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Abstract
As transformer-based language models are trained
on increasingly large datasets and with vast num-
bers of parameters, finding more efficient alter-
natives to the standard Transformer has become
very valuable. While many efficient Transformers
and Transformer alternatives have been proposed,
none provide theoretical guarantees that they are a
suitable replacement for the standard Transformer.
This makes it challenging to identify when to use
a specific model and what directions to prioritize
for further investigation. In this paper, we aim to
understand the capabilities and limitations of effi-
cient Transformers, specifically the Sparse Trans-
former and the Linear Transformer. We focus on
their reasoning capability as exhibited by Chain-
of-Thought (CoT) prompts and follow previous
works to model them as Dynamic Programming
(DP) problems. Our results show that while these
models are expressive enough to solve general
DP tasks, contrary to expectations, they require
a model size that scales with the problem size.
Nonetheless, we identify a class of DP problems
for which these models can be more efficient than
the standard Transformer. We confirm our theoret-
ical results through experiments on representative
DP tasks, adding to the understanding of efficient
Transformers’ practical strengths and weaknesses.

1. Introduction
The Transformer architecture, as introduced in the semi-
nal work of Vaswani et al. (2017), has demonstrated a re-
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markable performance in numerous applications ranging
from natural language processing to computer vision and
speech. A significant advancement has recently been made,
by scaling up Transformers to build Large Language Mod-
els (LLMs) (Brown et al., 2020; OpenAI, 2023; Touvron
et al., 2023). These LLMs, exemplified by models like GPT
and LLaMa, typically have billions of parameters and are
trained on datasets containing trillions of tokens. Given
the substantial computational demands, enhancing LLMs’
efficiency has become a pivotal research focus in academic
and industrial contexts.

The primary computational bottleneck in Transformers
arises from the self-attention module, whose complexity
scales quadratically with the sequence length. The cost
becomes particularly noticeable in tasks that require long se-
quence generation, such as coherent story generation or rea-
soning with Chain-of-Thought prompts (Wei et al., 2022b;
Kojima et al., 2022; Nye et al., 2022; Zhou et al., 2023).
Given the practical needs, a large body of work seeks to
develop efficient Transformers that can reduce the quadratic
complexity of self-attention (Tay et al., 2022), typically
by imposing sparsity into architectural design (Child et al.,
2019; Beltagy et al., 2020; Qiu et al., 2020; Kitaev et al.,
2020; Vyas et al., 2020; Roy et al., 2021) or by employ-
ing low-rank or kernel-based approximations to accelerate
the computation (Katharopoulos et al., 2020; Choromanski
et al., 2021; Peng et al., 2021; Wang et al., 2020; Luo et al.,
2021). However, there is generally a lack of understanding
about the capabilities of efficient Transformer.

In this work, we take a step towards theoretically understand-
ing the capability of efficient Transformers. In particular,
we focus on the models’ reasoning ability, a fundamen-
tal aspect of human intelligence that plays a vital role in
problem-solving, decision-making, and planning. Inspired
by a recent study in Feng et al. (2023), we model reason-
ing as a dynamic programming (DP) process as it closely
resembles the way Chain-of-Thought prompts are executed.
The output sequence consists of answers to a series of inter-
mediate steps, each corresponding to solving a subproblem
represented by a DP state. Feng et al. (2023) proved that
all reasoning problems fitting within this framework can be
solved by a standard autoregressive Transformer of a con-
stant size (irrelevant to the problem scale), thus achieving a
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Table 1. Complexity of the Transformer variants on different tasks.
Architecture General Reasoning Arithmetic Reasoning (locality assumption)

Standard Transformer Θ̃(L2) Θ̃(L2) Θ̃(L2)

Sparse Transformer Θ̃(L2) Θ̃(L
√
L) Θ̃(L

√
L) if m = O(

√
L)

Linear Transformer Θ̃(L2) Ω̃(L
√
L) Ω̃(mL)

computational complexity of Θ(L2) where L is the length
of the output sequence.

In our work, we focus on two representative (Tay et al.,
2022) and successful (Tay et al., 2020b; Brown et al., 2020)
variants of efficient Transformers: the Sparse Transformer
(Child et al., 2019) and the Linear Transformer (Katharopou-
los et al., 2020). (In the following we will refer to these
two as efficient Transformers.) Our analysis shows that
both architectures possess the necessary expressiveness for
all problems within this DP framework despite only scal-
ing with Θ(L

√
L) and Θ(L). Although this positive result

might lead one to believe that we can supplant the stan-
dard Transformer with others of lower complexity, the situ-
ation is more complicated: our main result highlights that
both Sparse Transformer and Linear Transformer require
a growing model size with respect to the problem scale L,
in contrast to the constant size of standard Transformers.
Specifically, under mild assumptions, we prove that neither
architecture can generate the DP solution unless the hidden
dimension of the network layers scales as Ω̃(

√
L). This scal-

ing results in a total computational complexity of Ω̃(L2),
matching the vanilla Transformer’s complexity. But this
result introduces a paradox: when tackling general DP prob-
lems, the touted efficiency of these “efficient” Transformers
appears to dissolve, rendering them comparably efficient to
standard Transformers.

The above findings about general DP problems raise the
question: For which problems are efficient Transformers
efficient? To answer this question, we start by studying a
fundamental task for reasoning: evaluating arithmetic ex-
pressions (Feng et al., 2023). Notably, we find that the
complexity lower bound can be improved to Ω̃(L

√
L) for

both architectures, and the lower bound can be attained for
the Sparse Transformer with a constant hidden dimension.
Motivated by this finding, we then identify a general con-
dition that unlocks the efficiency of efficient Transformers,
called the locality assumption. Intuitively, this assumption
states that each step in the reasoning process only depends
on the outcome of recent m reasoning steps where m is
far smaller than L, i.e. m = o(L). Under this assumption,
we show that the complexity lower bound can be improved
for sparse- and Linear Transformer. We summarize our
theoretical results in Table 1.

We complement our theoretical findings with an extensive
set of experiments. Following Feng et al. (2023), we focus
on the Arithmetic task and two additional DP problems: the
Longest Increasing Subsequence (LIS) and the Edit Distance

(ED). Notably, the ED task satisfies the locality assumption,
whereas the LIS task does not. For each task, we systemati-
cally investigate how variations in the problem size (i.e., the
sequence length L) and the hidden dimension of the Trans-
former models impact the models’ performance. Empirical
evidence confirms that, for both efficient Transformers, the
required hidden dimension increases as the problem size
grows in most scenarios, while this is not the case for the
standard Transformer. Moreover, the dependency between
hidden dimension and problem scale is more pronounced
in LIS than in ED. These results validate our theory and
offer practical insights into the strengths and weaknesses of
efficient Transformers.

Notations. We adopt the big-O notation throughout this
paper. Specifically, given two functions f, g : X → [0,∞)
where X can be any set, we write f = O(g) if there exists
a constant c > 0 such that f(x) ≤ cg(x) for all x ∈ X .
We also write f = Ω(g) if g = O(f), and write f =
Θ(g) if both f = O(g) and f = Ω(g) hold. Moreover,
given two functions f, g : Nd

+ → [0,∞), we write f =

Õ(g) if there exist constants c, k > 0 such that f(x) ≤
cg(x) logk(x1 · · ·xd) for all x ∈ Nd

+. The notations Ω̃(·)
and Θ̃(·) can be similarly defined.

2. Related Work
Transformers and Large Language Models have received sig-
nificant attention due to their unprecedented success across
various domains. A considerable body of literature has
emerged to establish a deeper theoretical understanding of
their strengths and constraints.

Universal Approximation. Initially, the theoretical focus
was on the capacity of Transformers to approximate diverse
functions. Yun et al. (2019) postulated that adequately sized
Transformers can universally approximate any continuous
sequence-to-sequence functions within certain bounds. A
parallel line of work first showed that Transformers with infi-
nite precision are turing-complete (Pérez et al., 2019; 2021)
and later Wei et al. (2022a) established that Transformers
with finite precision are approximately turing-complete. Re-
cently, Alberti et al. (2023) proved that Linear Transformers
are also universal approximators. Whereas these results
approach expressiveness by proving computational capacity,
we complement our expressiveness results with complexity
lower bounds for practical settings.

Formal Language Learning. Additionally, the Trans-
former’s expressivity has been studied in the context of

2



Do Efficient Transformers Really Save Computation?

formal language learning. Bhattamishra et al. (2020) con-
structed a Transformer that detects counter languages, and
Yao et al. (2021) show how to detect Dyck languages. Liu
et al. (2022) show that shallow Transformers can learn fi-
nite state automata and simulate them for a number of steps
that scale with the model size. Conversely, Hahn (2020)
shows that transformers can not learn distributions over lan-
guages. Other works use classical techniques from circuit
complexity (Furst et al., 1984) to prove that Transformers
can simulate classes of circuits (Hao et al., 2022; Merrill
et al., 2022; Merrill & Sabharwal, 2023).

Measuring Complexity. Weiss et al. (2021) introduce a
programming language that maps to learnable Transformer
encoders and facilitates the analysis of the complexity of
problems with respect to layers and attention heads. San-
ford et al. (2023) introduce a sparse averaging task that
requires recurrent and feed-forward networks to be of linear
complexity, whereas the Transformer only needs to scale
logarithmically. These works are similar to ours in that we
establish concrete relationships between model complexity
and solvability of the posed problems. But our work deals
with autoregressive efficient Transformers equipped with
Chain-of-Thought.

In-context learning. A recent approach shows its in-context
learning ability (Garg et al., 2022; Brown et al., 2020). Fol-
lowing this, there are also theoretical results that (Dai et al.,
2023; Von Oswald et al., 2023; Akyürek et al., 2022) prove
it can perform gradient descent. Another line of work shows
in-context-learning via induction heads (Elhage et al., 2021;
Olsson et al., 2022). Similarly, Feng et al. (2023) show
that auto regressive transformers can learn to perform dy-
namic programming when equipped with Chain-of-Thought.
While in the same setting as Feng et al., we investigate effi-
cient Transformers and present a problem class that encour-
ages efficiency.

Efficient Transformer. Due to the high complexity of the
attention layer, many more efficient methods have been
proposed. A first series of ideas exploit fixed attention
patterns (Child et al., 2019; Beltagy et al., 2020; Qiu et al.,
2020). Another line of work approximates the attention
as a low rank matrix or with kernels (Katharopoulos et al.,
2020; Wang et al., 2020; Choromanski et al., 2021) and
further works deal with learned patterns (Kitaev et al., 2020;
Tay et al., 2020a; Roy et al., 2021). A last set of works
even completely move away from transformers (Sun et al.;
Gu & Dao, 2023). Two recent works study when standard
attention can be efficient (Alman & Song, 2023) and how to
approximate standard attention in linear time (Keles et al.,
2023). In contrast to their work, we give theoretical analyses
for existing and popular efficient Transformers.

3. Efficient Transformers
The autoregressive Transformer, also called the decoder-
only Transformer (Radford et al., 2019; Dai et al., 2019), is
a sequence-to-sequence neural network defined as follows.
Given an input sequence s of length n, it first transforms
each input token si (i ∈ [n]) into a D-dimensional vector
x(0) = Embed(si)+pi ∈ RD, where Embed(·) is the token
embedding layer and pi a learnable positional embedding.
Then, M Transformer blocks follow, the l-th of which has
the following form:

h
(l)
i = x

(l−1)
i +Attn(l)(x

(l−1)
i ; {x(l−1)

j : j ∈ [i]}), (1)

x
(l)
i = h

(l)
i + FFN(l)(h

(l)
i ) (2)

Here, Attn(l) and FFN(l) denote the multi-head self-
attention layer and the feed-forward network of the l-th
Transformer block, respectively:

Attn(l)(x,S) =
H∑

h=1

(
W

(l,h)
O

)⊤
·H(l,h)(x,S), (3)

H(l,h)(x,S)=

∑
z∈S exp

(
(W

(l,h)
K z)⊤(W

(l,h)
Q x)

)
W

(l,h)
V z∑

z∈S exp
(
(W

(l,h)
K z)⊤(W

(l,h)
Q x)

) ,

(4)

FFN(l)(x) = W
(l)
2 σ(W

(l)
1 x), (5)

where W
(l,h)
Q ,W

(l,h)
K ,W

(l,h)
V ,W

(l,h)
O ∈ R⌈D

H ⌉×D are the
query, key, value, output matrices of the h-th head in the
l-th layer, respectively, and W

(l)
1 ,W

(l)
2 ∈ RD×D are

weight matrices in the FFN. The activation σ is chosen
as GeLU (Hendrycks & Gimpel, 2016), following (Rad-
ford et al., 2019; Devlin et al., 2019). The computed em-
bedding x

(M)
n will be used to predict the next token sn+1,

which is then concatenated to the input to continue the se-
quence generation process. The process stops when an
End-of-Sentence token is generated.

Based on Equations (1) to (3) and (5), it is easy to see that
the computational complexity of an autoregressive Trans-
former is Θ(M(L2D + LD2)), where L is the sequence
length. This quadratic dependency on L limits the applica-
tion of Transformers to long text, in particular for complex
reasoning tasks. To battle this, researchers have proposed
various efficient Transformers to reduce the complexity. In
our work, we investigate the Sparse Transformer and the
Linear Transformer. Below, we describe the two architec-
tures which are studied in this paper.

Sparse Transformer. Unlike the standard Transformer
where each token x(l) can attend to all previous positions
{x(l)

j : j ∈ [i]} (see Equation (1)), in a Sparse Transformer

it only attends to a subset of previous tokens {x(l)
j : j ∈ Ii}.
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In this paper, we study a standard design paradigm proposed
in Child et al. (2019), which employs a block-wise pattern
as shown in the following:

Ii = {j : i− kB < j ≤ i} ∪ {j : j − 1 mod B ≥ B − c}
(6)

where B is called the block size and k, c are constant inte-
gers. When B = Θ(

√
L), the Sparse Transformer achieves

a minimal complexity of Θ(M(L
√
LD + LD2)). We note

that GPT-3 adopted the above design paradigm (Brown et al.,
2020).

Linear Transformer. Another line of work proposed to
accelerate the attention computation (Equation (3)) using
kernel-based approximations. A representative approach is
the Linear Transformer (Katharopoulos et al., 2020), which
approximates Attn(l) with the following formula:

Attn
(l)
linear(x,S) =

H∑
h=1

(
W

(l,h)
O

)⊤
·H(l,h)

linear (x,S), (7)

H
(l,h)
linear (x,S) =

∑
z∈S ϕ(W

(l,h)
K z)⊤ϕ(W

(l,h)
Q x)(W

(l,h)
V z)∑

z∈S ϕ(W
(l,h)
K z)⊤ϕ(W

(l,h)
Q x)

(8)

where they choose ϕ(x) = elu(x) + 1. The above
computation can be accelerated by rearranging the or-
der of computation so that the intermediate results∑

z∈S(W
(l,h)
V z)ϕ(W

(l,h)
K z)⊤ and

∑
z∈S ϕ(W

(l,h)
K z)⊤

associated with different S can be jointly computed us-
ing prefix sum, finally yielding a complexity of Θ(MLD2)
which is linear in L.

4. Expressiveness of Efficient Transformers in
Reasoning Tasks

Reasoning constitutes a fundamental aspect of human intel-
ligence and plays a vital role in problem-solving, decision-
making, and planning. Recently, Transformer-based LLMs
have demonstrated remarkable reasoning abilities (OpenAI,
2023; Touvron et al., 2023). This has sparked a series of
studies aimed at theoretically understanding how powerful
these models are. In particular, Feng et al. (2023) recently
revealed that autoregressive Transformers are capable of
solving a general class of reasoning problems formalized as
Dynamic Programming (DP). In this section, we extend this
finding by investigating how things change when moving to
various types of efficient Transformers.

4.1. Problem formulation

Dynamic programming decomposes a complex reasoning
problem into a sequence of reasoning steps, each of which
corresponds to a subproblem and is called a DP state. Differ-
ent subproblems depend on each other because they can be

efficiently solved based on the answers of previously solved
subproblems. Formally, denoting by dp(i) the answer of
subproblem i, then the relation between subproblems can
be characterized using a transition function:

dp(i) = f
(
i, dp(h1(i)), · · · , dp(hK(i)), sg1(i), · · · , sgJ (i)

)
(9)

where s is the input sequence, and f , g1, · · · , gJ ,
h1, · · · , hK are functions that depends on the problem. In
other words, the answer of each subproblem is fully de-
termined by the answers of a finite number of previous
subproblems plus a finite number of input tokens. Based
on Equation (9), we can sequentially solve all subproblems
one by one. After solving all subproblems, the final answer
can be computed by u(dp(iN )), where iN is the last DP
state and u is a problem-dependent function. By defining
our problem so generally, we also cover CoT problems. We
assume that the f , g, h and u above can be approximated by
an MLP with GeLU activation of constant size. We also as-
sume that during the CoT generation process, the next state
can be obtained by an MLP where the input is the current
state. One can refer to Appendix B for a formal description.
We argue that these assumptions are mild and that they have
been used in previous work (Feng et al., 2023).

In our subsequent analysis, without loss of generality, we
assume that each input element sj is an integer, and each
state i, DP value dp(i), and the final answer can all be
represented by vectors of integer elements. The domain of
these integers can grow polynomially with respect to the
length L.

Output format. Following Feng et al. (2023), given a DP
task and an input seuqence s, an autoregressive Transformer
generates the answer with all intermediate steps in the fol-
lowing form:

(s1,0,0,0) . . . (sn,0,0,0) |
(0, i1, dp(i1),0) . . . (0, iN , dp(iN ),0)

(0,0,0, u(dp(iN ))) (10)

Here, the subsequence ending at the special token “|” is
the input to the Transformer, and the remainder will be
autoregressively generated. The output at each position is
split into four parts that store the input, state, DP value,
and final answer, respectively. We denote by i1, · · · , iN
the sequence of DP states representing all subproblems in
order. We consider the regression setting where the output
at each position is simply obtained from the embedding of
the last Transformer layer by projecting each dimension to
the nearest integer. Similarly, each generated output directly
serves as the input of the next position (without using a
token embedding layer).

Log-precision Transformers. We adopt a realistic and
widely-used setting where all internal neurons in the Trans-
former can only store floating-point numbers within a finite
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O(logL) bit precision (Merrill & Sabharwal, 2023; Liu
et al., 2023; Feng et al., 2023), and all basic floating-point
computations are truncated, as implemented on a computer.
Log-precision implies that each neuron has a limited capac-
ity for computation and information storage. Nevertheless,
they remain powerful as they can represent a large range of
values (i.e., polynomial in the sequence length L), recover-
ing important quantities like positional embedding.

Under the above assumptions, Feng et al. (2023) proved the
following main result for the standard transformer:
Theorem 4.1 (informal). Consider any DP problem de-
fined above that satisfies the assumptions from B. For any
integer n > 0, there exists a log-precision autoregressive
Transformer with a constant depth M , a constant hidden
dimension D, and a constant number of attention heads H
(independent of n) that can generate the correct output for
all inputs s of length n.

4.2. Main results

Now, we investigate whether the efficient Transformers de-
fined in Section 3 are as powerful as the standard Trans-
former in solving DP problems. In particular, we establish
a similar result to Theorem 4.1, which we present in the
theorem below:
Theorem 4.2. Consider any DP problem satisfying the
same condition as in Theorem 4.1. Given any integer n > 0,
let L be the length of the output sequence when the input
sequence length is n. Then, for both (log-precision) Sparse
Transformer with block size B = Θ(

√
L) and Linear Trans-

former, there is a model with a constant depth M , a con-
stant number of attention heads H , and a hidden dimension
D = O(

√
L) that can generate the correct output for all

inputs s of length n.

The proof of Theorem 4.2 is non-trivial and is deferred to
Appendix B.1. In the proof, we give explicit constructions of
parameters for sparse/linear attention and FFN layers, show-
ing that these layers can implement a set of basic operations
presented in Appendix A. We then use these operations as
building blocks to form a complete model that solves the
DP task.

Theorem 4.2 suggests that replacing the standard self-
attention with these efficient variants does not restrict the
model’s expressiveness in reasoning. However, when we
compare the total complexity O(L2) of the derived models,
we can see that it is the same as for the standard attention,
which only needed d = O(1).

Is the increase in model size necessary? Theorem 4.2
only gives a complexity upper bound for Sparse/Linear
Transformers. It remains to show whether the bound is tight
and what the lower bound of the required hidden dimension
is. To answer this question, we will focus on a restricted

class of DP problems which we call regular DP problems:

Definition 4.3. A DP problem is called regular if for any
two different input sequences s(1) and s(2) (of the same
length) and a fixed but arbitrary model that solves the DP
problem, there is a state i such that dp(i) is different be-
tween input s(1) and s(2).

We remark that regularity is a weak assumption, which
only states that the reasoning process (not the final answer)
should not be exactly the same when the input changes. For
example, it excludes the case where the whole DP process
does not depend on a specific input element sj . Equipped
with the regularity assumption, we present a central impos-
sibility result:

Theorem 4.4. Consider any regular DP problem satisfying
the same condition as in Theorem 4.1. Assume that the out-
put sequence length L is proportional to the input sequence
length n, i.e., L = Θ(n). Then, given a sufficiently large
n, for both (log-precision) Sparse Transformer with block
size B = Θ(

√
L) and Linear Transformer, a model with a

constant depth M and a constant number of attention heads
H can generate the correct output for all inputs s of length
n only if the hidden dimension D = Ω̃(

√
L).

As presented in Appendix B.2, the proof of Theorem 4.4
is based on the following finding: there are inherent infor-
mation bottlenecks in both types of efficient Transformers.
Here, the bottleneck is a set of neurons whose values com-
pletely determine all ensuing outputs from a specific posi-
tion. Due to the log-precision assumption, these neurons
only store a limited amount of information. Hence it is
only possible to recover all subsequent outputs when the
hidden dimension is Ω̃(

√
L) — otherwise, the Pigeonhole

principle will imply that there are two different input se-
quences that share the same set of neuron values, yielding
the contradiction by Definition 4.3.

5. When Can Efficient Transformers Really
Save Computation?

In the previous section, we showed the surprising result
that these efficient Transformers may not lead to reduced
complexity compared to the standard Transformers in gen-
eral reasoning tasks. However, one should not hastily jump
to the conclusion that these efficient Transformers are al-
ways inefficient. In this section, we will discuss in which
situations efficient Transformers are efficient.

5.1. A motivating example: evaluating arithmetic
expressions

We begin by investigating a less complex task proposed by
Feng et al. (2023), called the arithmetic evaluation. The task
is to evaluate an arithmetic expression like “2× (1+5)÷ 4”
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and the complete output sequence looks like “2× (1+ 5)÷
4 = 2 × 6 ÷ 4 = 12 ÷ 4 = 3”. Feng et al. (2023) proved
that a standard Transformer of a constant size can solve
this task. Surprisingly, we find that a similar result also
holds for a constant-size Sparse Transformer, as shown in
the proposition below:

Proposition 5.1 (informal). For any integer n, there exists
a log-precision Sparse Transformer with block size B =
Θ(

√
L), 5 layers, 5 attention heads per layer, a constant

hidden dimension that can generate the correct output for
the arithmetic evaluation task for all expressions of length
no more than n.

Owing to the constant dimension, the complexity of the
arithmetic evaluation task can be reduced to O(L

√
L) by

using Sparse Transformers. We next turn to Linear Trans-
formers. While we do not give explicit constructions of
model parameters that can solve the arithmetic task, one can
still derive a lower bound by using a similar analysis as in
Theorem 4.4:

Proposition 5.2 (informal). For any integer n, a log-
precision Linear Transformer with a constant depth M and
a constant number of heads H can generate the correct
output for the arithmetic evaluation task for all expres-
sions of length no more than n only if the hidden dimension
D = Ω̃( 4

√
L).

Based on this result, the complexity lower bound of Lin-
ear Transformers scales like Ω̃(L

√
L), which, interestingly,

matches that of Sparse Transformers and is also strictly less
than Ω̃(L2). This finding naturally raises the following ques-
tion: Why do these efficient Transformers no longer require
a large hidden dimension on the arithmetic task? We will
answer this question in the next subsection.

5.2. Locality encourages efficiency

A key difference of the arithmetic task compared to general
DP is that its reasoning process exhibits inherent structures.
To be specific, the output sequence of arithmetic computa-
tion can be partitioned into blocks (separated by the symbol
“=”), where the content of each block depends solely on the
preceding one and is irrelevant to other historical blocks.
This paradigm is often named as data locality in computer
science literature and is also common in general reasoning
processes that follow the so-called Chain of Thought format
(Wei et al., 2022b). In light of this, we consider a special
class of DP problems dubbed the m-locality DP, which is
formally defined below:

Definition 5.3 (m-locality DP). Consider a DP problem
with output sequence o1, · · · ,oL of the form (10) where
o1, · · · ,on is the input sequence. The DP problem is said
to satisfy the m-locality condition for some m ≥ n, if
there exist functions f, h1, · · · , hK such that for all i ∈ [L],

oi = f(oh1(i), · · · ,ohK(i)), where i−m ≤ hk(i) < i for
k ∈ [K].

In other words, the m-locality condition simply says that
each DP state only depends on recent m DP states. Note that
the assumption m ≥ n is necessary to ensure that all inputs
contribute to the answer of the DP problem. Below, we
will discuss how the required hidden dimension of efficient
Transformers can be reduced when m is far smaller than L.

We first consider the Sparse Transformer, where we have
the following result:

Proposition 5.4. Consider any m-locality DP problem sat-
isfying the same condition as in Theorem 4.1. Given any in-
teger n > 0, let L be the length of the output sequence when
the input sequence length is n. Then, there exists a (log-
precision) Sparse Transformer with block size B = Θ(m),
a constant depth M , a constant number of attention heads
H , and a constant hidden dimension D that can generate
the correct output for all inputs s of length n.

As a result, the complexity of Sparse Transformer scales
like Õ(mL), which is strictly less than Θ̃(L2) when m is
far smaller than L. We next turn to the Linear Transformer,
where we have the following lower bound:

Proposition 5.5. Consider any m-locality regular DP prob-
lem satisfying the same condition as in Theorem 4.1 and
assume that m = Θ(n) where n is the input sequence length.
Then, a log-precision Linear Transformer with a constant
depth M and a constant number of heads H can generate
the correct output for all inputs s of length n only if the
hidden dimension D = Ω̃(

√
m).

The above result implies that the complexity lower bound
of Linear Transformer, which is imposed by the bottleneck,
scales like Ω̃(mL), which is strictly less than Θ̃(L2) when
m is far smaller than L. However, we remark that it remains
a challenging open question of whether such a complexity
lower bound can be matched.

6. Experiments
In the preceding sections, we conducted a theoretical anal-
ysis to assess the capabilities of efficient Transformers for
general DP problems and problems with locality. This sec-
tion serves to validate those findings through comprehensive
empirical experimentation. Inspired by the reasoning evalu-
ation in (Feng et al., 2023), we adopt a similar experimental
design using common DP problems with Chain-of-Thought
demonstrations. We focus on understanding how two key
factors, problem size and the embedding dimension of the
Transformer model, affect performance across tasks.
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Figure 1. A comparison of accuracies across different tasks and model types. Each column corresponds to a task (Arithmetic, ED, LIS),
and each row to a model (Standard Transformer, Linear Transformer, Sparse Transformer). Within each subplot, the x-axis represents the
embedding dimension, and the y-axis denotes the problem size. The color intensities indicate the accuracy level achieved by the respective
models. The figure demonstrates that efficient Transformers need larger hidden dimensions and that this requirement increases with
problem size. It also highlights how standard Transformers can handle tasks across all difficulty levels with fixed embedding dimensions.

6.1. Experimental Design

Tasks and datasets. We chose three well-known tasks –
LIS, ED, and Arithmetic – to represent a variety of prob-
lems in the DP domain. For the LIS task, the goal is to find
the length of the longest increasing subsequence of a given
integer sequence. The ED task’s goal is to calculate the
minimum cost required to convert one sequence to another
using three basic edit operations: insert, delete, and replace.
For the Arithmetic task, the goal is to calculate the correct
result of an arithmetic expression consisting of numbers,
addition, subtraction, multiplication, division, and brack-
ets. The LIS task is the most general DP problem without
locality property, while ED and Arithmetic exhibit higher
locality.

Following previous work (Feng et al., 2023), we curate
five datasets for each task, with different problem sizes and
increasing difficulty. For the LIS task, the datasets encom-
pass sequences of lengths {40, 110, 175, 250}, equating to
CoT lengths of {83, 223, 353, 503}. For the ED task, the
datasets span varying sequences of lengths – specifically, of

averaged lengths 6, 12, 16, and 20, equating to maximum
CoT lengths of {72, 210, 342, 506}. For the Arithmetic task,
the dataset consists of sequences with operator numbers
in {6, 10, 13, 16}, equating to maximum CoT lengths of
{87, 221, 355, 505}. Each training dataset has 1M samples,
and each corresponding testing dataset has 0.1M.

Model configurations. For the standard Transformer model,
we use the same configurations as used by (Feng et al., 2023)
with 3 layers and 4 attention heads, albeit with varying em-
bedding dimensions. We employ sinusoidal positional em-
beddings and apply Xavier initialization to all parameters.
For the activation function, we chose the standard GeLU,
and the embedding dimensions for the ED and LIS tasks
span the range 32, 64, 128, 256, 512, 1024 uniformly. As
for the Arithmetic task, we exclude the 1024 embedding
dimensions as all the models have already performed well
in 512. The FFN layer’s hidden dimension is four times
the embedding dimension. We use the same configurations
for both the Linear and Sparse Transformers. Within the
Sparse Transformer, the block size B is 2⌊log2(

√
L)⌋, with L

representing the upper limit of CoT length. Every experi-
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Table 2. Minimum GFLOPs of different model types to achieve an
accuracy above 90% on Arithmetic Task.

Method Length 87 Length 221 Length 355 Length 505

Standard 0.027 0.266 0.426 0.605
Linear 0.422 4.220 6.756 9.584
Sparse 0.106 1.055 1.690 2.399

ment has the global token count c fixed at 1 for every block.
Furthermore, we conduct the experiments on Transformer
models with 5 layers while keeping other parameters the
same. The additional results are shown in Appendix D.

Model training and inference. In all experiments, we em-
ploy the AdamW optimizer (Loshchilov & Hutter, 2017)
with the following hyperparameters: β1 = 0.9, β2 =
0.999, lr = 10−4, and weight decay = 0.01. To enhance
model generalization, we maintain a consistent dropout
rate of 0.1. Our optimization minimizes the negative log-
likelihood loss for all tokens in both the CoT steps and the
answers. Each model does 100 training epochs with a batch
size of 512. During the inference stage, the model generates
the entire CoT process token by token, using greedy search
until reaching the End-of-Sentence token. We evalu-
ate the models’ performance using the accuracy of the final
answer, which is the last output in the sequence. We run all
experiments on four V100 GPUs.

6.2. Experimental Results

Figure 1 shows our main results. Each column of the figure
corresponds to a particular task, and each row to a different
model. Within each subplot, the x-axis shows the embed-
ding dimension, and the y-axis indicates the problem size.
The color intensities indicate the corresponding accuracies.

For almost all tasks and varying problem sizes, models
with sufficiently large embedding dimensions can achieve
nearly 100% accuracy, except for the LIS task with the
Sparse Transformer. Nevertheless, for this task, the accuracy
still increases as the embedding dimension increases. This
finding shows that efficient Transformers can handle these
DP tasks with adequate expressiveness.

When we compare the subplots column-wise, it is evident
that efficient Transformers generally need larger hidden di-
mensions than standard Transformers. Moreover, within
each subplot of efficient Transformers, the required embed-
ding dimension increases as the problem grows. In contrast,
standard Transformers, with fixed embedding dimensions
of 128 or 256, can handle tasks across all difficulty levels.
These observations confirm our theoretical findings, sug-
gesting that efficient Transformers are less efficient than
previously perceived. In Table 2, we further compare the
minimal number of FLOPs required to achieve 90% accu-
racy on Arithmetic for all models. The standard Transformer
requires the lowest number of flops across all lengths.
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Figure 2. Accuracies of the Sparse Transformer and Linear Trans-
former on the ED Local task with varying problem size on the y-
and embedding dimension on the x-axis. We can observe that both
models benefit from locality.

Comparing the subplots row-wise, the growth in required
embedding dimension with the model size becomes more
pronounced as the locality decreases. This suggests that
efficient Transformers are more efficient for DP tasks with
strong locality, which aligns with our previous results.

Locality Study. Although the previous results already in-
dicate that problems with higher locality require higher
embedding dimensions, we conducted another more explicit
experiment in which we modified the ED problem to have a
higher locality. We call this problem ED Local and show the
results in Figure 2. We can clearly see that the increased lo-
cality led to a reduction in necessary embedding size, which
backs up our theoretical findings.

7. Limitations & Conclusion
Limitations. Although we show our results for representa-
tive efficient Transformers, it does not mean that our findings
directly transfer to all models with similar designs. Further,
despite our experiments indicating that Linear Transformers
also benefit from locality, it remains to prove whether the
bound for the Linear Transformer can be tightened.

Conclusion. While the Sparse Transformer and Linear
Transformer are expressive enough to solve general DP
tasks, our findings indicate that they can not sustain their ef-
ficiency in the general case. This contradicts the anticipated
efficiency gains, bringing their performance closer to that
of standard Transformers, which maintain a constant model
size. The paradoxical nature of these efficient Transformers
prompts a crucial question: under what conditions do these

8
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architectures become efficient? By delving into arithmetic
expression evaluation and introducing the locality assump-
tion, we identify scenarios where efficient Transformers
can be efficient. Our theoretical results find empirical sup-
port through extensive experiments on tasks like Arithmetic,
Longest Increasing Subsequence (LIS), and Edit Distance
(ED). The observed dependency between hidden dimension
and problem scale for efficient Transformers, in contrast to
the stability in standard Transformers, validates our theory.
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A. Technical Lemmas
In this section, we propose some lemmas about the expressive power of the MLP, the linear transformer, and the sparse
transformer. Due to the similarity between the efficient and the standard Transformer, we base some ideas and constructions
on previous work (Feng et al., 2023).

A.1. Lemmas for MLP

In the previous work (Feng et al., 2023), the authors investigated the expressive power of the MLP with GeLU activation
function. They showed that a two-layer MLP with GeLU activation and a fixed number of log-precision neurons can perform
various tasks such as multiplication, linear transformation, and selection. Building on their work, our proof is more concise
and clear. We will restate the relevant lemmas below, and refer to the appendices of Feng et al. (2023) for the proofs.

Lemma A.1 (From Feng et al. (2023)). Let f : R2 → R be a two-layer MLP with GeLU activation, and the hidden dimension
is 4. Then, for any ϵ > 0 and M > 0, there exist MLP parameters with ℓ∞ norm upper bounded by O(poly(M, 1/ϵ)) such
that |f(a, b)− ab| ≤ ϵ holds for all a, b ∈ [−M,M ].

Lemma A.2 (From Feng et al. (2023)). Let g : Rd1 → Rd2 be a two-layer MLP with ReLU activation, and all parameter
values are upper bounded by M . Then, for any ϵ > 0, there exists a two-layer MLP f of the same size with GeLU
activation and parameters upper bounded by O(poly(M, 1/ϵ)) in the ℓ∞ norm, such that for all x ∈ Rd1 , we have
∥f(x)− g(x)∥∞ ≤ ϵ.

Lemma A.3 (From Feng et al. (2023)). Let f : Rd1 → Rd2 be a two-layer MLP with GeLU activation, and the hidden
dimension is 2d2. Let W ∈ Rd2×d1 be any matrix and denote M = maxij |Wij |. Then, for any ϵ > 0, there exist MLP
parameters with ℓ∞ norm bounded by O(poly(M, 1/ϵ)), such that for any x ∈ Rd1 , we have ∥f(x)−Wx∥∞ ≤ ϵ.

Lemma A.4 (From Feng et al. (2023)). Define the selection function g : Rd × Rd × R → Rd as follows:

g(x,y, t) =

{
x if t ≥ 0,
y if t < 0.

(11)

Let f : Rd × Rd × R → Rd be a two-layer MLP with GeLU activation, and the hidden dimension is 2d+ 2. Then, for any
ϵ > 0, α > 0, and M > 0, there exist MLP parameters with ℓ∞ norm bounded by O(poly(M, 1/α, 1/ϵ)), such that for all
x ∈ [−M,M ]d, y ∈ [−M,M ]d, and t ∈ [−∞,−α] ∪ [α,+∞], we have ∥f(x,y, t)− g(x,y, t)∥∞ ≤ ϵ.

Lemma A.5. For integer i, define Si =
[
i− 1

3 , i+
1
3

]
. Let n ∈ Z and D = ∪n

i=0Si. Define the function g : D → Rn as
follows: f(x) = mi if x ∈ Si, where mi has its first i entries 1 and the rest entries 0. Let f : R → Rn be a two-layer
MLP with GeLU activation, and the hidden dimension is 2n. Then, for any ϵ > 0, α > 0, there exists MLP parameters with
l∞ norm bounded by O(poly(n, 1/ϵ)), such that for all x ∈ D, we have ∥f(x)− g(x)∥∞ ≤ ϵ.

Proof. Notice that the k-th entry of mj is

I[k ≤ j] = ReLU

[
−2k + 2

(
j +

3

4

)]
− ReLU

[
−2k + 2

(
j +

1

4

)]
(12)

Thus each entry of mj can be implemented by an MLP with hidden dimension 2. By Lemma A.2, we can perform both
tasks using an MLP with GeLU activation, with hidden dimension 2n.

Lemma A.6. For integer i, define Si =
[
i− 1

3 , i+
1
3

]
. Let n ∈ Z and D = ∪n

i=0Si. Define the function g : D → Rn as
follows: f(x) = ni if x ∈ Si, where ni has its first i− 1 entries 0 and the rest entries 1. Let f : R → Rn be a two-layer
MLP with GeLU activation, and the hidden dimension is 2n. Then, for any ϵ > 0, α > 0, there exists MLP parameters with
l∞ norm bounded by O(poly(n, 1/ϵ)), such that for all x ∈ D, we have ∥f(x)− g(x)∥∞ ≤ ϵ.

Proof. Similarly to the previous proof, the k-th entry of nj is

I[k ≥ j] = ReLU

[
2k − 2

(
j − 3

4

)]
− ReLU

[
2k − 2

(
j − 1

4

)]
(13)

which indicates that each entry of nj can be implemented by an MLP with hidden dimension 2. By Lemma A.2, we can
perform both tasks using an MLP with GeLU activation, with hidden dimension 2n.
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Lemma A.7. For integer i, define Si =
[
i− 1

4 , i+
1
4

]
. Given positive integer n and integer i ∈ [1, n2]. There exists a

two-layer MLP f : R → R3 with GeLU activation and hidden dimension O(n), such that for any integer i ∈ [1, n2] and
x ∈ Si, f(x) = (⌈i/n⌉, ⌈i/n⌉ − 1, n − (⌈i/n⌉ × n − i)). Here, n − (⌈i/n⌉ × n − i) = i mod n if i mod n ̸= 0, and
n− (⌈i/n⌉ × n− i) = n if i mod n = 0.

Proof. Since i ∈ {1, 2, · · · , n2}, we can get ⌈i/n⌉ ∈ {1, 2, · · · , n}. By the proposition that i is an integer, we can use an
MLP with hidden dimension 2n and ReLU activation to calcualte ⌈i/n⌉ as following:

⌈i/n⌉ =
n∑

j=1

I[i ≤ jn] =

n∑
j=1

ReLU

[
−2i+ 2

(
jn+

3

4

)]
− ReLU

[
−2i+ 2

(
jn+

1

4

)]
(14)

Thus we can calculate ⌈i/n⌉, ⌈i/n⌉ − 1, n− (⌈i/n⌉ × n− i) task by an MLP with ReLU activation with hidden dimension
O(n). By Lemma A.2, we can finish these tasks by an MLP with GeLU activation with hidden dimension O(n).

A.2. Lemmas for Linear Transformer

Lemma A.8. The attention module in Linear Transformer

Attn(xi) =

∑
j≤i ϕ(WKxj)

⊤ϕ(WQxi)WV xi∑
j≤i ϕ(WKxj)⊤ϕ(WQxi)

(15)

can be implemented as follows:

s0 = 0, z0 = 0 (16)

si = si−1 + ϕ(WKxi)(WV xi)
⊤ (17)

zi = zi−1 + ϕ(WKxi) (18)

Attn(xi)
⊤ =

ϕ(WQxi)
⊤si

ϕ(WQxi)⊤zi
(19)

Since this implementation is quite similar to RNNs, we called s, z in our implementation hidden states.

Now, we introduce the AGG operation for Linear Transformer. Let m be an integer and let x1,x2, · · · ,xm2 be a sequence
of vectors where xi = (x̂i, e⌈i/m⌉, eqi , 1) ∈ [−M,M ]d+m+1, x̂i ∈ Rd, and e⌈i/m⌉, eqi are one-hot vectors in Rm, and M
is a large constant. Let Si = {j ∈ Z : qim − (m − 1) ≤ j ≤ min(qim, i)}. Define the AGG operation as follows: The
output is a sequence of vectors u1, · · · ,um2 with ui = meanj∈Si x̂j . The output is undefined when Si = ∅.
Lemma A.9. For any 0 < ϵ ≤ M , there exists an linear attention layer with hidden dimension O(max(d,m)) and one
causal attention head that can approximate the AGG operation defined above. Specifically, suppose the attention output are
o1, · · · ,om2 , then we have ∥oi − ui∥∞ ≤ ϵ for all i ∈ [m2]. Moreover, the l∞ norm of attention parameters are bounded
by O(poly(log(M), log(m), log(1/ϵ)).

Proof. Without loss of generosity, we can assume d = m (otherwise, we can do some padding with 0). We will provide a
proof based on the implement of Lemma A.8.

We construct the query, key and value vectors as follows:

• Query: qi = µeqi − µ

• Key: ki = µe⌈i/m⌉ − µ

• Value: vi = x̂i

where µ > 0 is a constant defined later. This can be achieved by setting appropriate WQ,WK ,WV .

Notice that j ∈ Si if and only if j ≤ i and ⌈j/m⌉ = qi. By the construction of qi,ki,vi, we can get

aij := q⊤
i kj =

{
1 + (m− 1) exp(−µ), j ∈ Si

2 exp(−µ) + (m− 2) exp(−2µ), j /∈ Si

13
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By taking µ = ln 2Mm3

ϵ , which is bounded by O(poly(log(M), log(m), log(1/ϵ)), we have

∑
j /∈Si

aij ≤
(m2 − |Si|)[2 exp(−µ) + (m− 2) exp(−2µ)]

(m2 − |Si|)[2 exp(−µ) + (m− 2) exp(−2µ)] + |Si|[1 + (m− 1) exp(−µ)]

=
1

1 + |Si|
m2−|Si| ·

1+(m−1) exp(−µ)
2 exp(−µ)+(m−2) exp(−2µ)

≤ m2 − |Si|
|Si|

· 2 exp(−µ) + (m− 2) exp(−2µ)

1 + (m− 1) exp(−µ)

≤ m2 ·m exp(−µ) = m3 exp(−µ) =
ϵ

2M

Similarly, for j ∈ Si, we have∣∣∣∣aij − 1

|Si|

∣∣∣∣
≤ 1

|Si|
− 1 + (m− 1) exp(−µ)

(m2 − |Si|)[2 exp(−µ) + (m− 2) exp(−2µ)] + |Si|[1 + (m− 1) exp(−µ)]

=
1

|Si|
− 1

(m2 − |Si|) 2 exp(−µ)+(m−2) exp(−2µ)
1+(m−1) exp(−µ) + |Si|

=
(m2 − |Si|) 2 exp(−µ)+(m−2) exp(−2µ)

1+(m−1) exp(−µ)

|Si|
[
(m2 − |Si|) 2 exp(−µ)+(m−2) exp(−2µ)

1+(m−1) exp(−µ) + |Si|
]

≤ 1

|Si|
(m2 − |Si|) · [2 exp(−µ) + (m− 2) exp(−2µ)]

≤ 1

|Si|
m2 ·m exp(−µ) =

1

|Si|
m3 exp(−µ) =

ϵ

2M |Si|

We thus obtain

∥oi − ui∥∞ =

∥∥∥∥∥∥
∑
j

aijx̂j −
1

|Si|
∑
j∈Si

x̂j

∥∥∥∥∥∥
∞

≤ max
j

∥x̂j∥∞ ·

∑
j /∈Si

aij +
∑
j∈Si

∣∣∣∣aij − 1

|Si|

∣∣∣∣
 ≤ ϵ

which concludes our proof.

A.3. Lemmas for Sparse Transformer

The previous work by Feng et al. (2023) studied the expressive power of the standard attention layer and introduced a basic
operation, COPY, that can be implemented by the attention layer. In this section, we introduce an updated version of the
COPY operation for the sparse transformer and demonstrate that the sparse transformer module is capable of implementing
this operation.

Firstly, we will enumerate the elements and their respective notations that will be employed to define the COPY operation.

• A sequence of vectors x1,x2, · · · ,xn ∈ Rd+2, where xi = [vi, ri, i mod B, ⌈ i
B ⌉, 1], xi ∈ Rd, ri ∈ R, B ∈ Z.

• Three matrices K,Q,V ∈ Rd′×(d+2), where ∥V ∥∞ ≤ 1

• The attention sets S ′
i for each i, where S ′

i is the indices of the tokens attended by the i-th token.

• Two real number ρ, δ > 0

Denoting that ki = Kxi, qi = Qxi,vi = V xi ∈ Rd′
, we can define the matching set Si for the i as Si = {j < i | qi ·kj <

ρ}∩S ′
i. Then the output of the COPY operation u1,u2, · · · ,un is defined as ui = vpos(i), where pos(i) = argmaxj∈Si

rj .

14
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Intuitively, the COPY operation copies the embedding of the matching token with the highest rating. Note that the output of
the COPY operation can be anything when Si is empty.

Moreover, we make the following regularity assumption:
Assumption A.10. The input sequence x1,x2, · · · ,xn and the matrices K,Q,V satisfy the following condition:

• For any i, j ∈ [n], either |qi · kj | ≤ ρ or qi · kj ≤ −δ

• For any i, j ∈ [n], either i = j or |ri − rj | ≥ δ

• ∥V ∥∞ ≤ 1

Assumption A.10 ensures that only one token with the highest rating is matched, and there is a substantial difference between
this token and others. The subsequent lemma demonstrates that the sparse transformer module can effectively implement the
COPY operation.
Lemma A.11 (COPY Operation of Standard Transformer, From Feng et al. (2023)). Given that Assumption A.10 holds
with ρ ≤ δ2

8M , there exists a standard transformer module defined in Equation (6) with one attention layer, block size B,
embedding size O(d), and one attention head that can approximate the COPY operation defined above. Specifically, for
any sequence of vectors x1,x2, · · · ,xn, denote the corresponding output of the attention layer as o1,o2, · · · ,on. Then,
we have ∥oi − ui∥∞ ≤ ϵ for all i ∈ [n] with Si ̸= ∅. Furthermore, the ℓ∞ norm of attention parameters is bounded by
O(poly(M, 1/δ, log(n), log(1/ϵ))).

Now, we will prove a special form of the COPY operation for the Sparse Transformer, such that given an index of a token,
COPY the embedding of the token with the given index.

Lemma A.12 (COPY Operation of Sparse Transformer). Given that Assumption A.10 holds with ρ ≤ δ2

8M , there ex-
ists a sparse transformer module defined in Equation (6) with three attention layer, block size B, embedding size
O(d), and one attention head that can approximate the COPY operation defined above. Specifically, for any sequence
of vectors x1,x2, · · · ,xn, denote the corresponding output of the attention layer as o1,o2, · · · ,on. Then, we have
∥oi − ui∥∞ ≤ ϵ for all i ∈ [n] with Si ̸= ∅. Furthermore, the ℓ∞ norm of attention parameters is bounded by
O(poly(M, 1/δ, log(n), log(1/ϵ))).

The proof for this version is an extension of the proof for a Lemma described in Feng et al. (2023). For the reader’s
convenience, we provide a concise proof as follows.

Proof. Layer 1. In our formulation, the input embedding xi has the form xi = (vi, ptarget, i mod B, ⌈ i
B ⌉, 1), where ptarget

is the target index of the COPY operation. The primary objective of the first layer is to utilize its MLP to transform the input
embedding. The target output of this layer is

[vi,1,vi,2, · · · ,vi,B , ptarget, i mod B, ⌈ i

B
⌉, 1], where vi,j =

{
0 , when j ̸= i mod B + 1

vi , when j = i mod B + 1

Note that vi is bound by [−M,M ]. Therefore, we can express vi,j as

vi,j = ReLU
(
ReLU(vi +M)−M ·

(
1 + ·ReLU(j − i mod B) + ·ReLU(i mod B − j)

))
According to Lemma A.2, an MLP with GeLU as the activation function can accomplish this task with arbitrarily small
error. Therefore, we can write the output of this layer as x(1)

i = [vi,1,vi,2, · · · ,vi,B , ptarget, i mod B, ⌈ i
B ⌉, 1].

Layer 2. The main task of the second layer is to sum over the embedding of previous B tokens. In this layer, the
attention head just pays uniform attention to the previous B tokens. Note that, in the first layer, we distribute the
embeddings of different tokens on the different dimensions of the embedding. Therefore, the output of the attention layer is
1
B · [v(i−B+i mod B+1),v(i−B+i mod B+2), · · · ,vi, · · ·v(i−B+i mod B), ptarget, i mod B, ⌈ i

B ⌉, 1]. Then, by using the MLP
to multiply the number of tokens B, we can get the embeddings of all tokens. Moreover, in this layer, according to
Lemma A.7 we can use the MLP to calculate the index of the block of the target token as ⌈ptarget

B ⌉. The output of this layer as

x
(2)
i = [v(i−B+i mod B+1),v(i−B+i mod B+2), · · · ,vi, · · ·v(i−B+i mod B), ptarget, i mod B, ⌈ i

B
⌉, ⌈

ptarget

B
⌉, 1].
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Layer 3. The main task of the second layer is to COPY the embedding of the token in the corresponding block and select
the target embedding. In this layer, the attention head just COPY the embedding of the token in the corresponding block.
According to Lemma A.11, the attention layer can complete this task with arbitrarily small errors. Finally, we use the MLP
to select the target embedding from the copied embedding and obtain the final output.

B. Proofs of the theorems in Section 4
For ease of reading, we reclaim some important assumptions here, which are natural and mild.

Assumption B.1. Each function f , g, h and u defined in CoT for DP can be approximated by constant size MLP with
GeLU activation.

Assumption B.2. The state transition function F , where the inputs are the token number and current state, and the outputs
are the next state, can be approximated with MLP and GeLU function.

In addition we replace all residual connections in attention layers and MLP with concatenation, which doesn’t change the
expressive power of model architecture.

B.1. Proof of the Theorem 4.2

In this subsection, we provide a complete proof of Theorem 4.2. For clarity, we restate the theorem for the linear transformer
and sparse transformer individually and provide their respective proofs.

Theorem B.3. Consider any DP problem satisfying the same condition as in Theorem 4.1. Given any integer n > 0, let L
be the length of the output sequence when the input sequence length is n. Then, there is a (log-precision) linear transformer
with a constant depth M , a constant number of attention heads H , and a hidden dimension D = O(

√
L) that can generate

the correct output for all inputs s of length n.

Proof. Denote W = ⌈
√
L⌉. In this formulation, the embeddings are x

(0)
k = (einput

k , estate
k , edp

k , eanswer
k , k, 1), where

einput
k , estate

k , edp
k , eanswer

k corresponds to input token, DP state, DP value, final result. The embeddings are 0 if it’s not
defined. We construct the layers as follows.

Block 1. According to Assumption B.2, we can use constant layers of MLPs to obtain enext state
k with input estate

k . This can be
done by setting zero weight matrices in attention layers and discard attention output in linear projection of MLP. The output
of this block is x(1)

k = (einput
k , estate

k , enext state
k , edp

k , k, 1).

Block 2. The second layer of the Transformer finishes the following tasks:

• Calculate h(enext state
k ), g(enext state

k ).

• Calculate f state
k as the indicator variable of estate

k is the last state.

• Calculate (h(enext state
k ))2, (g(enext state

k ))2, (estate
k )2, which are element-wise square operations, and k2.

The first task can be implemented by several layers of MLPs by Assumption B.1. To perform the second task, we can check
whether estate

k ̸= 0 and enext state
k = 0. The last task can be done with an MLP using Lemma A.1. The output of this block is

x
(2)
k = (einput

k , estate
k , enext state

k , edp
k , esep

k ,h(enext state
k ), g(enext state

k ),

(h(enext state
k ))2, (g(enext state

k ))2, (estate
k )2, f state

k , k, k2, 1).

Block 3. The third block of the Transformer uses K + J heads to perform the following tasks where K and J are defined in
(9), refers to the transition in DP:

• Get inputs of sg1(i), · · · , sgJ (i) where i corresponds to enext state
k .

• Get DP value of dp(h1(i)), · · · , dp(hK(i)) for i corresponds to enext state
k .

• Calculate enext dp
k , i.e., the DP value of the next state, enext state

k .
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To perform the first two tasks, we need to first calculate the absolute position of the embeddings we want. This can be imple-
mented by several MLPs by Assumption B.1 and problem size n. Suppose the absolute positions are ĝ1, · · · , ĝJ , ĥ1, · · · , ĥK .
Then we can do the following tasks for t = ĝ1, · · · , ĝJ , ĥ1, · · · , ĥK :

1. Calculate ⌈t/W ⌉, W − (⌈t/W ⌉ ×W − t) by Lemma A.7.

2. Calculate es ∈ RW for s = ⌈t/W ⌉,W − (⌈t/W ⌉ ×W − t) by Lemma A.5, A.6 and the fact that ei = mi ⊙ ni.

We also calculate es ∈ RW for s = ⌈k/W ⌉,W − (⌈k/W ⌉ ×W − k) by Lemma A.5, A.6. Then we can get

(I[W − (⌈k/W ⌉ ×W − k) = 1] · x(2)
k , · · · , I[W − (⌈k/W ⌉ ×W − k) = 1] · x(2)

k )

by the multiplication between eW−(⌈k/W⌉×W−k) and x
(2)
k which can be implemented by an MLP with hidden dimension

O(W ). Then, we can get x(2)
t for t = ĝ1, · · · , ĝJ , ĥ1, · · · , ĥK in following steps:

1. Get 
1

W
(x

(2)
⌈t/W⌉×W−(W−1), · · · ,x

(2)
⌈t/W⌉×W ), i ≥ ⌈t/W ⌉ ×W

1

i− ⌈t/W ⌉ × (W − 1)
(x

(2)
⌈t/W⌉×W−(W−1), · · · ,x

(2)
i ,0, · · · ,0), i < ⌈t/W ⌉ ×W

for t = ĝ1, · · · , ĝJ , ĥ1, · · · , ĥK by using Lemma A.9.

2. Get (x
(2)
⌈t/W⌉×W−(W−1), · · · ,x

(2)
⌈t/W⌉×W ), i ≥ ⌈t/W ⌉ ×W

(x
(2)
⌈t/W⌉×W−(W−1), · · · ,x

(2)
i ,0, · · · ,0), i < ⌈t/W ⌉ ×W

for t = ĝ1, · · · , ĝJ , ĥ1, · · · , ĥK by using Lemma A.1 for multiplication first, and use Lemma A.4 to implement a
conditional selection.

3. Get x(2)
t for t = ĝ1, · · · , ĝJ , ĥ1, · · · , ĥK by multiplication between the above vector and eW−(⌈t/W⌉×W−t), then sum

up them. Then we can get s
g
(n)
1 (i)

, · · · , s
g
(n)
J (i)

; dp(h
(n)
1 (i)), · · · , dp(h(n)

K (i)) by linear projection.

If the corresponding field is undefined, we can mark them as some special value. This can be done by selection using MLP
(Lemma A.4). Assumption B.1 indicates that we can calculate the function f (defined in (9)) using an MLP. The output of
this layer is

x
(3)
k = (enext state

k , edp
k , enext dp

k ,nk, f
state
k , k, 1).

Block 4. The fourth block of the autoregressive transformer generates the output based on the flag f state
k . We calculate u(edp

k )

to get the final result. If f state
k = 1, then we select u(edp

k ) as the output; otherwise, we prepare and output the DP result for
the next state, i.e., enext state

k and enext dp
k . This is a conditional selection operation and thus can be implemented by an MLP

(Lemma A.4).

Theorem B.4. Consider any DP problem satisfying the same condition as in Theorem 4.1. Given any integer n > 0, let L
be the length of the output sequence when the input sequence length is n. Then, there is a (log-precision) sparse Transformer
with block size B = Θ(

√
L) with a constant depth M , a constant number of attention heads H , and a hidden dimension

D = O(
√
L) that can generate the correct output for all inputs s of length n.

Proof. The construction of the first two blocks is the same as the linear transformer, and we will give the construction of the
third block and the fourth block for the sparse transformer.

Block 3. The third block of the Transformer uses K + J heads to perform the following tasks where K and J are defined in
(9), refers to the transition in DP:
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• Get inputs of sg1(i), · · · , sgJ (i) where i corresponds to enext state
k .

• Get DP value of dp(h1(i)), · · · , dp(hK(i)) for i corresponds to enext state
k .

• Calculate enext dp
k , i.e., the DP value of the next state, enext state

k .

To perform the first two tasks, we need to first calculate the absolute position of the embeddings we want. This
can be implemented by several MLPs by Assumption B.1 and problem size n. Supposing the absolute positions are
ĝ1, · · · , ĝJ , ĥ1, · · · , ĥK , we can perform the COPY operation by Lemma A.12, and we can obtain the input sg1(i), · · · , sgJ (i)
and the DP value of dp(h1(i)), · · · , dp(hK(i)) for i corresponds to enext state

k . With the inputs and DP value, according to
Assumption B.1, we can calculate the function f (defined in (9)) using an MLP. The output of this layer is

x
(3)
k = (enext state

k , edp
k , enext dp

k ,nk, f
state
k , k, 1).

Block 4. The fourth block of the sparse transformer generates the output based on the flag f state
k . We calculate u(edp

k ) to get
the final result. If f state

k = 1, then we select u(edp
k ) as the output; otherwise, we prepare and output the DP result for the next

state, i.e., enext state
k and enext dp

k . This is a conditional selection operation and thus can be implemented by an MLP (Lemma
A.4).

B.2. The proof of Theorem 4.4

In this subsection, we provide a complete proof of Theorem 4.2. For clarity, we restate the theorem for the linear transformer
and sparse transformer individually and provide their respective full proofs.

Theorem B.5. Consider any regular DP problem satisfying the same condition as in Theorem 4.1. Assume that the output
sequence length L is proportional to the input sequence length n, i.e., L = Θ(n). Then, given a sufficiently large n, for
(log-precision) linear Transformer, a model with a constant depth M and a constant number of attention heads H can
generate the correct output for all inputs s of length n only if the hidden dimension D = Ω̃(

√
L).

Proof. By Lemma A.8, we can know the hidden states corresponding to each Linear Transformer layer and the last input
token (which is a fixed special token) determines the CoT output. Thus, the size of hidden states should be at least
Ω(n) = Ω(L). By the regularity assumption, we know that different input should corresponds to different hidden states.
This implies that the hidden dimension should be at least Ω(

√
L/ logL) = Ω̃(

√
L), concluding our proof.

Theorem B.6. Consider any regular DP problem satisfying the same condition as in Theorem 4.1. Assume that the output
sequence length L is proportional to the input sequence length n, i.e., L = Θ(n). Then, given a sufficiently large n, for
(log-precision) sparse Transformer with block size B = Θ(

√
L), a model with a constant depth M and a constant number

of attention heads H can generate the correct output for all inputs s of length n only if the hidden dimension D = Ω̃(
√
L).

Proof. Assuming D = o(
√
L

lnL ), we present a proof by contradiction. When the model generates the output sequence, the
model attends to at most Θ(B) tokens in the input sequence, which are the last c tokens of every block and the last B
tokens of the input sequence. The overall memory cost of all the hidden embeddings for these tokens is Θ(BD log n) bits.
According to Equation (6), given the same hidden embedding of these tokens in every layer, the model will execute the
same computation and produce the identical sequence. Thus, the model can produce a maximum of eΘ(BD logn) = eo(L)

output sequence types given the hidden dimension D = o(
√
L

lnL ). However, for an input sequence of length L, there are
corresponding eΘ(L) input and output sequence types. According to the pigeonhole principle, this implies the existence
of two distinct input sequences that the model generates the same output sequence. According to regularity assumption,
there is an input sequence that the model generates an incorrect output sequence. Therefore, we have determined that
D = Ω(

√
L

lnL ) = Ω̃(
√
L).

C. Proofs of the theorems in Section 5
In this section, we will prove the theorems and propositions outlined in Section 5. Firstly, we will provide a precise and
formal definition of the problems and statements for each theorem and proposition. Subsequently, we will offer a thorough
proof for each theorem and proposition.
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This paper utilizes the identical formulation of the arithmetic evaluation task and CoT solution presented by Feng et al.
(2023). The arithmetic evaluation task is denoted as Arithmetic(n, p) and is defined on the finite field modulo p, with the
input length not exceeding n. The CoT solution can be formally defined as follows: for any arithmetic expression, there
must exist a handle, which refers to a pair of adjacent numbers connected by an operator that can be evaluated. In the CoT
method, we solve the leftmost variable first in each step and connect the equations of each step using the equal sign.

C.1. Proofs of Proposition 5.2

In this section, we will give a proof of Proposition 5.2.
Theorem C.1. For any integer n, a log-precision linear Transformer with a constant depth M and a constant number of
heads H can generate the correct output for the arithmetic evaluation task for all expressions of length no more than n only
if the hidden dimension D = Ω̃( 4

√
L).

Proof. Notice that the generated CoT sequence can be determined by the result of the first step. The different possibilities of
results for the first step are at least Ω(exp(n)) since each a1 OP1 a2 · · · are legal where ai ∈ Fp and OPi ∈ {+,−,×,÷}.
On the other hand, the hidden state corresponding to the input sequence determines the output CoT sequence. Thus,
the size of hidden state should be at least Ω(n) = Ω(

√
L). This means that the hidden dimension should be at least

Ω(
√√

L/ logL) = Ω̃( 4
√
L), which ends our proof.

C.2. Proofs of Proposition 5.4

In this subsection, we will prove Proposition 5.4, which is a corollary of the theorem from Feng et al. (2023) such that the
sparse transformer can generate the correct output for the DP problem.
Theorem C.2 (From Feng et al. (2023)). For any DP problem, any integer n ∈ N, there exists an autoregressive Transformer
with constant depth L, hidden dimension d and attention heads H (independent of n), such that the answer generated by the
Transformer is correct for all input sequences s of length no more than n. Moreover, all parameter values are bounded by
O(poly(n)).
Theorem C.3. Consider any m-locality DP problem satisfying the same condition as in Theorem 4.1. Given any integer
n > 0, let L be the length of the output sequence when the input sequence length is n. Then, there exists a (log-precision)
sparse Transformer with block size B = Θ(m), a constant depth M , a constant number of attention heads H , and a
constant hidden dimension D that can generate the correct output for all inputs s of length n.

Proof. Under the assumption of locality, we can treat the sparse transformer as a standard transformer to solve the m-locality
DP problem. When the standard transformer solves the m-locality DP problem, the attention head will only attend to the
tokens with the distance at most m, and the attention to other tokens is 0. The sparse transformer adds masks to other tokens,
and therefore, is equivalent to the standard transformer for m-locality DP problem. According to Theorem C.3, the sparse
transformer can solve m-locality DP problem.

C.3. Proofs of Proposition 5.5

In this section, we will give a proof of Proposition 5.5, which is a corollary of Theorem 4.4.
Theorem C.4. Consider any m-locality regular DP problem satisfying the same condition as in Theorem 4.1 and assume
that m = Θ(n) where n is the input sequence length. Then, a log-precision linear Transformer with a constant depth M
and a constant number of heads H can generate the correct output for all inputs s of length n only if the hidden dimension
D = Ω̃(

√
m).

Proof. Same as the arguments used in the proof of Theorem 4.2, we can get the size of hidden states should be at least
Ω(n) = Ω(m). The regularity assumption implies that the hidden dimension should be at least Ω(

√
m/ logm) = Ω̃(

√
m),

concluding our proof.

D. Additional Experiments
The accuracies of standard and efficient Transformers with 5 layers on the ED task are shown in Figure 3. The results are
similar to the results we obtained when using 3 layers. This evidence further supports our theoretical analysis.
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Figure 3. A comparison of accuracies on different model types with ED task. Each subplot corresponds to a model (Standard Transformer,
Linear Transformer, Sparse Transformer). Within each subplot, the x-axis represents the embedding dimension, and the y-axis denotes the
problem size. The color intensities indicate the accuracy level achieved by the respective models.
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