
Winning Tickets from Random Initialization:
Aligning Masks for Sparse Training

Rohan Jain∗1, Mohammed Adnan∗1,3, Ekansh Sharma2,3, Yani Ioannou1

1University of Calgary 2University of Toronto 3Vector Institute for AI
{rohan.jain1,adnan.ahmad,yani.ioannou}@ucalgary.ca, ekansh@cs.toronto.edu

Abstract

The Lottery Ticket Hypothesis (LTH) suggests that there exists a sparse winning
ticket mask and weights that achieves the same generalization performance as the
dense model while using much fewer parameters. LTH achieves this by iteratively
sparsifying and re-training within the pruned solution basin. This procedure
is expensive, and a winning ticket’s sparsity mask does not generalize to other
weight initializations. Recent work has suggested that Deep Neural Networks
(DNNs) trained from random initialization find solutions within the same basin
modulo weight symmetry, and proposed a method to align trained models within
the same basins. We propose permuting the winning ticket mask to align with the
new optimization basin when performing sparse training from a different random
initialization than the one used to derive the pruned mask. Using this permuted
mask, we show it is possible to significantly increase the generalization performance
of sparse training from random initialization with the permuted mask as compared
to sparse training naively using the non-permuted mask.

1 Introduction
In recent years, foundation models have achieved state-of-the-art results for different tasks. However,
such an exponential increase in the size of state-of-the-art models requires a similarly exponential
increase in the memory and computational costs required to train, store and use these models —
decreasing the accessibility of these models for researchers and practitioners alike. Seminal works
have demonstrated that large models can be pruned after training with minimal loss in accuracy
[13, 17]. While model pruning makes inference more efficient, it does not reduce the computational
cost of training the model. Motivated by training a sparse model from a random initialization, the
Lottery Ticket Hypothesis (LTH) proposes to solve the sparse training problem by reusing the same
initialization as used to train the pruned models. On very small models, training from such an initializa-
tion maintains the generalization performance of the pruned model and demonstrates that training with
a highly sparse mask is possible [10]. In practice however, when training even modestly-sized models,
weight rewinding [11] is necessary — requiring significantly more compute than dense training alone.

Our hypothesis is that in order to reuse the LTH mask for different random initialization, the winning
ticket mask obtained from LTH needs to be permuted such that it aligns with the optimization basin
associated with this new initialization. We illustrate this intuition in Fig. 1. To empirically validate
our hypothesis, we obtain a sparse mask using iterative magnitude pruning (IMP) on model A (from
Fig. 1) and show that given a permutation that aligns the optimization basin of model A and a new
random initialization, the mask can be reused. The sparse model (with the permuted mask) can be
trained to match the generalization performance of the LTH solution.

*Equal contribution.

Preprint.

mailto:yani.ioannou@ucalgary.ca
mailto:ekansh@cs.toronto.edu


high loss

low loss

initialization 

sparse
solution

dense

mask
train

(a) Dense training and pruning model A. (b) Sparse training model B using model A mask.

Figure 1: Weight Symmetry and the Sparse Training Problem. A model with a single layer and only two
parameters, w=(w0,w1), operating on a single input scale x0 has the weight symmetry in the 2D loss landscape
as illustrated above. In (a) the original dense model, wA, is trained from a random dense initialization, wt=0

A

to a dense solution, wt=T
A , which is then pruned using weight magnitude resulting in the mask mA=(1,0). In

(b), naively using the same mask to train a model, B, from a different random initialization will likely result in
the initialization being far from a good solution. Permuting the mask to match the (symmetric) basin in which
the new initialization is in will enable sparse training.

2 Background & Related Work
Weight Symmetry. The process of training DNN’s requires optimizing a non-linear function over
a non-convex loss landscape consisting of numerous local minima, narrow ravines, plateaus, saddle
points and basins. [4, 5, 7, 15, 26, 28, 37]. Despite non-convex optimization problems being NP-hard
[31], the nature of first order stochastic optimizers such as SGD [30] have been theoretically proven to
be highly effective in optimizing DNN’s [18, 21] and in practice as well. Empirical evidence suggests
that when training independent NN’s using SGD, with different batch orders and initializations,
the resulting training trajectories often exhibit remarkable similarities [1, 36]. With the rise of
building larger NN’s, this puzzling phenomenon has been attributed to overparameterization, which
is responsible for creating numerous minima in the loss landscape, resulting in multiple different
functions which fit the data similarly [23, 27]. However, as early as the 1990s, Hecht-Nielsen [20]
demonstrated that neural networks are permutation invariant possessing a weight-symmetrical
property, where swapping any two neurons within a hidden layer does not alter the underlying function
being computed. In other words, the permuted network remains functionally equivalent to its original
configuration. Hence, the existence of permutation symmetries in the loss landscape contribute to
its non-convexity, as it creates copies of global minima at different points in weight space [3, 8, 14].

Linear Mode Connectivity modulo Permutation. Typically, linearly interpolating between the
weights of two independently trained networks usually results in a higher loss/0–1 error compared
to the two endpoints. Entezari et al. [8] conjectured, that independently obtained SGD solutions have
no error barrier if one accounts for the permutation symmetries. Building on this conjecture, several
algorithms have been developed to address permutation invariance by aligning trained networks
to the same optimization basin [1, 22, 34, 35]. Ainsworth et al. [1] demonstrate that DNN’s trained
from random initialization find solutions within the same basin modulo permutation symmetry. They
proposed three algorithms to permute the units of one model to align it with a reference model, enabling
the permuted model to exhibit LMC (i.e. reduced loss barrier) with the reference model. Benzing et al.
[2] use a permutation found after training to exhibit LMC between networks at initialization. The use
of activation matching for model alignment was originally introduced by Li et al. [25] to ensure models
learn similar representations when performing the same task. A rigorous study from Sharma et al.
[32] introduced a notion of simultaneous weak linear connectivity where a permutation, π aligning
two networks also simultaneously aligns two larger fully trained networks throughout the entire SGD
trajectory and the same π also aligns successive iterations of independently sparsified networks found
via IMP. This work also provided early evidence towards re-usability of sparse masks.

2



Lottery Ticket Hypothesis. Neural network pruning is a highly effective method of reducing
the parameters in a trained dense neural network, pruning as many as 85–95% of weights while not
significantly affecting generalization performance [16, 17]. The LTH proposes to solve the sparse
training problem by re-using the same initialization as used to train the pruned models. For very
small models, training from such an initialization maintains the generalization performance of the
pruned model, and demonstrates that training with a highly sparse mask is possible [10]. In practice
however, subsequent work has shown that when training modestly-sized models requires using weight
rewinding [11] — requiring significantly more compute than dense training alone. Furthermore, recent
work has shown that the LTH effectively re-learns the pruned solution [9]. To make any practical use
of sparse training, finding methods of sparse training from random initialization may be necessary
to both find new solutions, and realize any efficiency gains in training.

3 Method
Motivation. In this work, we try to understand why LTH masks fail to transfer to a new random
initialization. Our hypothesis is that the loss basin corresponding to the LTH mask is not aligned with
the new random initialization as shown in Fig. 1. Since the sparse mask is not in alignment with the
basin for the new random initialization, sparse training does not work well; therefore, aligning the
LTH mask with new random initialization will improve sparse training and enable the transfer of LTH
masks to random initializations.

Aligning Masks via Weight Symmetry. Ainsworth et al. [1] showed the permutation symmetries
of the weight space can be leveraged to align the basin of two models trained from different random
initializations. In their approach, the authors utilize activation matching to align the activations of two
models. By permuting the parameters of the second model, they maximize the correlation between the
activations of the first and second models. This method fits within the framework of solving a linear
assignment problem (LAP), enabling efficient computation. In our experiments, we train two dense
models, wt=0

A and wt=0
B , to convergence and then use activation matching (implemented by Jordan et al.

[22]) to find the permutation mapping π, such that the activations of π(wt=T
A ) and wt=T

B are aligned.
Mask mA, obtained using IMP is also permuted with the same permutation map π. The intuition is that
the permuted mask is aligned with the loss basin of model wt=T

B and thus can be optimized easily (refer
to Fig. 2). We denote training with the permuted mask, π(mA) as permuted and with the non-permuted
mask, mA as naive. More details in Appendix A.5.

Sparse Training. For evaluating the transferability of LTH masks, we use a new random initialization
wt=0

B and sparse masks mA and π(mA) for sparse training the naive and permuted solution respectfully.
We also evaluate the LTH baseline, i.e., training model wt=0

A with mask mA. Since LTH requires
weight rewinding to an earlier point in training, we also use a rewound checkpoint from epoch
t=k≪T for both the baselines and permuted solution.

4 Results
To validate our hypothesis, we trained ResNet20 [19] and VGG11 [33] models on CIFAR-10/100
datasets [24] (details in Appendix A.1). We used the same set of hyper-parameters for training
different sparse baselines and our permuted solution (details in Appendix A.1).

ResNet. We trained ResNet20 on CIFAR-10/100 datasets. As shown in Figs. 4 and 5, consistent
across varying width and different datasets both LTH and permuted solution improve as the rewind
point increases in contrast to the naive solution, which does not improve on increasing the rewind point.
We observed that naive performance saturates after k≥ 50 and does not yield further improvement.
Since it is more difficult to train models with higher sparsity, the gap between naive and permuted
solutions increases as sparsity increases, as shown in Figs. 4d, 4h and 4l. The improved performance
of permuted solution supports our hypothesis and shows that misalignment of LTH masks and loss
basin corresponding to new random initialization may be the reason why LTH masks do not transfer
to different initializations. We also show accuracy vs sparsity plots for k={10,25,50,100} (details
in Appendix A.4); as sparsity increases, the gap between permuted and naive solution increases for all
rewind points (see Appendix A.3). Results for CIFAR-100 dataset is shown in Fig. 6 in Appendix A.3.

VGG11. We utilize the modified VGG11 architecture implemented by Jordan et al. [22] trained on
CIFAR-10 (details in Appendix A.1). We observe that for a moderate sparsity Fig. 3a, the permuted
and naive solution are relatively similar and steadily increasing together as we increase the rewind

3



Figure 2: The overall framework of the training procedure, beginning with two distinct dense random weight
initializations, wt=0

A , wt=0
B sampled from a normal distribution, N . The sparse training problem attempts to

train the random initialization, wt=0
B using the naive mask mA, found by pruning a dense trained model, wt=T

A .
However, this results in poor generalization performance [12]. We propose to instead train wt=k

B at some rewound
epoch k, equipped with a permuted mask π(mA). We show that this achieves more comparable generalization
to the pruned model/trained LTH solution, wt=T

A ⊙mA. More details in Appendix A.5.

0 10 20 30 40 50
Rewind Points

89.5

90.0

90.5

91.0

91.5

Te
st

 A
cc

ur
ac

y 
(%

)

LTH
Naive

Permuted

(a) sparsity = 0.80

0 10 20 30 40 50
Rewind Points

89.0

89.5

90.0

90.5

91.0

91.5
Te

st
 A

cc
ur

ac
y 

(%
)

LTH
Naive

Permuted

(b) sparsity = 0.90

Figure 3: VGG11×{1}/CIFAR-10. Test accuracy of sparse network solutions at increasing rewound points
at various sparsity levels. The dashed (- -) line shows the dense model accuracy. Note, we do not include the
plots for sparsity = {0.95, 0.97}, because the naive solution performs poorly yielding consistent metrics of test
accuracy =10% and test loss ≈ loge(10) throughout all rewind points.

points with the permuted solution consistently taking the slight edge over naive. As sparsity increases
in Fig. 3b, a significant gap begins to emerge between the permuted and naive solutions. As the rewind
point increases, the permuted solution gradually improves and approaches the performance of LTH,
while the naive solution significantly plateaus for k≥20 and performance subsides.

Effect of width multiplier. The activation matching algorithm proposed by Ainsworth et al. [1] does
not find the global optimum; rather, it uses a greedy search to explore a restricted solution space. The
resulting permutation mapping aligns well in practice, especially for wider models [1]. We also examine
how increasing width multipliers affect aligning ResNets in weight space. As illustrated in Fig. 4, the
permuted solutions increasingly match the LTH solution as the model width expands. This finding is
notable, as Ainsworth et al. [1] also observed improved weight matching in wider models, an effect
further validated by Sharma et al. [32] for activation matching. This trend may also help explain why the
VGG results in Fig. 3—an exceptionally over-parameterized model for CIFAR-10—are so close to the
LTH baseline. If the hypothesis by Ainsworth et al. [1] holds—neural network loss landscapes nearly
contain a single solution basin modulo weight symmetry—then with an ideal permutation mapping, the
permuted solution would match the LTH solution. However, our experiments still seem to corroborate
our hypothesis and may provide insights into why LTH does not transfer well to new initializations.

4



0 20 40 60 80 100
Rewind Points

89

90

91

92

93

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(a) sparsity = 0.80

0 20 40 60 80 100
Rewind Points

89

90

91

92

93

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(b) sparsity = 0.90

0 20 40 60 80 100
Rewind Points

86

88

90

92

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(c) sparsity = 0.95

0 20 40 60 80 100
Rewind Points

84

86

88

90

92

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(d) sparsity = 0.97

0 20 40 60 80 100
Rewind Points

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(e) sparsity = 0.80

0 20 40 60 80 100
Rewind Points

94.0

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y 
(%

)
LTH Naive Permuted

(f) sparsity = 0.90

0 20 40 60 80 100
Rewind Points

93.0

93.5

94.0

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(g) sparsity = 0.95

0 20 40 60 80 100
Rewind Points

92

93

94

95

96

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(h) sparsity = 0.97

0 20 40 60 80 100
Rewind Points

95.00

95.25

95.50

95.75

96.00

96.25

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(i) sparsity = 0.80

0 20 40 60 80 100
Rewind Points

94.75

95.00

95.25

95.50

95.75

96.00

96.25

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(j) sparsity = 0.90

0 20 40 60 80 100
Rewind Points

94.0

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y 
(%

)
LTH Naive Permuted

(k) sparsity = 0.95

0 20 40 60 80 100
Rewind Points

94.0

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(l) sparsity = 0.97

Figure 4: ResNet20×{1,4,8}/CIFAR-10. The top, middle, and bottom rows correspond to widths of 1, 4, and
8, respectively. The effect of the rewind points on the test accuracy for different sparsities is shown. As the sparsity
and rewind epoch increase, the gap between training from a random initialization with the permuted mask and
the LTH/dense baseline (dashed line) decreases, unlike training with a non-permuted mask (naive).

0 20 40 60 80 100
Rewind Points

77

78

79

80

81

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(a) sparsity = 0.80

0 20 40 60 80 100
Rewind Points

76

77

78

79

80

81

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(b) sparsity = 0.90

0 20 40 60 80 100
Rewind Points

74

76

78

80

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(c) sparsity = 0.95

0 20 40 60 80 100
Rewind Points

72

74

76

78

80
Te

st
 A

cc
ur

ac
y 

(%
)

LTH Naive Permuted

(d) sparsity = 0.97

Figure 5: ResNet20×{8}/CIFAR-100. Trained ResNet20 with a width of 8 on CIFAR-100. Our results show
that, as sparsity increases, the gap between the permuted and naive solutions increase and the permuted solution
gradually approaches the LTH baseline. The dashed (- -) line shows the dense model accuracy.

5 Conclusion
Sparse training and the Lottery Ticket Hypothesis (LTH) have gained significant traction in recent
years. In this work, we seek to deepen insights into sparse training from random initialization and the
LTH by leveraging permutation invariance in DNNs. Our empirical findings across various models and
datasets support the hypothesis that misalignment between the mask and loss basin prevents effective
use of LTH masks with new initializations. One limitation is that activation matching is weaker for
narrow models; future work will explore more efficient matching algorithms.

6 Acknowledgements
We acknowledge the support of Alberta Innovates (ALLRP-577350-22, ALLRP-222301502), the
Natural Sciences and Engineering Research Council of Canada (RGPIN-2022-03120, DGECR-2022-
00358), and Defence Research and Development Canada (DGDND-2022-03120). This research was
enabled in part by support provided by the Digital Research Alliance of Canada (alliancecan.ca).

5



References
[1] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models

modulo permutation symmetries. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=CQsmMYmlP5T.

[2] Frederik Benzing, Simon Schug, Robert Meier, Johannes Von Oswald, Yassir Akram, Nicolas
Zucchet, Laurence Aitchison, and Angelika Steger. Random initialisations performing above
chance and how to find them. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022
Workshop), 2022. URL https://openreview.net/forum?id=HS5zuN_qFI.

[3] Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in
deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss
landscape, 2019.

[4] Anna Choromanska, MIkael Henaff, Michael Mathieu, Gerard Ben Arous, and Yann
LeCun. The Loss Surfaces of Multilayer Networks. In Guy Lebanon and S. V. N.
Vishwanathan, editors, Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Statistics, volume 38 of Proceedings of Machine Learning
Research, pages 192–204, San Diego, California, USA, 09–12 May 2015. PMLR. URL
https://proceedings.mlr.press/v38/choromanska15.html.

[5] Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NeurIPS’14, page 2933–2941, Cambridge, MA,
USA, 2014. MIT Press.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

[7] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A Hamprecht. Essentially no
barriers in neural network energy landscape. arXiv preprint arXiv:1803.00885, 2018.

[8] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=dNigytemkL.

[9] Utku Evci, Yani A. Ioannou, Cem Keskin, and Yann Dauphin. Gradient flow in sparse neural
networks and how lottery tickets win, 2022.

[10] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJl-b3RcF7.

[11] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear
mode connectivity and the lottery ticket hypothesis. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org, 2020.

[12] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Stabilizing
the lottery ticket hypothesis, 2020. URL https://arxiv.org/abs/1903.01611.

[13] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks, 2019.
URL https://arxiv.org/abs/1902.09574.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[15] Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe. Qualitatively characterizing neural
network optimization problems, 2015. URL https://arxiv.org/abs/1412.6544.

[16] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in neural information processing systems, 2015.

6

https://openreview.net/forum?id=CQsmMYmlP5T
https://openreview.net/forum?id=HS5zuN_qFI
https://proceedings.mlr.press/v38/choromanska15.html
https://openreview.net/forum?id=dNigytemkL
https://openreview.net/forum?id=rJl-b3RcF7
https://arxiv.org/abs/1903.01611
https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1412.6544


[17] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. In 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

[18] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent, 2016. URL https://arxiv.org/abs/1509.01240.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015. URL https://arxiv.org/abs/1512.03385.

[20] Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces, 1990.

[21] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape
saddle points efficiently, 2017. URL https://arxiv.org/abs/1703.00887.

[22] Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur.
REPAIR: REnormalizing Permuted Activations for Interpolation Repair. In The
Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=gU5sJ6ZggcX.

[23] Kenji Kawaguchi. Deep learning without poor local minima, 2016.

[24] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009. URL https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

[25] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning:
Do different neural networks learn the same representations? In Dmitry Storcheus, Afshin
Rostamizadeh, and Sanjiv Kumar, editors, Proceedings of the 1st International Workshop on
Feature Extraction: Modern Questions and Challenges at NIPS 2015, volume 44 of Proceedings
of Machine Learning Research, pages 196–212, Montreal, Canada, 11 Dec 2015. PMLR. URL
https://proceedings.mlr.press/v44/li15convergent.html.

[26] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in
over-parameterized non-linear systems and neural networks, 2021.

[27] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring
generalization in deep learning, 2017. URL https://arxiv.org/abs/1706.08947.

[28] Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks, 2017.

[29] Michela Paganini and Jessica Forde. Streamlining tensor and network pruning in pytorch. arXiv
preprint arXiv:2004.13770, 2020.

[30] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[31] Alexander Shapiro and Arkadi Nemirovski. On complexity of stochastic programming problems.
Continuous optimization: Current trends and modern applications, pages 111–146, 2005.

[32] Ekansh Sharma, Devin Kwok, Tom Denton, Daniel M. Roy, David Rolnick, and Gintare Karolina
Dziugaite. Simultaneous linear connectivity of neural networks modulo permutation. In Machine
Learning and Knowledge Discovery in Databases. Research Track, pages 262–279, Cham, 2024.
Springer Nature Switzerland. URL https://doi.org/10.1007/978-3-031-70368-3_16.

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition, 2015. URL https://arxiv.org/abs/1409.1556.

[34] Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport, 2023.

[35] N. Joseph Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai.
Optimizing mode connectivity via neuron alignment, 2020.

7

https://arxiv.org/abs/1509.01240
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1703.00887
https://openreview.net/forum?id=gU5sJ6ZggcX
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.mlr.press/v44/li15convergent.html
https://arxiv.org/abs/1706.08947
https://doi.org/10.1007/978-3-031-70368-3_16
https://arxiv.org/abs/1409.1556


[36] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization, 2017. URL
https://arxiv.org/abs/1611.03530.

[37] Berfin Şimşek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram
Gerstner, and Johanni Brea. Geometry of the loss landscape in overparameterized neural
networks: Symmetries and invariances, 2021.

8

https://arxiv.org/abs/1611.03530


A Appendix
A.1 Implementation

Architectures For residual neural networks, we train the standard ResNet20 on CIFAR-10 and
CIFAR-100 with varying width. We implemented a scalar, w, that adjusts the number of channels
in each convolutional and fully connected layer:

• First Convolution Layer: The number of output channels is scaled from 16 to w×16.
• Layer 1,2,3: The number of output channels for the convolutional blocks in these layers

are scaled from 16, 32, and 64 to w×16, w×32, and w×64, respectively.
• Fully Connected Layer: The input dimension to the final linear layer is scaled to w×64.

For convolutional neural networks, we train a modified version of the standard VGG11 implemented
by [22] on CIFAR-10. Primary differences are:

• A single fully connected layer at the end which directly maps the flattened feature map output
from the convolutional layers to the 10 classes for CIFAR-10 classification.

• The classifier is set up for CIFAR-10 with 10 output classes as originally VGG11 was
designed for ImageNet with 1000 output classes [6].

Each of our results for a given rewound point, k, is averaged over 3 runs with distinct seeds.

Datasets For our set of experiments we used the CIFAR-10 and CIFAR-100 datasets [24]. We apply
the following standard data augmentation techniques to the training set:

• RandomHorizontalFlip: Randomly flips the image horizontally with a given probability
(by default, 50%).

• RandomCrop: Randomly crops the image to a size of 32× 32 pixels, with a padding of 4
pixels around the image.

Optimizers We use the same hyperparameter settings for both architectures on both datasets outlined
in Table 1.

Hyperparameter Value
Optimizer SGD
Momentum 0.9
Dense Learning Rate 0.08
Sparse Learning Rate 0.02
Weight Decay 5×10−4

Batch Size 128

Table 1: Hyperparameters used for dense and sparse training.

Pruning We apply standard IMP [10, 16] without weight rewinding to obtain our final mask, mA, pro-
ducing a sparse subnetwork wt=T

A ⊙mA. For pruning, we utilize PyTorch’s torch.nn.utils.prune
library [29].

1. In an unstructured, global manner, we identify and mask (set to zero) the smallest 20% of
unpruned weights based on their magnitude.

2. This process is repeated for s rounds to achieve the target sparsity S, with each subsequent
round pruning 20% of the remaining weights.

3. During each round, the model is trained for train_epochs_per_prune epochs with the
intermediate mask applied.

The hyperparameters in Table 2 is used for pruning the ResNet20 and VGG11 architectures.

9



Hyperparameter Value
train_epochs_per_prune 50
Learning Rate 0.01

Table 2: Hyperparameters used for pruning.

Table 3: ResNet20×{1}/CIFAR-10. Results using the ResNet20×{1} trained on CIFAR-10, from a
rewind point k, using various methods of sparse training with sparsity S. LTH trains within the original
dense/pruned solution basin, while naive/permuted train from a new random initialization.

Rewind Epoch k

S Method k= 0 5 10 15 20 25 50 75 100

80%
LTH 90.41 ± 0.14 92.12 ± 0.25 92.08 ± 0.36 92.10 ± 0.27 92.25 ± 0.14 92.32 ± 0.26 92.15 ± 0.13 92.26 ± 0.19 92.21 ± 0.16

naive 89.67 ± 0.35 89.74 ± 0.69 90.16 ± 0.14 90.07 ± 0.09 90.13 ± 0.11 90.40 ± 0.11 90.66 ± 0.12 90.31 ± 0.27 90.45 ± 0.22
perm. 89.74 ± 0.05 90.15 ± 0.16 90.26 ± 0.08 90.72 ± 0.12 90.68 ± 0.18 90.72 ± 0.28 90.76 ± 0.27 91.13 ± 0.06 90.82 ± 0.21

90%
LTH 89.45 ± 0.10 91.27 ± 0.37 91.34 ± 0.29 91.34 ± 0.09 91.18 ± 0.27 91.43 ± 0.22 91.44 ± 0.12 91.36 ± 0.18 91.68 ± 0.28

naive 88.47 ± 0.21 88.70 ± 0.14 88.77 ± 0.21 88.84 ± 0.43 88.83 ± 0.27 88.78 ± 0.02 88.99 ± 0.08 88.81 ± 0.17 88.82 ± 0.07
perm. 88.59 ± 0.11 89.09 ± 0.22 89.56 ± 0.28 89.71 ± 0.12 89.50 ± 0.27 89.97 ± 0.13 89.84 ± 0.15 90.03 ± 0.07 89.77 ± 0.15

95%
LTH 87.83 ± 0.38 90.33 ± 0.22 90.39 ± 0.28 90.37 ± 0.21 90.58 ± 0.26 90.43 ± 0.20 90.56 ± 0.29 90.44 ± 0.26 90.40 ± 0.19

naive 86.89 ± 0.21 87.01 ± 0.23 86.88 ± 0.13 87.28 ± 0.19 87.31 ± 0.36 87.00 ± 0.19 86.88 ± 0.08 86.99 ± 0.29 86.50 ± 0.22
perm. 87.24 ± 0.22 87.70 ± 0.08 87.92 ± 0.25 88.23 ± 0.52 88.29 ± 0.52 88.24 ± 0.20 88.21 ± 0.30 88.21 ± 0.20 88.04 ± 0.22

97%
LTH 86.03 ± 0.22 88.00 ± 0.02 88.73 ± 0.05 89.00 ± 0.24 89.21 ± 0.23 89.27 ± 0.14 89.03 ± 0.27 89.12 ± 0.25 89.06 ± 0.21

naive 85.60 ± 0.38 85.43 ± 0.40 85.89 ± 0.37 85.48 ± 0.13 85.36 ± 0.14 85.70 ± 0.21 85.30 ± 0.32 85.14 ± 0.29 84.64 ± 0.34
perm. 85.61 ± 0.48 85.93 ± 0.34 86.26 ± 0.40 86.48 ± 0.39 86.12 ± 0.27 86.16 ± 0.14 86.43 ± 0.27 86.06 ± 0.26 85.95 ± 0.14

Table 4: ResNet20×{4}/CIFAR-10. Same as Table 3 except using a width-multiplier of 4.
Rewind Epoch k

S Method k=0 5 10 15 20 25 50 75 100

80%
LTH 94.67 ± 0.14 95.57 ± 0.05 95.84 ± 0.15 95.80 ± 0.12 95.88 ± 0.20 95.72 ± 0.09 95.81 ± 0.10 95.83 ± 0.21 95.71 ± 0.16

naive 94.36 ± 0.04 94.55 ± 0.14 94.59 ± 0.29 94.74 ± 0.13 94.69 ± 0.09 94.81 ± 0.06 95.07 ± 0.17 95.02 ± 0.11 94.97 ± 0.21
perm. 94.39 ± 0.19 94.88 ± 0.28 95.15 ± 0.14 95.20 ± 0.16 95.17 ± 0.21 95.28 ± 0.29 95.43 ± 0.14 95.40 ± 0.10 95.30 ± 0.08

90%
LTH 94.43 ± 0.17 95.53 ± 0.21 95.63 ± 0.07 95.65 ± 0.30 95.66 ± 0.07 95.61 ± 0.14 95.56 ± 0.16 95.62 ± 0.14 95.50 ± 0.04

naive 93.79 ± 0.15 93.96 ± 0.05 94.09 ± 0.11 94.20 ± 0.29 94.35 ± 0.25 94.20 ± 0.13 94.27 ± 0.19 94.23 ± 0.08 94.19 ± 0.27
perm. 93.97 ± 0.29 94.64 ± 0.13 94.73 ± 0.17 94.93 ± 0.12 94.92 ± 0.11 94.90 ± 0.07 95.04 ± 0.14 95.07 ± 0.18 94.91 ± 0.19

95%
LTH 93.65 ± 0.12 95.26 ± 0.08 95.39 ± 0.05 95.32 ± 0.18 95.26 ± 0.03 95.33 ± 0.07 95.40 ± 0.14 95.19 ± 0.05 95.37 ± 0.21

naive 93.27 ± 0.07 93.30 ± 0.11 93.63 ± 0.04 93.61 ± 0.21 93.66 ± 0.13 93.67 ± 0.14 93.43 ± 0.21 93.51 ± 0.32 93.14 ± 0.03
perm. 93.54 ± 0.24 94.17 ± 0.07 94.46 ± 0.10 94.27 ± 0.19 94.61 ± 0.07 94.54 ± 0.07 94.75 ± 0.11 94.75 ± 0.09 94.54 ± 0.27

97%
LTH 93.00 ± 0.11 94.77 ± 0.09 94.86 ± 0.06 94.94 ± 0.17 94.96 ± 0.06 94.89 ± 0.21 95.00 ± 0.24 94.94 ± 0.10 94.97 ± 0.13

naive 92.63 ± 0.12 92.80 ± 0.10 92.85 ± 0.21 92.66 ± 0.21 92.74 ± 0.11 92.69 ± 0.14 92.28 ± 0.09 92.02 ± 0.18 91.87 ± 0.10
perm. 92.81 ± 0.27 93.54 ± 0.08 93.83 ± 0.12 93.75 ± 0.34 94.00 ± 0.33 94.12 ± 0.04 94.07 ± 0.31 94.32 ± 0.24 94.14 ± 0.04

Table 5: VGG11×{1}/CIFAR-10. Results using the VGG11, trained on CIFAR-10, from a rewind
point k, using various methods of sparse training with sparsity S.

Rewind Epoch k

S Method k= 0 5 10 15 20 25 50

80%
LTH 89.94 ± 0.06 90.44 ± 0.17 90.91 ± 0.12 90.87 ± 0.16 91.14 ± 0.28 91.11 ± 0.08 91.22 ± 0.08

naive 89.70 ± 0.13 89.90 ± 0.18 90.04 ± 0.07 90.34 ± 0.16 90.48 ± 0.19 90.55 ± 0.17 90.87 ± 0.19
perm. 89.94 ± 0.1 90.18 ± 0.08 90.52 ± 0.17 90.71 ± 0.22 90.77 ± 0.19 90.81 ± 0.19 91.07 ± 0.21

90%
LTH 89.33 ± 0.16 90.82 ± 0.09 90.97 ± 0.14 91.05 ± 0.04 91.15 ± 0.11 90.91 ± 0.17 91.08 ± 0.31

naive 89.17 ± 0.2 89.55 ± 0.02 89.81 ± 0.02 89.49 ± 0.05 89.68 ± 0.11 89.80 ± 0.03 89.80 ± 0.05
perm. 89.30 ± 0.02 90.33 ± 0.08 90.44 ± 0.14 90.46 ± 0.04 90.75 ± 0.22 90.76 ± 0.12 91.01 ± 0.06

A.2 Results

Detailed results for ResNet20×{1}, ResNet20×{4}, and VGG11×{1} experiments are provided
in Table 3, Table 4, and Table 5 respectively.

A.3 Additional Experiments

CIFAR-100. We also validated our hypothesis with the ResNet20 trained on CIFAR-100. As
shown in Fig. 6, the permuted solution consistently outperforms the naive solution, showing that our

10



0 20 40 60 80 100
Rewind Points

73

74

75

76

77

78

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(a) sparsity = 0.80

0 20 40 60 80 100
Rewind Points

72

74

76

78

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(b) sparsity = 0.90

0 20 40 60 80 100
Rewind Points

70

72

74

76

78

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(c) sparsity = 0.95

0 20 40 60 80 100
Rewind Points

68

70

72

74

76

78

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(d) sparsity = 0.97

Figure 6: ResNet20×{4}/CIFAR-100. Results for the CIFAR-100 dataset with varying sparsities show that
our permuted solution outperforms the naive solution. The dashed (- -) line shows the dense model accuracy.

0.80 0.85 0.90 0.95
Sparsity

86

88

90

92

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(a) rewind=10

0.80 0.85 0.90 0.95
Sparsity

86

88

90

92
Te

st
 A

cc
ur

ac
y 

(%
)

LTH Naive Permuted

(b) rewind = 25

0.80 0.85 0.90 0.95
Sparsity

86

88

90

92

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(c) rewind = 50

0.80 0.85 0.90 0.95
Sparsity

86

88

90

92

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(d) rewind = 100

0.80 0.85 0.90 0.95
Sparsity

93

94

95

96

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(e) rewind=10

0.80 0.85 0.90 0.95
Sparsity

93

94

95

96

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(f) rewind = 25

0.80 0.85 0.90 0.95
Sparsity

92

93

94

95

96

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(g) rewind = 50

0.80 0.85 0.90 0.95
Sparsity

93

94

95

96

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(h) rewind = 100

0.80 0.85 0.90 0.95
Sparsity

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(i) rewind=10

0.80 0.85 0.90 0.95
Sparsity

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(j) rewind = 25

0.80 0.85 0.90 0.95
Sparsity

94.0

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(k) rewind = 50

0.80 0.85 0.90 0.95
Sparsity

94.0

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y 
(%

)

LTH Naive Permuted

(l) rewind = 100

Figure 7: Accuracy vs sparsity trend for ResNet20×{1,4,8}/CIFAR-10. The top, middle, and bottom rows
correspond to widths of 1, 4, and 8, respectively. As the sparsity increases, the gap between permuted and naive
solutions increases, showing permuted masks help with sparse training. With increased width and k, we observe
a more significant gap seen throughout Figs. 7d, 7h and 7l and the permuted solution approaches the LTH solution.
The dashed (- -) line shows the dense model accuracy.

hypothesis holds true across different models and datasets. Similar to the CIFAR-10 dataset, as we
increase k, the performance of the permuted model improves.

A.4 Additional Plots

Refer to Fig. 7 for additional accuracy vs sparsity plots across various widths.

A.5 Experimental Methodology

The method outlined in Fig. 2, is also detailed fully below.

1. Randomly initialize two distinct neural networks from the Normal distribution:
wt=0

A ,wt=0
B ∼N .

2. Train both networks to convergence for T epochs: wt=T
A ,wt=T

B .

3. Prune wt=T
A via IMP (without weight-rewinding), producing a sparse subnetwork:

wt=T
A ⊙mA.

11



4. Perform activation matching by aligning the activations of wt=T
A to wt=T

B , such that
B(π(wt=T

A ),wt=T
B )≤ϵ=⇒ error barrier below some threshold =⇒ LMC.

5. Save checkpoints from step 2 at some epoch t = k ≪ T , resulting in rewound epochs:
wt=k

A ,wt=k
B .

6. Sparse train the LTH solution: wt=k
A ⊙mA for T−k epochs.

7. Sparse train the naive solution using the wrong initialization: wt=k
B ⊙mA for T−k epochs.

8. Sparse train the permuted solution using the permuted mask: wt=k
B ⊙π(mA) for T − k

epochs.

B Time Complexity of the Permuted Solution
The primary difference in computational complexity between the LTH, naive, and permuted solutions
lies in the process of neuronal alignment, where weight/activation matching is used to locate
permutations in order to bring the hidden units of two networks into alignment. To obtain the permuted
solution, two distinct models must be trained independently to convergence, after which their weights
or activations are aligned through a permutation-matching process. This alignment, though relatively
efficient, adds a small computational overhead compared to LTH and naive solutions, which do not
involve matching steps. However, it’s important to note that the primary goal of this study is not to
improve training efficiency but rather to investigate why the LTH framework fails when applied to
sparse training from new random initializations (not associated with the winning ticket’s mask).

12


	Introduction
	Background & Related Work
	Method
	Results
	Conclusion
	Acknowledgements
	Appendix
	Implementation
	Results
	Additional Experiments
	Additional Plots
	Experimental Methodology

	Time Complexity of the Permuted Solution

