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Abstract
Toxic speech detection has become a crucial challenge in
maintaining safe online communication environments. How-
ever, existing approaches to toxic speech detection often ne-
glect the contribution of paralinguistic cues, such as emo-
tion, intonation, and speech rate, which are key to detect-
ing speech toxicity. Moreover, current toxic speech datasets
are predominantly text-based, limiting the development of
models that can capture paralinguistic cues. To address
these challenges, we present ToxiAlert-Bench, a large-scale
audio dataset comprising over 30,000 audio clips anno-
tated with seven major toxic categories and twenty fine-
grained toxic labels. Uniquely, our dataset annotates toxic-
ity sources—distinguishing between textual content and par-
alinguistic origins—for comprehensive toxic speech analysis.
Furthermore, we propose a dual-head neural network with a
multi-stage training strategy tailored for toxic speech detec-
tion. This architecture features two task-specific classification
headers: one for identifying the source of sensitivity (textual
or paralinguistic), and the other for categorizing the specific
toxic type. The training process involves independent head
training followed by joint fine-tuning to reduce task interfer-
ence. To mitigate data class imbalance, we incorporate class-
balanced sampling and weighted loss functions. Our exper-
imental results show that leveraging paralinguistic features
significantly improves detection performance. Our method
consistently outperforms existing baselines across multiple
evaluation metrics, with a 21.1% relative improvement in
Macro-F1 score and a 13.0% relative gain in accuracy over
the strongest baseline, highlighting its enhanced effectiveness
and practical applicability.

Introduction
Toxic speech, as part of toxic behaviors, can occur virtu-
ally and physically, resulting in a negative psychological im-
pact (Nada, Latif, and Qadir 2023). “Toxic speech” often
includes hostile intent that is threatening, abusive, discrim-
inatory, etc. (Garg et al. 2023; Fortuna, Soler, and Wanner
2020). Such behavior can target individuals or groups, lead-
ing to severe outcomes such as cyberbullying, harassment,
and the spread of discriminatory ideas.

Voice-based social platforms have surged in recent years,
amplifying the risk of spreading toxicity through audio.
Popular social platforms like Twitter and Facebook have
mature text-based content moderation systems (Zeng et al.
2024; Inan et al. 2023). However, voice-involving social

platforms for live streaming, multiplayer online gaming, or
voice/video chatting, such as Twitch and Slack, require more
than text-based moderation (Hamilton, Garretson, and Kerne
2014). Researchers have discovered that when it comes
to detecting intents embedded within audio signals, purely
text-based models are not sufficient (Lin and Emmanouili-
dou 2022). The combination of verbal and non-verbal cues
can express some toxic intentions. For example, explicit
adult content can be conveyed through non-verbal cues such
as moaning or Autonomous Sensory Meridian Response
(ASMR)-like sounds, which can bypass text-based detec-
tion. Therefore, how to leverage paralinguistic cues for ef-
fective detection of toxic speech urges more study.

Recent studies have realized the importance of acoustic
features other than semantic content in toxic speech iden-
tification. Relevant studies can be divided into three cate-
gories: Generic Acoustic-Based (Yousefi and Emmanouili-
dou 2021; Ghosh et al. 2022), Feature Fusion-Based (Lin
and Emmanouilidou 2022; Rana and Jha 2022; Mandal
et al. 2024), and Textual Task-Assisted Multi-task Learn-
ing (Nada, Latif, and Qadir 2023; Liu et al. 2024b; Ku-
mar Nandwana et al. 2024).

Despite these advances, several critical limitations hinder
progress in paralinguistic-aware toxic speech detection.
Lack of Suitable Datasets. The scarcity of publicly avail-
able datasets poses a significant barrier to research devel-
opment. Among existing works, only DeToxy (Ghosh et al.
2022) has released a public dataset (i.e., DeToxy-B), but its
toxicity classification is solely based on textual content. It
lacks samples where toxicity originates from paralinguis-
tic cues (Scherer, London, and Wolf 1973) alone or from
both textual and paralinguistic sources combined. Conse-
quently, existing public datasets are insufficient to support
the development of detection systems capable of identify-
ing paralinguistic-based toxicity. While some studies focus
on non-textual information of audio signals as sources of
toxicity and develop corresponding detection systems, their
datasets remain private and undisclosed, with unclear and
non-transparent construction methodologies.
Technical Limitations of Existing Methods. Existing MTL
and acoustic feature-based approaches are highly dependent
on textual information. This text-dependency bias may in-
herently limit the applicability of these methods when se-
mantics are benign but paralinguistic properties, such as in-



tonation and emotion, convey harmful intent. Current fea-
ture fusion methods focus on combining specific acous-
tic dimensions, which may miss subtle paralinguistic toxic
signals that exist beyond their explicitly extracted dimen-
sions. Some acoustic feature-based methods rely on tradi-
tional handcrafted features for toxicity detection, which may
fail to capture rich dimensions representing harmful intent.
DeToxy (Ghosh et al. 2022) applies Self-Supervised Learn-
ing (SSL) (Liu et al. 2022; Gong et al. 2022) pre-trained
foundation models, but underutilizes their representational
capabilities through simple feature extraction without so-
phisticated architectural design. Moreover, DeToxy focuses
solely on textual content analysis, failing to address toxicity
that originates from paralinguistic sources.
Evaluation and Reproducibility Limitations. The bench-
marking practices in this field are incomplete and inconsis-
tent. Existing works primarily compare against their own
baselines, lacking broader evaluations. The lack of open-
source code further hinders reproducibility and collabora-
tion in the field. These limitations collectively create sub-
stantial obstacles to advancing research in paralinguistic-
aware toxic speech detection, highlighting the urgent need
for comprehensive datasets, transparent methodologies, and
reproducible evaluation frameworks.

In this work, we address these limitations from both data
and methodological perspectives:
(1) We develop and open-source ToxiAlert-Bench, the first
large-scale toxic speech dataset specifically designed for
paralinguistic-aware detection, comprising over 60 hours
of annotated audio clips. It features comprehensive toxic-
ity source annotations, including four distinct categories:
safe for both textual and paralinguistic sources, textually
toxic but paralinguistically safe, textually safe but paralin-
guistically toxic, and toxic for both sources. The dataset en-
compasses seven toxic categories and a safe category, with
twenty fine-grained toxic labels. We systematically doc-
ument and open-source the complete dataset construction
pipeline, enabling reproducible research and facilitating fu-
ture dataset-building studies in this domain.
(2) We propose a novel dual-head neural network architec-
ture built upon pre-trained SSL foundation models for ro-
bust toxic speech detection. Our model leverages large-scale
pre-trained representations to capture both semantic and par-
alinguistic features effectively. The architecture incorporates
two specialized classification heads with a multi-stage train-
ing strategy. To address data imbalance challenges, we inte-
grate class-balanced sampling and weighted loss functions.
Extensive experimental results, including benchmarking and
ablation results, validate the effectiveness of our model ar-
chitecture and training strategies.

Our contributions are summarized as follows:

1. We fill the gap in the research domain of toxic speech
detection, with the documentation and open source
ToxiAlert-Bench, a comprehensive paralinguistic-aware
toxic speech dataset.

2. We design a dual-head speech detection framework,
employing a multi-stage training strategy with class-
balanced sampling, weighted loss functions, and sequen-

tial head-specific training followed by joint fine-tuning.
3. Through comprehensive benchmarking against estab-

lished baselines, including DeToxy-B and state-of-the-
art (SOTA) multimodal large language models (MLLM),
our approach demonstrates significant improvements,
achieving a 21.1% relative improvement in Macro-F1
and a 13.0% relative gain in accuracy over the strongest
baseline.

Related Work
Textual Content Moderation
Conventional toxic speech detection often ignores the non-
verbal properties of speech signals. Some early content mod-
eration (CM) methods heavily depend on manual exami-
nation, which is costly and non-scalable. Platforms com-
monly employ automated CM to ensure that content aligns
with behavioral standards by removing inappropriate posts
and spam. Most moderators on social platforms utilize con-
ventionally text-based frameworks (Lin and Emmanouilidou
2022; Nada, Latif, and Qadir 2023; Koratana and Hu 2018).
They identify whether a post or comment contains toxic in-
formation by analyzing the textual features.

Audio-Based Toxic Speech Detection
Studies in this area can be divided into three categories.
General Acoustic Features: Yosefi et al. (Yousefi and Em-
manouilidou 2021) propose a self-attentive Convolutional
Neural Networks framework to detect audio-based toxic lan-
guage. DeToxy (Ghosh et al. 2022) proposes to use acous-
tic features (F-Bank and wav2vec2.0) for classification.
Liu et al. (Liu et al. 2024a) propose a cross-modal learn-
ing to incorporate semantic information of text into audio
feature representatives, facilitating speech toxicity classifi-
cation only requiring audio. Multi-Task Learning with text
information: Nada et al. (Nada, Latif, and Qadir 2023) ap-
plies an Automatic Speech Recognition (ASR) task to assist
toxicity detection. Liu et al. (Liu et al. 2024b) predict the
toxicity labels of a speech signal with the assistance of text
information alignment. Nandwana et al.(Kumar Nandwana
et al. 2024) utilize multi-task learning to predict the toxicity
of speech with the assistance of an auxiliary Audio Keyword
detection task. Feature Fusion: Lin et al. (Lin and Em-
manouilidou 2022) explore the relationship between speech
emotion and toxic speech and propose a framework combin-
ing speech emotion recognition (SER) and audio-based CM
models. Rana et al. (Rana and Jha 2022) combines acous-
tic features representing emotion and text features for hate
speech detection. Attentive fusion (Mandal et al. 2024) fuses
audio and text representation for hate speech identification.

ToxiAlert-Bench
Overview
ToxiAlert-Bench is a comprehensive English toxic speech
dataset comprising 32,561 audio samples totaling 60.82
hours. It uniquely combines both real-world and synthesized
audio, including 19745 samples from established speech
corpora and 12,816 samples specifically synthesized for
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MELD（2018）
     For emotion recognition research
     13,000 utterances  from the TV series Friends
     Audio, visual, and textual modalities

VoxCeleb1（2017）
    Public domain dataset
    100,000+ utterances 
from 1,251 celebrities
    Extracted from YouTube 
interview videos

Dataset Collection

   “Analyze the audio and determine if it contains harmful content. 
   If harmful content is detected, classify it into one or more of the following 
categories: Sarcasm, Horror, Sexual content, Other harmful type..."

Query：

“The audio does not 
contain any harmful 
content.”

“The audio contains a 
sexist statement.  The 
content is harmful...”

Query：
   "The following is a description of an audio clip. Classify harmful content only 
based on the given description—do not infer or add personal judgments. 
Harmful content categories are: ..."

    Yes      No     Yes      No 

Expert Proofreading

    Yes      No
<C1> <C2> <C3> <C4> <C5> <C6> <C7>
Content   Tone   Both
Description: Gender Stereotypes

AnswerAnswer

<A>  <B>  <C>  <D>
Content   Tone   Both

<A>  <B>  <C>  <D>
Content   Tone   Both

Result

TIMIT（1993）
    For acoustic-phonetic 
and ASR research
    630 speakers from 8 
major U.S. English dialects 
regions

IEMOCAP（2008）
    For multimodal emotion 
recognition research
    12-hour audiovisual data
     Audio, visual, textual, 
and facial motion capture 
modalities

VCTK（2012）
    For multi-speaker TTS 
and voice cloning research
    110 English speakers 
with various accents; 400 
sentences each

LibriSpeech（2015）
    For ASR research
    1000 hours of English 
speech from LibriVox audio-
books.

Common Voice（2017）
    Public domain dataset
    Crowdsourced multilingual speech in 100+ languages

LJSpeech（2017）
    Public domain dataset
    13,100 clips of one 
speaker reading 7 non-
fiction books

Query：

“Generate multiple unsettling 
sentences with subtle psychological 
horror.
The sentences should be 
emotionally charged, atmospheric, 
and use sensory or emotional cues 
to imply fear or dread, while avoiding 
any explicit violence, or gore.”

Answer

“I found a dusty old 
diary in the attic, but 
the last entry was 
dated tomorrow...”

“I found a 
dusty old diary 
in the attic...”

Figure 1: Overview of the ToxiAlert-Bench dataset construction framework. Pipeline1 (left) illustrates the collection and anno-
tation process for bonafide real-world audio data. Pipeline2 (right) depicts the generation of synthetic toxic speech.

toxicity analysis. To facilitate rigorous experimentation,
ToxiAlert-Bench is split into training, validation, and test
sets using a 7:1:2 ratio. Each audio sample is annotated
with three key attributes: (1) toxicity classification across
7 major categories—C1: Sarcasm, C2: Horror, C3: Sex-
ual, C4: Mental Health & Risk Behavior(Mental & Risk),
C5: Political & Ideological Sensitivity(Ideology), C6: Vi-
olence & Harm, and C7: Discrimination plus a Safe cat-
egory; (2) toxicity source identification, distinguishing be-
tween textual-only toxic, paralinguistic-only toxic, both tex-
tual and paralinguistic toxic, or safe, and (3) fine-grained
categorization, using 20 specific toxicity labels within the
taxonomy. Notably, our dataset focuses on paralinguistic
toxicity detection—6,728 samples exhibit toxicity solely
through paralinguistic cues, addressing a critical gap in ex-
isting datasets that primarily focus on textual toxicity.

Compared to the existing DeToxy-B dataset (Ghosh et al.
2022), ToxiAlert-Bench demonstrates advantages in both
scale and annotation comprehensiveness. While DeToxy-B
contains 20,271 utterances (24.4 hours), ToxiAlert-Bench
includes 60% more samples and 150% more total duration.
Importantly, DeToxy-B defines toxicity purely based on tex-
tual content, with all 5,077 toxic samples labeled through
text-only analysis. In contrast, ToxiAlert-Bench introduces
a novel toxicity source annotation framework, explicitly la-
beling samples as textual-only toxic (6,953), paralinguistic-
only toxic (6,728), both textual and paralinguistic toxic
(2,551), and safe content (16,329). This granular source-
based annotation enables researchers to develop models

capable of identifying paralinguistic toxicity. Furthermore,
while DeToxy-B does not provide detailed toxicity type la-
bels, our dataset provides comprehensive coverage with 7
major toxic categories and 20 fine-grained labels, support-
ing more nuanced toxic speech research. Please refer to Ap-
pendix A for more details on ToxiAlert-Bench.

Dataset Construction Framework
Bonafide Data Sources. We collect bonafide speech sam-
ples from eight datasets widely accepted in the domain
of speech-related studies. They are: (1) TIMIT (Garo-
folo et al. 1993), (2) IEMOCAP (Busso et al. 2008), (3)
VCTK (Veaux et al. 2017), (4) LibriSpeech (Panayotov
et al. 2015), (5) VoxCeleb1 (Nagrani, Chung, and Zisserman
2017), (6) LJSpeech-1.1 (Ito and Johnson 2017), (7) Com-
monVoice (Ardila et al. 2019), and (8) MELD (Poria et al.
2018). For each one, we collect both non-toxic and toxic
samples, and these samples are further categorized with a
multi-stage annotation pipeline.
Annotation Pipeline for Bonafide Data. Our annotation
pipeline for bonafide data involves a systematic multi-stage
approach, as shown in Figure 1. First, we employ two large
multimodal models, Gemini-1.5-Flash (Team 2024) and R1-
AQA (Li et al. 2025)1, for initial data filtering and pre-
liminary toxicity assessment. Each audio sample is pro-

1R1-AQA is based on Qwen2-Audio-7B-Instruct (Chu et al.
2024), optimized through reinforcement learning (RL), achieving
SOTA performance on the MMAU benchmark (Sakshi et al. 2024)
with only 38k post-training samples.



cessed using a structured query that determines whether
contains harmful content(see Appendix B for the complete
prompt and question-answer pairs). If detected, classifies
it into one of four predefined categories: Sarcasm, Horror,
Sexual Content, and other harmful categories. During this
stage, both multimodal models analyze each audio sample
and its description across three critical dimensions: toxicity
(toxic/non-toxic), major toxic category, and source. When
both models reach consensus on all three aspects, the cor-
responding labels are automatically assigned to the sample.
However, if disagreement occurs between the models on any
dimension, the sample is forwarded to the Expert Proof-
reading stage for human validation. This dual-model con-
sensus mechanism ensures automated screening efficiency
while maintaining annotation reliability.

In the next phase, we leverage GPT-4o (Achiam et al.
2023) to extract label suggestions based on audio descrip-
tions, followed by expert annotation. Human annotators
assess each sample for undergoes detailed evaluation: (1)
whether the content contains harmful elements, (2) the
source of toxicity (textual content, paralinguistic cues, or
both), and (3) the specific toxic category. This multi-layered
approach guarantees that our toxicity source distinctions and
category labels accurately reflect both semantic content tox-
icity and paralinguistic cues such as sarcastic tone, threaten-
ing intonation, or manipulative speech patterns.
Synthesized Data Construction. To enhance diversity and
ensure comprehensive coverage of paralinguistic toxicity
patterns, we implement a synthetic data generation pipeline,
as illustrated in the right portion of Figure 1. We utilize the
text-to-speech (TTS) method for synthesizing data (Eskimez
et al. 2024; Chen et al. 2024; Anastassiou et al. 2024).

Our synthesis begins with GPT-4o generating emotion-
ally charged sentences across toxic categories like psycho-
logical horror and subtle sexual tension. Carefully designed
prompts (see Appendix B) emphasize subtle and context-
dependent expressions of toxicity while avoiding explicit
language. GPT-4o’s strong safety mechanisms ensure all
generated sentences are non-toxic on the textual level, al-
lowing paralinguistic cues to be the sole carriers of toxicity.

Following text generation, we use DubbingX (DubbingX
2025) to synthesize audio. The TTS engine features ex-
tensive character personality configurations, enabling the
speech generation with distinct vocal styles by simply pro-
viding the input text and selecting a specific character role.
We strategically select personas likely to produce speech
with different toxic paralinguistic characteristics. The syn-
thesis process enables us to produce naturalistic speech with
varying paralinguistic features, ensuring that the toxicity of
the resulting audio manifests itself through non-textual cues,
such as intonation, rhythm, and emotional expression.
Fine-grained Toxicity Categorization. Following the ini-
tial annotation pipeline for bonafide data, we obtain four
broad categories from the multimodal model consensus or
expert proofreading stages. However, category D (”other
harmful”) lacks specificity for detailed toxicity analysis. To
refine this, we further establish fine-grained labels.

Each Class-D audio sample is first annotated by hu-
mans with detailed descriptions of its toxic characteristics.

We then employ unsupervised clustering algorithms(Likas,
Vlassis, and Verbeek 2003) to group similar descriptions,
followed by manual review to correct errors (see Appendix
A for clustering details). This hybrid clustering approach re-
sults in 20 distinct toxic labels plus one safe category. These
labels are organized as 7 major toxic classes with hierarchi-
cal grouping accomplished by a human annotator.

The above procedures are applied to both bonafide and
synthetic speech samples, ensuring the consistency of toxic
type classification across both bonafide and synthetic por-
tions of ToxiAlert-Bench.

ToxiAlert
To address the limitations of existing approaches, we pro-
pose ToxiAlert, a unified detection model designed to iden-
tify toxic speech where toxicity may arise from textual con-
tent, paralinguistic cues, or their combination.

Design Principles
We desire to utilize the multi-dimensional information of
speech signals to perform toxicity detection. Inspired by
recent advancements in the domain of deepfake detec-
tion (Tak et al. 2022), SOTA methods explore the use of self-
supervised learning to obtain better representations trained
on diverse speech data and other tasks with only bonafide
samples for the purpose of generalization improvement.
The pre-trained SSL model, combined with a classifier, is
then finetuned with the downstream task dataset, achiev-
ing leading performance. Specifically, we adopt Wav2Vec
2.0 (Baevski et al. 2020) as the speech encoder fθ : X →
Rd, where input audio waveform x ∈ X is mapped to a la-
tent representation:

h = fθ(x) (1)

This representation h ∈ RT×d is passed through two clas-
sification heads:

• Source Head (g(s)ϕ ): This is a multi-label classification
head designed for toxicity source identification. It pre-
dicts whether the toxicity in the audio arises from textual
content, paralinguistic cues, or both.

ŷ(s) = σ(g
(s)
ϕ (h)) (2)

where ŷ(s) ∈ [0, 1]2 represents the independent probabil-
ities assigned to the two binary toxicity sources—textual
and paralinguistic. σ(·) represents the element-wise sig-
moid activation function.

• Category Head (g(c)ϕ ): This is a multi-class classification
head designed for toxic category classification. It deter-
mines the specific type of toxicity in the input audio.

ŷ(c) = softmax(g(c)ϕ (h)) (3)

where ŷ(c) ∈ [0, 1]K the softmax-normalized likelihoods
across K = 8 mutually exclusive classes, including
seven toxic categories and one safe category.
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Figure 2: Overview of the ToxiAlert training framework. Multi-Stage Training Strategy: Stage 1 trains the source head to detect
toxicity sources; Stage 2 trains the category head for toxicity classification; Stage 3 jointly fine-tunes both heads.

Multi-Stage Training Strategy
Our training method employs a multi-stage approach de-
signed to optimize both task-specific performance and inter-
task coordination, as illustrated in Figure 2. Let D(s), D(c),
and D(full) represent the datasets used in each stage.
Stage 1: Source Head Training. We first train the source
head g

(s)
ϕ , freezing the category head g

(c)
ϕ . This stage focuses

on learning to distinguish between textual and paralinguis-
tic toxicity sources. D(s) has all data from categories ”Sar-
casm,” ”Horror,” and ”Sexual,” which exhibit diverse source
characteristics. To achieve class balance, we supplement the
toxic samples with safe samples equivalent to approximately
1/3 of the total toxic sample count from these three cate-
gories. The objective is a binary cross-entropy loss:

Lsource = −
N∑
i=1

2∑
j=1

[
y
(s)
i,j log ŷ

(s)
i,j + (1− y

(s)
i,j ) log(1− ŷ

(s)
i,j )

]
(4)

where y
(s)
i,j ∈ {0, 1} are the ground-truth binary labels.

Stage 2: Category Head Training. In the second stage, we
freeze the source head g

(s)
ϕ and train the category head g

(c)
ϕ

on D(c), which includes textually toxic but paralinguistically
safe samples, allowing the model to focus on textual dis-
crimination. We add safe speech samples of approximately
1/7 of the toxic subset to maintain balance. The training min-
imizes a weighted cross-entropy loss:

Lcategory = −
N∑
i=1

K∑
k=1

wk · y(c)i,k log ŷ
(c)
i,k (5)

where wk is the inverse frequency of class k for balancing,
and y

(c)
i,j ∈ {0, 1} are one-hot toxicity category labels.

Stage 3: Joint Fine-tuning. The final stage performs end-
to-end joint training of both heads using the complete dataset
D(full), and a composite objective function is optimized:

Ltotal = λ · Lsource + (1− λ) · Lcategory (6)

where λ = 0.2 to reflect the relatively auxiliary nature of
the source task.

To ensure training stability and mitigate label imbalance,
we employ a class-balanced sampler that selects m samples
per category for every batch of size B = m · K. In our
experiments, we use m = 3, resulting in B = 24.

Experiments
Settings
Baselines. We compare ToxiAlert with several SOTA open-
source and commercial systems. DeToxy and NetEase
Yidun Audio Moderation API (YIDUN) (NetEase 2025)
are specifically built for toxic speech detection. DeToxy is
an open-source toxicity classifier, while YIDUN is a com-
mercial platform supporting real-time moderation in multi-
ple languages. In contrast, Qwen2-Audio, GPT-4o Audio,
and Gemini-2.5-Flash (Comanici et al. 2025) are general-
purpose MLLMs not explicitly trained for toxicity detec-
tion, these models have demonstrated strong capabilities in
speech comprehension and multimodal reasoning, due to
their large parameter scale and training on vast datasets.
Evaluation Setup. We train ToxiAlert and DeToxy on the
ToxiAlert-Bench training set and directly evaluate other
baselines. Toxicity classification performance is assessed at
both the category level (7 toxic categories) and the label
level (20 fine-grained labels). In addition to overall perfor-
mance, we emphasize a challenging subset of the benchmark
where the toxicity is conveyed solely through paralinguistic
cues. This setting remains underexplored in prior work, yet
it is highly relevant for real-world applications. For gener-
alization evaluation, all models are tested on the DeToxy-B
test set2. Evaluation prompts are detailed in Appendix B.

2After excluding CMU-MOSEI, CMU-MOSI, MSP-Improv,
MSP-Podcast, Social-IQ, and SwitchBoard due to their discontin-



Model Sarcasm Horror Sexual Mental
& Risk Ideology Violence

& Harm Discrim. ACC Macro-F1 Binary
ACC

DeToxy - - - - - - - - - 85.70
YIDUN - - 0.50 - 0.50 0.65 - - - 50.49
Qwen2-Audio 4.42 0.00 12.21 0.00 2.51 26.83 9.73 55.15 19.24 60.41
Gemini-2.5-Flash 53.00 58.89 34.32 47.15 21.61 61.64 36.19 70.84 57.55 75.38
GPT-4o Audio 27.08 12.22 20.17 29.27 18.09 34.88 21.01 61.89 39.91 64.52

ToxiAlert 81.10 90.94 81.85 48.78 52.76 65.95 39.30 80.04 69.69 86.33

Table 1: Comparison of ToxiAlert with baselines on ToxiAlert-Bench. We report per-category accuracy across seven toxicity
categories. Note that models without category-level predictions leave corresponding entries blank (-).

Label-Level Sample-
Level

Model Type ACC F1 Macro
F1

Micro
F1

Subset
ACC

Qwen2 Para. 71.84 3.79 19.28 20.72 55.35Tex. 77.00 34.77

Gemini Para. 69.48 19.57 31.11 31.31 52.90Tex. 77.48 42.66

GPT-4o Para. 71.50 0.32 13.81 15.04 53.20Tex. 75.06 27.30

ToxiAlert Para. 91.18 83.30 79.48 79.34 80.21Tex. 86.21 75.66

Table 2: Comparison of model performance on the source
identification task. Both label-level and sample-level results
are reported.

Metrics. To comprehensively evaluate model performance,
we adopt metrics from two tasks: (1) Toxicity category
classification, reporting overall accuracy, per-category ac-
curacy, and Macro-F1 to capture both global and class-
specific performance. For binary classifiers like DeToxy, we
compute binary accuracy by merging all toxic classes for
fair comparison. (2) Toxicity source identification is formu-
lated as a multi-label task, evaluated with label-level met-
rics—accuracy, F1 score, Macro-F1, and Micro-F1. We also
report subset accuracy at the sample-level, which measures
the percentage of samples with all labels predicted correctly.
Implementation Details. We adopt wav2vec2-large-960h
as the audio encoder, followed by three fully connected lay-
ers for toxicity classification and source identification. All
audio samples are resampled to 16kHz, converted to mono,
and truncated to a maximum length of 25 seconds. All ex-
periments are conducted on NVIDIA A100 GPUs using the
PyTorch framework.

Toxic Speech Classification
Category Level: As shown in Table 1, ToxiAlert con-
sistently achieves the best overall performance across all
7 toxicity categories. Compared with the strongest base-
line, Gemini-2.5-Flash, it improves Macro-F1 by 21.1% and
overall accuracy by 13.0%. While DeToxy reports high bi-

ued open access, the test set contains 2,035 samples.

Qwen2 GPT-4o Gemini ToxiAlert

Sarcasm-Para.

Sarcasm-Tex.

Sarcasm-Para.&Tex.

Horror-Para.

Horror-Tex.

Horror-Para.&Tex.

Sexual-Para.

Sexual-Tex.

Sexual-Para.&Tex.

4.98 31.17 62.12 91.56
0.00 6.67 0.00 13.33
2.25 9.09 14.61 38.20
0.00 11.42 63.20 97.60
0.00 16.98 26.42 43.40
0.00 19.05 38.10 52.38
0.53 10.96 23.20 98.13

31.14 35.53 52.63 54.82
33.33 0.00 33.33 66.67

0

20

40

60

80

AC
C 

(%
)

Figure 3: Performance comparison on source-specific tox-
icity detection across three toxicity types and three source
settings. ACC denotes per-class accuracy.

nary accuracy, but being a binary classifier, it lacks the ca-
pacity to distinguish between toxicity types, making it less
suitable for fine-grained moderation. In contrast, ToxiAlert
delivers both higher binary accuracy and comprehensive
multi-class prediction.
Label Level: Given that Gemini-2.5-Flash achieves the best
performance at the category level, we adopt it as the base-
line for assessing fine-grained classification capabilities. As
shown in Figure 4, ToxiAlert outperforms Gemini-2.5-Flash
on the majority of labels. These improvements suggest that
ToxiAlert is better equipped to distinguish subtle differences
among overlapping or co-occurring toxic behaviors.

Source-Specific Toxicity Detection
We further assess model performance under varied source
conditions of toxic expression. Specifically, we focus on
three challenging categories—Sarcasm, Horror, and Sex-
ual, and evaluate classification accuracy when the toxic sig-
nal is conveyed through paralinguistic cues (Para.), textual
content (Tex.), or both (Para.&Tex.). Results are presented
in Figure 3. ToxiAlert consistently outperforms all base-
lines across all categories and source types. In cases where
toxic intent is expressed exclusively through Para., Toxi-
Alert achieves 91.56% on Sarcasm, 97.60% on Horror, and
98.13% on Sexual. In contrast, baselines show notable per-
formance degradation, as they typically overlook non-verbal
signals during training or inference.
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Figure 4: Fine-grained comparison of ToxiAlert and Gemini-2.5-Flash on ToxiAlert-Bench. We report per-category accuracy
across twenty fine-grained toxicity labels, spanning all seven major toxicity categories.

Model Balanced ACC F1-Binary Toxic ACC

DeToxy 66.95 50.33 67.78
YIDUN 49.97 0.40 0.20
Qwen2-Audio 52.91 12.50 6.88
Gemini-2.5-Flash 59.89 37.17 29.47
GPT-4o Audio 69.20 54.32 48.51

ToxiAlert 72.29 55.83 80.94

Table 3: Comparison of model generalization performance.
Balanced ACC mitigates the effect of class imbalance; Toxic
ACC is the accuracy on toxic samples.

Model
Toxic Cls. Source ID

ACC Macro-F1 Binary
ACC Macro-F1 Subset

ACC

w/o SourceHead 75.04 66.01 81.67 – –
w/o Multi-stage 78.25 68.79 84.72 78.35 77.80
w/o Sampler 78.34 68.00 85.47 79.05 79.51

ToxiAlert 80.04 69.69 86.33 79.48 80.21

Table 4: Ablation study on the effectiveness of ToxiAlert
components. Performance is shown for toxicity category
classification (Toxic Cls.) and toxicity source identification
(Source ID).

Toxicity Source Identification

We assess the model’s ability to identify toxicity
sources—textual or paralinguistic. As shown in Table 2,
ToxiAlert consistently outperforms all baselines. For par-
alinguistic cues, which are inherently subtle and challenging
to detect, ToxiAlert achieves an accuracy of 91.18% and an
F1 score of 83.30%, significantly surpassing all competing
models. For textual content sources, it also delivers strong
results with 86.21% accuracy and 75.66% F1 score. More-
over, ToxiAlert achieves the highest overall performance on
Subset Accuracy, improving over the strongest baseline by
44.9%, underscoring its robustness in capturing both explicit
and implicit forms of toxic expression.

Generalization Evaluation
To assess the generalization ability of ToxiAlert, we evaluate
it on DeToxy-B. For fair comparison, we train a binary ver-
sion of ToxiAlert using the training set of ToxiAlert-Bench
and evaluate it directly on the DeToxy-B test set without
any additional fine-tuning. As shown in Table 3, ToxiAlert
surpasses the best-performing baseline, GPT-4o Audio, by
4.5% in balanced accuracy, 2.8% in F1 score, and 32.9% in
accuracy on toxic samples. These results demonstrate that
ToxiAlert generalizes effectively to out-of-distribution data.

Ablation Study
To investigate the impact of each core component in Toxi-
Alert, we conduct an ablation study focusing on three core
modules: the dual-head architecture, the multi-stage train-
ing strategy, and the class-balanced sampler. As shown in
Table 4, removing any of these components results in a no-
ticeable performance decline.

Removing the source head leads to a significant drop
in classification accuracy and Macro-F1, which drops to
75.04% and 66.01%, respectively. Moreover, the model is
no longer capable of performing source identification, high-
lighting the necessity of this joint modeling approach. Re-
moving the multi-stage training strategy results in consistent
degradation across metrics, with overall accuracy reduced to
78.25% and subset accuracy to 77.80%. These results under-
score the importance of progressive training in improving
convergence and generalization. Finally, without the class-
balanced sampler, performance in both tasks degrades. This
result highlights the importance of structured sampling in
improving model stability in multi-class classification tasks.

Conclusion
In this work, we propose ToxiAlert, a paralinguistic-toxic-
aware speech toxicity dataset, the first in the area, featur-
ing various combinations of toxicity sources and capable
of facilitating the development of a more comprehensive
toxic speech detection system. In addition, we propose an
SSL-based model capable of predicting the toxic/safe bi-
nary labels, the specific major toxicity category, and the tox-
icity source. The model features our dual-head design and
multi-stage training strategy, outperforming existing aca-
demic methods and commercial MLLM-based solutions.
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