
Enhancing Cross-Language Code Translation via
Task-Specific Embedding Alignment in

Retrieval-Augmented Generation

Manish Bhattarai
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87544

ceodspspectrum@lanl.gov

Minh Vu
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87544

mvu@lanl.gov

Javier E. Santos
Earth & Environmental Science Division

Los Alamos National Laboratory
Los Alamos, NM 87544
jesantos@lanl.gov

Ismael Boureima
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87544
iboureima@lanl.gov

Daniel O’ Malley
Earth & Environmental Science Division

Los Alamos National Laboratory
Los Alamos, NM 87544
omalled@lanl.gov

Abstract

We introduce a novel method to enhance cross-language code translation from
Fortran to C++ by integrating task-specific embedding alignment into a Retrieval-
Augmented Generation (RAG) framework. Unlike conventional retrieval ap-
proaches that utilize generic embeddings agnostic to the downstream task, our
strategy aligns the retrieval model directly with the objective of maximizing trans-
lation quality, as quantified by the CodeBLEU metric. This alignment ensures that
the embeddings are semantically and syntactically meaningful for the specific code
translation task. Our methodology involves constructing a dataset of 25,000 Fortran
code snippets sourced from Stack-V2 dataset and generating their corresponding
C++ translations using the llama3.1-8b language model. We compute pairwise
CodeBLEU scores between the generated translations and ground truth examples to
capture fine-grained similarities. These scores serve as supervision signals in a con-
trastive learning framework, where we optimize the embedding model to retrieve
Fortran-C++ pairs that are most beneficial for improving the language model’s
translation performance. By integrating these CodeBLEU-optimized embeddings
into the RAG framework, our approach significantly enhances both retrieval ac-
curacy and code generation quality over methods employing generic embeddings.
On the HPC Fortran2C++ dataset, our method elevates the average CodeBLEU
score from 0.64 to 0.73, achieving a 14% relative improvement. On the Numerical
Recipes dataset, we observe an increase from 0.52 to 0.60, marking a 15% relative
improvement. Importantly, these gains are realized without any fine-tuning of the
language model, underscoring the efficiency and practicality of our approach.

38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024).



1 Introduction

Cross-language code translation is a critical task in modern software development, especially as
legacy programming languages, such as Fortran, continue to be prevalent in scientific computing,
while more contemporary languages like C++ are favored for their performance and versatility in
production environments. The goal of automatic translation from Fortran to C++ is to preserve the
functionality and structure of legacy code while benefiting from the optimizations and ecosystem of
C++. However, achieving high-quality translations that adhere to the syntax and semantic norms of
the target language remains a challenging problem, particularly when there is a lack of large, aligned
datasets or evaluation metrics that cover both source and target languages effectively.

Traditional approaches to cross-language translation, such as Retrieval-Augmented Generation
(RAG) Lewis et al. [2020] typically involve two phases: first, retrieving relevant examples from
a database, followed by a language model generating code conditioned on both the query and the
retrieved examples. In prior efforts, the retrieval models in RAG systems have relied on general-
purpose embedding models Bhattarai et al. [2024], Li et al., which are not tailored to the specific
nuances of code translation. These embeddings aim to retrieve relevant pairs from the source and
target languages but do not directly optimize for the quality of the generated code. As a result, while
the retrieved examples may be relevant in a broad sense, they often fail to guide the language model
towards producing translations that maximize fidelity to the ground truth in the target language.

This gap is particularly problematic in scenarios where explicit metrics, such as Code-
BLEU—designed to assess both syntactic and semantic correctness of translated code—are only
available for the target language (e.g., C++ in this case). Without aligning the retrieval mechanism
to such a task-specific metric, the system may retrieve suboptimal examples, leading to poor code
generation performance. The inability to leverage task-relevant quality metrics during retrieval
weakens the overall system, limiting its effectiveness in high-accuracy code translation tasks.

To address these limitations, we propose a novel contrastive learning framework that aligns the
retrieval phase of the RAG system with the goal of maximizing the CodeBLEU Feng et al. [2020]
score for the generated C++ code. We collect a dataset of 25,000 Fortran code examples from
Stack V2 Lozhkov et al. [2024] and use the llama3.1-8b Touvron et al. [2023] model to generate
corresponding C++ translations. In the absence of ground truth C++ translations, we evaluate the
quality of these translations using pairwise CodeBLEU similarity scores. This metric captures both
syntactic correctness and semantic fidelity, providing a robust signal for aligning the retrieval model
through contrastive learning.

This approach directly addresses the shortcomings of general-purpose embedding models by inte-
grating task-specific metrics into the retrieval optimization process. By aligning the retrieval model
with the downstream task of producing high-quality C++ code, our method ensures that the examples
retrieved during inference are not just broadly similar but are semantically and syntactically aligned
in a way that enhances the LLM’s generative performance. The result is a significant improvement in
translation quality, as measured by CodeBLEU, over previous methods that lack such alignment.

Our contribution is twofold: first, we demonstrate the effectiveness of contrastive learning for fine-
tuning retrieval models in the context of cross-language code translation, using a task-specific metric
to guide alignment. Second, we show that optimizing retrieval for downstream generation tasks can
lead to state-of-the-art results, particularly in cases where aligned datasets are not readily available
for both source and target languages. This work not only advances the field of code translation but
also opens up new possibilities for applying similar techniques to other language pairs and domains
where task-specific evaluation metrics are available for only one side of the translation.

2 Related Work

Historically, code translation strategies before the advent of large language models (LLMs) relied
heavily on rule-based and statistical machine translation (SMT) systems Koehn [2009]. These systems
used predefined rules or statistical mappings between the source and target programming languages,
such as tree-based translation approaches that mapped syntax trees between languages. While these
methods provided structured and interpretable outputs, they were limited in their ability to handle the
semantic complexities of different programming languages and struggled with code diversity, edge
cases, and idiomatic translations.

2



With the rise of deep learning and LLMs, fine-tuning models on large datasets became the go-to
method for improving code translation. Models like CodeBERT Feng et al. [2020] and Codex Chen
et al. [2021], when fine-tuned on specific language pairs, improved translation quality by leveraging
vast amounts of parallel code data. However, the main limitation of LLM fine-tuning lies in the
resource-intensive process. Fine-tuning requires substantial amounts of labeled data and computa-
tional resources, making it impractical for niche or legacy languages like Fortran, where parallel data
may be scarce.

As a next step, task-specific alignment of LLMs emerged to improve translation by better guiding
the model’s output. While alignment techniques help improve output fidelity, they still necessitate
fine-tuning or explicit modification of the LLM itself, which can be resource-intensive and may
still fall short of generalization when translating between languages with significant structural
differences Mishra et al. [2024].

RAG introduced a more flexible approach by allowing LLMs to retrieve and condition their outputs
on example pairs from a relevant dataset. While RAG improves translation by augmenting the
model’s input, the effectiveness of this strategy depends on the quality and relevance of the retrieved
examples. In an example case Bhattarai et al. [2024], the retrieval step relies on general-purpose
embeddings like Nomic-Embed or CodeBERT, which, although effective at retrieving semantically
similar code, are not optimized for specific downstream metrics like CodeBLEU. As a result, the
LLM might not always retrieve the examples that would best assist in producing translations aligned
with target-specific quality metrics.

The approach we propose offers a significant advantage by focusing on semantic alignment of the
retrieval mechanism without the need to fine-tune the LLM itself. Through contrastive learning, we
optimize the embedding model to retrieve Fortran-C++ pairs that are more likely to maximize the
downstream metric (e.g., CodeBLEU) when used by the LLM for generation. This strategy ensures
that the most relevant examples are retrieved for each translation task, improving the generation
quality without requiring computationally expensive fine-tuning of the LLM. This retrieval alignment
makes RAG more efficient and better suited for translating between languages where high-quality
paired datasets may not be available. By concentrating on improving the quality of retrieved examples,
our method achieves high-quality translation with minimal additional model training, leveraging
existing LLM capabilities more effectively.

3 Methods

Our method involves aligning the Fortran embedding model using contrastive learning based on
CodeBLEU similarity scores, followed by applying this aligned model within a Retrieval-Augmented
Generation (RAG) framework for improved cross-language code translation from Fortran to C++ as
shown in Figure 1.

Code Generation and Similarity Measurement: Given a dataset of Fortran code snippets Df =

{f1, f2, . . . , fN}, we generate corresponding C++ translations Ĉ = {ĉ1, ĉ2, . . . , ĉN} using a pre-
trained large language model G without retrieval:

ĉi = G(fi), ∀i ∈ {1, 2, . . . , N}. (1)

Since ground truth C++ translations are not available, we compute pairwise CodeBLEU similarity
scores Ren et al. [2020] between all generated translations. For each pair (ĉi, ĉj), we calculate the
CodeBLEU score Sij ∈ [0, 1]:

Sij = CodeBLEU(ĉi, ĉj). (2)

These scores capture the syntactic and semantic similarities between the generated C++ translations.
The CodeBLEU metric extends the traditional BLEU score by incorporating syntactic and semantic
aspects of code, consisting of four components: n-gram match, weighted n-gram match, syntactic
AST match, and semantic data flow match. The overall CodeBLEU score S is computed as:

S = α · Sn-gram + β · Sweighted n-gram + γ · Ssyntax + δ · Ssemantic, (3)

3



𝐹!

𝐹!

StarEncoder

𝐶"

𝐶!

CodeBleu

𝐶𝐵 𝐶" , 𝐶!

𝑒" , 𝑒!

i. Embedding model Alignment

StarEncoder

St
ac

k-
V2

𝐹90 𝐶𝑃𝑃

ii. Translation based on aligned RAG retreival with LLM

Figure 1: Overview of the proposed pipeline. i) The LLM generates pairwise code translations,
which are evaluated using the CodeBLEU metric. ii) The resulting similarity scores are used to guide
contrastive learning for semantic alignment of the embedding model.

where α, β, γ, δ are weights summing to 1 (α + β + γ + δ = 1), and
Sn-gram, Sweighted n-gram, Ssyntax, Ssemantic are the scores for each component. Specifically:

• Sn-gram is the traditional BLEU score up to n-grams.

• Sweighted n-gram assigns weights to n-grams based on their importance.

• Ssyntax measures the similarity between the abstract syntax trees (AST) of the code snippets.

• Ssemantic assesses the similarity in data flow between code snippets.

Each component is calculated using algorithms tailored for code comparison, allowing for a compre-
hensive assessment of code similarity.

Embedding Function: Next, we define an embedding function E that maps Fortran code snippets to
d-dimensional embedding vectors:

efi = E(fi) ∈ Rd, ∀i ∈ {1, 2, . . . , N}. (4)

These embeddings are intended to capture the semantic content of the code snippets in a continuous
vector space, facilitating comparison through similarity measures.

Embedding Alignment with InfoNCE Loss: To align the embedding space of code snippets with
the semantic similarities measured by CodeBLEU (Figure 1I), we employ the InfoNCE (Information
Noise-Contrastive Estimation) loss function van den Oord et al. [2018]. Consider a batch of N
normalized embeddings {hi}Ni=1 ⊂ Rd, where hi = efi/∥efi∥. The pairwise cosine similarities
between embeddings are computed and scaled by a temperature parameter τ > 0:

sij =
h⊤
i hj

τ
, (5)

where sij measures the similarity between embeddings hi and hj . The CodeBLEU similarity scores
between the corresponding code snippets are denoted by cij = Sij , forming a symmetric matrix C.

4



The InfoNCE loss integrates these continuous similarity scores to weigh the contribution of each pair.
The loss function is defined as:

L = − 1

N

N∑
i=1

N∑
j=1

cij log

(
exp(sij)∑N
k=1 exp(sik)

)
. (6)

In Equation (6), the inner summation over k computes the normalization term for the softmax
function, ensuring that the probabilities sum to one for each anchor embedding hi. The term inside
the logarithm represents the probability pij of embedding hj being similar to the anchor hi, given by:

pij =
exp(sij)∑N
k=1 exp(sik)

. (7)

The InfoNCE loss in Equation (6) effectively encourages embeddings of semantically similar code
snippets (those with higher cij) to have higher cosine similarities, thereby aligning them closer in
the embedding space. The weighting by cij amplifies the contribution of pairs with higher semantic
similarity, as determined by CodeBLEU scores.

Minimizing the InfoNCE loss L results in an embedding space where semantically similar code
snippets are clustered together, and dissimilar ones are pushed apart. The temperature parameter
τ in Equation (5) controls the concentration of the distribution; a lower τ sharpens the softmax
distribution, making the model focus more on the most similar pairs.

Retrieval-Augmented Generation with Aligned Embeddings: After aligning the embedding model
E∗, we integrate it into a RAG framework to enhance the code translation process (see Figure 1II). In
this RAG setup, we utilize the Fortran-C++ benchmark dataset, where the Fortran code snippets are
embedded using the optimized embedding model E∗.

Given a query Fortran code snippet fq , we compute its embedding:

efq = E∗(fq).

We then compute the cosine similarity between the query embedding efq and the embeddings of all
Fortran code snippets ef in the dataset Df :

sim(efq , ef ) =
e⊤fqef

∥efq∥∥ef∥
, ∀f ∈ Df .

We retrieve the top-k Fortran code snippets {fr1 , fr2 , . . . , frk} from Df that have the highest cosine
similarity scores with efq and fri ̸= fq .

For each retrieved Fortran code snippet frj , we obtain its corresponding C++ code snippet crj from
the dataset, forming Fortran-C++ pairs {(frj , crj )}kj=1.

These retrieved pairs are used to augment the input to the language model G, providing additional
context for code generation. The language model G then generates the translated C++ code ĉq for the
query fq:

ĉq = G
(
fq, {(frj , crj )}kj=1

)
.

By incorporating the retrieved examples into its input, the language model is better equipped to
produce translations that are accurate and aligned with the desired output.

4 Experiments and Results

In our study, we utilized three datasets to enhance code translation through RAG and embedding
alignment. The HPC Fortran2CPP dataset Lei et al. [2023], comprising 315 Fortran-C++ code
pairs, and the Numerical Recipes dataset Press et al. [1988], containing 298 Fortran-C++ pairs,
were employed for RAG retrieval and evaluation with LLMs. Additionally, we used the Stack-V2
dataset Lozhkov et al. [2024], which includes over 500,000 Fortran code snippets, for RAG alignment.
From Stack-V2, we sampled 25,000 high-quality and diverse Fortran code snippets by selecting files
larger than 500 bytes and prioritizing those with the highest combined star and fork counts, indicating

5



relevance and popularity. Since Stack-V2 lacks Fortran-C++ pairs, we extracted files containing
metadata, code, and comments, and utilized the llama3.1-70b Instruct model to extract executable
Fortran code, discarding other metadata. Then, we used the llama3.1-8b model to translate the

0.0 0.2 0.4 0.6 0.8 1.0
One-shot CodeBLEU (Unaligned)

0.0

0.2

0.4

0.6

0.8

1.0
On

e-
sh

ot
 C

od
eB

LE
U 

(A
lig

ne
d)

Avg Unaligned: 0.64 ± 0.19
Avg Aligned: 0.73 ± 0.17

Model: llama3.1 70b, Dataset: HPC Fortran2C++
Shots

1-shot
2-shot
3-shot
y = x

0.0 0.2 0.4 0.6 0.8 1.0
One-shot CodeBLEU (Unaligned)

0.0

0.2

0.4

0.6

0.8

1.0

On
e-

sh
ot

 C
od

eB
LE

U 
(A

lig
ne

d)

Avg Unaligned: 0.52 ± 0.19
Avg Aligned: 0.60 ± 0.19

Model: llama3.1 70b, Dataset: Numerical Recipe

0.0 0.2 0.4 0.6 0.8 1.0
One-shot CodeBLEU (Unaligned)

0.0

0.2

0.4

0.6

0.8

1.0

On
e-

sh
ot

 C
od

eB
LE

U 
(A

lig
ne

d)

Avg Unaligned: 0.59 ± 0.18
Avg Aligned: 0.71 ± 0.16

Model: llama3.1 8b, Dataset: HPC Fortran2C++

0.0 0.2 0.4 0.6 0.8 1.0
One-shot CodeBLEU (Unaligned)

0.0

0.2

0.4

0.6

0.8

1.0

On
e-

sh
ot

 C
od

eB
LE

U 
(A

lig
ne

d)

Avg Unaligned: 0.47 ± 0.18
Avg Aligned: 0.56 ± 0.19

Model: llama3.1 8b, Dataset: Numerical Recipe

Figure 2: Scatter plots comparing the unaligned and aligned One-shot CodeBLEU scores across
different shot counts (1-shot, 2-shot, 3-shot) for two models (llama3.1 70b and llama3.1 8b) and
two datasets (Numerical Recipe and HPC Fortran2C++ Dataset). Each point represents a shot count,
and the red dashed line represents the reference where the unaligned and aligned scores are equal.
The text box in each subplot displays the average CodeBLEU performance and standard deviation for
aligned vs. unaligned RAG translation across the few-shot configurations.

cleaned Fortran code snippets into corresponding C++ code. After code translaton, we computed
pairwise CodeBLEU scores between the generated C++ code snippets to quantify the syntactic and
semantic similarities of their translations. Leveraging these CodeBLEU metrics and the embeddings
from the Fortran codes, we employed the InfoNCE loss function van den Oord et al. [2018] with a
temperature of 0.1 to align the embeddings of StarEncoder, effectively training the embedding model
to map semantically similar code snippets closer in the embedding space. The embedding model was
trained using the Adam optimizer with a learning rate of 1× 10−3 and a batch size of 128 per GPU,
sampling approximately 1.28 million code pairs for alignment. This training process was distributed
across 256 GH200 GPUs to accelerate the process, though it can also be performed on fewer GPUs
at a significantly slower pace. Post-alignment, we integrated the embedding model into the RAG
pipeline, where the Fortran-C++ pairs and corresponding Fortran embeddings are stored in a vector
database. We then evaluated performance using the llama3.1-8b and llama3.1-70b models in
zero-shot, 1-shot, 2-shot, and 3-shot scenarios on the benchmark datasets HPC Fortran2C++ and
Numerical Recipes, following settings similar to Bhattarai et al. [2024]. The CodeBLEU scores for
both the aligned and unaligned models are obtained by comparing the RAG-augmented generated
C++ translations to the ground truth C++ code.

Figure 2 presents scatter plots of CodeBLEU scores for code samples generated using RAG retrieval
with aligned versus unaligned embeddings derived from StarEncoder. In these plots, each data
point represents a single Fortran code snippet from the test set, with symbols—crosses, pluses, and
triangles—indicating evaluations using 1-shot, 2-shot, and 3-shot methods, respectively. The red
dashed line in each scatter plot denotes the boundary where the aligned and unaligned models yield
identical CodeBLEU scores. Data points above the red line signify instances where the aligned

6



1 2 3
Shots

0.0

0.2

0.4

0.6

0.8

1.0

Co
de

BL
EU

 S
co

re

Model: llama3.1 70b, Dataset: HPC Fortran2C++

Alignment
Unaligned Aligned

1 2 3
Shots

0.0

0.2

0.4

0.6

0.8

1.0

Co
de

BL
EU

 S
co

re

Model: llama3.1 70b, Dataset: Numerical Recipe

1 2 3
Shots

0.0

0.2

0.4

0.6

0.8

1.0

Co
de

BL
EU

 S
co

re

Model: llama3.1 8b, Dataset: HPC Fortran2C++

1 2 3
Shots

0.0

0.2

0.4

0.6

0.8

1.0

Co
de

BL
EU

 S
co

re

Model: llama3.1 8b, Dataset: Numerical Recipe

Figure 3: Box plots illustrating the distribution of CodeBLEU scores across various shot counts (1-
shot, 2-shot, 3-shot) for both unaligned and aligned models. The results are presented for two models
(llama3.1 70b and llama3.1 8b) across two datasets (Numerical Recipe and HPC Fortran2C++
Dataset)

Table 1: Delta in Mean CodeBLEU scores between Zero- and Few-Shot prompts. The values are
presented as Unaligned/Aligned scores.

∆ in CodeBLEU scores (Unaligned / Aligned)
Dataset Model Zero-shot 1-shot 2-shot 3-shot
HPC Fortran2++ llama3.1 70b 0.364 +0.262/+0.346 +0.275/+0.371 +0.281/+0.377

llama3.1 8b 0.342 +0.237/+0.346 +0.261/+0.376 +0.252/+0.374
numerical_recipes llama3.1 70b 0.280 +0.232/+0.313 +0.243/+0.329 +0.243/+0.317

llama3.1 8b 0.276 +0.181/+0.268 +0.195/+0.292 +0.201/+0.289

embedding model produces translations with higher CodeBLEU scores compared to the unaligned
model, indicating translations closer to the ground truth C++ code. Conversely, points below the red
line represent cases where the unaligned model performs better. The observation that the majority of
data points lie above the red line across all configurations demonstrates that the aligned embedding
model consistently outperforms the unaligned model in translation quality.

In other words, the results in Figure 2 demonstrate that aligned embeddings significantly improve
translation quality for each Fortran-to-C++ code translation task. Specifically, on the HPC For-
tran2C++ dataset, averaged over all shot counts and models, the aligned embeddings achieved an
average CodeBLEU score of 0.73, whereas unaligned embeddings achieve 0.64. On the Numerical
Recipes dataset, aligned embeddings yielded an average CodeBLEU score of 0.60, outperforming the
unaligned case at 0.52. These substantial improvements highlight the effectiveness of our method in
enhancing translation accuracy.

Figure 3 further corroborates these findings by presenting the distribution of CodeBLEU scores
across various experimental configurations. The box plots reveal that aligned embeddings not only
increase the median scores but also reduce performance variability. This indicates that our approach
consistently enhances translation quality and leads to more reliable code translations. The consistent
improvements across different model sizes (8B and 70B parameters) and datasets demonstrate the
robustness and scalability of our method.

7



Table 1 details the variations in mean CodeBLEU scores between zero-shot and few-shot prompting
strategies for both unaligned and aligned embedding models. A key observation is that aligned models
consistently exhibit greater improvements in CodeBLEU scores when transitioning from zero-shot to
few-shot settings. For instance, on the HPC Fortran2C++ dataset with the llama3.1-70b model,
the aligned embedding model achieves a delta increase of +0.346 in the 1-shot scenario, surpassing
the unaligned model’s increase of +0.262. At the 3-shot setting, the aligned model attains a delta of
+0.377, exceeding the unaligned model’s delta of +0.281. Similar patterns are observed with the
llama3.1-8b model and on the Numerical Recipes dataset.

These results indicate that embedding alignment significantly enhances the models’ capacity to exploit
few-shot prompts, leading to superior code translation performance as measured by CodeBLEU scores.
Alignment optimizes the embedding space to better capture the syntactic and semantic nuances of
code translation tasks, thereby augmenting the models’ few-shot learning capabilities. Additionally,
the larger model (llama3.1-70b) consistently outperforms the smaller model (llama3.1-8b),
suggesting that increased model capacity facilitates more effective utilization of few-shot examples
and alignment information. The diminishing marginal gains observed when increasing the number of
shots from one to three imply that the majority of performance improvements are realized with just
one or two examples, indicating diminishing returns beyond two shots.

5 Conclusion

We introduced a novel method for enhancing cross-language code translation from Fortran to C++
by aligning embeddings within a RAG framework. By leveraging contrastive learning based on
CodeBLEU similarity scores, we aligned the Fortran embedding model so that code snippets yielding
high-quality translations are positioned closer in the embedding space. This alignment enables the
RAG system to retrieve semantically meaningful examples that effectively guide th LLM during code
generation. Our experimental results demonstrate substantial improvements in translation quality
without the need for fine-tuning the LLM. Specifically, using aligned embeddings increased the
average CodeBLEU score from 0.64 to 0.73 on the HPC Fortran2C++ dataset and from 0.52 to 0.60
on the Numerical Recipes dataset, representing relative improvements of approximately 14% and
15%, respectively. The larger model (llama3.1-70b) consistently outperformed the smaller model
(llama3.1-8b), indicating that increased model capacity enhances the effectiveness of our approach.
Additionally, we observed diminishing returns beyond two-shot prompting, suggesting that most
performance gains are achieved with just one or two examples. Thus, our approach significantly
improves code translation performance by optimizing the retrieval mechanism through task-specific
embedding alignment, rather than relying on computationally expensive fine-tuning of the LLM.
This method is computationally efficient, scalable, and adaptable to other code translation tasks,
particularly when aligned datasets are scarce or evaluation metrics like CodeBLEU are critical.
Future work could extend this alignment strategy to additional programming languages and explore
integrating other evaluation metrics to further enhance translation quality.

References
Manish Bhattarai, Javier E Santos, Shawn Jones, Ayan Biswas, Boian Alexandrov, and Daniel

O’Malley. Enhancing code translation in language models with few-shot learning via retrieval-
augmented generation. arXiv preprint arXiv:2407.19619, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for programming and
natural languages. In Trevor Cohn, Yulan He, and Yang Liu, editors, Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 1536–1547, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.139. URL https://
aclanthology.org/2020.findings-emnlp.139.

Philipp Koehn. Statistical machine translation. Cambridge University Press, 2009.

8

https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139


Bin Lei, Caiwen Ding, Le Chen, Pei-Hung Lin, and Chunhua Liao. Creating a dataset for high-
performance computing code translation using llms: A bridge between openmp fortran and c++. In
2023 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Chuangji Li, Shizhuo Li, and Alan Wang. Retrieval-augmented multi-hop code generation with
codellama and unlimiformer.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza So-
ria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, et al. Gran-
ite code models: A family of open foundation models for code intelligence. arXiv preprint
arXiv:2405.04324, 2024.

William H Press, William T Vetterling, Saul A Teukolsky, and Brian P Flannery. Numerical recipes.
Cambridge University Press, London, England, 1988.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
arXiv preprint arXiv:2009.10297, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

9


	Introduction
	Related Work
	Methods
	Experiments and Results
	Conclusion

