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ABSTRACT

Antibodies are essential components of the immune system, neutralizing foreign
antigens such as viruses by binding to specific regions called epitopes. Com-
putational prediction of epitopes is critical for antibody design and therapeutic
development. Current approaches for epitope prediction still remain challenging
due to: (1) lack of sophisticated architectures to model the complex interaction
patterns; (2) ineffective protein representations; (3) antibody-agnostic modeling
despite antibody specificity; (4) severe class imbalance; and (5) scarcity of known
antigen—antibody complexes. In order to overcome these challenges, we propose
EpiFormer, an encoder-decoder-based architecture that utilizes an E(3)-equivariant
multi-relational graph neural network (GNN) coupled with cross-attention to
model antigen-antibody interactions. Our contributions are an E(3)-equivariant
multi-relational GNN, a Transformer-style cross-attention mechanism, and tailored
losses for severe class imbalance and data scarcity. Our method significantly out-
performs existing baselines on the Antibody-specific Epitope Prediction (AsEP)
dataset by achieving an overall =~ 1.7x performance improvement on multiple
classification metrics. This work advances the state-of-the-art in antibody-aware
epitope prediction, providing a robust framework for therapeutic antibody design
and vaccine development.

1 INTRODUCTION

Antibodies are large, Y-shaped proteins produced by B-cells that play a critical role in the immune
system by identifying and neutralizing foreign substances such as toxins, bacteria, and viruses,
collectively known as antigens. They are currently known to be the largest class of biotherapeutics,
where five of the current top 10 blockbuster drugs are monoclonal antibodies (Norman et al., 2020;
Joubbi et al., 2024). Recently, computational approaches have been proposed to design antibodies to
aid the existing traditional approaches that are time-consuming, expensive, and laborious (Fischman
& Ofran, 2018; Krishnan et al., 2024; Hummer et al., 2022). An important step in computational
antibody design is antigen binding site or epitope prediction, which involves identifying the residues
on the surface of an antigen that are recognized and bound by an antibody (Zeng et al., 2023).
Accurate epitope prediction is also essential for understanding antibody-antigen interactions in
biomedical research (Krishnan et al., 2024).

Despite significant advances in deep learning-based protein binding site prediction methods, cur-
rent approaches for epitope prediction encounter limitations that severely constrain their effective-
ness (Wang et al., 2024a; Fang et al., 2023). (1) Existing architectures lack the sophistication to
model complex interaction patterns, with standard GNN struggling to differentiate and learn the
distinct geometries of antigens and antibodies while missing essential 3D-related inductive biases
like translational invariance and rotational/reflectional equivariance (Zhang et al., 2022). 2) Most
methods rely on ineffective protein representations, predominantly using sequence-based approaches
that fail to capture the complex three-dimensional spatial arrangements of antigen binding sites,
despite epitopes being inherently non-linear and conformationally diverse (Hummer et al., 2022). 3)
Most approaches remain agnostic to pre-conditioned antibodies and treat epitope prediction as an
antibody-independent problem despite the fact that epitopes are antibody-specific (Norman et al.,
2020). 4) The epitope prediction problem suffers from severe data imbalance, as epitopic residues
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comprise merely 10% of all residues in an antigen (Liu et al., 2024). 5) The sparsity of known
antigen-antibody complexes creates a fundamental data limitation, with only approximately 2,000
available interaction pairs compared to millions of general protein structures (Joubbi et al., 2024).

To address these fundamental challenges, we propose EpiFormer, an encoder-decoder architecture
that utilizes E(3)-equivariant graph neural networks (EGNN) on multi-relational protein graphs
coupled with cross-attention mechanisms to model antibody-antigen interactions. We represent
antigens and antibodies as multi-relational graphs and introduce essential 3D-related inductive
biases, including translational invariance and rotational equivariance via equivariant message passing
to effectively handle protein geometric constraints that standard GNNs cannot capture (Liao &
Smidt, 2022). We train EpiFormer with a custom joint objective that addresses the severe epitopic
class imbalance, predicts antigen-antibody interaction maps, and enforces geometric consistency
through inter-chain distance constraints. The framework operates in an antibody-aware manner by
explicitly incorporating antibody structure and binding context through bidirectional cross-attention
mechanisms that enable dynamic modeling of both intra-chain geometric relationships and inter-chain
interaction patterns (Lim et al., 2025). Our main contributions are as follows:

1. We develop a novel transformer-based GNN architecture that achieves ~ 1.7x performance
improvement over existing baselines on the antibody-aware epitope prediction task on
multiple classification metrics.

2. We introduce a multi-relational E(3)-equivariant message passing (EGNN-R) framework
that handles multiple edge relations for robust epitope prediction.

3. We develop EpiFormer with a novel joint loss function designed for: (a) severely imbalanced
epitopic data, (b) interaction map prediction, and (c) inter-chain geometric consistency.

2 RELATED WORK

GNN have emerged as a powerful approach for epitope prediction by modeling the spatial and sequen-
tial relationships in protein structures. Several methods demonstrate this approach: PECAN (Pittala
& Bailey-Kellogg, 2020), Plnet (Dai & Bailey-Kellogg, 2021), and related work (Jha et al., 2022)
use GNNs with attention mechanisms for protein-protein interaction prediction. EPMP (Vecchio
et al., 2021) uses a neural message-passing framework with asymmetrical architectures for paratope-
epitope prediction. Recent advances combine protein language model (PLM) embeddings with
graph-based architectures, with EpiGraph (Choi & Kim, 2024) using GAT with ESM-2 embeddings,
AsEP (Liu et al., 2024) employing the WALLE method with ESM-2 and AntiBERTy embeddings, and
GraphBepi (Zeng et al., 2023) leveraging ESM-2 representations.

These graph-based methods can be categorized based on whether they use antibody-specific informa-
tion. Antibody-agnostic approaches, such as epitopelD (Silva et al., 2023), GraphBepi (Zeng et al.,
2023), and EpiGraph (Choi & Kim, 2024), rely on sequential and structural features but lack speci-
ficity for antibody-specific applications (Vecchio et al., 2021). In contrast, antibody-aware methods
like EpiScan (Wang et al., 2024a), PECAN (Pittala & Bailey-Kellogg, 2020), and EPMP (Vecchio
et al., 2021) explicitly incorporate antibody structure or sequence information. Some approaches
like (Lu et al., 2022) combine GNNs with attention-based bidirectional LSTM networks to capture
both local spatial information and global sequence information from antigens.

EGNN have gained attention for protein structure modeling because they preserve geometric prop-
erties under rotations and translations, which are essential for capturing 3D protein conforma-
tions (Satorras et al., 2021b; Schiitt et al., 2018). Traditional GNNs often fail to maintain these
geometric constraints when processing protein structures, leading to suboptimal representations of
spatial relationships. E(3)-equivariant approaches like EGNN (Satorras et al., 2021b) and Gear-
Net (Zhang et al., 2022) address this limitation by incorporating equivariance directly into the
message-passing framework. Multi-relational graphs further improve protein modeling by represent-
ing different types of interactions through distinct edge types (Zhang et al., 2022). Recent work has
applied these concepts to protein-protein interactions, with methods like (Liao & Smidt, 2022) using
equivariant transformers for molecular modeling and (Lim et al., 2025) employing multi-relational
representations for protein-ligand binding affinity prediction.
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3 METHODS

In this section, we present the graph construction, problem formulation, and the architecture of
EpiFormer, a model designed for antibody-aware epitope prediction. EpiFormer takes as input an
antigen and an antibody, and predicts their binding sites by dynamically modeling their interaction
using geometric message passing and cross-attention. We then present the customized loss functions
tailored for antigen-antibody interaction prediction to train EpiFormer.

3.1 PRELIMINARIES

Graph construction The protein 3D structure is described as a point cloud of atoms
amino acid residues in the protein. The first four atoms in any residue correspond to its backbone
atoms (N, C,, Cg, O) and the rest are its side chain atoms. The 3D coordinate of an atom v; ;, is
denoted as z(v; ;) € R®. Since we work with the unbound structures or point clouds of antigen(ag)
and antibody(ab), we build two completely independent residue graphs Goe = (Vag, Eag, R), and
G = (Va, €, R). Vertex v; € V represents residue i, centered on C,, at coordinate x; € R3.
[Vag|= n, |Vab|= m, and edges e, ; € € encode structural/functional relationships between residues.

Each node v; € V is attributed a node feature vector h; € R% and a node coordinate matrix X; €
R3*4 consisting of four backbone atoms ¢ = {N, C,,Cg, O} (x; is short for x; ¢ ). Specifically, the
node feature vector h; constitutes handcrafted geometric features and PLM-derived embeddings to
capture both structural and evolutionary information. In addition, each edge e; ; is attributed an edge
feature vector f; ; € R? and a tuple of edge relations r; ; C R. The edge vector f; ; encodes features
such as distances and angles to capture both local geometry and global structural context. The set
of edge relations R = {p1, p2, p3, p4} captures distinct protein interactions: sequential relations for
peptide bonds (p1) and short-range coupling (ps), plus spatial relations for local packing shells via
K -nearest neighbors (p3) and medium-range contacts within 8 A (p4). Please refer to Appendix A.3
for further details. We extend the notation of these attributes to refer to the residue graph G of the
antigen (or antibody) as (H, X, F, R).

Problem Formulation We formulate the problem as the following two tasks:

Epitope node prediction: A binary node classification task where a residue v € V,, is labeled as an

epitope (1) if it is within 4.5A of any residue in V,p; otherwise, it is labeled as a non-epitope (0). The
classifier predicts the epitope node labels 3, using f : v, — {0, 1} and is defined as:

. 1 if v, is an epitope,

, = e’ Gags G = 1

Yag F (Vag' Gag: Gar) {0 otherwise. (M
Bipartite graph link prediction: This task predicts the bipartite adjacency matrix g‘fbg between an-
tibody and antigen in the bipartite graph G, = (Vag U Vi, Evg), Where Ve and Vyy, are disjoint
vertex sets, and Epg C Vag X Vyp € {0, 1}"Xm denotes inter-molecular contacts between antigen and
antibody. An edge ey, € &, is a contact (labeled as 1) if the corresponding residues (vsg, vap) are
within 4.5A of each other and 0 otherwise. The edge classifier g : epg — {0, 1} is defined as:

b = glemiGn) = {

1 if ey is a contact,
0 otherwise.

2
Equivariance and Invariance in E(3) Space Traditional graph representations of proteins capture
connectivity but ignore crucial 3D geometric information. Recently, proteins have been naturally
modeled as geometric graphs that encode both topological connectivity and 3D spatial coordinates of
atoms. Since molecular properties remain unchanged under rigid body transformations (rotations,
translations, reflections), geometric GNN incorporate E(3)-equivariance as an inductive bias to respect
these fundamental symmetries (Jiao et al., 2023).

For a protein with coordinates X € R3*™ and scalar features h € R?, an E(3)-equivariant function
f satisfies:

flg-X;h) =g- f(X,;h), VgecE@Q) 3)
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Figure 1: Overview of EpiFormer. The inputs are an antigen multi-relational graph G,, =
(Vag, Eag; R) and an antibody multi-relational graph G,, = (Vap, €, R), While the outputs are the
bipartite adjacency matrix and the binary epitope node labels. (a) Antigen and antibody graphs are en-
coded with parallel multi-relational equivariant message passing layers (EGNN-R) and cross-attention
blocks. || is a small gating network determines the relative importance of geometric and language
features for every residue. (b) A bi-directional cross-attention decoder produces the interaction map.
(c) Antigen Encoder Block schematic (Antibody Encoder Block is analogous) where “@” denotes
addition. (d) An example of MHCA between antigen and antibody.

where group actions are defined as translations g - X = X + b or rotations/reflections g - X = OX
with O € O(3). This is contrast to E(3)-invariant functions, which satisfy f(g - X, h) = f(X, h),
producing outputs unchanged by coordinate transformations.

3.2 EPIFORMER

In this section, we present the architecture of EpiFormer, an encoder-decoder framework for antibody-
antigen binding-site prediction. The model receives two disjoint multi-relational residue graphs, G,
and G, processes them with independent encoders that produces residue-level embeddings, and then
passes these embeddings to a decoder to reconstruct the bipartite adjacency matrix ébg €0, 1}"”".
A desirable property of our proposed framework is its E(3)-equivariance to address a broader range of
symmetries in antigen-antibody interactions and preserve the geometry of these proteins. The overall
workflow is presented in Figure 1 while the algorithm is provided in the Appendix 1.

Encoder The EpiFormer contains two parallel encoders with no shared parameters, one dedicated to
the antigen chain and the other to the antibody chain, as shown in Figure 1 (a). Both encoders operate
on heterogeneous residue graphs G,, and G, whose nodes encode Cartesian coordinates x; € R3,
geometric descriptors hf% € R and PLM embeddings h?"™ € R%~. Before message passing
begins, a small gating network determines the relative importance of geometric and language features
for every residue. The gate first concatenates the two feature vectors, applies a linear projection,
and normalises the result with a softmax, g; = Softmax(W ,[h2°|[h?"™]), where W, € R2X is
the weight matrix of the gate network with dj, = dgeo + dpim. It then combines the inputs through
feature-specific projections to the working width d,:

W= Y Wb erd @)
ke{geo,plm}

The vector h serves as the initial node state for the first EpiFormer encoder block. The schematic of
an EpiFormer block is shown in Figure 1 (c). Let HY, € R"* and HY, € R™*?" be the current
embeddings, which are passed in parallel to their EGNN-R and MHCA layers.
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Relation-aware EGNN (EGNN-R) layer: We develop a relation-aware variant of EGNN (Satorras

et al., 2021a) to propagate structural and geometric information within each chain. Let hf € Rdn
and x{ € R? denote the feature and coordinate of residue i after the /-th EGNN-R layer. Every
undirected edge e; ; carries a tuple r; ; C R that encodes sequential and spatial relations. With the
squared distance d;; = ||x¢ — xf |2 and the displacement vector &;; = x! — xf, the layer performs
the following computations:

mf; = ¢f(hf, b, v(di;), £ij), h££+1)=hf+¢h(hf» > mej)» ®)
JEN(3) PEI'U
41
= ¢i(mf), R S Ll ©
ij

JEN (i) pETi;

Here, y(-) denotes a 16-term radial basis function, f;; is the edge’s attribute vector, and each mapping
f{’m o} is realized as a two-layer multilayer perceptron whose parameters are shared by all edges

with the same relation label p, and ¢ = 10~8. Specifically, we have four relation-specific message
MLPs ¢?, : R?dn+ds+16 s Rda and coordinate MLPs ¢ : R% — R3, and a node update MLP
¢ : Rintda 5 Rn shared across all relations, where dg represents hidden layer dimension.
Applying residual connections and layer normalization produces output embeddings at layer ¢ as:

HIN™ = {Wih! | v; € Vag), H™ = {Wih! | v; € Vap}, 0
where W represents the trainable parameters for the EGNN-R layer / for each EpiFormer encoder
block and H{{Trab} represents the output residue embeddings of antigen and antibody after passing

through their respective EGNN-R layer ¢. The layer remains E(3)-equivariant by construction
because the only vector quantity entering the coordinate update is the displacement d;;, while cross-
attention works with rotation and translation-invariant features (Liao & Smidt, 2022) (please refer to
Appendix A.1 for the formal proof).

Multi-head cross-attention (MHCA) layer with feed-forward network: In parallel to geometric mes-
sage passing, each encoder block applies bidirectional multi-head cross-attention (MHCA) (Vaswani
et al., 2017) to enable inter-chain communication. The MHCA mechanism shown in Figure 1 (d),
produces cross-chain context representations H,; and H,;,. A learnable scalar gate o balances
intra-chain geometry with cross-chain context:

HEHD = HY, + H™® 4 o, FFN(H,g), HGTY = HY + HI® 4 oy, FFN(H,p), (8)

where Qag, a1, € R* are learnable parameters, H= MHCA(H), and FFN is a two-layer Feed
Forward Network. The MHCA is detailed in Appendix A.2.

Decoder The decoder refines the residue embeddings HL and HL and performs bipartite interac-
tion prediction. The decoder has J identical layers, each contalmng (i) bidirectional MHCA with
FFN, and (ii) layer normalization with residual connections, followed by a bipartite interaction head.
The embeddings H‘] and H ] serve as inputs to the bipartite interaction module.

Bipartite interaction prediction module The bipartite adjacency matrix is obtained by projecting
the embeddings into queries and keys of width dj; in both directions, forming scaled dot-product
similarities:

o EEWEIEAWE)T o (HEWEhHLWT
ag—ab \/ﬂ ) ab—ag \/(Tk

The two score maps are fused via a learnable mixing vector w € R? and bias b € R to produce logits
Z = W' [Sag—ab (Sab—ag) ' | + b, and the interaction probabilities are &y, = o(Z) € R™*™,

C))

3.3 JOINT OBJECTIVE

EpiFormer is trained with a joint objective that consists of a bipartite edge reconstruction loss, epitope
node classification loss, and an auxiliary inter-chain distance classification objective. The overall
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training objective is a weighted sum of these loss components:
L= )\edge ‘Cedge + )\node Enode + )\geo Egeo- (10)

Edge Prediction Loss (L.q5.) This loss applies positive-class-reweighted binary cross-entropy
over all antigen-antibody residue pairs:

1 n m ) .
Leage =~ — > [chgc (Evg)ij log(Ebg)ij + (1 — (Evg)ij) log(1 — (5bg)ij)} : (11

i=1 j=1

where &y, € {0, 1}™*™ is the ground-truth interaction matrix per complex, and 7eqge cOmpensates
for the extreme sparsity of positives. This loss directly supervises the bipartite interaction prediction,
which serves as the foundation for deriving epitope probabilities.

Node Classification Loss (£,,qc) The node classification loss supervises epitope nodes only and
combines three complementary objectives to handle class imbalance and enforce structural priors:

_ epi epi epi
Lnode - BBCE ‘CBCE + BDice £Dice + ﬁsparsity Lsparsity’ (12)

where 31y weight the different terms. The probability that node v,g is an epitope is derived from the
bipartite interaction matrix using a top-k pooling strategy which captures the relationship between
Uy and nodes of the antibody :

o .
(Jag)i = z > (G (13)
jemp'k(ébg)i:

where (f:’bg)i: denotes the ¢-th row, and k is determined using cross-validation.

Class-Reweighted Binary Cross-Entropy: The primary classification loss applies positive class
reweighting (with 7.p,; > 1) to address the severe class imbalance in epitope prediction:

n

Clen = - % > [Tepi (vag)i 108 (Gae)i + (1 = (vag)i) Tog(1 = (Gag):)] - (14)

=1

Dice Loss for Graph Segmentation: The Dice loss treats epitope prediction as a segmentation problem
which is effective for highly imbalanced image segmentation (Sudre et al., 2017):

2 Z?:l(@ag)i(yag)i +
Dot (ag)i + D0y (Yag)i +

where o > 0 is a small smoothing constant for numerical stability. The Dice coefficient measures the
overlap between predicted and true epitope regions, with the loss being 1 — Dice.

epi
‘CDicc =1-

15)

Per-Graph Sparsity Regularization: The sparsity term enforces cardinality matching between pre-
dicted and true epitope counts for each complex in the mini-batch:

Egg;rsity = ||,’gag - yag”l- (16)

This regularizer is crucial for calibrating predictions across complexes of varying sizes.

Aucxiliary Distance Classification Loss (L4.,) The auxiliary geometric term provides additional su-
pervision by classifying inter-chain distances into discrete bins, helping the model learn geometrically
meaningful representations. The loss focuses on near-contact pairs and ignores distant residue pairs
that are unlikely to interact. This auxiliary supervision encourages the model to learn distance-aware
representations while still maintaining focus on the primary epitope prediction task.

Let M = {(¢,7) : dij < Dmax} be the set of antigen-antibody residue pairs within the maximum
distance cutoff, where d;; is the Euclidean distance between residues ¢ and j. The bins are defined by
distances {dg,d1,da, d3,ds} = {0,4,8,16,32} A, creating B = 4 bins:

b(i, j) = arg b X 1[dy—1 < dij < dp]. a7

yeeey
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The network predicts per-pair distance logits A;; € RS, but only the first B = 4 components

Aij € R* are used for pairs in M, ignoring the “far” class beyond Dy,.x = 32A. The class
probabilities are:

o~

exp(A;;
Pijp = — p( z]i) . (18)
>y—1 exp(Aijy)
The loss combines class balancing with distance-aware weighting:
4
1 .
Loco = = Tiq0 D wiy Y ap1[b(i,§) = b] logpijp, (19)

(i.5)eM b=1
where «, > 0 are class-balance weights computed from empirical bin frequencies within M and
w;; > 0 are distance weights inversely proportional to d;;, normalized to unit mean over M.

4 EXPERIMENTS AND RESULTS

Dataset We utilized the ASEP dataset (Liu et al., 2024), a novel benchmark dataset of antibody-
antigen complexes designed specifically for epitope prediction tasks. After preprocessing, we
retain 1,723 unique antibody—antigen complexes; details are in Appendix A.3.4. We excluded two
complexes (5nj6_0P and 5ies_OP) from the AsEP dataset due to sequence alignment inconsistencies
and unresolved residues, with the final dataset containing 1,721 complexes.

Our EDA revealed several key insights into the dataset and is shown in Figure 2. The distribution
of epitope residues showed a mean of 19 + 4.7, while the antigen surface residues numbered in
the hundreds. The contact distribution between residues in the bipartite graph had a mean of 43.7
contacts with a standard deviation of 12.8. Additionally, the dataset includes 641 unique antigens and
973 epitope groups, highlighting the diversity and complexity of the antibody-antigen interactions
captured in the AsEP dataset.

Antigen Surface Residues Antibody CDR Residues Epitope Residues Bipartite Graph Edges

500 0 500 1000 1500
Size

Figure 2: The size distribution of the antigen surface residues, antibody CDR residues, epitope
residues, and antibody-antigen bipartite graph edges in the ASEP dataset.

Stratified Splits: We adopt two stratified splitting strategies from the AsEP benchmark dataset (Liu
et al., 2024): epitope-to-antigen surface ratio split and epitope-group split. The first approach stratifies
complexes by the ratio (#epitope_nodes/#antigen_nodes) to balance the class imbalance between
interface and non-interface residues across train, validation, and test sets. Given that epitopes are
typically limited in size (approximately 14.6 & 4.9 residues) whereas antigen surfaces often contain
several hundred residues, this stratification controls task difficulty by matching the distribution of
epitope-to-surface ratios across splits.

The epitope-group split employs a different strategy by clustering complexes by antigen epitope and
completely excluding test epitopes from training and validation data to evaluate model performance
on novel binding sites. The dataset also includes multi-epitope antigens for which different antibodies
bind distinct locations on the same antigen, and the split follows an 80/10/10 allocation by complexes.
Both dataset splits result in 1,381 training complexes and 170 complexes each for validation and
testing.

4.1 BASELINE COMPARISON

We evaluate the model performance using standard classification metrics such as Matthews Correlation
Coefficient (MCC), Area Under the Receiver Operating Characteristic Curve (AUC-ROC), Area
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Under the Precision-Recall Curve (AUPRC), accuracy, precision, recall, and F1 score. Table 1
presents the performance comparison of EpiFormer with the existing baseline methods for epitope
prediction. We trained several baseline methods for epitope prediction on the ASEP dataset and report
their results to establish a fair comparison with our model using their reported training configurations.
Methods such as WALLE (Liu et al., 2024), MIPE (Wang et al., 2024b), and EpiScan (Wang et al.,
2024a) are antibody-aware while others such as EpiGraph (Choi & Kim, 2024) are not. EpiFormer
achieves the strongest overall performance, with best AUC/AUPRC/F1/MCC across both evaluation
settings (epitope-ratio and epitope-group splits), outperforming these antibody-agnostic and antibody-
aware epitope prediction methods. It can also be seen that, unlike our method, the existing baselines do
not provide consistent overall performance on the classification metrics. We also evaluated EpiFormer
on the challenging epitope-group split and achieved F1/MCC scores of 0.228/0.168, compared to
next best-performing baseline model, WALLE, which achieved FI/MCC scores of 0.145/0.077. This
performance gap highlights the importance of modeling both geometric constraints and dynamic
antibody-antigen interactions for accurate epitope prediction. The table 2 summarizes whether each
baseline conditions on antibody inputs, uses structural topology, leverages PLM representations, and
adopts a graph representation, and additionally whether it incorporates explicit geometric surface/3D
features, models multi-relational edges, employs equivariant GNNSs, or cross-attention.

Table 1: Performance comparison of epitope prediction baseline methods with EpiFormer on the
AsEP dataset using the epitope-to-surface ratio stratified split. The best values are represented in
bold, while the second-best values are underlined.

Method AUC AUPRC F1 MCC Precision Recall
EpiGraph 0.819 0.279 0.247  0.240 0.145 0.852
EpiScan 0.593 0.229 0.197 0.043 0.115 0.912
MIPE 0.774 0.213 0.169 0.176 0.317 0.248
WALLE 0.635 0.2195 0.258 0.210 0.235 0.422

EpiFormer (ours) 0.889 0.443 0.433 0.404 0.329 0.633

Table 2: Summary of features and modeling choices in baseline methods. Antibody: uses antibody
information for epitope prediction; Structure: uses structure/topology as model input; PLM: uses pre-
trained PLM embeddings; Graph: uses a graph representation; Geom.: explicit geometric surface/3D
features; Multi-rel.: uses relation-aware/multi-edge types; E(3)-Eq.: uses an E(3)-equivariant GNN;
Cross-Attn.: employs cross-attention between antibody and antigen representations.

Method Antibody Structure PLM Graph Geom. Multi-rel. E(3)-Eq. Cross-Attn.
EpiGraph X v v v v X X X
WALLE v v v v X X X X
EpiScan v X X X X X X X
MIPE v v X v v X X v
EpiFormer v v v v v v v v

Discussion: EpiFormer combines relation-aware EGNN-R message passing with early
cross-attention to capture local structural detail and long-range inter-chain interactions. EGNN-R
maintains E(3)-equivariance while encoding multi-relational protein structures, enabling invariant,
geometry-aware representations under rigid-body transformations. Cross-attention in the encoder
supports dynamic information exchange between antigen and antibody, providing binding context
unavailable to antibody-agnostic approaches. The architecture jointly models intra-chain geometry
and inter-chain binding dynamics using parallel processing streams, addressing a common limi-
tation of prior methods. Together, these components allow simultaneous reasoning over structure
and interaction without sacrificing equivariance. Performance on the epitope-group split suggests
improved generalization to unseen binding sites, indicating that the model captures principles of
antibody—antigen recognition rather than memorizing specific patterns. The method also produces
interpretable antigen—antibody interaction maps: by modeling the full contact interface rather than
only epitope residues, it predicts how binding is distributed across the paratope—epitope interface and
highlights potential interaction hotspots.



Under review as a conference paper at ICLR 2026

Limitations: Despite the promising results by EpiFormer, there remain various ways to improve
our model. Though we employ an E(3)-equivariant GNN in the encoder, exploring other alternatives
such as SE(3)-equivariant GNNs (Fuchs et al., 2020) could improve its ability to handle global and
local 3D symmetries. Our model can also be extended by performing self-supervised warm-up and
transfer learning from general protein complexes that could boost its generalization capability (Zhang
etal., 2022).

4.2 ABLATIONS

We conducted extensive ablations to isolate the contribution of each model component (please refer
to Appendix A.5 for further details). Our analysis demonstrated that multi-relational graph structures
substantially exceed the performance of basic proximity graphs (Table 4). Among the tested PLMs,
ESM2-650M achieved the best results, outperforming both smaller and larger parameter variants
(Table 5). The cross-attention-based decoders achieve 7.5% higher AUC than simple dot-product
alternatives and maintain a better precision-recall balance (Table 6). The top-2 pooling strategy
achieved superior performance over hierarchical (0.836), max (0.830), mean (0.834), and larger
top-k variants (Table 7). Our joint loss formulation which includes edge reconstruction, node
classification, and auxiliary distance supervision achieves the best overall performance, while the
failure of contrastive learning illustrates the challenges of multi-objective optimization in node
classification tasks (Table 8). The most effective architectural configuration consisted of EGNN-R
encoders paired with cross-attention decoders and the top-2 pooling strategy.

GNNs: To assess the impact of geometric message passing on epitope prediction performance,
we systematically replaced the EGNN-R layers in the encoder of EpiFormer with alternative
GNN architectures. We evaluated standard GNN variants including graph convolutional network
(GCN) (Kipf, 2016), graph isomorphism network (GIN) (Xu et al., 2018), graph attention transformer
(GAT) (Velickovi¢ et al., 2017), as well as more sophisticated approaches such as relational graph
convolutional network (RGCN) (Zhang et al., 2022), and relation-aware equivariant graph network
(REGNN) (Wu et al., 2025). As shown in Table 3, EGNN-R achieves superior performance across
all metrics, with particularly notable improvements in AUPRC (0.443 vs 0.334 for REGNN) and F1
score (0.433 vs 0.343 for REGNN). While traditional GNNs like GCN, GIN, and GAT perform com-
petitively but below EGNN-R, which highlights the critical importance of incorporating geometric
equivariance for accurate modeling of three-dimensional protein binding interfaces.

Table 3: Performance comparison of different GNNs used in the EpiFormer encoder blocks on
epitope prediction tasks. The best values are represented in bold, while the second-best values are
underlined.

Model AUC AUPRC F1 MCC Precision Recall

EGNN-R  0.889 + 0.045  0.443 +0.130  0.433 - 0.014  0.404 £ 0.235  0.329 + 0.067  0.633 + 0.030
GAT 0.827 £0.006  0.308 £ 0.021 0.326 £0.010 0276 £0.012  0.263 £ 0.016  0.435 4 0.062
GCN 0.831 £0.006  0.325 £0.009  0.337 £0.010  0.290 + 0.010  0.264 +0.014  0.467 £ 0.016
GIN 0.826 £ 0.007 0310 £0.022 0333 £0.016  0.284 +0.019  0.270 4+ 0.004  0.437 £ 0.043

REGNN 0.833 £0.005 0.334 £0.015 0.343 £0.015 0294 +0.015 0.276 £0.025  0.453 £ 0.016
RGCN 0.824 £0.004 0314 £0.016  0.325+0.008 0276 0.009  0.255£0.018  0.452 + 0.042

5 CONCLUSION

We presented EpiFormer, an encoder—decoder architecture for antibody-aware epitope prediction.
Under comparable experimental conditions, EpiFormer outperforms prior methods on the AsEP
benchmark and on the epitope-group split. Our experiments suggest that coupling multi-relational
geometric message passing with cross-attention at different levels is a promising direction for
antibody-specific epitope prediction. Extensive ablations demonstrate the robustness of our work.
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REPRODUCIBILITY STATEMENT

We will make the code publicly available on GitHub and provide installation scripts to address
libraries’ complex dependency issue. We hope that this will support and accelerate future research
and development.
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A APPENDIX

A.1 E(3)-EQUIVARIANCE OF THE EGNN-R LAYER

Theorem 1 (E(3)-equivariance of the EGNN-R layer). Consider the EGNN-R layer in §3.2 with
updates

= ¢ (hl, b ~v(di), £ij), (20)
sy, = ¢o(my);), 1)

h(/+1) h‘+¢h< Z Z mipj>7 (22)

JEN(3) PE%‘

(z+1
Y Y e )

JEN (i) pETs;

where 8;; = x! — x%, d;; = ||0:;]13, and ¢ > 0. Assume: (i) node features hf € R are scalar
channels, (ii) h” and] r;; are categorical and independent of coordinates, (iii) v is any scalar function
of di;, (iv) each ¢{ } is an MLP from scalars to scalars. Let the E(3) action be g = (R, t) with

ReO(3)andt € R3, acting as x + Rx{ +t and h% + hl. Then the layer is E(3)-equivariant:

{(xLn = {(Rxf+t hf Y = (T T s (R g n{T

Consequently, any stack of such layers is E(3)-equivariant by composition.

Proof. Let g = (R,t) € E(3) act as stated. Edge data f;; and r;; are unchanged.

Invariants. Relative displacement and distance transform as

0ij — Rdyj, dij = ||6: ] || RS ||>= dij. (24)

Hence d;;, v(di;), and (d;; + £)~*/? are invariant scalars.

Scalar messages and coefficients. Each message m = ¢f (h!, h?, v(di;), fi;) depends only on
scalars that are invariant under g, so mfj is invariant. Then sp = ¢~ (mfj) is also invariant.

Feature update. The update
B = +ou(bl, S0 3 mh) (25)
JEN (i) pETrs;

1)

uses only invariant scalars, so hg 1) is invariant. This matches the scalar action on features.

Coordinate update. The increment

R Dy 20
jent) pery Vs T E
is a sum of relative vectors scaled by invariant scalars. Under g each term becomes
9j Ry, ( 9 )
——, = ————=35. = R —=25. ), 27)
w/dij+€ J dij-i-E J \/dij-i-E J (

so Ax; — R Ax;. Therefore

XEHU = Xf + Ax; — Rxf +t+ RAx; = R(Xf +Ax;)+t = RxEHl) +t. (28)

Composition. The composition of equivariant maps is equivariant. Hence any stack of EGNN-R
layers is F'(3)-equivariant. O
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A.2 MULTI-HEAD CROSS-ATTENTION WITH FEED-FORWARD NETWORK (MHCA)

The bidirectional multi-head cross-attention mechanism enables information exchange between
antigen and antibody chains. Let nye,q be the number of heads with per-head width d, = dj, /nhead.
For layer ¢, independent linear projections produce queries, keys, and values:

fe = HEIWIO, (29)
K¢, =H{ VWi, (30)
Vi, = Hy VW, (31)

with analogous expressions for the reverse direction. After reshaping to nyeaq heads of width dy,,
scaled dot-product attention computes the affinity matrices:

1 0 w0 T
b= SOftmaX(E agKab + M), (32)
where M is a batch mask (applied only in decoder) that assigns —oc to residue pairs from different
complexes. The resulting context vectors are:

A/

ag<—a

Hﬁg = [Aﬁgeabvﬁb]wé,agv (33)
HY, = [Agbeagvﬁg]wé,ab' (34)

Each direction then applies a feed-forward network FFN(x) = W5 0(W1x+b; )+ bs with dropout,
residual connections, and layer normalization.

A.3 GRAPH CONSTRUCTION

A.3.1 NODE FEATURES

Each residue node in our protein graph incorporates two complementary information sources that
together provide a rich representation of both local structural properties and evolutionary context:

Local geometry & physicochemistry: Each residue v; € V is annotated with a 105-dimensional
geometric and biochemical feature vector h8* € R%e that encodes the type, position, distance,
direction, angle, and orientation of each residue. Such residue-level descriptors are widely employed
in diverse protein-related studies in structural bioinformatics (Wu et al., 2025; Jing et al., 2020;
Jumper et al., 2021). This vector is constructed as follows:

Xi,& — Xi,Cq

%16 —xi.0.|l

h?’eo = [El}’}’e(vi)’ EpOS(i)a Sin(ni)v 005(772')7 RBF(”Xi,Ca - Xi,E”)v Q;r , (35)

where:

* Eiype: Embedding for amino acid residue type (e.g., arginine, glycine).

* Ey0s: Positional encoding of residue index in the sequence, enabling the model to distinguish
between identical amino acids based on their sequence context. This positional information
is crucial for understanding long-range dependencies and structural motifs, as amino acids
at different sequence positions (N-terminus vs. C-terminus, loop regions vs. secondary
structures) often play different functional roles even if they are the same amino acid type.

* n;: Local backbone geometry encoded through six fundamental angles that determine how
the protein chain folds at each residue v; and are encoded by their sine and cosine (12
scalars). Bond angles («;, (;, 7y;) describe the geometric constraints of covalent bonds,
while dihedral angles (v;, ¢;, w;) capture the rotational freedom that gives rise to secondary
structures like helices and sheets.

» RBF(-): Radial basis function encoding distances between C,, and other backbone atoms
(¢ € {Cg,N, O}), with each distance represented by 16 Gaussian basis functions.
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» Q] u;: Here, Q; € R3*3 is the orthonormal rotation matrix defining the local coordinate sys-

tem constructed from the C,,, C, and N atoms of residue i, and u; = [u},u?, u?] € R3*3

. . . . X;,Cs ~%i,Ca
contains the normalized direction vectors between these atoms (e.g., ul1 = m .

i, B8 i, Lo
The matrix product Q; u; transforms these direction vectors into the local coordinate frame
and is flattened to yield a 9-dimensional feature vector. Note that the oxygen atom is stored
in the coordinate matrix for other calculations (like the RBF distance features), but isn’t
used for the local coordinate frame construction.

* The coordinates are held in a 3 x 4 matrix which is used in the calculation of node and edge
features.

3x4 3
Xl' = [Xi,N Xi,Ca Xi,CB Xi70] cR y where Xie cR

Frozen protein-language-model (PLM) embeddings We extract embeddings for the antigen and
antibody sequences zflm € RY using pre-trained protein-language models (e.g., ESM-2 (Lin et al.,
2023)) to provide the model an orthogonal information source (evolutionary + biochemical context).
Since the original PLM embeddings are high-dimensional (for example, d. = 1280 for ESM2-650M),
we project them to a lower-dimensional representation suitable for our architecture:

b = Wz, where W, € Rdm>de, (36)
Here, dpim is the target dimensionality for the compressed PLM features, and W, serves as a
learnable bottleneck that adapts the frozen PLM representations to our specific task.

A.3.2 EDGE FEATURES

We compute a 100-dimensional edge feature vector f; ; € R that describes the spatial and sequen-
tial relationship between two residues v; and v;. This vector integrates multiple complementary
descriptors to provide a rich representation of inter-residue interactions (Jing et al., 2020) and is
defined as follows:
X X X6 —Xi,Co
fij= {Etype(ei,j), Epos(i = 5), RBF (|| x5, —xse ), @ 75— ¢q (Q:Qj) | 5}, (37)

3
x5, — xi,call

where Eiype(e;,;) is the one-hot encoding of relations r; ; of length 4 between two residues, and
the positional encoding Ey.(i — j) encodes the relative sequential position sinusoidally to 16
scalars. The third and fourth terms are distance and direction encodings of four backbone atoms
¢ in residue v; in the local coordinate frame ;. These four inter-residue distances {d(Ca,Cp),
d(Cq,N), d(Cy, 0), d(Cq, C,)}) are each represented by 16 Gaussian basis functions. The last term
q (QZT Qj) is the quaternion representation ¢(-) of @, Q;. By integrating sequence position, local
geometry, and orientation, the model understands the residue identity from global pose and enables
robust generalization across structures. These node and edge features are visualized in Figure 3(a).

A.3.3 EDGE RELATIONS

Since spatial proximity between residues alone cannot capture hydrogen bonding’s directional
specificity or electrostatic complementarity’s charge-based selectivity, we use multi-relational edges
to capture distinct interaction types (Zhang et al., 2022). By treating each relation separately, the
model learns complex interaction patterns within the protein. Hence, to expand the contexts of
these interactions, we divide the edges into four different types of relations R = {p1, p2, p3, P4},
including (i) sequential relations p; and p» between two residues with relative sequential distance
equal to 1 (peptide bond) and 2 (short-range torsion coupling); (ii) spatial relations between residues
that are from the same component and spatially connected due to K -nearest neighbors (relation p3
that captures local packing shell) or with a Euclidean distance less than 8A (relation p,) capturing
medium-range contact between residues within the protein structure (Wu et al., 2025).

To illustrate the importance of edge relations, consider a discontinuous epitope spanning two antigen
loops: sequential edges (p1, p2) maintain the structural integrity of each loop, while spatial edges
(ps3, p4) capture the three-dimensional proximity between residues from different loops, enabling the
model to understand how distant sequence regions come together to form a cohesive binding interface.
We provide a schematic of edge relations in Fig. 3 (b), where each edge e; ; € £ is associated with a
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set of relations r; ; € R. Besides, two relations p; (with sequence distance equal to 1) can derive a
relation po (with sequence distance equal to 2), while an edge may connect two nodes (residues) due
to both relations p3 and py.

sequential edges: p1, p2 spatial edges: p3, ps
c a—(c g G g G
L To e 0 il gt
b b b b
d d Nd ~Nd

Figure 3: (a) Node and edge features encoding position, distance, direction, angle, and orientation
(Figure credit: (Wu et al., 2025)). (b) Four edge relations (sequential p1, po; spatial ps3, ps ). To
avoid complexity, we visualize only some edges.

A.3.4 PREPROCESSING

For each complex, we first separated the paired antigen and antibody chains into individual structure
files. We then performed sequence-structure alignment using Clustal Omega (Sievers et al., 2011) to
establish correspondence between SEQRES (complete sequence) and ATOMSEQ (resolved atoms)
records. This alignment generated binary masks that enable reliable mapping of sequences to
structural residues (seqres2surf and seqres2cdr) while preserving the native crystallographic ordering.

For antibody chains, we applied the alignment masks to reindex heavy (H) and light (L) chains
by removing insertion codes to enforce consecutive 1-based residue numbering required for graph
construction. Antigen chains underwent similar processing to maintain parity between sequences
and structures. This step ensures that each residue in the protein sequence corresponds exactly to its
structural counterpart during the graph representation. Then, we applied solvent-accessibility filters
to retain only antigen surface residues, using the original ASEP seqres2surf masks to define the node
set for antigen residue graphs. The binary epitope labels were projected onto the surface ATOMSEQ
via alignment masks, while paratope labels were preserved for antibody residue nodes. This surface
filtering step prevents non-surface residues from confounding epitope supervision while maintaining
all necessary information for cross-chain interaction modeling.

To incorporate evolutionary and semantic information, we integrated embeddings from state-of-the-art
PLMs. For antigens, we extracted embeddings using the ESM model family, while, for antibodies, we
incorporated AntiBERTY embeddings (Ruffolo et al., 2023; Ahmed et al., 2025), a transformer model
specialized for antibody sequences, providing better functional and evolutionary context for paratope
regions. These embeddings were mapped to graph nodes using the seqres2atmseq alignment masks.
Finally, we used these preprocessed structures to generate HeteroData objects for the multi-relational
graphs using PyTorch Geometric (Fey & Lenssen, 2019).

A.4 IMPLEMENTATION DETAILS

The model is trained with an Adam optimizer and a ReduceLROnPlateau learning-rate schedule
with decoupled weight decay. The learning rate is selected from the sweep-defined range and fixed
at approximately 9.1e—5 in the best configuration. A ReduceLROnPlateau scheduler monitors
validation performance and decays the learning rate on stagnation, while an early stopping with
patience of 10 epochs prevents overfitting and reduces variance in final selection. We used SiLU
activation functions (Elfwing et al., 2018) throughout the model because they provide stable gradients
via their smooth, non-monotonic curve, which are crucial for training deep graph networks. The
hyperparameter tuning was performed via a Bayesian optimization sweep in Weights & Biases to
maximize validation F1 score, and the best hyperparameters were chosen within a predefined search
space using bounded uniform and log-uniform distributions.

* The model weight decay was sampled log-uniformly over [le—5, 1e—6] to prevent overfit-
ting by penalizing large weights.
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* The model dropout was sampled log-uniformly over [0.05, 0.5] to improve the generalizabil-
ity of the model, and the best performing configuration used a dropout of 0.132.

* The number of layers in the encoder module is treated as a hyperparameter and was chosen
from the set [3, 4, 5] while for the decoder, the number of layers was chosen from the [2, 3, 4].
We experimented with different encoder hidden dimensions and the best configuration of
128 was picked from [64, 128, 256, 512] across different runs.

* We also experimented with different number of attention heads for the encoder and decoder
MHCA (2,4,8,16) and picked the best model with 8§ attention heads.

¢ A batch size of 8 was chosen from [4,8,16,32] across different runs.

* (g and oy, are initialised to 0.05

For the loss coefficients, the best run uses Acgge = 1.0, Anode = 0.4816, Ageo = 0.0514, Bpce =
9.3249, Bpice = 2.2966, Bsparsity = 0.3008, Tepi = 15.2856, Teqge = 58.7077, label smoothing
¢ = 0.1, and a distance cutoff of 32 A for Lgeo-

* The bipartite edge positive-class weight meqge for the BCE-with-logits interaction loss was
sampled log-uniformly over [30, 150], accommodating variation in pairwise sparsity across
complexes.

* The node objective weight A\pod4e Was sampled uniformly over [0.05, 0.5], exploring the
trade-off between residue supervision and the other objectives.

* The binary cross-entropy multiplier within the node objective Sgcg was drawn uniformly
over [2, 10], spanning weak to strong emphasis on classification error.

* The Dice multiplier Sp;i.. was drawn uniformly over [0.1, 3.0], reflecting its role as a
secondary calibrator under class imbalance.

* The epitope positive-class weight 7p; was sampled log-uniformly over [10, 60], covering
roughly an order of magnitude in imbalance without biasing toward either extreme.

» The per-graph epitope count-regularizer weight Bgparsity Was sampled uniformly over
[0.05, 1.0], enabling calibration of predicted positive counts at the complex level.

* The auxiliary distance-classification weight A\ge, Was sampled uniformly over [0.05, 0.3],
with class balancing across distance bins and distance-aware pair weighting kept enabled
and the maximum distance fixed at 32 A for all trials.

The experiments were performed on an NVIDIA RTX 6000 GPU and it took around 35-60
minutes for a single hyperparameter sweeping experiment of around 50 epochs. To ensure
full reproducibility of our experiments, we implement random seed management across all
computational components including NumPy (numpy.random), Python (random), PyTorch
(torch.manual_seed), and CUDA operations (torch.cuda.manual_seed_all), while ad-
ditionally controlling worker initialization in data loaders and disabling non-deterministic algorithms
(torch.backends.cudnn.deterministic=True).

A.5 ABLATION STUDIES

We performed ablation studies on the different protein graph representations, model components such
as encoder and decoder architectures, pooling strategies, and loss functions. The results are reported
as mean = standard deviation over 3 random seeds.

A.5.1 GRAPH CONSTRUCTION

This ablation isolates how residue-level graph design affects EpiFormer’s antibody-specific epitope
prediction by holding node/edge features, PLM inputs, and training configuration fixed while swap-
ping the underlying graph topology. Specifically, we compared three protein graph representations:
a simple residue-only graph that collapses relations into proximity edges (Choi & Kim, 2024), a
RAAD-style multi-relational graph with four edge types (sequential and spatial) (Wu et al., 2025), and
a GearNet (Zhang et al., 2022) variant with seven relation types constructed to capture finer-grained
structural neighborhoods. The node and edge features were fixed for all three graph types, and
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the edge relations were only varied. This design quantifies the contribution of relation granularity
and edge semantics of the proteins to the downstream performance of epitope prediction. Table 4
compares the epitope prediction performance of EpiFormer using the three graph representations.

Table 4: Performance metrics for different protein graph representation architectures on epitope
prediction tasks. All values are reported for the epitope-to-surface ratio split. The best values are
represented in bold, while the second-best values are underlined.

Graph type AUC AUPRC F1 MCC Precision Recall
Simple 0.821 0.355 0.333 0.294 0.240 0.543
GearNet 0.812 0.315 0.337 0.286 0.290 0.401
Multi-relational ~ 0.888 0.443 0.433 0.404 0.329 0.633

We also performed experiments by using different sequence embeddings from the Evolutionary Scale
Modeling (ESM) family to explore their contribution to the epitope prediction task. We used three
variants of the ESM2 (Lin et al., 2023) model family (35M, 650M, and 3B parameters) as well as
the newer ESM3-small (Hayes et al., 2025) model (1.4B parameters). Our experiments in Table 5
show that ESM2-650M produces the best contextual features for the antigen-antibody binding site
prediction task.

Table 5: Performance metrics for different PLM embeddings on the epitope prediction tasks. 4
models from the Evolutionary Scale Modeling (ESM) family were used to generate embeddings for
antigens, while AntiBERTYy (IgFold) was used to generate embeddings for the antibodies. All values
are reported for the epitope-to-surface ratio split. The best values are represented in bold, while the
second-best values are underlined.

PLM AUC AUPRC F1 MCC  Precision  Recall
ESM2-35M 0.815 0.330 0334 0.283 0.287 0.399
ESM2-650M  0.888 0.443 0.433  0.404 0.329 0.633
ESM2-3B 0.826 0.331 0.349  0.300 0.285 0.449
ESM3-small 0.840 0.374 0.377  0.330 0.331 0.437

A.5.2 MODEL

We also replaced the cross-attention decoder with dot-product and dual alternatives. The dot-product
decoder computes the interaction matrix as a plain inner product between antigen and antibody
embeddings and produces a fast and parameter-free similarity score. The dual decoder architecture
integrates two parallel processing paths: a dot-product similarity route and a sparse cross-attention
mechanism, and merges their outputs via a learnable weight . The ablation studies show lower AUC,
AUPRC, and F1 metrics for dot product decoders compared to cross-attention and dual decoders.
Dot-product decoding favors precision but substantially reduces recall, whereas cross-attention
preserves a stronger precision—recall balance as shown in Table 6.

Table 6: Performance comparison of different decoder blocks for epitope prediction. The best values
are represented in bold, while the second-best values are underlined.
Decoder AUC AUPRC F1 MCC Precision Recall

Cross Attn. 0.889 +0.045  0.443 £0.130  0.433 +0.014  0.404 =0.235  0.329 £ 0.067  0.633 + 0.030
Dot Product ~ 0.827 £0.009  0.315 +0.034 0326 £0.011  0.278 £0.015  0.252 +0.009  0.464 £ 0.053
Dual 0.834 +0.008  0.339 £0.030  0.334 +0.014  0.286 +0.017  0.266 £ 0.008  0.450 & 0.033

We performed ablation studies over different pooling strategies. We map the bipartite interaction
matrix fbg to per-residue probabilities by aggregating across the partner dimension (row-wise for
epitopes, column-wise for paratopes): Max pooling assigns the maximum interaction per residue;
Mean pooling averages interactions over all partners; Top-k mean pooling averages the largest k
interactions (small k, e.g., 2) to reflect a few key partners; Noisy-OR aggregates as 1 — [ | j (1-Y3),
modeling the probability that at least one partner induces a positive signal; Softmax-attention
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converts interactions to attention weights via a softmax along the partner dimension and returns the
weighted sum; Hierarchical pooling takes a convex combination of top-2 mean (local specificity)
and global mean (context) with a mixing weight ov. Empirically (Table 7), Top-2 pooling yields the
highest AUC/AUPRC/F1, hierarchical pooling is competitive, while max/mean/softmax-attention
and larger k underperform and tend to over-concentrate probability mass and impair calibration.

Table 7: Performance comparison of different pooling methods for epitope prediction. The best
values are represented in bold, while the second-best values are underlined.

Pooling Method AUC AUPRC F1 MCC Precision Recall

Hierarchical Pooling ~ 0.836 4 0.004  0.338 £0.012  0.341 +0.009  0.295 £ 0.006  0.268 £ 0.022  0.476 &+ 0.038
Max 0.830 £ 0.005  0.321 £0.021  0.326 +0.006  0.279 £0.011  0.265 £ 0.029  0.441 + 0.085
Mean 0.834 £0.006 0324 £0.016  0.332+0.004 0283 £0.004 0.281 £0.024  0.414 £+ 0.048
Pool Top-2 0.889 +0.045  0.443 £0.130  0.433 +0.014  0.404 +0.235  0.329 £ 0.067  0.633 + 0.030
Pool Top-3 0.851 £0.030  0.370 £0.062  0.370 + 0.048  0.330 +0.059  0.286 £ 0.034  0.529 & 0.103
Pool Top-4 0.836 £0.008  0.342£0.019  0.340 £ 0.018  0.295 +£0.019  0.260 £ 0.020  0.493 & 0.020
Softmax Attn. 0.832 £0.007  0.329 £0.018  0.332+0.004 0285+ 0.005 0.256 £0.006  0.472 % 0.020

A.5.3 LoSs

We performed ablations to evaluate the contribution of the loss function/s (primary, auxiliary, and
regularizers) on the epitope prediction task, as shown in Table 8.

Contrastive Learning Loss (Linonee)  We also performed contrastive learning with the SimCLR
InfoNCE (Information Noise Contrastive Estimation) loss (Chen et al., 2020) to learn discriminative
representations by contrasting positive and negative residue pairs within and across protein chains.
The contrastive loss combines intra-chain and inter-chain objectives:

Econtrastive = )\inlracinlra + )\interﬁinteh (38)

where Aipa and Ajpeer balance the relative importance of within-chain and cross-chain contrastive
learning.

INTRA-CHAIN CONTRASTIVE LOSS (Lyrra) The intra-chain loss encourages similar representa-
tions for residues with the same label (epitope/non-epitope or paratope/non-paratope) within each
protein chain:
ab
Eintra = E?rira + ‘Cglntra' (39)

For each chain (antigen or antibody), the loss is computed as:

Zjepi+ eXp(hzThj/T)

; 1
Eﬁ?a}lm =—— log ,
- P z;v > ken, exp(hfhy /7)

(40)

where P = {i : y; = 1} is the set of positive (binding) residues, P;+ = {j € P : j # i} are other
positive residues sharing the same label as anchor 4, A; includes all negative residues for anchor
i, h;, h; are Ly-normalized residue embeddings, and 7 is the temperature parameter controlling
concentration.

INTER-CHAIN CONTRASTIVE LOSS (Liyrgr) The inter-chain loss promotes alignment between
epitope and paratope representations across antigen-antibody pairs:

Linter = Eag—mb + Eab—mg- 41)

The bidirectional formulation ensures symmetric learning:

1 > e, exp(hiE hi /)

Logr = —157 D log ) T
| agl 1€ Py Zkej\/cm eXp(hi hk/T)

where Py, Pap are epitope and paratope residue sets, Neross includes negative residues from both

chains, and the loss pulls epitope embeddings closer to paratope embeddings while pushing them
away from non-binding residues. Our experiments show that contrastive learning didn’t contribute

(42)
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to improving the classification performance. We attribute this to conflicting optimization objectives
between BCE loss and standard InfoNCE loss, a phenomenon demonstrated in a recent work (Ji et al.,
2024).

Table 8: Performance comparison of different loss function configurations for epitope prediction. All
metrics are reported for epitope prediction tasks. The best values are represented in bold, while the
second-best values are underlined.

Loss Configuration AUC AUPRC F1 MCC Precision Recall

Lyce 0.822 £ 0.013 0.274 £ 0.038 0.199 + 0.017 0.205 £ 0.022 0.111 £ 0.011 0.946 £ 0.016
Ledge 0.581 + 0.006 0.098 + 0.002 0.142 4 0.010 0.086 + 0.007 0.154 £+ 0.002 0.132 £ 0.016
Lyce + Lgeo 0.822 + 0.009 0.266 + 0.025 0.205 £ 0.012 0.214 £ 0.013 0.115 + 0.008 0.941 £ 0.019
Lpce + Ledge 0.826 + 0.006 0.296 + 0.018 0.220 +£ 0.008 0.230 + 0.009 0.125 + 0.005 0.914 £ 0.011
Lyce + Lodge + Ldice 0818 £0011 026840020 020540017 021040021 0.115+£0011 0930 % 0.026
Lpce + Ledge + Lgeo 0.826 + 0.015 0.299 + 0.050 0.214 £ 0.020 0.223 + 0.022 0.121 + 0.013 0.926 + 0.033
Ledge + Lnode + Lgeo 0.889 + 0.045 0.443 £ 0.130 0.433 £ 0.014 0.404 + 0.235 0.329 + 0.067 0.633 £ 0.030
Ledge + Lnode * Lgeo + LinfoNcE 08500031 0362 +0064 0361 £0.051  03234+0064 02700034 0550 £0.111
Lyce + Ledge + LInfoNCE 0837 £0002 03450007 0338 £0008 0296+ 0005 0254 £0020 0511 & 0.049
Lipce + Ledge + Lsparsity 0.835+£0002 033640013 0334+£0006 028840007 0270 £0.026 0453 & 0.078
Ledge + Lnode 0.835 + 0.003 0.325 + 0.012 0.329 + 0.001 0.283 + 0.004 0.260 + 0.026 0.462 £ 0.071
Ledge + Lnode + LInfoNCE 0.829 + 0.006 0.305 £ 0.015 0.326 + 0.010 0.276 £ 0.012 0.261 £ 0.006 0.435 £ 0.023

LLM USAGE CLAIM

LLMs were used in a limited capacity for the retrieval and discovery of related work. During paper
writing, LLMs were used for the purpose of improving grammar and wording. All technical content,
experimental design, implementation, analysis, and scientific contributions are entirely the authors’
original work.
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Algorithm 1: EpiFormer: High-Level Architecture

Input: Antigen graph G, and antibody graph G,, with coordinates X, features h&*, hpi™

Output: Bipartite interaction matrix f'bg € [0,1]

//

Feature Initialization

foreach chain € {ag,ab} do
Apply gating network to combine geometric and PLM features;

end

//

h? « Gate(hf*, h®™) for each residue i;

Encoder: Parallel Processing

for layer £ = 1to L do

// Intra-chain geometric messa

nxm

ge passing

(Hre X2) : EGNN-R(Gg, Hig ", X?2);
(H%ir2, X)) ¢ EGNN-R(Gap, H Y, X5);

// Inter—chain cross—-attention

H,, + MHCA(HI Hintra prinre);

Hab — MHCA(H;IEra’ H;ngtra’ Hiangtra);

// Combine intra-chain and cro

HY, « Hi Y+ H2 4 a,, FFN(H,,);
HY, o HG7Y 4 HI™ 4+ g, FEN(H);

ss—-chain information

end
// Decoder: Cross—Attention Refinement
Initialize decoder embeddings: Hggc — Hég, H

for layer £ = 1to L do

end

// Inter—-chain cross—attention
Hggc < MHCA(Hdec Hggc, Hgﬁc);

ag )
Hgﬁc — MHCA(HgﬁC7 Hgg, Hgg);
// Combine intra-chain and cro

Hog Y Hi 7Y 4 FRN(H);
H Y« 1Y 4 FEN(H);

dec L.
o H

ab?

ss—chain information

// Bipartite Interaction Prediction
Compute bidirectional attention scores:;

(FLc WO (HIE W) T

Sag—>ab — NG >

(HE W) (Hieo Wit T

Sab—)ag — N s
Fuse scores and apply sigmoid:;
Z WT[Sag—>ab (Sabeag)T] +b;

Eve
//

+— o(Z),

Epitope Extraction

Extract per-residue epitope probabilities via top-k pooling:;

(g)ag

)i = % 2 jctopk(ay). (Ebe)iss

Function MHCA (Q, K, V) :

end

end

Qn — QWS Kp ~ KW, Vi <~ VW

oz?j < Softmax; <Qh\/£h’> ;
CXLQ’EZjQZL%J;
Result: Concat(C',..., CH* YWy

)

Function FFN (X ) :

Evg + SILU(X W, + by)Wo + by ;
Result: ébg

// Project per head h
// Attention scores

// Context vector

// Combine heads

// Wl c Rddef, W2 eRdffxd
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