Laplacian instead
of the conjecture of combinatorial Laplacian.

Technical Overview. Given the EDVW modeling, the relevant algorithmic development still remains in
a nascent stage, which hinders the application of hypergraphs in many real-world scenarios. To this end, we
first re-analyze the random walks on EDVW hypergraphs, then propose the HyperClus-G for hypergraph
partitioning. Finally, we prove the approximation of normalized cut, as well as the upper bound of NCut
and conductance.

The key insight from the previous work (Chitra & Raphael, 2019) is to model the hypergraphs similar
to directed graphs through the equivalence of random walks. Unlike classical graph theory, such directed
graphs are edge-weighted, node-weighted, and contain self-loops. In this work, inspired by the definitions of
Rayleigh Quotient, NCut, boundary/cut, volume, and conductance in graphs, we develop these definitions
in the context of EDVW hypergraphs. We show that Theorem 1 and Theorem 3, properties that hold for
graphs, still hold for hypergraphs using our unified definitions. From Theorem 3, we can further prove that
our proposed HyperClus-G is approximately linearly optimal in terms of both NCut and conductance.

Our Appendix contains supplementary contents, such as trivial proofs and experimental details.
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Table 2: Table of Notation
Symbol Definition and Description
H = (V, E , ω, γ) hypergraph being investigated, with vertex set V, hyper-

edge set E , edge weight mapping ω and edge-dependent
vertex weight mapping γ

n = |V| number of vertices in Hypergraph H
m number of hyperedge-vertex connections in Hypergraph

H, m =
∑

e∈E |e|
d(v) degree of vertex v, d(v) =

∑
e∈E(v) w(e)

δ(e) degree of hyperedge e, δ(e) =
∑

v∈e γe(v)
R |E| × |V| vertex-weight matrix
W |V| × |E| hyperedge-weight matrix
DV |V| × |V| vertex-degree matrix
DE |E| × |E| hyperedge-degree matrix
P |V| × |V| transition matrix of random walk on H
ϕ 1 × |V| stationary distribution of random walk
Π |V| × |V| diagonal stationary distribution matrix
L |V| × |V| random-walk-based Laplacian
p 1 × |V| probability distribution on V

Paper Organization. This paper is organized as follows. In Section 2, we introduce necessary notations
and our definitions regarding hypergraphs. In Section 3, we introduce our definition of hypergraph Rayleigh
Quotient and show its connection with the Laplacian and NCut. Then, we propose our HyperClus-G inspired
by such a connection. In section 4, we give complete proof regarding hypergraph Cheeger Inequality, then
show the linear optimality of our HyperClus-G in terms of both NCut and conductance. Finally, in Section
5, we prepare comprehensive experiments to validate our theoretical findings.

2 Preliminaries

We use calligraphic letters (e.g., A) for sets, capital letters for matrices (e.g., A), and unparenthesized
superscripts to denote the power (e.g., Ak). For matrix indices, we use Ai,j or A(i, j) interchangeably to
denote the entry in the ith row and the jth column. For row vector or column vector v, we use v(i) to index
its ith entry. Also, we denote hypergraph as H and graph as G.

A hypergraph consists of vertices and hyperedges. A hyperedge e is a connection between two or more
vertices. We use the notation v ∈ e if the hyperedge e connects vertex v. This is also called “e is incident
to v". We first provide the formal definition of an EDVW hypergraph. Definition 4 and 5 provide neces-
sary notations to define the hypergraph random walk in Definition 6. The transition matrix P of EDVW
hypergraphs is consistent with that of graphs.
Definition 4. (Chitra & Raphael, 2019) (EDVW hypergraph). A hypergraph H = (V, E , ω, γ) with edge-
dependent vertex weight is defined as a set of vertices V, a set E ⊆ 2V of hyperedges, a weight mapping
ω(e) : E → R+ on every hyperedge e ∈ E, and weight mappings γe(v) : V → R≥0 corresponding to e on every
vertex v. For e1 ̸= e2, γe1(v) and γe2(v) may be different. Without loss of generality, we index the vertices
by 1, 2, ..., |V|, and let V = {1, 2, ..., |V|}.

For an EDVW hypergraph H = (V, E , ω, γ), ω(e) > 0 for any e ∈ E . γe(v) ≥ 0 for any e ∈ E and v ∈ V.
Moreover, γe(v) > 0 ⇐⇒ v ∈ e. For instance, in a citation hypergraph, each publication is captured by
a hyperedge. While each publication may have different citations (i.e., edge-weight w(e)), each author may
have individual weight of contributions (i.e., publication-dependent γe(v)).
Definition 5. (Chitra & Raphael, 2019) (Vertex-weight matrix, hyperedge-weight matrix, vertex-degree ma-
trix, and hyperedge-degree matrix of an EDVW hypergraph). E(v) = {e ∈ E s.t. v ∈ e} is the set of hyperedges
incident to vertex v. d(v) =

∑
e∈E(v) w(e) denotes the degree of vertex v. δ(e) =

∑
v∈e γe(v) denotes the
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degree of hyperedge e. The vertex-weight matrix R is an |E| × |V| matrix with entries R(e, v) = γe(v).
The hyperedge-weight matrix W is a |V| × |E| matrix with entries W (v, e) = ω(e) if v ∈ e, and W (v, e) = 0
otherwise. The vertex-degree matrix DV is a |V|×|V| diagonal matrix with entries DV = d(v). The hyperedge-
degree matrix DE is a |E| × |E| diagonal matrix with entries DE(e, e) = δ(e).
Assumption 1. Since we are dealing with clustering, without loss of generality, we assume the hypergraph
H is connected. A rigorous definition of hypergraph connectivity is provided in Appendix A.1.

Table 2 contains important notation and hyperparameters for quick reference. The random walk on hyper-
graph with edge-dependent vertex weights was proposed in (Chitra & Raphael, 2019). Intuitively, at time
t, a random walker at vertex u will first pick an edge e incident to u with the probability ω(e)

d(u) , then pick a
vertex v from the picked edge e with the probability γe(v)

δ(e) , and finally move to vertex v at time t + 1. Define
the transition matrix P to be a |V| × |V| matrix with entries Pu,v to be the transition probability from u to
v.
Definition 6. (Chitra & Raphael, 2019) (Hypergraph random walk). A random walk on a hypergraph with
edge-dependent vertex weights H = (V, E , ω, γ) is a Markov Chain on V with transition probabilities

Pu,v =
∑

e∈E(u)

ω(e)
d(u)

γe(v)
δ(e) (4)

P can be written in matrix form as P = D−1
V WD−1

E R and it has row sum of 1. (Proof in Appendix A.2)
Definition 7. (Stationary distribution of hypergraph random walk). The stationary distribution of the
random walk with transition matrix P is a 1 × |V| row vector ϕ such that

ϕP = ϕ; ϕ(u) > 0 ∀u ∈ V;
∑
u∈V

ϕ(u) = 1 (5)

From ϕ, we further define the stationary distribution matrix to be a |V| × |V| diagonal matrix with entries
Πi,i = ϕ(i).
Theorem 8. (Chitra & Raphael, 2019). The stationary distribution ϕ of hypergraph random walk exists.

Theorem 8 has been proved in (Chitra & Raphael, 2019). In this paper, we give a simplified proof in
Appendix A.4.
Definition 9. (Chitra & Raphael, 2019) (random-walk-based hypergraph Laplacian). Let H = (V, E , ω, γ) be
a hypergraph with edge-dependent vertex weight. Let P be the transition matrix and Π be the corresponding
stationary distribution matrix. Then, the random-walk-based hypergraph Laplacian L is

L = Π − ΠP + P T Π
2 (6)

In this work, in Appendix A.5, we further show that L is consistent with graph Laplacian in terms of
eigensystem as evidence of the rationality of Definition 9.

3 Spectral Properties Inspire Global Partitioning

In this section, we first extend the spectral theory for EDVW hypergraphs, then we introduce our HyperClus-
G algorithm. Specifically, we show that using our definitions, there are algebraic connections among hyper-
graph NCut, Rayleigh Quotient, and Laplacian (Theorem 1), which are consistent with pair-wise graphs.

From Definition 10 to Definition 13, in the context of EDVW hypergraph, we re-define the volume of
boundaries and vertex sets. We show that our definitions have properties that are consistent with those on
graphs. Given a vertex set S ⊆ V, we use S̄ to denote its complementary set, where S ∪S̄ = V and S ∩S̄ = ∅.
We have the following definition regarding the probability of a set.
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Definition 10. (Probability of a set). For a distribution p on the vertices such that ∀v ∈ V, p(v) ≥ 0 and∑
v∈V p(v) = 1, we denote

p(S) =
∑
x∈S

p(x), ∀S ⊆ V (7)

Equivalently, we can regard p as a 1 × |V| vector with pi = p(i). From this definition, ϕ(S) + ϕ(S̄) = 1. By
definition of random walk and its stationary distribution,

ϕ(S) = (ϕP )(S)

= ϕ(S) −
∑

u∈S,v∈S̄

ϕ(u)Pu,v +
∑

u∈S̄,v∈S

ϕ(u)Pu,v
(8)

Therefore, we have the following Theorem 11 that, in the stationary state, for any set S, the probability of
walking into S or out of S are the same.
Theorem 11. Let H = (V, E , ω, γ) be a hypergraph with edge-dependent vertex weights. Let P be the
transition matrix and ϕ be the corresponding stationary distribution. Then, for any vertex set S ⊆ V,∑

u∈S,v∈S̄

ϕ(u)Pu,v =
∑

u∈S̄,v∈S

ϕ(u)Pu,v (9)

For unweighted and undirected graphs, the volume of the boundary/cut of a partition is defined as |∂S| =
|{{x, y} ∈ E|x ∈ S, y ∈ S̄}|. The intuition behind this definition is the symmetric property |∂S| = |∂S̄|.
Theorem 11 also describes such a property, and we find it intuitively suitable to be extended to the following
definition.
Definition 12. (Volume of hypergraph boundary). We define the volume of the hypergraph boundary, i.e.,
cut between S and S̄, by

|∂S| =
∑

u∈S,v∈S̄

ϕ(u)Pu,v =
∑

u∈S̄,v∈S

ϕ(u)Pu,v (10)

Furthermore, 0 ≤ |∂S| ≤
∑

u∈S ϕ(u) ≤ 1. |∂S| = |∂S̄|.

For unweighted, undirected graphs, the volume of a vertex set S is defined as the degree sum of the vertices
in S. With the observation that ϕ(u) =

∑
u∈S,v∈V ϕ(u)Pu,v, ϕ(u) itself is already a sum of the transition

probabilities and can be an analogy to vertex degree. We extend this observation to the following definition.
Definition 13. (Volume of hypergraph vertex set). We define the volume of a vertex set S ⊆ V in hypergraph
H by

vol(S) =
∑
u∈S

ϕ(u) ∈ [0, 1] (11)

Furthermore, we have vol(∅) = 0, vol(V) = 1, and vol(S) + vol(S̄) = 1. Definition 12 and Definition 13 will
serve as the basis of our unified formulation. By these two definitions, we also have |∂S| ≤ vol(S), which is
consistent with those on unweighted and undirected graphs.

Typically, for a graph G and its Laplacian LG = DG − AG , the unweighted Rayleigh Quotient is defined as a
function RL : Rn \ {0} → R such that

RLG (x) = xT LGx

xT x
=

∑
(i,j)∈EG

|x(i) − x(j)|2∑
i∈VG

|x(i)|2 (12)

According to the form of generalized Rayleigh Quotient RL(x) = xT Lx
xT Dx

(Golub & Loan, 1996), we extend
this generalized Rayleigh Quotient to hypergraphs as follows.
Definition 14. (Hypergraph Rayleigh Quotient). We define Rayleigh Quotient on H of any |V|-dimensional
real vector x to be

R(x) =
∑

u,v |x(u) − x(v)|2ϕ(u)Pu,v∑
u |x(u)|2ϕ(u) (13)

6



Under review as submission to TMLR

We prove the following theorem which validates that our definition is consistent with the Rayleigh Quotient
on graphs and satisfies the property similar to Equation 12.
Theorem 15. For any |V|-dimensional real vector x,

R(x) = 2 · xT Lx

xT Πx
= 2 · < xT L, x >

xT Π, x
(14)

(Proof in Appendix A.6)

The 2-way Normalized Cut, a well-known measurement of the cluster quality, is defined as |∂S|
vol(S) + |∂S̄|

vol(S̄) .
We derive the NCut for EDVW hypergraphs using Definition 12.
Definition 16. (Hypergraph Normalized Cut). For any vertex set S ⊆ V,

NCut(S, S̄) = ( 1
vol(S) + 1

vol(S̄)
)

∑
u∈S,v∈S̄

ϕ(u)Pu,v (15)

Following this definition, the problem of global partitioning on EDVW hypergraphs aims to find a vertex set
S that minimizes the NCut value. We now derive the association between our hypergraph Ncut, Rayleigh
Quotient, and Laplacian. Such association directly provides the inspiration for a spectral 2-way clustering
approach (Algorithm 1).
Theorem 17. For any vertex set S ⊆ V, we define a |V|-dimensional vector x such that

x(u) =

√
vol(S̄)
vol(S) , ∀ u ∈ S,

x(ū) = −

√
vol(S)
vol(S̄)

, ∀ ū ∈ S̄.

(16)

then NCut(S, S̄) = 1
2R(x) = xT Lx

xT Πx
(17)

(Proof in Appendix A.7)

By Theorem 17, the original global partitioning problem becomes

min
x

R(x) s.t. x is defined as Eq 42 (18)

The above is an NP-complete problem (Shi & Malik, 2000). If we relax the restriction of x that each entry
has to be either

√
vol(S̄)
vol(S) or −

√
vol(S)
vol(S̄) for some S, then the problem becomes

min
x

R(x) ⇔ min
x

xT Lx

xT Πx
, for x ∈ Rn \ {0}. (19)

Using the property of Rayleigh Quotient, the minimum can be achieved by choosing x to be the eigenvector
associated with the second smallest eigenvalue of the generalized eigenvalue system Lx = λΠx. Replacing
z = Π 1

2 x, we have

Lx = λΠx ⇔ LΠ− 1
2 z = λΠΠ− 1

2 z

⇔ Π− 1
2 LΠ− 1

2 z = λz
(20)

Π− 1
2 LΠ− 1

2 is a symmetric and positive semi-definite matrix, for which all eigenvalues are non-negative real
numbers. As the smallest eigenvalue is zero, and the associated clusters are trivial (V and ∅), we select the
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Algorithm 1 HyperClus-G
Require: EDVW hypergraph H = (V, E , ω, γ)
Ensure: two clusters of vertices

1: Compute R, W, DV , DE according to Definition 5.
2: Compute the transition matrix P by Definition 6.
3: Compute the stationary distribution by power iteration.
4: Construct the stationary distribution matrix Π and compute the Laplacian L by Definition 9.
5: Compute eigenvector of Π− 1

2 LΠ− 1
2 associated with the second smallest eigenvalue.

6: Return the clusters based on the signs of the entries in the computed eigenvector.

second smallest eigenvalue as the corresponding solution. Since the second smallest eigenvalue of Π− 1
2 LΠ− 1

2 ,
denoted by λ1, is real, there exists a real vector z such that

Π− 1
2 LΠ− 1

2 z = λ1z (21)

We can then approximate the solution of the original global partitioning by choosing{
u ∈ S if z(u) ≥ 0
u ∈ S̄ if z(u) < 0

(22)

Moreover, we define a new variant of hypergraph Laplacian.
Definition 18. (Symmetric normalized random-walk-based hypergraph Laplacian). Let H = (V, E , ω, γ) be
a hypergraph with edge-dependent vertex weight. Let P be the transition matrix and Π be the corresponding
stationary distribution matrix. Then, the symmetric normalized random-walk-based hypergraph Laplacian
Lsym is

Lsym = Π− 1
2 LΠ− 1

2 = I − Π 1
2 PΠ− 1

2 + Π− 1
2 P T Π 1

2

2 (23)

Lsym is also real and symmetric, and hence hermitian. The eigenvectors of Lsym provide an approximate
solution of 2-way hypergraph clustering. The formulation of this Laplacian is consistent with that for
digraphs (Chung, 2005).

4 Hypergraph Cheeger Inequality and Optimality of HyperClus-G

In this section, we show the hypergraph Cheeger Inequality (Theorem 3), which is consistent with the Cheeger
Inequality of pair-wise graphs. The Cheeger Inequality requires the below definition of conductance. From
the Cheeger Inequality, we prove the approximate linear optimality of HyperClus-G in terms of both NCut
and Conductance.
Definition 19. (Hypergraph conductance). The conductance of a cluster S on H is,

Φ(S) = |∂S|
min(vol(S), vol(S̄))

= |∂S|
min(vol(S), 1 − vol(S))

=
∑

u∈S,v∈S̄ ϕ(u)Pu,v

min(
∑

v∈S ϕ(u), 1 −
∑

u∈S ϕ(u))

(24)

Theorem 20. For any vertex set S ⊆ V, our hypergraph conductance Φ(S) ∈ [0, 1], which is consistent with
graph conductance (Proof in Appendix A.8)
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4.1 Hypergraph Cheeger Inequality

Cheeger Inequality can be proved for our newly defined Symmetric normalized random-walk-based hyper-
graph Laplacian (Definition 18). The proof is similar to that for digraphs (Chung, 2005) and shows the
rationality of our definitions.
Theorem 21. (Hypergraph Cheeger Inequality) Let H = (V, E , ω, γ) be any hypergraph in the EDVW for-
matting with positive edge weights ω(·) > 0 and non-negative edge-dependent vertex weights γe(·) for any
e ∈ E. Define Φ(H) = minS⊆V Φ(S), where Φ(S) is defined in Definition 19. Then the second smallest
eigenvector λ of the normalized hypergraph Laplacian Lsym satisfies

Φ(H)2

2 ≤ λ ≤ 2Φ(H) (25)

(Proof in Appendix A.9)

4.2 Approximate Linear Optimality of HyperClus-G

From Theorem 17, and the relaxation of the restriction, the second smallest eigenvector λ of the normalized
hypergraph Laplacian Lsym is an approximation of both optimal NCut and the NCut of the returned cluster.
Therefore, the returned cluster is approximately linearly optimal in terms of NCut. We then prove that it
is also approximately linearly optimal in terms of conductance. Using the “≤" side of Hypergraph Cheeger
Inequality (Theorem 21), λ satisfies λ ≤ 2Φ(H), where Φ(H) = minS⊆V Φ(S) is the optimal conductance.
Additionally, we have the following lemma, which connects NCut and conductance.
Lemma 22. For any cluster S, Φ(S) ≤ NCut(S, S̄).

Proof. From Definition 16 and 19,

Φ(S) = |∂S|
min(vol(S), vol(S̄))

=
∑

u∈S,v∈S̄ ϕ(u)Pu,v

min(vol(S), vol(S̄))

≤ ( 1
vol(S) + 1

vol(S̄)
)

∑
u∈S,v∈S̄

ϕ(u)Pu,v

= NCut(S, S̄)

(26)

Therefore, let the returned cluster to be Sreturn, then we have

Φ(Sreturn) ≤ NCut(Sreturn, S̄return) ≈ λ ≤ 2Φ(H) (27)

which shows the approximately linear optimality of the returned partition from HyperClus-G.

5 Supportive Experiments

In this section, we demonstrate the effectiveness of our HyperClus-G on real-world data. We first describe
the experimental settings and then discuss the experiment results. Details are provided in Appendix C.

5.1 Global Partitioning Setup

Datasets and Hypergraph Constructions. We use 9 datasets, all from the UC Irvine Machine Learning
Repository. The datasets cover biology, computer science, business, and other subject areas. The construc-
tion progress of hypergraphs is the same as the seminal works (Zhou et al., 2006; Li & Milenkovic, 2018; Hein
et al., 2013): for each dataset, each instance is a vertex, and we use a group of hyperedges to capture each

9
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Table 3: NCut Comparison(↓) of Global Partitioning Task on EDVW Hypergraphs.

Method Name
2-way Clustering k-way Clustering (k ≥ 3)

Mushroom Rice Car Digit-24 Covertype Zoo Wine Letter Digit

STAR++ 0.6484 0.3479 0.8347 0.6458 0.8912 5.1402 1.5879 2.1866 8.4951
CLIQUE++ 0.6426 0.4041 0.8347 0.6445 0.8887 5.1478 1.6742 2.2177 8.4384
DiffEq 0.9425 0.7445 0.9729 0.9611 0.9895 5.8772 1.9667 2.8406 8.9477
node2vec 0.8560 0.7596 0.9334 0.6417 0.9676 5.5557 1.8283 2.1663 8.4745
hyperedge2vec 0.6656 0.3936 0.8360 0.6456 0.9102 5.1443 1.6203 2.1258 8.4517
actual class label 0.6778 0.3801 0.8490 0.6415 0.9300 5.4676 1.9883 2.5765 8.7046
HyperClus-G (Ours) 0.6388 0.3577 0.8320 0.6412 0.8911 5.1386 1.5831 2.1184 8.4197

Table 4: F1s Comparison(↑) of Global Partitioning Task on EDVW Hypergraphs.

Method Name
2-way Clustering k-way Clustering (k ≥ 3)

Mushroom Rice Car Digit-24 Covertype Zoo Wine Letter Digit

STAR++ 0.903, 0.874 0.900, 0.855 0.569, 0.550 0.980, 0.980 0.694, 0.436 0.880 0.385 0.626 0.514
CLIQUE++ 0.898, 0.870 0.854, 0.843 0.569, 0.550 0.983, 0.983 0.701, 0.455 0.706 0.365 0.531 0.633
DiffEq 0.691, 0.247 0.765, 0.344 0.653, 0.154 0.687, 0.278 0.837, 0.158 0.313 0.369 0.275 0.148
node2vec 0.551, 0.508 0.663, 0.148 0.640, 0.541 0.995, 0.995 0.688, 0.064 0.452 0.300 0.647 0.545
hyperedge2vec 0.844, 0.835 0.843, 0.808 0.571, 0.545 0.971, 0.970 0.677, 0.280 0.861 0.393 0.587 0.451
HyperClus-G (Ours) 0.915, 0.889 0.947, 0.932 0.706, 0.697 0.996, 0.996 0.701, 0.488 0.893 0.395 0.704 0.629

feature. For example, in the Mushroom dataset, for its “stalk-shape" feature, we connect all the instances
that have an enlarging stalk shape by a hyperedge, and connect all the instances that have a tapering stalk
shape by another hyperedge. We use one hyperedge for each categorical feature. For numerical features, we
first quantize them into bins of equal size, then map them to hyperedges. More details of each dataset and
construction can be found in Appendix C.2.

EDVW Assignments. Each dataset contains at least 2 classes. For any dataset, assume set Vk contains
all vertices in class k; for any hyperedge e, assume Ve contains all vertices that e connects, then we can
assign the deterministic EDVW:

γe(v) = |Vk ∩ Ve|, ∀v ∈ Vk (28)

In other words, for any hyperedge e and any vertex v in class k, γe(v) is the number of vertices in class
k that e connects. This assignment makes the vertex weights for different hyperedges highly different.
We intentionally and implicitly encode the label information into the vertex weights to validate that our
HyeprClus-G can take the fine-grained information that is usually ignored by other hypergraph modeling
methods.

Settings and Metrics. Among the 9 datasets, 5 of them have 2 classes, and 4 of them have at least 3
classes. For 2-class datasets, we apply HyperClus-G to partition the whole EDVW hypergraph into 2 clusters.
For k-class datasets (k ≥ 3), we call HyperClus-G iteratively for k − 1 times to get a k-way clustering. We
first measure the quality of clusters by NCut. The 2-way clustering NCut has been provided in Definition
16, and we further define the k-way clustering NCut here.
Definition 23. For any k-way clustering of vertex set V,

NCut(S1, ..., Sk) =
k∑

i=1

|∂Si|
vol(Si)

(29)

Another metric on cluster quality is whether the partition aligns with the "ground-truth" label data. The
vertices in the same cluster are determined by the algorithms to be closely related in structure, while the
vertices in the same label class should also be internally similar. These two similarities usually align, and
therefore we greedily match the clusters with classes and see if each matching has a high F1 score. For 2-way
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Table 5: Execution Time(↓) on Global Partitioning Task in seconds. Full Table in Appendix C.6.2.

Method
2-way Clustering k-way Clustering (k ≥ 3)

Mushroom Rice Covertype Wine Letter Digit

STAR++ 72.82 50.80 318.55 32.18 37.54 59.05
CLIQUE++ 216.04 13.32 1099.03 77.75 50.25 297.37
HyperClus-G 17.73 5.04 87.72 11.48 35.13 26.49

clustering, we report the F1 scores of both clusters. For k-way clustering, we report the weighted F1 scores
of all clusters. More details are provided in Appendix C.3.

Baselines. We compare our HyperClus-G with multiple state-of-the-art methods. STAR++ and
CLIQUE++ expansions convert the hypergraph into weighted graphs and then adopt spectral clustering
on graphs. Moreover, since it is proven that, the EIVW Laplacian proposed by (Zhou et al., 2006) is equal
to the Laplacian of the corresponding STAR++ expanded graph (Agarwal et al., 2006; Chitra & Raphael,
2019), our STAR++ baseline is equivalent to spectral clustering on EIVW hypergraphs by ignoring the as-
signed EDVW. DiffEq (Takai et al., 2020) is based on differential operators. node2vec (Grover & Leskovec,
2016) and event2vec (a.k.a., hyperedge2vec) (Fu et al., 2019) are two unsupervised graph embedding meth-
ods. We first convert the hypergraph into the required input graph form, then call the k-means algorithm
after we get the vertex embedding. We also compare with the NCut of the actual labeled classes (V1, ..., Vk

partitioning). For the nondeterministic baselines, we run the experiment 10 times and report the mean. The
standard deviations are relatively small, and we put them in Appendix C.6.1. More details on baselines are
provided in Appendix C.5.

5.2 Results

The global partitioning experiment results are shown in Tables 3 and 4. The best results are marked in
bold, and the second-best results are marked with underlines. For 2-way clustering, we also consider that
the two F1s of a high-quality partition should be fairly similar. First, our algorithm HyperClus-G generally
outperforms the baseline methods in terms of NCut. It is worth noting that, facing a combinatorial opti-
mization problem, our HyperClus-G constantly outperforms the actual-class partition, and may already get
very close to the optimal NCut. Second, STAR++ and CLIQUE++ expansions, as graph approximations
for hypergraphs, are very strong baselines and can generate sub-optimal clustering. Third, in terms of F1
scores matched with actual classes, our HyperClus-G also achieves the best performance in general. The
only exception is Digit k-way clustering, where HyperClus-G achieves the second best, but is very close to
the best. This again shows that STAR++ and CLIQUE++ expansions are strong baselines. Unsupervised
embedding methods can beat STAR++ and CLIQUE++ expansions on smaller datasets. Fourth, though
HyperClus-G is not designed for k-way clustering, applying it multiple times returns a high-quality k-way
clustering. Fifth, it turns out that the second smallest eigenvalue of Lsym is a good approximation for
NCut (Refer to Section 5.3 for details), which is consistent with our theoretical analysis. Sixth, we report
the execution time in Table 5. in fact, for NCut in Rice, Covertype, and F1 in Digit, where STAR++ or
CLIQUE++ expansion achieves the best performance, it needs to take 10× time compared to HyperClus-G.

5.3 Validation of the Eigenvalue Approximation

According to our theoretical study of Theorem 17, and the later transformation of the problem, the second
smallest eigenvalue of the symmetric normalized random-walk-based hypergraph Laplacian Lsym should be
an approximation of the NCut value by relaxing the combinatorial optimization constraint. We validate this
by showing the 2-way NCut value of the clustering result from our algorithm HyperClus-G, and compare
it with the second smallest eigenvalue of Lsym. The data are shown in Table 6. It turns out that the two
numbers are positively correlated, and the error tends to be small. The Rice dataset, which has much more
hyperedges than other datasets, has the largest relative error.
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Table 6: Comparison of 2-way NCut and its Eigenvalue Approximation.

Value
2-way Clustering

Mushroom Rice Car Digit-24 Covertype

2-way NCut value of HyperClus-G results 0.6388 0.3577 0.8320 0.6412 0.8911

2nd smallest eigenvalue of Lsym (Definition 18) 0.6171 0.2686 0.7655 0.6220 0.8663

relative error |eigenvalue − ncut| / ncut 3.397% 24.91% 7.993% 2.994% 2.783%

5.4 Ablation Study

To show that our algorithm exploits the EDVW information, we conduct an ablation study of STAR++,
CLIQUE++, and HyperClus-G on the EIVW hypergraphs where the EDVW is set to be a constant value of
one. From the results, we observe that the clustering performance of HyperClus-G on EIVW hypergraphs is
the same as STAR++. First, this validates that the performance boost given EDVW hypergraphs is because
our HyperClus-G can exploit EDVW. Second, the conjecture that our HyperClus-G degenerates to STAR++,
given an all-one-EDVW hypergraph, is naturally raised, even though the dimensions of their Laplacians are
different. Experimentally, we observe that for all-one-EDVW hypergraphs, the second smallest eigenvector
of Lsym has the same direction as the sub-vector of all the original vertices of the second smallest eigenvector
of the random-walk Laplacian of the STAR++ graph. This is an interesting phenomenon that is worth
studying in the future.

Table 7: NCut Comparison(↓) of Global Partitioning Task on EIVW Hypergraphs.

Method Name
2-way Clustering

Mushroom Rice Car Digit-24 Covertype

STAR++ 0.6926 0.3754 0.8340 0.7047 0.8884
CLIQUE++ 0.6870 0.4318 0.8340 0.7045 0.8943
actual class label 0.7554 0.4833 0.8782 0.7080 0.9339
HyperClus-G (Ours) 0.6926 0.3754 0.8340 0.7047 0.8884

Table 8: F1 Comparison(↑) of Global Partitioning Task on EIVW Hypergraphs.

Method Name
2-way Clustering

Mushroom Rice Car Digit-24 Covertype

STAR++ 0.903, 0.874 0.900, 0.855 0.569, 0.550 0.980, 0.980 0.694, 0.436
CLIQUE++ 0.898, 0.870 0.854, 0.843 0.569, 0.550 0.983, 0.983 0.701, 0.455
HyperClus-G (Ours) 0.903, 0.874 0.900, 0.855 0.569, 0.550 0.980, 0.980 0.694, 0.436

6 Conclusion

This work advances a unified random walk-based formulation of hypergraphs based on EDVW modeling.
We introduce key definitions, such as Rayleigh Quotient, NCut, and conductance, aligning them with graph
theory to advance spectral analysis. By establishing the relationship between the normalized hypergraph
Laplacian and the NCut value, we develop the HyperClus-G algorithm for spectral clustering on EDVW
hypergraphs. Our theoretical analysis and extensive experimental validation demonstrate that HyperClus-G
achieves approximately optimal partitioning and outperforms existing methods in practice.
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A Supplementary Definitions, Proof of Lemmas and Theorems

A.1 Definition of Hyperpath and Hypergraph Connectivity

Definition 24. (Zhou et al., 2006) (Hyperpath and hypergraph connectivity). We say there is a hyperpath
between vertices v1 and vk when there is a sequence of distinct vertices and hyperedges v1, e1, v2, e2, ..., ek−1, vk

such that vi ∈ ei and vi+1 ∈ ei for 1 ≤ i ≤ k − 1. A hypergraph H is connected if there exists a hyperpath
for any pair of vertices.

A.2 Proof of Definition 6 that P has row sum 1

Proof. The sum of the vth row of P is:

∑
u

Pv,u =
∑

u

∑
e∈E(v)

w(e)
d(v) · γe(u)

δ(e) (30)

Since H is connected, there exists e ∈ E(v) and therefore,

∑
u

Pv,u =
∑

e∈E(v)

w(e)
d(v) ·

∑
u

γe(u)
δ(e) =

∑
e∈E(v)

w(e)
d(v) = 1 (31)

A.3 P is Irreducible

Lemma 25. The transition matrix P of hypergraph random walk defined in definition 6 is irreducible.

Proof. First, we create a new matrix Q by replacing Pu,v by 1 if Pu,v > 0, and prove that Q is irreducible.
Hence, P holds the same feature.

By the assumption that the undirected hypergraph H is connected, every node u is reachable from any node
v ̸= u through a sequence of hyperedges. Qu,v = 1 if and only if Pu,v > 0.

By the definition of P ,

Pu,v =
∑

e∈E(v)

ω(e)
d(u)

γe(v)
δ(e) > 0 (32)

if there is a hyperedge connecting v and u.

Therefore, the directed graph G with Q as the adjacency matrix can be constructed by replacing every
hyperedge with a directed fully-connected clique.

For any node pair v, u, by the assumption of H, there exists a sequence of hyperedges from v to u; hence, in
G, there also exists a sequence of directed edges from v to u. This means G is strongly connected, and Q is
irreducible. According to Theorem 6.2.44 in Matrix Analysis (Horn & Johnson, 2012), P is irreducible.

A.4 Proof of Theorem 8

Proof. According to the Perron-Frobenius Theorem and Lemma 25, the irreducible matrix P has a unique
left eigenvector with all entries positive. We denote and normalize this row vector as ϕ and prove ϕP =
ϕ ⇐⇒ P T ϕT = ϕT . According to the definition of ϕ,

P T ϕT = ρ(P )ϕT (33)
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where ρ(P ) is the spectral radius, which is the maximum eigenvalue of ρ(P ).

ρ(P ) = ρ(P )
|V |∑
i=1

ϕT (i) =
|V |∑
i=1

ρ(P )ϕT (i)

=
|V |∑
i=1

|V |∑
j=1

P T
ij ϕT (j) =

|V |∑
j=1

ϕT (j)
|V |∑
i=1

P T
ij

=
|V |∑
j=1

ϕT (j) · 1 = 1.

(34)

Therefore, ϕ satisfies P T ϕ = ϕ, ∀u ϕ(u) > 0 and
∑

u ϕ(u) = 1.

A.5 Additional Lemma to Support Random-walk-based Hypergraph Laplacian (Definition 9)

Lemma 26. For a graph G with pair-wise relations, let D be its degree matrix and A be its adjacency matrix.
Let PG = D−1A be the transition matrix of graph random walk, and ΠG be the stationary distribution of PG.
Then L = ΠG − ΠGPG+P T

G ΠG
2 has the same eigenvectors as the graph Laplacian LG = D − A.

Proof. This lemma serves as an evidence that

L = Π − ΠP + P T Π
2 (35)

can be degenerated into unweighted non-hyper graphs (graphs with only pair-wise relations). For pair-wise
graphs, given PG = (AD−1)T = D−1AT = D−1A, we have ϕG(u) = d(u)∑

v
d(v)

because,

(P T
G ϕG)(i) =

|V |∑
j=1

PG(i, j)T ϕG(j) =
|V |∑
j=1

Aij

d(j) · d(j)∑
v d(v) =

∑|V |
j=1 Aij∑
v d(v) = d(i)∑

v d(v) (36)

Hence,

ΠG = D∑
v d(v) . (37)

Therefore, for regular graphs, if we follow the same definition of hypergraph Laplacian as of equation 35,

L = D∑
v d(v) − DD−1A + AD−1D

2
∑

v d(v) = D − A∑
v d(v) , (38)

which has the same eigenvectors as the regular graph Laplacian D − A.

A.6 Proof of Theorem 15

Proof. Notice that when xT Ax is a scalar,

xT Ax = (xT Ax)T = ((xT A)x)T = xT (xT A)T = xT AT x (39)

we have

xT ΠPx = xT P T ΠT x = xT P T Πx (40)

17
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R(x) =
∑

u,v(x(u) − x(v))2ϕ(u)Pu,v

xT Πx

=
∑

u,v x2(u)ϕ(u)Pu,v +
∑

u,v x2(v)
∑

u ϕ(u)Pu,v − 2
∑

u,v x(u)x(v)ϕ(u)Pu,v

xT Πx

=
∑

u x2(u)ϕ(u) +
∑

v x2(v)ϕ(v) − 2 · xT ΠPx

xT Πx

=
xT Πx +

∑
v x2(v)ϕ(v) − 2 · xT ΠPx

xT Πx

Equation 40=
xT Πx +

∑
v x2(v)ϕ(v) − (xT ΠPx + xT P T Πx)

xT Πx

=
2xT Πx − 2 · 1

2 (xT ΠPx + xT P T Πx)
xT Πx

= 2 ·
xT (Π − ΠP +P T Π

2 )x
xT Πx

= 2 · xT Lx

xT Πx
.

(41)

A.7 Proof of Theorem 17

Proof. For a partition S ∪ S̄ = V, S ∩ S̄ = ∅, we have a |V | × 1 vector x(u), where

x(u) =


√

vol(S)
vol(S) if u ∈ S

−
√

vol(S)
vol(S̄) if u ∈ S̄

(42)

From the definition of NCut in Eq 16, we can compute R(x) as follows:

R(x) =
∑

u,v |X(u) − X(v)|2 ϕ(u)Pu,v∑
u |x(u)|2 · ϕ(u)

=

∑
(u∈S,v∈S̄)or(u∈S̄,v∈S)(

vol(S̄)
vol(S) + vol(S)

vol(S̄) + 2) · ϕ(u)Pu,v∑
u∈S

volS̄
volS · ϕ(u) +

∑
u∈S̄

volS
volS̄ · ϕ(u)

=
( volS̄+volS

volS + volS+volS̄
volS̄ )

∑
(u∈S,v∈S̄)or(u∈S̄,v∈S) ·ϕ(u) · Pu,v

volS̄
volS

∑
u∈S ϕ(u) + volS

volS̄
∑

u∈S ϕ(u)

=
( volS̄+volS

volS + volS+volS̄
volS̄ )(

∑
u∈S,v∈S̄ ·ϕ(u) · Pu,v +

∑
u∈S̄,v∈S ·ϕ(u) · Pu,v)

volS̄
volS

∑
u∈S ϕ(u) + volS

volS̄
∑

u∈S ϕ(u)

=
( volS̄+volS

volS + volS+volS̄
volS̄ )2

∑
u∈S,v∈S̄ ·ϕ(u) · Pu,v

volS̄
volS

∑
u∈S ϕ(u) + volS

volS̄
∑

u∈S ϕ(u)

=
2(volS̄ + volS)( 1

volS + 1
volS̄ )

∑
u∈S,v∈S̄ ·ϕ(u) · Pu,v

volS̄
volS

∑
u∈S ϕ(u) + volS

volS̄
∑

u∈S ϕ(u)

= 2(volS̄ + volS)NCut(S, S̄)
volS̄ + volS

= 2NCut(S, S̄)

(43)
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A.8 Proof of Theorem 20

Proof. Recall from the definition 19, 12 and 13,

Φ(S) = |∂S|
min(vol(S), vol(S̄))

=
∑

u∈S,v∈S̄ ϕ(u)Pu,v

min(
∑

v∈S ϕ(u),
∑

u∈S̄ ϕ(u)) (44)

From the definition of Pu,v and ϕ(u), Φ(S) is non-negative.

∑
u∈S

ϕ(u) =
∑

u∈S,v∈V
ϕ(u)Pu,v ≥

∑
u∈S,v∈S̄

ϕ(u)Pu,v

∑
u∈S̄

ϕ(u) =
∑

u∈S̄,v∈V

ϕ(u)Pu,v ≥
∑

u∈S̄,v∈S

ϕ(u)Pu,v
Equation 11=

∑
u∈S,v∈S̄

ϕ(u)Pu,v

(45)

Thus, min(
∑

v∈S ϕ(u),
∑

u∈S̄ ϕ(u)) ≥
∑

u∈S,v∈S̄ ϕ(u)Pu,v and Φ(S) ∈ [0, 1].

A.9 Proof of Theorem 21

Proof. From Theorem 15,

λ = min
x∈Rn\{0}

xT Lx

xT Πx
= min

x∈Rn\{0}

1
2R(x) (46)

Let S = arg minS′⊆V Φ(S ′), y(u) =
{

1
vol(S) , if u ∈ S
− 1

1−vol(S) , otherwise
, then continue with Equation 46,

λ = min
x∈Rn\{0}

1
2R(x)

≤ 1
2R(y)

= 1
2

∑
u,v |y(u) − y(v)|2ϕ(u)Pu,v∑

u |y(u)|2ϕ(u)

= 1
2

∑
u∈S,v∈S̄ |y(u) − y(v)|2ϕ(u)Pu,v +

∑
u∈S̄,v∈S |y(u) − y(v)|2ϕ(u)Pu,v∑

u∈S |y(u)|2ϕ(u) +
∑

u∈S̄ |y(u)|2ϕ(u)

= 1
2

∑
u∈S,v∈S̄( 1

vol(S) + 1
1−vol(S) )2ϕ(u)Pu,v +

∑
u∈S̄,v∈S( 1

1−vol(S) + 1
vol(S) )2ϕ(u)Pu,v∑

u∈S | 1
vol(S) |2ϕ(u) +

∑
u∈S̄ | 1

1−vol(S) |2ϕ(u)

= ( 1
vol(S) + 1

1 − vol(S) )2
1
2 (

∑
u∈S,v∈S̄ ϕ(u)Pu,v +

∑
u∈S̄,v∈S ϕ(u)Pu,v)

( 1
vol(S) )2 ∑

u∈S ϕ(u) + ( 1
1−vol(S) )2 ∑

u∈S̄ ϕ(u)

= ( 1
vol(S) + 1

1 − vol(S) )2 |∂S|
( 1

vol(S) )2vol(S) + ( 1
1−vol(S) )2(1 − vol(S))

= |∂S|
vol(S)(1 − vol(S))

≤ 2|∂S|
min(vol(S), 1 − vol(S))

= 2Φ(H)

(47)

Thus the “≤" side has been proved. For the “≥" side, assume w is the eigenvector of the normalized Laplacian
associated with λ, let vector f = Π− 1

2 w. Then,
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λf(u)ϕ(u) = λ(Π− 1
2 w)(u)ϕ(u) = (Π− 1

2 Lsymw)(u)ϕ(u) = (ΠΠ− 1
2 Lsymw)(u)

= (Π 1
2 LsymΠ 1

2 f)(u) = (Lf)(u) = [(Π − ΠP + P T Π
2 )f ](u)

= ϕ(u)f(u) −
∑

v f(v)ϕ(u)Pu,v

2 −
∑

v f(v)ϕ(v)Pv,u

2
= 1

2
∑

v

(f(u) − f(v))(ϕ(u)Pu,v + ϕ(v)Pv,u)

(48)

Therefore, ∀u

λ =
∑

v(f(u) − f(v))(ϕ(v)Pv,u + ϕ(u)Pu,v)
2f(u)ϕ(u) (49)

Let V+ = {u : f(u) ≥ 0} and let vector g(u) =
{

f(u), if f(u) ≥ 0
0, otherwise

, then

λ =
∑

u∈V+
f(u)

∑
v(f(u) − f(v))(ϕ(v)Pv,u + ϕ(u)Pu,v)∑

u∈V+
f(u)2f(u)ϕ(u)

=
∑

u∈V g(u)
∑

v(f(u) − f(v))(ϕ(v)Pv,u + ϕ(u)Pu,v)∑
u∈V 2g(u)2ϕ(u)

≥
∑

u g(u)
∑

v(g(u) − g(v))(ϕ(v)Pv,u + ϕ(u)Pu,v)∑
u 2g(u)2ϕ(u)

(50)

We resort the vertices in V such that f(v1) ≥ f(v2) ≥ ... ≥ f(v|V|). Also, we can change the direction of w

so that
∑

f(u)<0 ϕ(u) ≥ 1
2 ≥

∑
f(u)≥0 ϕ(u).

From the definition of Φ(H) = minS⊆V Φ(S) = |∂S|
min(vol(S),vol(S̄)) , for every i such that f(vi) ≥ 0,

Φ(H) ≤
∑

k≤i<l ϕ(vk)Pvk,vl∑
j≤i ϕ(vj) ⇐⇒ Φ(H)

∑
j≤i

ϕ(vj) ≤
∑

k≤i<l

ϕ(vk)Pvk,vl
(51)

One can validate that∑
u

g(u)
∑

v

(g(u) − g(v))(ϕ(v)Pv,u + ϕ(u)Pu,v) =
∑

u

∑
v

(g(u) − g(v))2ϕ(v)Pv,u (52)

Continue with Equation 50 with Theorem 3 in (Chung, 2005),

λ ≥
∑

u

∑
v(g(u) − g(v))2ϕ(v)Pv,u∑

u 2g(u)2ϕ(u)

=
(
∑

u

∑
v(g(u) − g(v))2ϕ(v)Pv,u)2∑

u 2g(u)2ϕ(u)(
∑

u

∑
v(g(u) − g(v))2ϕ(v)Pv,u)

≥
(
∑

u

∑
v |g(u)2 − g(v)2|ϕ(v)Pv,u)2

8(
∑

u g(u)2ϕ(u))2

=
(
∑

k

∑
l>k(g(vk)2 − g(vl)2)(ϕ(vl)P (vl, vk) + ϕ(vk)P (vk, vl)))2

8(
∑

u g(u)2ϕ(u))2

=
(
∑

k(g(vk)2 − g(vk+1)2)
∑

i≤k<j(ϕ(vi)P (vi, vj) + ϕ(vj)P (vj , vi)))2

8(
∑

u g(u)2ϕ(u))2

(53)

Using Equation 51, continue with Equation 53,
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λ ≥
(
∑

k(g(vk)2 − g(vk+1)2)
∑

i≤k<j(ϕ(vi)P (vi, vj) + ϕ(vj)P (vj , vi)))2

8(
∑

u g(u)2ϕ(u))2

≥
(
∑

k(g(vk)2 − g(vk+1)2)2Φ(H)
∑

i≤k ϕ(vi))2

8(
∑

u g(u)2ϕ(u))2

=
Φ(H)2(

∑
i ϕ(vi)

∑
k≥i(g(vk)2 − g(vk+1)2))2

2(
∑

u g(u)2ϕ(u))2

=
Φ(H)2(

∑
i ϕ(vi)g(vi)2)2

2(
∑

u g(u)2ϕ(u))2

= Φ(H)2

2

(54)

B Algorithm Complexity

B.1 Worst-case Time Complexity of HyperClus-G

The pseudo-code of HyperClus-G is given in Algorithm 1. Assume we have direct access to the support of
each γe. Assume the number of hyperedge-vertex connections is m, which is the sum of the sizes of the
support sets of all γe.

The computation of R and W takes O(m). The constructed R and W both have m non-zero entries. The
construction of DV takes O(|V|) and the construction of DE takes O(|E|). Given that each hyperedge has at
least 2 vertices and each vertex has at least one hyperedge incident to it, step 1 takes O(m).

Given that W and R both have m non-zero elements, the multiplication P = D−1
V WD−1

E R takes O(m2)
using CSR format sparse matrix. Therefore step 2 takes O(m2).

Computing the stationary distribution ϕ of P takes O(|V|2) using power iteration. Constructing the sta-
tionary distribution matrix Π from ϕ takes O(|V|). Computing the random-walk-base hypergraph Laplacian
takes O(|V|). Therefore step 3 and step 4 takes O(|V|2).

Step 5, computing the eigenvector associated with the second smallest eigenvalue, takes O(|V|3). And step
6 takes O(|V|). Therefore step 5 and step 6 together take O(|V|3).

Therefore the worst-case complexity of HyperClus-G is

O(m) + O(m2) + O(|V|2) + O(|V|3) ∈ O(m2 + |V|3) (55)

B.2 Worst-case Space Complexity of HyperClus-G

We make the same assumption as in Section B.1. The storage of R, W, DV , DE takes O(m). The storage
of P and L takes O(|V|2). The storage of stationary distribution and the intermediate results takes O(|V|).
The intermediate results for eigendecomposition take O(|V|2).

Therefore, the worst-case space complexity for HyperClus-G is

O(m) + O(|V|2) + O(|V|) + O(|V|2) ∈ O(m + |V|2) (56)

In our experiments, the largest dataset Covertype’s GPU usage is 6 Gigabytes.
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C Experiemnt Details

C.1 Environments

We run all our experiments on a Windows 11 machine with a 13th Gen Intel(R) Core(TM) i9-13900H CPU,
64GB RAM, and an NVIDIA RTX A4500 GPU. One can also run the code on a Linux machine. All the
code of our algorithms is written in Python. The Python version in our environment is 3.11.4. In order to
run our code, one has to install some other common libraries, including PyTorch, pandas, numpy, scipy, and
ucimlrepo. Please refer to our README in the code directory for downloading instructions.

C.2 Datasets

Table 9 summarizes the statistics and attributes of each dataset we used in the experiments.

Mushroom (https://archive.ics.uci.edu/dataset/73/mushroom) includes categorical descriptions of
8124 mushrooms in the Agaricus and Lepiota Family. Each species is labeled as edible or poisonous. This
dataset contains missing data in the "stalk-root" feature. As (Zhou et al., 2006) did, we removed the feature
that contains missing labels. The two clusters have 4208 and 3916 instances, respectively.

Rice (https://archive.ics.uci.edu/dataset/545/rice+cammeo+and+osmancik), a.k.a., Rice (Cammeo
and Osmancik). A total of 3810 rice grain’s images were taken for the two species, processed, and feature
inferences were made. 7 morphological features were obtained for each grain of rice. This dataset does not
have missing data. The feature types are real, including integer values, continuous values, and binary values.
The two clusters have 2180 and 1630 instances, respectively. For each continuous feature, we first find the
maximum value of this feature, then normalize all the numbers in this feature by the maximum value. This
results in 10 bins of equal size [0, 0.1], (0.1, 0.2], ...(0.9, 1]. Then, we convert the quantified bins to categorical
features by using a categorical feature to mark which bins a continuous value originally belongs to.

Car (https://archive.ics.uci.edu/dataset/19/car+evaluation), a.k.a., Car Evaluation. Originally,
this dataset contained 1728 cars with labeled acceptability related to 6 features. This dataset does not have
missing data. We extract all the cars that are labeled "good" or "vgood" (very good) and construct a smaller
dataset of 134 cars. The two clusters have 65 and 69 instances, respectively.

Digit-24 is a subset of Digit (https://archive.ics.uci.edu/dataset/80/optical+recognition+of+
handwritten+digits), a.k.a. Optical Recognition of Handwritten Digits. This dataset contains a matrix
of 8x8 where each element is an integer in the range 0, 1, ..., 16. This reduces dimensionality and gives
invariance to small distortions. This dataset does not have missing data. The original Digit datasets have
10 classes, and we extract all the instances of numbers 2 and 4 to construct Digit-24 for 2-way clustering.
We simply regard the integer feature type to be categorical, that each integer is one category. The number
of instances in each digit class is approximately the same.

Covertype (https://archive.ics.uci.edu/dataset/31/covertype). The task of this dataset is the
classification of pixels into 7 forest cover types based on attributes such as elevation, aspect, slope, hillshade,
soil-type, and more. We follow (Hein et al., 2013) and extract the instances of classes 4 and 5 to construct
a dataset for 2-way clustering. The numerical feature values in this dataset can vary within a large range.
Therefore, we first quantize the numerical values into 10 bins of equal size. We use the same strategy as
described in the Rice dataset above to convert the features into categorical features. The two clusters have
9493 and 2747 instances, respectively.

Zoo (https://archive.ics.uci.edu/dataset/111/zoo) is a simple database containing 17 Boolean-
valued attributes. We simply regard the integer feature type to be categorical, that each integer is one
category. The seven clusters of instances have 41, 20, 13, 10, 8, 5 and 4 instances, respectively.

Wine-567 (https://archive.ics.uci.edu/dataset/186/wine+quality), a.k.a., Wine Quality. The goal
of this dataset is to model wine quality based on physicochemical tests. In the original dataset, each instance
has a quality score between 0 to 10. The majority of instances have scores 5, 6, or 7. We extract all the
instances that have scores 5, 6, or 7 to construct our Wine-567 dataset for 3-way clustering. We quantize
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the real feature values as described in the Rice dataset above, except that the number of bins is 20 instead
of 10. The three clusters of instances have 2836, 2138, and 1079 instances, respectively.

Letter (https://archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits)m
a.k.a. Letter Recognition, which is a database of character image features, aiming to identify the letter. We
extract all the instances of numbers 2 and 4 to construct our Letter dataset. The objective is to identify
each of a large number of black-and-white rectangular pixel displays as one of C, I, L, or M. The number
of instances in each letter class is approximately the same. We simply regard the integer feature type to be
categorical, that each integer is one category.

Table 9: Statistics of Constructed Hypergraphs in Global Partitioning Experiments
Hypergraph |V| |E|

∑
v∈V E(v) # classes |E| clique # original features Subject Are Feature Type

Mushroom 8124 111 162480 2 65991252 22 Biology Categorical

Rice 3810 3838 17410 2 14272406 7 Biology Real

Car 134 16 804 2 23821 6 Others Categorical

Digit-24 1125 880 69750 2 69750 64 Computer Science Integer

Covertype 12240 111 428400 2 149805360 52 Biology Categorical, Integer

Zoo 101 36 1616 7 10100 16 Biology Categorical, Integer

Wine-567 6053 136 66583 3 36630116 11 Business Real

Letter 3044 228 48704 4 8098180 16 Computer Science Integer

Digit 5620 912 348440 10 31578780 64 Computer Science Integer

Table 9 shows the statistics of our datasets used in the global partitioning experiments. The meanings of
columns are the name of the hypergraphs, number of vertices/instances, number of hyperedges, number of
hyperedge-vertex connections, number of classes, number of edges in the clique expansion graphs, number
of original features in the dataset, the subject area of the dataset, and the types of features.

C.3 Global Partitioning Metrics

The F1 score between two sets Am and Ac is defined as

TP(True Positive) = |Am ∩ Ac|
FP(False Positive) = |Am \ Ac|
FN(False Negative) = |Ac \ Am|

precision = TP

TP + FP

recall = TP

TP + FN

F1 = 2 × precision × recall
precision + recall

(57)

Assume for k-way clustering (in this section, k can be 2), the algorithm returns the result S1, S2, ..., Sk, then
the NCut value is computed as

NCut(S1, ..., Sk) =
k∑

i=1

|∂Si|
vol(Si)

=
k∑

i=1

∑
u∈S,v∈S̄ ϕ(u)Pu,v

vol(S) ∈ [0, k] (58)

Specifically, for 2-way NCut, we have another equivalent Definition 16. Assume the actual labeled classes
are V1, V2, ..., Vk, where Vi is all the vertices in class i. We first compute the F1 scores between Si and Vj for
i, j ∈ {1, 2, ..., k}, then greedily match the resulted sets with the actual labeled classes (Kollias et al., 2012).
For example, if we have three classes with the F1 matrix, where Fi−1,j−1 is the F1 score of Si and Vj
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F =


0 0.9 0

0.8 0 0
0 0.7 0.6

 (59)

Then, we first match S1 with V2 because they have the highest F1 score of 0.9. Then we match S2 with V1
because they have the second largest F1 score of 0.8. Then we try to match S3 with V2 because they have a
third largest F1 score of 0.7, but V2 has already been matched with S3, so we cannot match it again. Then,
we try to match S3 with V3 and this time none of S3 and V2 has been matched. As all the sets have been
matched, the greedy-match algorithm ends.

We calculate the weighted F1 score as the final metric of clustering. For each match Sji
with Vi, we weigh

its F1 by number of instances in Vi,

Weighted F1 =
k∑

i=1

|Vi|∑k
i=1 |Vi|

Fji−1,i−1 ∈ [0, 1] (60)

C.4 From 2-way Clustering to k-way Clustering

We have two strategies from 2-way clustering to k-way clustering. For the datasets that each actual labeled
class has a similar number of instances, we apply 2-way clustering on the largest cluster every time to split
it into two clusters. For k-way clustering, this process calls the 2-way clustering k-1 times.

When the number of instances in each actual labeled class varies a lot, when we have l clusters, we call 2-way
clustering on each cluster to get l + 1 clusters, then pick the best of l results in terms of NCut. For k-way
clustering, this process calls the 2-way clustering k(k−1)

2 times.

C.5 Baselines

CLIQUE++. For each hyperedge e, each u, v ∈ e with u ̸= v, we add an edge uv of weight w(e). Then,
we compute the adjacency matrix A and degree matrix D. We calculate the graph Laplacian matrix by L =
D − A. Finally, we do eigen-decomposition for the random walk Laplacian LRW = D−1L, whose eigenvalues
are associated with the graph NCut value (Hamilton, 2020). We calculate the eigenvector associated with
the second smallest eigenvalue for global partitioning: we put the non-negative entries as one cluster and
the negative entries as another.

STAR++. For each hyperedge e, we introduce a new vertex ve. For each vertex u ∈ e, we add an edge uve

of weight w(e)/|e|. After converting the hypergraph into a star graph, we do the same algorithm for global
partitioning as in CLIQUE++.

DiffEq (Takai et al., 2020). We directly use the official code3 of this algorithm. This method sweeps over
the sweep sets obtained by differential equations for local clustering. For global partitioning, it simply calls
local clustering for every vertex and returns the best in terms of conductance. Originally, this algorithm
could only take one starting vertex for local clustering. We modified the code to add one additional vertex
that connects the 5 starting vertices in each observation. Then regard the newly added vertex as the starting
vertex, so that it can obtain the local cluster for the given 5 starting vertices.

node2vec (Grover & Leskovec, 2016). node2vec embeds a graph using random walks. Since we have
the random walk matrix P on the hypergraph, we construct a directed weighted graph by P as the input
of node2vec. However, given that there are too many non-zero entries in P , node2vec is extremely slow.
Therefore, after we get P , we only keep the entries of P that are larger than a small threshold. This threshold
is tuned so that the (1) execution time is acceptable; (2) the NCut value and F1 value of the result are both
near convergence. We did not modify other default hyperparameters in node2vec. After we obtain the vertex
embedding, we call KMeans from scikit-learn to directly obtain k clusters for k-way clustering.

3https://github.com/atsushi-miyauchi/Hypergraph_clustering_based_on_PageRank
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event2vec/hyperedge2vec (Fu et al., 2019). We directly use the official code4 of this algorithm. event2vec
was originally designed for heterogeneous graphs. For example, in a citation network that has publications
and authors, each publication is an event. We notice that here an event is equivalent to a hyperedge. We
first convert the hypergraph into a STAR graph, then we regard each added vertex as an event and call
event2vec to obtain vertex embeddings. We tune the training epochs near default so that (1) execution time
is acceptable; (2) the NCut value and F1 value of the result are both near convergence. We did not modify
other default hyperparameters in event2vec. After we obtain the vertex embedding, we call KMeans from
scikit-learn to directly obtain k clusters for k-way clustering.

C.6 Supplementary Experiment Data

C.6.1 Standard Deviations of Nondeterministic Algorithms on Global Partitioning

We report the standard deviation of nondeterministic algorithms on global partitioning. The nondeterminis-
tic algorithms are node2vec + kmeans and hyperedge2vec + kmeans. The standard deviations of the NCut
are reported in Table 10 and those of the F1 scores are reported in Table 11.

Table 10: Standard Deviations of NCut on Global Partitioning Task.

Method
2-way Clustering k-way Clustering (k ≥ 3)

Mushroom Rice Car Digit-24 Covertype Zoo Wine Letter Digit

node2vec 1e-5 0.049 0.006 1e-4 1e-5 0.014 0.001 0.046 0.039

hyperedge2vec 0.002 0.038 0.006 0.001 0.024 0.008 0.026 0.017 0.009

Table 11: Standard Deviations of F1 scores on Global Partitioning Task

Method
2-way Clustering k-way Clustering (k ≥ 3)

Mushroom Rice Car Digit-24 Covertype Zoo Wine Letter Digit

node2vec 1e-5, 1e-5 0.056, 0.054 0.032, 0.031 7e-4, 7e-4 0.027, 0.024 0.023 0.001 0.078 0.079

hyperedge2vec 0.196, 0.197 0.110, 0.109 0.174, 0.171 0.050, 0.050 0.124, 0.129 0.046 0.010 0.060 0.006

C.6.2 Time Comparison on Global Partitioning

The execution time of all the methods is reported in Table 12. Our HyperClus-G outperforms the baseline
methods on 8/9 datasets. Note that DiffEq is written in C#, while others are written in Python. It may
not be a fair comparison since C# is one of the fastest programming languages, but we still report the total
execution time (including compiling) of all the algorithms for reference.

After STAR++ expansion, the dimension of the matrix gets larger because we need to introduce additional
vertices into the graph. For CLIQUE++ expansion, since we convert the hyperedge to the fully connected
CLIQUE graph, the conversion itself makes the program slower. Also, the random walks and calculation
of Laplacian will be slower compared to HyperClus-G. DiffEq finds the global partition by actually finding
a local cluster and taking its complementary set. As the graph becomes large, sweeping over to find the
local cluster will consume more time. node2vec and event2vec/hyperedge2vec need to train the embedding
model, which consumes much time. We have tuned the number of training epochs to let the model stop near
convergence.

4https://github.com/guoji-fu/Event2vec
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Table 12: Execution Time Comparison(↓) on Global Partitioning Task (unit: seconds).

Method
2-way Clustering k-way Clustering (k ≥ 3)

Mushroom Rice Car Digit-24 Covertype Zoo Wine Letter Digit

STAR++ expansion 72.82 50.80 1.43 3.37 318.55 0.654 32.18 37.54 59.05

CLIQUE++ expansion 216.04 13.32 1.38 7.50 1099.03 0.629 77.75 50.25 297.37

DiffEq (C#) 39.03 8.15 1.43 18.36 149.49 8.79 33.09 20.94 613.22

node2vec + kmeans 101.05 73.08 3.54 12.63 175.58 2.238 39.66 32.68 48.59

hyperedge2vec + kmeans 88.96 47.03 5.59 20.29 367.53 4.62 65.68 28.40 113.53

HyperClus-G(Ours) 17.73 5.04 1.37 2.18 87.72 0.595 11.48 35.13 26.49

HyperClus-G
Best of Python Baselines ratio 24.34% 37.83% 99.27% 64.69% 49.96% 94.59% 35.67% 123.7% 44.86%
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