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Abstract

Deep reinforcement learning (RL) policies based on deep neural networks (DNNs)1

achieve strong performance but are often opaque, hindering transparency, inter-2

pretability, and safe deployment. Interpretable policy distillation seeks to transfer3

knowledge from these black-box DNN policies into simpler, human-understandable4

forms. While prior work has extensively studied performance retention, fidelity5

to the original DNN policies has remained underexplored, which is crucial for en-6

suring that the distilled policies faithfully capture the underlying decision-making7

logic. To address this gap, we propose GM-DAGGER, a novel data aggregation8

method that employs a geometric mean loss to preserve fidelity without compro-9

mising performance. Building on this, we introduce Symbolic Policy Interpretable10

Distillation (SPID), a framework that distills DNN policies into symbolic analyti-11

cal equations via symbolic regression. Through extensive experiments across six12

environments and five deep RL algorithms, we show that SPID achieves superior13

preservation of both performance and fidelity, while providing interpretable policies14

that provide mechanistic insights into policy behavior and training dynamics.15

1 Introduction16

Deep reinforcement learning (RL) has achieved impressive success in a wide range of sequential17

decision-making problems using deep neural networks (DNNs) as powerful function approximators18

for policies [31, 43, 11]. Despite their strong feature extraction and generalization abilities, these19

high-dimensional, non-linear DNN models pose major challenges for transparency, interpretability,20

and deployment[50]. In particular, these policies are typically regarded as “black-box” models [55],21

and remain computationally expensive to train, sample inefficient, and vulnerable to biases, safety22

risks, and adversarial perturbations [17, 52, 41].23

To mitigate these challenges, there has been growing attention towards interpretable RL, with a24

particular focus on designing policies that are analytically tractable. Symbolic policies, represented25

as compact mathematical expressions composed of variables, constants, and symbolic operators,26

offer an alternative to black-box DNN policies. Due to their analytical tractability, symbolic policies27

provide mechanistic interpretability and facilitate formal verification of RL agent behavior. Policy28

distillation [38] is another technique used to interpret the DNN policies by transferring knowledge29

from a complex policy to a simple surrogate policy. Although policy distillation has been used30

extensively to compress large models (e.g., teacher) into smaller models (e.g., student) while pre-31

serving expert-level performance, distilled models often do not provide meaningful insights into32

the underlying decision-making process. Therefore, recent work started to explore symbolic policy33

learning as a route toward interpretable and deployable RL. For instance, Verma et al. (2018) [50]34

proposed PIRL, a programmatically interpretable RL framework designed to generate policies that35

are both interpretable and verifiable. Hein et al. (2018) in [16] proposed GPRL, which uses genetic36
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programming to evolve interpretable algebraic policy equations through model-based reinforcement37

learning. While providing interpretable solutions, these approaches typically suffer from low data38

efficiency and performance degradation compared to standard deep RL baselines.39

To address this critical gap, we propose symbolic policy distillation for interpretable RL. Our goal40

is to distill a symbolic policy from a pretrained DNN policy such that it preserves performance41

and faithfully reproduces its decision-making behavior. This allows the distilled symbolic policy to42

not only serve as an interpretable surrogate for inspecting the teacher DNN policy, but also to act43

as a standalone, efficient, and deployable agent in real-world problems. Our approach is based on44

imitation learning, where state–action pairs from a DNN policy are used to train a symbolic policy in45

a supervised learning fashion. A major challenge in this setting is distribution shift [34], which arises46

when the symbolic policy encounters states that deviate from those used during training, potentially47

leading to inaccurate and unfaithful behavior. To address this distributional shift, previous methods48

employ DAGGER [36], which iteratively collects action labels on states generated by the symbolic49

policy itself. However, standard DAGGER often results in overly complex symbolic expressions or50

reward degradation, as it treats all mistakes equally, regardless of their importance.51

To overcome this issue, Bastani et al. (2018) [1] introduced Q-DAGGER, which uses information from52

the DNN policy’s Q-function to prioritize critical states. Although Q-DAGGER improves performance,53

optimizing only for a single performance metric such as cumulative reward may result in symbolic54

policies that deviate substantially from the original DNN behavior, which is an undesirable property55

for interpretable RL. To create a balance trade-off between performance and faithfulness, we propose56

GM-DAGGER, which uses a geometric mean loss to jointly optimize these two criteria. Building on57

this, we introduce Symbolic Policy Interpretable Distillation (SPID), which distills any DNN policy58

into a symbolic policy that preserves performance, is faithful, and analytically interpretable.59

Our contributions are summarized as follows:60

• We propose symbolic policy distillation, a novel framework that distills any DNN policy into a61

compact symbolic policy that offers transparency and interpretability while preserving performance.62

• We introduce GM-DAGGER, an imitation learning method that provably balances faithfulness and63

reward by optimizing a geometric mean objective.64

• We develop SPID, which extracts symbolic policies that faithfully reproduce the original DNN65

behavior while preserving performance.66

• We further show that SPID distilling policies at different checkpoints can identify how the successful67

training achieves and why the bad training fails.68

2 Related Work69

2.1 Policy Distillation70

Policy distillation [38], originally derived from knowledge distillation [18], aims to train smaller and71

more efficient policies while maintaining expert-level performance. It has emerged as a prominent72

area within RL that enables the transfer of knowledge across policies and helps the development of73

more efficient and general agents. For instance, authors in [54] introduced a hierarchical experience74

replay framework that supports the transfer of multiple expert policies into a single multi-task policy75

through distillation. Subsequent works have focused on improving the fundamental distillation76

mechanisms [6], increasing distillation efficiency [45, 33], and learning multiple tasks policy [2, 53,77

15], or continual RL [48, 14].78

Despite its success, policy distillation suffers from distribution shift, a challenge similar to that in the79

imitation learning, where the student policy visits states that are not well covered by the expert policy.80

Several prior works focus on mitigating this issue, including iterative online correction methods such81

as SMILe [35] and DAGGER [36], distribution matching methods such as GAIL [19], ValueDICE [21],82

IQ-Learn [10], and regularization-based techniques such as BANs [9].83

2.2 Symbolic Policies and Interpretable RL84

Interpretable symbolic policies in RL can be in different forms, ranging from decision trees [1, 37, 4,85

29, 42, 20, 28], rule-based and program-based systems [50, 49, 7, 3, 32, 26], to compact mathematical86
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and analytical functional forms [22, 12, 51, 23, 25, 56]. For example, PIRL [50] proposes NDPS to87

learn programmatic policies that are interpretable and verifiable, and Silve et al. (2020) [42] develop88

differentiable decision trees in an online RL for interpretability.89

Despite the success of symbolic RL policies, most existing works use learning schemas that are90

not specifically designed for decision-level interpretability, i.e., understanding the internal decision-91

making process of DNN policies. As a result, the learned symbolic policies are typically optimized92

for performance (e.g., cumulative rewards) rather than fidelity to the teacher DNN policy. A few93

works explicitly address distillation in the context of interpretability: VIPER [1] proposes Q-DAGGER94

that extracts interpretable decision trees from DNN policies with a performance guarantee; PIRL [50]95

and INTERPRETER [20] both distill DNN policies into symbolic programs or trees. However, these96

methods often trade off fidelity for performance or interpretability. In contrast, this paper focuses on97

faithful distillation, which aims to extract symbolic policies that not only preserve performance but98

also retain high behavioral fidelity to the original DNN policy.99

3 Preliminary100

3.1 Reinforcement Learning101

Reinforcement Learning (RL) problems are commonly formalized as a finite-horizon Markov Deci-102

sion Process (MDP), defined by the tuple (S,A, P,R, T ). Here, S denotes the set of states, A the103

set of possible actions, P : S × A × S → [0, 1] the transition probabilities, and R : S × A → R104

the reward function. At each time step t ∈ {0, . . . , T − 1}, an agent in state st ∈ S selects an105

action at ∈ A, receives a reward rt = R(st, at), and transitions to the next state st+1 according106

to P (st+1|st, at). Here, the objective is to learn a policy π that maximizes the expected sum of107

cumulative rewards. In RL, policies can be deterministic, mapping each state to a single action, or108

stochastic, defining a probability distribution over actions given a state. Moreover, policies are often109

assumed to be stationary and Markovian, i.e., the action selection depends only on the current state110

and not on the history. In this paper, we consider policies to be stationary, Markovian, and stochastic.111

To formalize state distributions in an MDP, let d(π)0 (s) = I[s = s0] denote the initial distribution. For112

t > 0, the state distribution evolves as113

d
(π)
t (s) =

∑
s′∈S

P (s′, π(s′), s)d
(π)
t−1(s

′) .

The average visitation distribution is then given by d(π)(s) = T−1
∑T−1

t=0 d
(π)
t (s). The cost-to-go of114

π from s0 is J(π) = −V (π)
0 (s0). For a given policy π, the state-value function is defined as115

V
(π)
t (s) = R(s, π(s)) +

∑
s′∈S

P (s, π(s), s′)V
(π)
t+1(s

′),

where V
(π)
T (s) = 0. Similarly, the action-value function is defined as, Q(π)

t (s, a) = R(s, a) +116 ∑
s′∈S P (s, a, s′)V

(π)
t+1(s

′). Without loss of generality, we assume that there is a single initial state117

s0 ∈ S. Value-based methods aim to approximate the value functions V or Q and implicitly derive118

the optimal policy, typically by acting greedily with respect to the Q-function [31]. On the other hand,119

policy gradient methods directly optimize a parameterized policy πθ without explicitly estimating120

Q [46]. In both of these methods, since returns can be noisy, estimating Q or policy gradient121

methods suffer from high variance and instability. To reduce the variance, the advantage function122

A(s, a) = Q(s, a)− V (s) is usually employed. Advantage Actor-Critic (A2C) [30] jointly learns a123

policy πθ (e.g., actor) and a value function V̂ϕ (e.g., critic), where the critic provides feedback to the124

actor. Proximal Policy Optimization (PPO) [40] further improves the stability via a clipped surrogate125

objective function. The overestimation bias and sample efficiency further improve in Twin Delayed126

Deep Deterministic (TD3) [8] and Soft Actor-Critic (SAC) [13]. In this paper, we consider all these127

algorithms, which include policy-based and a combination of actor-critic and value-based methods.128

3.2 Dataset Aggregation129

Dataset Aggregation or DAGGER [36] addresses the distribution shift in imitation learning, where a130

policy π̂ trained on expert demonstrations d(π
∗) encounters a different state distribution d(π̂) during131

3



Algorithm 1 Symbolic Policy Interpretable Distillation (SPID).

1: procedure GM-DAGGER((S,A, P,R), π∗, Q∗, α, β, ϵ,M,N )
2: Initialize dataset D ← ∅
3: Initialize policy π̂0 ← π∗

4: for i = 0 to N do
5: Execute policy πi according to 5
6: Collect M trajectories Di = {(s, π∗(s)) ∼ πi(s)}
7: Compute GM loss components:
8: gp(s, π̂) = V ∗(s)−Q∗(s, π̂(s)) + α
9: gf (s, π̂) = ∥π̂(s)− π∗(s)∥2 + ϵ

10: ℓ(s, π̂) =
√

gp(s, π̂(s))× gf (s, π̂(s))
11: Aggregate dataset D ← D ∪Di

12: Train symbolic policy π̂i ← SymbolicRegression(D, ℓ(s, π̂))
13: end for
14: return Best policy π̂ ∈ {π̂1, . . . , π̂N} on validation
15: end procedure

execution, leading to compounding errors that can accumulate over time. To reduce this issue, DAG-132

GER iteratively collects trajectories under the current policy π̂, queries the expert policy π∗ for correct133

actions on these newly visited states, and aggregates this with previous datasets to retrain the policy.134

Thus, the goal of DAGGER becomes to train a policy π̂ ∈ Π as, π̂ = argminπ∈Π Es∼d(π) [ℓ(s, π)],135

where the loss function is defined as 0-1 loss ℓ(s, π) = I[π(s) ̸= π∗(s)] or the surrogate loss function,136

which provides a convex upper bound of the 0− 1 loss.137

Q-DAGGER [1] extends DAGGER by leveraging the expert policy’s Q-function to prioritize learning138

on critical states where action choices significantly impact the future performance. Q-DAGGER139

enhances the loss function to focus on the cost-to-go difference between optimal and chosen actions140

ℓt(s, π) = V
(π∗)
t (s)−Q

(π∗)
t (s, π(s)). (1)

4 Proposed Method141

In this section, we introduced Symbolic Policy Interpretable Distillation (SPID), a framework for142

distilling deep RL policies into interpretable symbolic representations. The key component of SPID143

is GM-DAGGER, which is a geometric mean variant of DAGGER. This variant provides a principled144

way to balance performance and faithfulness to the original policy.145

Unlike standard multi-objective RL methods, in which we explicitly search for Pareto-optimal146

policies that can be exponentially large, our method directly learn a single Pareto-optimal policy147

by incorporating the performance and fidelity objectives into a single regularized loss function.148

This formulation allows us to train a single symbolic policy that simultaneously achieves strong149

performance and high fidelity to the teacher policy.150

4.1 Geometric Mean Dataset Aggregation151

We begin by formalizing the geometric mean loss that derives GM-DAGGER (Geometric Mean152

Dataset Aggregation). GM-DAGGER extends standard DAGGER [36] and Q-DAGGER by integrating153

performance and fidelity objectives into a single balanced objective.154

Performance gap. We evaluate the performance difference between the distilled policy π relative to155

the teacher policy π∗ in the form of156

gpt (s, π) = V
(π∗)
t (s)−Q

(π∗)
t (s, π(s)) + α , (2)

where V π∗
and Qπ∗

are the teacher’s value and Q-functions, and α > 0 ensures positivity for the157

geometric mean. This term directly corresponds to the original Q-DAGGER loss.158

Fidelity gap. We quantify the divergence between the distilled policy π and the teacher policy π∗ as159

gft (s, π) = ||π(s)− π∗(s)||2 + ϵ , (3)
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Trajectory 1

Trajectory 2

Trajectory 3

(a) Example showing difference of DAGGER, Q-DAGGER and GM-DAGGER.
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(b) Objective difference.

Figure 1: Illustrative example demonstrating the trade-offs between different imitation learning
approaches. (a) A finite-horizon MDP with deterministic transitions showing three sub-optimal
trajectories and the optimal teacher policy π∗ (dashed). Each approach favors different trajectories:
DAGGER prefers high-fidelity Trajectory 2, Q-DAGGER favors high-performance Trajectory 3, while
GM-DAGGER balances both objectives by selecting Trajectory 1. (b) Pareto frontier illustrating the
performance-faithfulness trade-off, where GM-DAGGER achieves a balanced solution between the
extremes of pure fidelity and pure performance optimization

where ϵ > 0 is added to prevent the fidelity gap from being 0.160

GM-DAGGER loss. By combining 2 and 3 loss terms, GM-DAGGER defines161

ℓt(s, π) =

√
gpt (s, π) · g

f
t (s, π) . (4)

This formulation of the new loss function makes sure that the distilled policy is efficient as well162

as faithful. In other words, the poor behavior in either objective cannot be compensated by strong163

performance in the other, which naturally balances the trade-off. Next, we demonstrate the distinct164

mechanisms underlying DAGGER, Q-DAGGER, and GM-DAGGER.165

Proposition 4.1. In a discrete action space finite time MDP, for policy π with disagreements d(π)166

and performance gap ∆(π) over the time horizon T , we have167

ℓDAGGER =
d(π)

T
, ℓQ-DAGGER =

∆(π)

T
, ℓGM-DAGGER =

√
(
∆(π)

T
+ α)(

d(π)

T
+ ϵ).

By performing optimization on those loss functions, the algorithms exhibit different preferences:168

• DAGGER prioritize behavioral mimicking: d(πi) < d(πj)⇔ πi ≻ πj .169

• Q-DAGGER prioritize performance: ∆(πi) < ∆(πj)⇔ πi ≻ πj .170

• GM-DAGGER balances fidelity and performance through multiplicative trade-off171

(∆(πi) + αT )(d(πi) + ϵT ) < (∆(πj) + αT )(d(πj) + ϵT )⇔ πi ≻ πj .172

Example 4.2. We make the gap explicit to demonstrate Proposition 4.1 in an example shown in173

Figure 1a. Figure 1a shows a simple finite-horizon MDP, with initial state s0, deterministic transitions174

shown in arrows, and with the finite time horizon of T = 3(k+ 1). In this MDP, the possible rewards175

for each state are R(s′−k = T − 3τ), R(sk) = T − τ , R(s̃) = T , and R(s) = 0.176

As shown in the Figure 1a, we only consider 4 trajectories named as “Trajectory 1, 2, 3” and "π∗".177

As can be seen, the teacher policy π∗, shown in dashed edges, achieves the optimal trajectory with178

reward T . Since the perfect imitation is impossible, we mainly focus on the remaining 3 trajectories179

that deviate from the optimal policy π∗ to understand the different characteristics of DAGGER, Q-180

DAGGER, and GM-DAGGER. For straightforward understanding, trajectory 2 can be considered the181

most faithful trajectory a policy will follow, but it sacrifices significant performance. Trajectory 3,182

on the other hand, represents the highest performance retention behavior but shows no faithfulness.183

Trajectory 1 focuses on balancing both faithfulness and performance, with modest sacrifices in each.184

With the calculation following Proposition 4.1 (detailed calculation in Appendix A), we found185

• DAGGER: ℓDAGGER
2 < ℓDAGGER

1 < ℓDAGGER
3 ⇔ π2 ≻ π1 ≻ π3.186
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• Q-DAGGER: ℓQ-DAGGER
3 < ℓQ-DAGGER

1 < ℓQ-DAGGER
2 ⇔ π3 ≻ π1 ≻ π2.187

• GM-DAGGER: ℓGM-DAGGER
1 < ℓGM-DAGGER

2 < ℓGM-DAGGER
3 ⇔ π1 ≻ π2 ≻ π3.188

This shows that, when imitation is imperfect, DAGGER only focus on fidelity while ignore performance189

and Q-DAGGER favors performance but ignores fidelity. However, GM-DAGGER creates a trade-off190

and yields a distilled policy that lies on the Pareto front (Figure 1b). This illustrative example191

demonstrates the main reason and advantage of the GM-DAGGER in providing a single-objective192

loss that implicitly creates the trade-off between performance and faithfulness.193

4.2 Symbolic Policy Interpretable Distillation194

We now combine the GM-DAGGER with symbolic regression [27] to propose SPID (shown in195

Algorithm 1), an approach that aims to distill the teacher’s DNN policy into an interpretable analytical196

symbolic formulation that describes the policy behavior. For the symbolic regression part, we employ197

the efficient, scalable, and high-performance PySR library [5].198

The full training pipeline is as follows. First, we sample state action pairs from π∗, store them in a199

dataset D, and fit an initial symbolic policy π̂0 via symbolic regression. We refer to this as a Dataset200

Initialization step. In practice, at this step, the symbolic policy often performs poorly due to the201

distribution shift. Recall that, in the symbolic policy distillation, the distribution shift means the202

symbolic policy π̂0 likely follows a completely different trajectory during validation, which remains203

unseen in π∗’s trajectories. We refer to this as the distribution shift of the symbolic policy π̂0204

To address this distribution shift problem, we follow the data aggregation principle in DAGGER. At205

each iteration, we mix the symbolic policy π̂i with the teacher policy π∗ using the mixing coefficient206

β, which provably yeild a hybrid policy as:207

πi = βπ∗ + (1− β)π̂i, (5)

where β = 0.5 in our experiments. We call this policy mixing step. After this step, we execute208

πi for M trajectories to collect new state-action pairs and store them in the dataset. Subsequently,209

we compute the performance gap and fidelity gap from (2) and (3) accordingly to compute the210

GM-DAGGER loss function (4). By minimizing this loss function, our proposed GM-DAGGER211

improves the overall performance and fidelity, which makes it an optimal choice for interpretability.212

Finally, in the last step, we retrain a new symbolic policy π̂i+1 on the aggregated dataset using the213

symbolic regression (PySR [5]), which ultimately minimizes the GM loss. Our symbolic regression214

operates via a multi-population evolutionary search algorithm over analytical functions to create a215

trade-off between fidelity and performance.216

5 Experimental Result217

5.1 Experimental setup218

To evaluate SPID, we perform experiments across six Gymnasium [47] environments, including a219

range of different problems: CartPole, MountainCar, Pendulum, Acrobot, Reacher, and Swimmer.220

These environments pose different control challenges from simple balancing to complex multi-body221

coordination, providing a comprehensive testbed for evaluating the robustness and generalizability of222

SPID. Moreover, we employ five deep RL algorithms to train teacher policies for distillation with223

SPID. These algorithms includes on-policy algorithms such as PPO [40], TRPO [39] and off-policy224

algorithms DDPG [24], SAC [13], and TD3 [8]. For fair evaluation, we compare SPID against three225

interpretable policy distillation baselines. Our first baseline is the symbolic policy regressions [22],226

which applies symbolic regression directly on state–action trajectories to obtain closed-form policies.227

Our second baseline is VIPER [1], a decision tree distillation method with depth limited to 4 to ensure228

interpretability [44]. (Performance of VIPER without tree depth limits to guarantee interpretability is229

shown in the Appendix B.) Our third baseline is PIRL [50], which is a programmatically interpretable230

RL method specifically designed to distill DNN policies to programmatic policies.231
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Table 1: Performance comparison of policy distillation methods.
Deep RL Algorithm Distillation Methods

Env Name Performance Regression PIRL VIPER SPID

CartPole PPO 1000.0± 0.0 576.4± 190.2 1000.0± 0.0 585.9± 229.6 1000.0± 0.0

TRPO 1000.0± 0.0 326.3± 89.2 1000.0± 0.0 265.8± 228.9 1000.0± 0.0

DDPG 1000.0± 0.0 142.0± 122.9 1000.0± 0.0 985.0± 45.0 1000.0± 0.0

SAC 1000.0± 0.0 158.9± 30.1 1000.0± 0.0 573.2± 327.5 1000.0± 0.0

TD3 1000.0± 0.0 40.4± 12.5 997.5± 5.8 220.1± 13.7 1000.0± 0.0

MountCar PPO 91.1± 0.1 −146.0± 4.4 −12.4± 0.0 91.2± 0.3 94.7± 1.4

TRPO 93.9± 0.0 −55.7± 4.9 −9.5± 1.3 93.9± 0.0 94.4± 0.8

DDPG 93.9± 0.3 −59.4± 4.8 −7.4± 0.6 94.0± 0.2 95.0± 0.3

SAC 93.6± 0.1 −98.0± 2.0 −1.5± 1.4 93.8± 0.3 93.8± 0.7

TD3 93.8± 0.2 −95.7± 1.5 −7.4± 0.6 93.8± 0.2 94.7± 0.2

Pendulum PPO −263.9± 119.3 −1255.8± 451.2 −1161.1± 191.2 −903.4± 333.8 -253.3± 124.5

TRPO −181.7± 78.2 −1128.6± 167.2 −1254.7± 209.8 −893.0± 402.7 -346.6± 361.0

DDPG −155.1± 79.0 −1347.5± 320.0 −1413.1± 28.6 −369.1± 252.3 -193.8± 74.2

SAC −145.2± 93.1 −1381.7± 283.5 −1567.6± 64.6 −797.9± 324.1 -214.7± 123.5

TD3 −170.5± 93.8 −1210.1± 202.3 −1563.0± 46.6 −621.5± 611.6 -173.3± 111.2

Acrobot PPO −37.8± 3.3 −79.9± 7.3 −109.3± 31.3 −37.7± 4.5 -36.7± 0.5

TRPO −40.2± 0.4 −117.1± 13.2 −92.7± 21.8 -44.7± 8.5 −73.8± 4.9

DDPG −34.5± 0.7 −74.7± 18.4 −91.0± 32.0 -39.4± 4.0 −48.3± 6.3

SAC −35.0± 0.0 −82.0± 17.2 −85.6± 18.3 -37.6± 3.5 −45.9± 1.8

TD3 −37.3± 0.5 −82.5± 7.4 −75.2± 11.8 −49.9± 12.2 -49.5± 4.0

Swimmer PPO 356.2± 1.4 −3.8± 30.7 −5.8± 21.0 357.7± 2.1 350.5± 3.6

TRPO 339.0± 1.3 30.2± 7.3 −4.0± 19.7 338.1± 2.0 338.1± 2.3

DDPG 347.6± 1.1 172.2± 82.6 4.0± 19.5 348.0± 3.3 354.8± 1.5

SAC 349.6± 1.3 22.3± 4.9 −0.7± 22.3 344.0± 1.8 345.3± 1.6

TD3 355.5± 1.5 −20.2± 5.6 −9.2± 14.7 351.7± 1.8 354.2± 1.4

Reacher PPO −5.1± 2.0 −25.2± 17.9 −11.2± 3.8 −5.9± 1.7 -5.7± 4.2

TRPO −5.8± 1.9 −26.1± 17.6 −11.4± 3.5 −7.3± 2.3 -6.5± 2.0

DDPG −4.7± 0.8 −11.4± 4.2 −8.8± 4.3 −7.0± 3.0 -6.4± 2.2

SAC −3.3± 1.3 −21.8± 11.2 −11.3± 1.9 −7.9± 2.5 -6.1± 1.7

TD3 −3.6± 1.0 −14.2± 1.7 −7.4± 4.7 −6.6± 2.6 -5.7± 3.0

5.2 Main Results232

In this section, we present the main experiments of the paper. From these experiments, we try to233

answer these research questions (A) How effective is SPID in preserving the performance of the234

teacher policy compared to distillation baselines? (B) To what extent does SPID maintain fidelity to the235

teacher DNN policy? (C) What kinds of meaningful insights can we extract from symbolic policies?236

(D) Can symbolic policies provide insights into the training dynamics of deep RL algorithms?237

Question (A) To evaluate how effective SPID is in preserving teacher policy performance, we238

conducted experiments in all six environments and report the mean and standard deviation of239

returns evaluated on 10 trajectories during testing in Table 1. These results demonstrate that the240

regression method performs the worst, mainly because of the distribution shift, as it is fitting only to241

offline trajectories and fails to generalize to novel states. Although PIRL and VIPER mitigate this242

distribution shift via dataset aggregation, they still struggle in complex control tasks. In contrast, SPID243

consistently achieves the highest performance in all environments and algorithms. SPID achieves this244

by combining symbolic regression with GM-DAGGER, which not only mitigates the distribution shift245

but also produces symbolic policies that remain competitive with the teacher policy.246

Question (B) To answer this question, we measure fidelity by computing the trajectory-wise L2247

distance between distilled and teacher policy across 10 rollouts with the same initial state s0. These248

results are shown in Table 2, where the smaller L2 distance means more faithfulness of the distilled249

policy. As expected, regression and PIRL perform poorly because they fail to mimic complex250

behaviors. VIPER performs better in simple tasks due to the flexibility of decision trees. However,251
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Table 2: Fidelity comparison of policy distillation methods.
Distillation Methods

Environment Algorithm Regression PIRL VIPER SPID

CartPole PPO 0.000± 0.002 0.000± 0.002 0.001± 0.003 0.000± 0.001

TRPO 0.002± 0.024 0.006± 0.031 0.003± 0.019 0.002± 0.007

DDPG 0.084± 0.044 0.026± 0.037 0.015± 0.032 0.015± 0.055

SAC 0.078± 0.061 0.119± 0.096 0.059± 0.069 0.079± 0.166

TD3 0.300± 0.298 0.391± 0.294 0.250± 0.298 0.347± 0.269

MountainCar PPO 0.541± 0.604 0.746± 0.331 0.178± 0.391 0.315± 0.234

TRPO 0.598± 0.441 0.758± 0.356 0.388± 0.625 0.158± 0.193

DDPG 0.679± 0.505 0.754± 0.361 0.311± 0.488 0.164± 0.196

SAC 0.456± 0.535 0.722± 0.358 0.169± 0.391 0.084± 0.104

TD3 0.396± 0.514 0.772± 0.327 0.315± 0.548 0.244± 0.262

Pendulum PPO 0.258± 0.461 0.312± 0.406 0.124± 0.266 2.431± 5.125

TRPO 0.242± 0.586 0.242± 0.482 0.242± 0.455 0.224± 0.370

DDPG 0.389± 0.856 0.374± 0.685 1.663± 0.643 0.347± 0.715

SAC 0.295± 0.658 0.184± 0.512 1.720± 0.581 0.151± 0.496

TD3 3.317± 1.621 0.306± 0.634 0.237± 0.777 0.212± 0.499

Acrobot PPO 1.167± 0.802 0.981± 0.619 0.078± 0.462 0.219± 0.718

TRPO 0.843± 0.703 0.631± 0.481 0.218± 0.267 0.513± 0.506

DDPG 1.245± 0.870 0.893± 0.691 0.437± 0.944 0.113± 0.071

SAC 0.868± 0.524 0.684± 0.451 0.893± 0.691 0.482± 0.497

TD3 1.063± 0.711 0.795± 0.592 0.931± 0.699 0.457± 0.790

Swimmer PPO 0.228± 0.285 1.331± 0.130 1.333± 0.129 0.097± 0.099

TRPO 0.254± 0.208 1.258± 0.181 1.260± 0.179 0.107± 0.148

DDPG 0.296± 0.192 1.381± 0.077 1.381± 0.077 0.071± 0.120

SAC 0.196± 0.179 1.194± 0.125 1.193± 0.125 0.071± 0.088

TD3 0.235± 0.253 1.362± 0.114 1.362± 0.114 0.119± 0.166

Reacher PPO 0.232± 0.208 0.071± 0.056 0.074± 0.064 0.070± 0.063

TRPO 0.682± 0.967 0.076± 0.093 0.068± 0.090 0.066± 0.075

DDPG 0.558± 3.703 0.068± 0.080 0.083± 0.093 0.109± 0.144

SAC 0.140± 0.161 0.110± 0.081 0.078± 0.097 0.077± 0.083

TD3 0.320± 0.227 0.097± 0.106 0.078± 0.091 0.095± 0.159

SPID outperforms all baselines, achieving the lowest policy divergence across tasks. This again252

validates that our method effectively aligns with both teacher behavior and task performance.253

Question (C) To answer (C), we run experiments with SPID to distill policies. Table 3 presents254

representative policies distilled by SPID in the CartPole environment (with results for all environments255

provided in Appendix C). These results show that SPID produces compact symbolic expressions that256

enable mechanistic understanding. Moreover, the distilled expressions are straightforward to interpret257

and readily deployable.258

For example, in CartPole, the TRPO policy, unlike PPO, does not rely on the position feature s0,259

instead basing its decisions on the remaining three features. To validate this, we mask the CartPole260

environment by removing s0 and rerun TRPO policy. Our results show that this omission does not261

degrade performance, as the TRPO on this modified environment yields nearly identical returns262

(994.9 ± 8.43). Although this finding is important in understanding the underlying model and263

reducing the state space, it also exposes potential risks. To show this, we perform a deeper analysis264

on the vulnerability under perturbations, where velocity s1 > 1.3 and TRPO fails miserably with265

performance dropping to 5.0± 0.0. Such analyses, which are impossible to obtain from black-box266

teacher DNN policies, demonstrate how symbolic distillation can uncover brittle strategies and inform267

safer deployment rather than simply deploying a DNN-based policy.268

Question (D) To investigate whether symbolic policies provide insights into training dynamics269

and failure modes, we perform experiments with PPO on CartPole and MountainCar. Figure 2270

demonstrates the PPO training on these environments. In CartPole (Figure 2a), PPO fails to learn271

anything during the first 300 episodes. At this stage, SPID reveals that the policy relies primarily on272
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Table 3: Distilled symbolic policy for CartPole environment.
Environment Algorithm Policy Expression from SPID

CartPole PPO a = (s2 + (((0.055− (−0.193) · (s3 + s0)))− 0.135s1)) ∗ 1.697
TRPO a = (s3 + (s1 + s2)) · (4.401− (−0.804− s1)

2)

DDPG a = ((s3 · (−0.098))− s2) · (−20.292)
SAC a = (2.359− (s3 + 0.825)4) · ((s2 · 3.526) + s3)

TD3 a = (s1 + 2.551) · ((s3 + s2) + s1)
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Figure 2: Training dynamics analysis through symbolic policy distillation.

angle-based control (e.g., s2). As training progresses, PPO gradually incorporates velocity (s1) and273

cart position (s3), which leads to high returns and improved stability. This trajectory of symbolic274

expressions provides an interpretable and transparent perspective of how the policy evolves during275

training. In contrast, PPO fails in MountainCar, converging to near-zero returns. This failure276

corresponds to a form of reward hacking, where rather than pursuing the sparse terminal reward of277

reaching the goal, the agent minimizes the penalty term −0.1a2 by avoiding large action values. This278

behavior is reflected in Figure 2b, where the learned coefficients shrink over time, and PPO never279

learns to solve the task. Interestingly, such investigations, which are only possible through SPID,280

directly provide fixes such as reward shaping, increased rollout horizons, or entropy regularization,281

which are difficult to identify from a black-box teacher DNN policy.282

6 Conclusions283

In this paper, we addressed the problem of performance-fidelity trade-off in interpretable policy dis-284

tillation. We proposed GM-DAGGER, which employs a geometric mean loss to optimize performance285

and fidelity. Building on this, we introduce SPID, a framework that distills symbolic policies that286

are both faithful and efficient. Experiments across six environments with five deep RL algorithms287

show that SPID preserves performance and fidelity while providing interpretable policies that reveal288

underlying mechanistic decision-making and training dynamics.289

Limitations and future work. Our paper focuses on continuous control tasks with physical state290

representations. In future, we plan to extend SPID to settings with high-dimensional inputs (e.g., raw291

images) that require feature extraction, potentially via neural encoders, before symbolic distillation.292

Moreover, while symbolic policies are interpretable, this advantage gradually weakens as task293

complexity increases. Therefore, developing methods to maintain interpretability in complex settings294

remains an important area for future research.295

References296

[1] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via297

policy extraction. Advances in neural information processing systems, 31, 2018.298

9



[2] Glen Berseth, Cheng Xie, Paul Cernek, and Michiel Van de Panne. Progressive reinforcement299

learning with distillation for multi-skilled motion control. In International Conference on300

Learning Representations, 2018.301

[3] Subhajit Chaudhury, Sarathkrishna Swaminathan, Daiki Kimura, Prithviraj Sen, Keerthiram302

Murugesan, Rosario Uceda-Sosa, Michiaki Tatsubori, Achille Fokoue, Pavan Kapanipathi, Asim303

Munawar, and Alexander Gray. Learning symbolic rules over Abstract Meaning Representations304

for textual reinforcement learning. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,305

editors, Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics306

(Volume 1: Long Papers), pages 6764–6776, Toronto, Canada, July 2023. Association for307

Computational Linguistics.308

[4] Vinícius G. Costa, Jorge Pérez-Aracil, Sancho Salcedo-Sanz, and Carlos E. Pedreira. Evolving309

interpretable decision trees for reinforcement learning. Artif. Intell., 327(C), February 2024.310

[5] Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.311

arXiv preprint arXiv:2305.01582, 2023.312

[6] Wojciech M Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant Jayakumar, Grzegorz313

Swirszcz, and Max Jaderberg. Distilling policy distillation. In The 22nd international conference314

on artificial intelligence and statistics, pages 1331–1340. PMLR, 2019.315

[7] Quentin Delfosse, Hikaru Shindo, Devendra Dhami, and Kristian Kersting. Interpretable and316

explainable logical policies via neurally guided symbolic abstraction. Advances in Neural317

Information Processing Systems, 36:50838–50858, 2023.318

[8] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error319

in actor-critic methods. In International conference on machine learning, pages 1587–1596.320

PMLR, 2018.321

[9] Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.322

Born again neural networks. In Jennifer Dy and Andreas Krause, editors, Proceedings of the323

35th International Conference on Machine Learning, volume 80 of Proceedings of Machine324

Learning Research, pages 1607–1616. PMLR, 10–15 Jul 2018.325

[10] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:326

Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems,327

34:4028–4039, 2021.328

[11] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning329

for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international330

conference on robotics and automation, pages 3389–3396. IEEE, 2017.331

[12] Jiaming Guo, Rui Zhang, Shaohui Peng, Qi Yi, Xing Hu, Ruizhi Chen, Zidong Du, Ling Li,332

Qi Guo, Yunji Chen, et al. Efficient symbolic policy learning with differentiable symbolic333

expression. Advances in neural information processing systems, 36:36278–36304, 2023.334

[13] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,335

Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms336

and applications. arXiv preprint arXiv:1812.05905, 2018.337

[14] Muhammad Burhan Hafez and Kerim Erekmen. Continual deep reinforcement learning with338

task-agnostic policy distillation. Scientific Reports, 14(1):31661, 2024.339

[15] Abhinav Narayan Harish, Larry Heck, Josiah P. Hanna, Zsolt Kira, and Andrew Szot. Rein-340

forcement learning via auxiliary task distillation. In Computer Vision – ECCV 2024: 18th341

European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part LXXXI,342

page 214–230, Berlin, Heidelberg, 2024. Springer-Verlag.343

[16] Daniel Hein, Steffen Udluft, and Thomas A Runkler. Interpretable policies for reinforcement344

learning by genetic programming. Engineering Applications of Artificial Intelligence, 76:158–345

169, 2018.346

10



[17] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David347

Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference on348

artificial intelligence, volume 32, 2018.349

[18] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.350

arXiv preprint arXiv:1503.02531, 2015.351

[19] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Proceedings of352

the 30th International Conference on Neural Information Processing Systems, NIPS’16, page353

4572–4580, Red Hook, NY, USA, 2016. Curran Associates Inc.354

[20] Hector Kohler, Quentin Delfosse, Riad Akrour, Kristian Kersting, and Philippe Preux. Inter-355

pretable and editable programmatic tree policies for reinforcement learning. arXiv preprint356

arXiv:2405.14956, 2024.357

[21] Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribu-358

tion matching. In International Conference on Learning Representations, 2020.359

[22] Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt,360

Nathan Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic policies with deep361

reinforcement learning. In International Conference on Machine Learning, pages 5979–5989.362

PMLR, 2021.363

[23] Peilang Li, Umer Siddique, and Yongcan Cao. From explainability to interpretability: Inter-364

pretable reinforcement learning via model explanations. In Reinforcement Learning Conference,365

2025.366

[24] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,367

David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv368

preprint arXiv:1509.02971, 2015.369

[25] Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. Toward interpretable deep reinforce-370

ment learning with linear model u-trees. In Machine Learning and Knowledge Discovery in371

Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14,372

2018, Proceedings, Part II, page 414–429, Berlin, Heidelberg, 2018. Springer-Verlag.373

[26] Zhihao Ma, Yuzheng Zhuang, Paul Weng, Hankz Hankui Zhuo, Dong Li, Wulong Liu, and374

Jianye Hao. Learning symbolic rules for interpretable deep reinforcement learning, 2021.375

[27] Nour Makke and Sanjay Chawla. Interpretable scientific discovery with symbolic regression: a376

review. Artificial Intelligence Review, 57(1):2, 2024.377

[28] Sascha Marton, Tim Grams, Florian Vogt, Stefan Lüdtke, Christian Bartelt, and Heiner Stucken-378

schmidt. Mitigating information loss in tree-based reinforcement learning via direct optimization,379

2025.380

[29] Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Zheyuan Ryan Shi, Charles Kamhoua,381

Evangelos E. Papalexakis, and Fei Fang. Maviper: Learning decision tree policies for inter-382

pretable multi-agent reinforcement learning. In Machine Learning and Knowledge Discovery in383

Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23,384

2022, Proceedings, Part IV, page 251–266, Berlin, Heidelberg, 2022. Springer-Verlag.385

[30] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,386

Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-387

ment learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The388

33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine389

Learning Research, pages 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.390

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.391

Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-392

tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan393

Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement394

learning. Nature, 518:529–533, 2015.395

11



[32] Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In International396

Conference on Learning Representations, 2022.397

[33] Xinghua Qu, Yew Soon Ong, Abhishek Gupta, Pengfei Wei, Zhu Sun, and Zejun Ma. Impor-398

tance prioritized policy distillation. In Proceedings of the 28th ACM SIGKDD Conference on399

Knowledge Discovery and Data Mining, KDD ’22, page 1420–1429, New York, NY, USA,400

2022. Association for Computing Machinery.401

[34] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence.402

Dataset Shift in Machine Learning. MIT Press, 2009.403

[35] Stephane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Yee Whye404

Teh and Mike Titterington, editors, Proceedings of the Thirteenth International Conference on405

Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research,406

pages 661–668, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.407

[36] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and408

structured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and409

Miroslav Dudík, editors, Proceedings of the Fourteenth International Conference on Artificial410

Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages411

627–635, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.412

[37] Aaron M. Roth, Nicholay Topin, Pooyan Jamshidi, and Manuela Veloso. Conservative q-413

improvement: Reinforcement learning for an interpretable decision-tree policy, 2019.414

[38] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James415

Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy416

distillation. arXiv preprint arXiv:1511.06295, 2015.417

[39] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust418

region policy optimization. In International conference on machine learning, pages 1889–1897.419

PMLR, 2015.420

[40] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal421

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.422

[41] Umer Siddique, Paul Weng, and Matthieu Zimmer. Learning fair policies in multi-objective423

(deep) reinforcement learning with average and discounted rewards. In International Conference424

on Machine Learning, pages 8905–8915. PMLR, 2020.425

[42] Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Op-426

timization methods for interpretable differentiable decision trees applied to reinforcement427

learning. In International conference on artificial intelligence and statistics, pages 1855–1865.428

PMLR, 2020.429

[43] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur430

Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy431

Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis432

Hassabis. Mastering the game of go without human knowledge. Nature, 550:354–359, 2017.433

[44] Victor Feitosa Souza, Ferdinando Cicalese, Eduardo Laber, and Marco Molinaro. Decision trees434

with short explainable rules. Advances in neural information processing systems, 35:12365–435

12379, 2022.436

[45] Giacomo Spigler. Proximal policy distillation. Transactions on Machine Learning Research,437

2025.438

[46] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforce-439

ment learning with function approximation. In Advances in Neural Information Processing440

Systems 12, pages 1057–1063, 2000.441

[47] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,442

Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A443

standard interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032,444

2024.445

12



[48] René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Guanghang Cai, Natalia Díaz-446

Rodríguez, and David Filliat. Discorl: Continual reinforcement learning via policy distillation.447

arXiv preprint arXiv:1907.05855, 2019.448

[49] Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize programs449

as interpretable and generalizable policies. Advances in neural information processing systems,450

34:25146–25163, 2021.451

[50] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.452

Programmatically interpretable reinforcement learning. In International conference on machine453

learning, pages 5045–5054. PMLR, 2018.454

[51] Maxime Wabartha and Joelle Pineau. Piecewise linear parametrization of policies: Towards455

interpretable deep reinforcement learning. In The Twelfth International Conference on Learning456

Representations, 2024.457

[52] Mingkang Wu, Umer Siddique, Abhinav Sinha, and Yongcan Cao. Offline reinforcement458

learning with failure under sparse reward environments. In 2024 IEEE 3rd International459

Conference on Computing and Machine Intelligence (ICMI), pages 1–5. IEEE, 2024.460

[53] Charles Xu, Qiyang Li, Jianlan Luo, and Sergey Levine. Rldg: Robotic generalist policy461

distillation via reinforcement learning, 2024.462

[54] Haiyan Yin and Sinno Pan. Knowledge transfer for deep reinforcement learning with hierarchical463

experience replay. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,464

2017.465

[55] Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding dqns.466

In International conference on machine learning, pages 1899–1908. PMLR, 2016.467

[56] Hengzhe Zhang, Aimin Zhou, and Xin Lin. Interpretable policy derivation for reinforcement468

learning based on evolutionary feature synthesis. Complex & Intelligent Systems, 6(3):741–753,469

2020.470

13



A Detailed Calculation Example471

Proof. DAGGER 0-1 loss function: The DAGGER loss measures stepwise disagreements with the472

expert policy:473

ℓDAGGER = I[π(s) ̸= π∗(s)]

For Trajectory 1, there are 2 disagreements in the whole trajectory over finite horizon T = 3(k + 1).474

The average stepwise loss is:475

ℓDAGGER
1 = 2T−1.

For Trajectory 2, 1 disagreement occurred, yielding:476

ℓDAGGER
2 = T−1.

For Trajectory 3, there are T disagreements in the whole trajectory over finite horizon T , giving:477

ℓDAGGER
3 = 1.

Comparing these losses, trajectory 2 is preferred by DAGGER:478

ℓDAGGER
2 < ℓDAGGER

1 < ℓDAGGER
3

Q-DAGGER loss function: The Q-DAGGER loss measures the value difference between expert and479

learned policies:480

ℓQ-DAGGER = V
(π∗)
t (s)−Q

(π∗)
t (s, π(s)).

According to Lemma 2.1 in [1], we have the relationship Tℓ(π) = J(π) − J(π∗). In our setting,481

J(π∗) = −T (cost-to-go formulation with negative values).482

For trajectory 1 with J(π1) = −(T − 3τ), we compute:483

ℓQ-DAGGER
1 = [−(T − 3τ)− (−T )] · T−1 = 3τT−1

For trajectory 2 with J(π2) = 0, we obtain:484

ℓQ-DAGGER
2 = [0− (−T )] · T−1 = 1

For trajectory 3 with J(π3) = −(T − τ), we have:485

ℓQ-DAGGER
3 = [−(T − τ)− (−T )] · T−1 = τT−1

Since τ ∈ [0, 1), the ordering becomes clear. Therefore, trajectory 3 is preferred by Q-DAGGER:486

ℓQ-DAGGER
3 < ℓQ-DAGGER

1 < ℓQ-DAGGER
2

GM-DAGGER loss function: The GM-DAGGER loss combines performance and behavioral terms via487

geometric mean:488

ℓGM-DAGGER =

√
gpt (s, π) · g

f
t (s, π)

=

√
[V

(π∗)
t (s)−Q

(π∗)
t (s, π(s)) + α] · [||π(s)− π∗(s)||2 + ϵ]

For the performance term gp(π), using Lemma 2.1 in [1], we have Tgp(π) = J(π)− J(π∗) + αT ,489

which gives us the average stepwise performance loss plus regularization.490

For trajectory 1, the performance term becomes gp(π1) = 3τT−1 + α. In the discrete action setting,491

2 disagreements occurred. Since π(s) ̸= π∗(s) implies ||π(s)− π∗(s)||2 = 1, the behavioral term is492

gf (π1) = 2T−1 + ϵ. Thus:493

ℓGM-DAGGER
1 =

√
(3τT−1 + α)(2T−1 + ϵ)
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Similarly, for trajectory 2 with gp(π2) = 1 + α and 1 disagreement:494

ℓGM-DAGGER
2 =

√
(1 + α)(T−1 + ϵ)

For trajectory 3 with gp(π3) = τT−1 + α and full disagreements (T total disagreements):495

ℓGM-DAGGER
3 =

√
(τT−1 + α)(1 + ϵ)

To establish the ordering, note that as τ ∈ [0, 1) and α, ϵ ∈ (0, 1), for sufficiently large T ≥ 1
min(α,ϵ)496

(most cases in deep RL), the regularization terms dominate the trajectory-dependent terms. This497

asymptotic analysis yields:498

ℓGM-DAGGER
1 < ℓGM-DAGGER

2 < ℓGM-DAGGER
3

Therefore, trajectory 1 is preferred by GM-DAGGER.499

B VIPER500

Table 4 presents VIPER performance without tree depth limitation across different reinforcement learn-501

ing environments and algorithms, with mean performance ± standard deviation reported alongside502

the resulting tree complexity (nodes, depth).503

Table 4: VIPER performance without tree depth limitation.
Algorithm

Environment PPO TRPO DDPG SAC TD3

CartPole 1000.0± 0.0 372.7± 198.5 1000.0± 0.0 1000.0± 0.0 1000.0± 0.0
(2981, 42) (3011, 38) (6951, 47) (7661, 41) (6279, 38)

MountainCar 91.1± 0.2 93.9± 0.0 94.1± 0.2 93.6± 0.1 93.8± 0.2
(127, 11) (157, 11) (809, 24) (83, 10) (891, 35)

Pendulum −217.9± 165.0 −153.4± 108.7 −146.6± 72.0 −141.8± 85.0 −147.3± 68.9
(11187, 34) (5029, 85) (1749, 43) (4809, 47) (6741, 30)

Acrobot −36.0± 0.0 −41.3± 3.0 −35.1± 0.3 −35.6± 0.7 −41.0± 4.9
(63, 7) (1419, 21) (957, 27) (1311, 22) (839, 26)

Reacher −4.8± 1.2 −6.1± 2.7 −4.7± 1.5 −4.2± 1.5 −4.9± 1.6
(4656, 27) (5424, 34) (5384, 47) (6912, 39) (4624, 38)

Swimmer 358.0± 1.9 341.0± 2.4 348.2± 1.1 350.1± 2.5 357.6± 2.5
(3414, 25) (62638, 47) (31054, 57) (120138, 71) (45542, 73)

C Distilled Symbolic Policy504

Table 5 presents all interpretable symbolic policies distilled using SPID across six environments with505

five different deep RL algorithms.506

D Computational Resources507

All experiments were conducted on a single workstation with the following specifications:508

• GPU: NVIDIA GeForce RTX 4080 Super (16GB VRAM)509

• CPU: Intel Core i9-14900F (24 cores, 32 threads @ 5.8GHz max)510

• RAM: 32GB DDR5511
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Table 5: Distilled symbolic policy.
Environment Algorithm Policy Expression from SPID

CartPole PPO a = (s2 + (((0.055− (−0.193) · (s3 + s0)))− 0.135s1)) ∗ 1.697
TRPO a = (s3 + (s1 + s2)) · (4.401− (−0.804− s1)

2)

DDPG a = ((s3 · (−0.098))− s2) · (−20.292)
SAC a = (2.359− (s3 + 0.825)4) · ((s2 · 3.526) + s3)

TD3 a = (s1 + 2.551) · ((s3 + s2) + s1)

MountainCar PPO a = sin((s1 − 1.509) · (s0 + 37.711))

TRPO a = sin(((s1 · 64.859) + s40 · 2.156)− 1.407)

DDPG a = sin((s0 · 1.480)2 + (−0.851) + (s1 · 52.793))
SAC a = sin(sin(s20 + ((s1 · 52.426) + (−0.729))) · 1.540)
TD3 a = sin(((s1 − (−0.448)) · 67.462) + (s0/(−0.708))4)

Pendulum PPO a = ((((s0 − s1) · (−2.411)) + 1.199) · s2)− (s1 · 8.199)
TRPO a = (s0 · sin(sin(s1 + (s2 · 0.231)) · 3.322)) · (−2.205)
DDPG a = ((s1 · 5.767) + s2) · ((−0.366)− s0)

SAC a = sin((((s2 · (−0.477))− s1) · s0)− s1) · 2.463
TD3 a = sin((s2 · (−0.410))− (s1 · 1.748)) · (s0 · 3.165)

Acrobot PPO a = (s4/
√
s24) · (−1.925)

TRPO a = (sin(s4) + (s3 + s4)) · (−0.539)
DDPG a = s5 + (s1 · 2.953)
SAC a = sin((−0.406 · s4)− ((s2 + s0) · sin(s4))) · 2.073
TD3 a = sin(s2 − ((s3 − (−0.395))2 + s4))− s4

Swimmer PPO a1 = sin(((sin(0.488/s6)
2 · s6)− s2) · 2.061)

a2 = sin(sin((s6 · 0.641) + (s1 · 1.217)) · 1.788)
TRPO a1 = sin(((s1 · s3) + 1.658) · sin(s0 − (s2 · 2.358)))

a2 = sin((s4 + s1) · 0.744)
DDPG a1 = sin(sin(sin((s4 − s1)− s2)− s2) · 1.896)

a2 = sin(sin(s5 · (−1.877))− s5)

SAC a1 = sin((s6/((s4 · s6) + 1.790))− s2)
a2 = sin((sin(s5) · 1.311) + (s6 · (−0.281))) · (−0.941)

TD3 a1 = sin(((−0.086)/s2) + (s2 · (−1.840)))
a2 = sin(sin(s5 − (s6 · (−0.074))) · (−1.903))

Reacher PPO a1 = s9 · ((((s8 · 2.318) · s7) + s21) · (−1.831))
a2 = cos((−0.590) · s7) · (0.078 · ((−0.099)− s1))

TRPO a1 = 0.0002/(0.096− s1)
a2 = ((s2 + 1.245) · (s7 + (−12.931)))2 · (−0.0002)

DDPG a1 = ((cos(s7)− s5)
2)2 · s8

a2 = (s8 − (((s4 + 0.248) · 0.083) · s7)) · 1.228
SAC a1 = (s1 · s6) · 0.043

a2 = s9 · (−1.652)
TD3 a1 = (s8 − (s7 · 0.021)) + ((sin((−0.425)− s6)− s6) · 0.010)

a2 = ((s7 · (−0.021)) + (s8 + (−0.004))) · ((s4 · s6) + 1.148)
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NeurIPS Paper Checklist512

1. Claims513

Question: Do the main claims made in the abstract and introduction accurately reflect the514

paper’s contributions and scope?515

Answer: [Yes]516

Justification: The abstract and introduction accurately state the paper’s main contributions:517

proposing GM-DAGGER for balancing performance-fidelity trade-offs, introducing SPID for518

symbolic policy distillation, and demonstrating superior preservation of both performance519

and fidelity across six environments with five RL algorithms.520

Guidelines:521

• The answer NA means that the abstract and introduction do not include the claims522

made in the paper.523

• The abstract and/or introduction should clearly state the claims made, including the524

contributions made in the paper and important assumptions and limitations. A No or525

NA answer to this question will not be perceived well by the reviewers.526

• The claims made should match theoretical and experimental results, and reflect how527

much the results can be expected to generalize to other settings.528

• It is fine to include aspirational goals as motivation as long as it is clear that these goals529

are not attained by the paper.530

2. Limitations531

Question: Does the paper discuss the limitations of the work performed by the authors?532

Answer: [Yes]533

Justification: Section 6 Conclusions explicitly discusses limitations, including the focus534

on continuous control with physical state representations and the challenge of maintaining535

interpretability as task complexity increases.536

Guidelines:537

• The answer NA means that the paper has no limitation while the answer No means that538

the paper has limitations, but those are not discussed in the paper.539

• The authors are encouraged to create a separate "Limitations" section in their paper.540

• The paper should point out any strong assumptions and how robust the results are to541

violations of these assumptions (e.g., independence assumptions, noiseless settings,542

model well-specification, asymptotic approximations only holding locally). The authors543

should reflect on how these assumptions might be violated in practice and what the544

implications would be.545

• The authors should reflect on the scope of the claims made, e.g., if the approach was546

only tested on a few datasets or with a few runs. In general, empirical results often547

depend on implicit assumptions, which should be articulated.548

• The authors should reflect on the factors that influence the performance of the approach.549

For example, a facial recognition algorithm may perform poorly when image resolution550

is low or images are taken in low lighting. Or a speech-to-text system might not be551

used reliably to provide closed captions for online lectures because it fails to handle552

technical jargon.553

• The authors should discuss the computational efficiency of the proposed algorithms554

and how they scale with dataset size.555

• If applicable, the authors should discuss possible limitations of their approach to556

address problems of privacy and fairness.557

• While the authors might fear that complete honesty about limitations might be used by558

reviewers as grounds for rejection, a worse outcome might be that reviewers discover559

limitations that aren’t acknowledged in the paper. The authors should use their best560

judgment and recognize that individual actions in favor of transparency play an impor-561

tant role in developing norms that preserve the integrity of the community. Reviewers562

will be specifically instructed to not penalize honesty concerning limitations.563

3. Theory assumptions and proofs564
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Question: For each theoretical result, does the paper provide the full set of assumptions and565

a complete (and correct) proof?566

Answer: [Yes]567

Justification: Proposition 4.1 provides clear theoretical results with complete proof in568

Appendix A. All assumptions about the MDP setting and loss functions are explicitly stated.569

Guidelines:570

• The answer NA means that the paper does not include theoretical results.571

• All the theorems, formulas, and proofs in the paper should be numbered and cross-572

referenced.573

• All assumptions should be clearly stated or referenced in the statement of any theorems.574

• The proofs can either appear in the main paper or the supplemental material, but if575

they appear in the supplemental material, the authors are encouraged to provide a short576

proof sketch to provide intuition.577

• Inversely, any informal proof provided in the core of the paper should be complemented578

by formal proofs provided in appendix or supplemental material.579

• Theorems and Lemmas that the proof relies upon should be properly referenced.580

4. Experimental result reproducibility581

Question: Does the paper fully disclose all the information needed to reproduce the main ex-582

perimental results of the paper to the extent that it affects the main claims and/or conclusions583

of the paper (regardless of whether the code and data are provided or not)?584

Answer: [Yes]585

Justification: Section 5.1 specifies the experimental setup including environments , al-586

gorithms, and baselines. The paper provides sufficient detail about the methodology to587

reproduce results.588

Guidelines:589

• The answer NA means that the paper does not include experiments.590

• If the paper includes experiments, a No answer to this question will not be perceived591

well by the reviewers: Making the paper reproducible is important, regardless of592

whether the code and data are provided or not.593

• If the contribution is a dataset and/or model, the authors should describe the steps taken594

to make their results reproducible or verifiable.595

• Depending on the contribution, reproducibility can be accomplished in various ways.596

For example, if the contribution is a novel architecture, describing the architecture fully597

might suffice, or if the contribution is a specific model and empirical evaluation, it may598

be necessary to either make it possible for others to replicate the model with the same599

dataset, or provide access to the model. In general. releasing code and data is often600

one good way to accomplish this, but reproducibility can also be provided via detailed601

instructions for how to replicate the results, access to a hosted model (e.g., in the case602

of a large language model), releasing of a model checkpoint, or other means that are603

appropriate to the research performed.604

• While NeurIPS does not require releasing code, the conference does require all submis-605

sions to provide some reasonable avenue for reproducibility, which may depend on the606

nature of the contribution. For example607

(a) If the contribution is primarily a new algorithm, the paper should make it clear how608

to reproduce that algorithm.609

(b) If the contribution is primarily a new model architecture, the paper should describe610

the architecture clearly and fully.611

(c) If the contribution is a new model (e.g., a large language model), then there should612

either be a way to access this model for reproducing the results or a way to reproduce613

the model (e.g., with an open-source dataset or instructions for how to construct614

the dataset).615

(d) We recognize that reproducibility may be tricky in some cases, in which case616

authors are welcome to describe the particular way they provide for reproducibility.617

In the case of closed-source models, it may be that access to the model is limited in618
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some way (e.g., to registered users), but it should be possible for other researchers619

to have some path to reproducing or verifying the results.620

5. Open access to data and code621

Question: Does the paper provide open access to the data and code, with sufficient instruc-622

tions to faithfully reproduce the main experimental results, as described in supplemental623

material?624

Answer: [No]625

Justification: Code will be made publicly available upon paper acceptance. The experiments626

use publicly available Gymnasium environments and the PySR library.627

Guidelines:628

• The answer NA means that paper does not include experiments requiring code.629

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/630

public/guides/CodeSubmissionPolicy) for more details.631

• While we encourage the release of code and data, we understand that this might not be632

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not633

including code, unless this is central to the contribution (e.g., for a new open-source634

benchmark).635

• The instructions should contain the exact command and environment needed to run to636

reproduce the results. See the NeurIPS code and data submission guidelines (https:637

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.638

• The authors should provide instructions on data access and preparation, including how639

to access the raw data, preprocessed data, intermediate data, and generated data, etc.640

• The authors should provide scripts to reproduce all experimental results for the new641

proposed method and baselines. If only a subset of experiments are reproducible, they642

should state which ones are omitted from the script and why.643

• At submission time, to preserve anonymity, the authors should release anonymized644

versions (if applicable).645

• Providing as much information as possible in supplemental material (appended to the646

paper) is recommended, but including URLs to data and code is permitted.647

6. Experimental setting/details648

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-649

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the650

results?651

Answer: [Yes]652

Justification: The paper specifies training details including environments, algorithms, evalu-653

ation metrics, and key parameters.654

Guidelines:655

• The answer NA means that the paper does not include experiments.656

• The experimental setting should be presented in the core of the paper to a level of detail657

that is necessary to appreciate the results and make sense of them.658

• The full details can be provided either with the code, in appendix, or as supplemental659

material.660

7. Experiment statistical significance661

Question: Does the paper report error bars suitably and correctly defined or other appropriate662

information about the statistical significance of the experiments?663

Answer: [Yes]664

Justification: Tables 1 and 2 report mean and standard deviation for all experimental results665

across 10 evaluation trajectories, providing appropriate statistical information.666

Guidelines:667

• The answer NA means that the paper does not include experiments.668
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-669

dence intervals, or statistical significance tests, at least for the experiments that support670

the main claims of the paper.671

• The factors of variability that the error bars are capturing should be clearly stated (for672

example, train/test split, initialization, random drawing of some parameter, or overall673

run with given experimental conditions).674

• The method for calculating the error bars should be explained (closed form formula,675

call to a library function, bootstrap, etc.)676

• The assumptions made should be given (e.g., Normally distributed errors).677

• It should be clear whether the error bar is the standard deviation or the standard error678

of the mean.679

• It is OK to report 1-sigma error bars, but one should state it. The authors should680

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis681

of Normality of errors is not verified.682

• For asymmetric distributions, the authors should be careful not to show in tables or683

figures symmetric error bars that would yield results that are out of range (e.g. negative684

error rates).685

• If error bars are reported in tables or plots, The authors should explain in the text how686

they were calculated and reference the corresponding figures or tables in the text.687

8. Experiments compute resources688

Question: For each experiment, does the paper provide sufficient information on the com-689

puter resources (type of compute workers, memory, time of execution) needed to reproduce690

the experiments?691

Answer: [Yes]692

Justification: Computational resources are documented in Appendix D.693

Guidelines:694

• The answer NA means that the paper does not include experiments.695

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,696

or cloud provider, including relevant memory and storage.697

• The paper should provide the amount of compute required for each of the individual698

experimental runs as well as estimate the total compute.699

• The paper should disclose whether the full research project required more compute700

than the experiments reported in the paper (e.g., preliminary or failed experiments that701

didn’t make it into the paper).702

9. Code of ethics703

Question: Does the research conducted in the paper conform, in every respect, with the704

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?705

Answer: [Yes]706

Justification: The research involves standard RL benchmarks and does not raise ethical707

concerns. The work conforms with NeurIPS Code of Ethics.708

Guidelines:709

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.710

• If the authors answer No, they should explain the special circumstances that require a711

deviation from the Code of Ethics.712

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-713

eration due to laws or regulations in their jurisdiction).714

10. Broader impacts715

Question: Does the paper discuss both potential positive societal impacts and negative716

societal impacts of the work performed?717

Answer: [NA]718
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Justification: This is foundational research on interpretable RL methods using standard719

benchmarks. While interpretability generally has positive societal impact, the paper focuses720

on technical contributions without direct societal applications.721

Guidelines:722

• The answer NA means that there is no societal impact of the work performed.723

• If the authors answer NA or No, they should explain why their work has no societal724

impact or why the paper does not address societal impact.725

• Examples of negative societal impacts include potential malicious or unintended uses726

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations727

(e.g., deployment of technologies that could make decisions that unfairly impact specific728

groups), privacy considerations, and security considerations.729

• The conference expects that many papers will be foundational research and not tied730

to particular applications, let alone deployments. However, if there is a direct path to731

any negative applications, the authors should point it out. For example, it is legitimate732

to point out that an improvement in the quality of generative models could be used to733

generate deepfakes for disinformation. On the other hand, it is not needed to point out734

that a generic algorithm for optimizing neural networks could enable people to train735

models that generate Deepfakes faster.736

• The authors should consider possible harms that could arise when the technology is737

being used as intended and functioning correctly, harms that could arise when the738

technology is being used as intended but gives incorrect results, and harms following739

from (intentional or unintentional) misuse of the technology.740

• If there are negative societal impacts, the authors could also discuss possible mitigation741

strategies (e.g., gated release of models, providing defenses in addition to attacks,742

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from743

feedback over time, improving the efficiency and accessibility of ML).744

11. Safeguards745

Question: Does the paper describe safeguards that have been put in place for responsible746

release of data or models that have a high risk for misuse (e.g., pretrained language models,747

image generators, or scraped datasets)?748

Answer: [NA]749

Justification: The paper poses no such risks.750

Guidelines:751

• The answer NA means that the paper poses no such risks.752

• Released models that have a high risk for misuse or dual-use should be released with753

necessary safeguards to allow for controlled use of the model, for example by requiring754

that users adhere to usage guidelines or restrictions to access the model or implementing755

safety filters.756

• Datasets that have been scraped from the Internet could pose safety risks. The authors757

should describe how they avoided releasing unsafe images.758

• We recognize that providing effective safeguards is challenging, and many papers do759

not require this, but we encourage authors to take this into account and make a best760

faith effort.761

12. Licenses for existing assets762

Question: Are the creators or original owners of assets (e.g., code, data, models), used in763

the paper, properly credited and are the license and terms of use explicitly mentioned and764

properly respected?765

Answer: [Yes]766

Justification: The paper properly cites Gymnasium environments, PySR library, and all767

baseline methods with appropriate references.768

Guidelines:769

• The answer NA means that the paper does not use existing assets.770

• The authors should cite the original paper that produced the code package or dataset.771
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• The authors should state which version of the asset is used and, if possible, include a772

URL.773

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.774

• For scraped data from a particular source (e.g., website), the copyright and terms of775

service of that source should be provided.776

• If assets are released, the license, copyright information, and terms of use in the777

package should be provided. For popular datasets, paperswithcode.com/datasets778

has curated licenses for some datasets. Their licensing guide can help determine the779

license of a dataset.780

• For existing datasets that are re-packaged, both the original license and the license of781

the derived asset (if it has changed) should be provided.782

• If this information is not available online, the authors are encouraged to reach out to783

the asset’s creators.784

13. New assets785

Question: Are new assets introduced in the paper well documented and is the documentation786

provided alongside the assets?787

Answer: [NA]788

Justification: The paper does not release new assets.789

Guidelines:790

• The answer NA means that the paper does not release new assets.791

• Researchers should communicate the details of the dataset/code/model as part of their792

submissions via structured templates. This includes details about training, license,793

limitations, etc.794

• The paper should discuss whether and how consent was obtained from people whose795

asset is used.796

• At submission time, remember to anonymize your assets (if applicable). You can either797

create an anonymized URL or include an anonymized zip file.798

14. Crowdsourcing and research with human subjects799

Question: For crowdsourcing experiments and research with human subjects, does the paper800

include the full text of instructions given to participants and screenshots, if applicable, as801

well as details about compensation (if any)?802

Answer: [NA]803

Justification: The paper does not involve crowdsourcing nor research with human subjects.804

Guidelines:805

• The answer NA means that the paper does not involve crowdsourcing nor research with806

human subjects.807

• Including this information in the supplemental material is fine, but if the main contribu-808

tion of the paper involves human subjects, then as much detail as possible should be809

included in the main paper.810

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,811

or other labor should be paid at least the minimum wage in the country of the data812

collector.813

15. Institutional review board (IRB) approvals or equivalent for research with human814

subjects815

Question: Does the paper describe potential risks incurred by study participants, whether816

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)817

approvals (or an equivalent approval/review based on the requirements of your country or818

institution) were obtained?819

Answer: [NA]820

Justification: The paper does not involve crowdsourcing nor research with human subjects.821

Guidelines:822
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• The answer NA means that the paper does not involve crowdsourcing nor research with823

human subjects.824

• Depending on the country in which research is conducted, IRB approval (or equivalent)825

may be required for any human subjects research. If you obtained IRB approval, you826

should clearly state this in the paper.827

• We recognize that the procedures for this may vary significantly between institutions828

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the829

guidelines for their institution.830

• For initial submissions, do not include any information that would break anonymity (if831

applicable), such as the institution conducting the review.832

16. Declaration of LLM usage833

Question: Does the paper describe the usage of LLMs if it is an important, original, or834

non-standard component of the core methods in this research? Note that if the LLM is used835

only for writing, editing, or formatting purposes and does not impact the core methodology,836

scientific rigorousness, or originality of the research, declaration is not required.837

Answer: [NA]838

Justification: The core method development in this research does not involve LLMs as any839

important, original, or non-standard components.840

Guidelines:841

• The answer NA means that the core method development in this research does not842

involve LLMs as any important, original, or non-standard components.843

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)844

for what should or should not be described.845
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