
Symbolic Policy Distillation
for Interpretable Reinforcement Learning

Peilang Li Umer Siddique Yongcan Cao
The University of Texas at San Antonio

{peilang.li, muhammadumer.siddique}@my.utsa.edu, yongcan.cao@utsa.edu

Abstract

Deep reinforcement learning (RL) policies based on deep neural networks (DNNs)
achieve strong performance but are often opaque, hindering transparency, inter-
pretability, and safe deployment. Interpretable policy distillation seeks to transfer
knowledge from these black-box DNN policies into simpler, human-understandable
forms. While prior work has extensively studied performance retention, fidelity
to the original DNN policies has remained underexplored, which is crucial for en-
suring that the distilled policies faithfully capture the underlying decision-making
logic. To address this gap, we propose GM-DAGGER, a novel data aggregation
method that employs a geometric mean loss to preserve fidelity without compro-
mising performance. Building on this, we introduce Symbolic Policy Interpretable
Distillation (SPID), a framework that distills DNN policies into symbolic analyti-
cal equations via symbolic regression. Through extensive experiments across six
environments and five deep RL algorithms, we show that SPID achieves superior
preservation of both performance and fidelity, while providing interpretable policies
that provide mechanistic insights into policy behavior and training dynamics.

1 Introduction

Deep reinforcement learning (RL) has achieved impressive success in a wide range of sequential
decision-making problems using deep neural networks (DNNs) as powerful function approximators
for policies [31, 43, 11]. Despite their strong feature extraction and generalization abilities, these
high-dimensional, non-linear DNN models pose major challenges for transparency, interpretability,
and deployment[50]. In particular, these policies are typically regarded as “black-box” models [55],
and remain computationally expensive to train, sample inefficient, and vulnerable to biases, safety
risks, and adversarial perturbations [17, 52, 41].

To mitigate these challenges, there has been growing attention towards interpretable RL, with a
particular focus on designing policies that are analytically tractable. Symbolic policies, represented
as compact mathematical expressions composed of variables, constants, and symbolic operators,
offer an alternative to black-box DNN policies. Due to their analytical tractability, symbolic policies
provide mechanistic interpretability and facilitate formal verification of RL agent behavior. Policy
distillation [38] is another technique used to interpret the DNN policies by transferring knowledge
from a complex policy to a simple surrogate policy. Although policy distillation has been used
extensively to compress large models (e.g., teacher) into smaller models (e.g., student) while pre-
serving expert-level performance, distilled models often do not provide meaningful insights into
the underlying decision-making process. Therefore, recent work started to explore symbolic policy
learning as a route toward interpretable and deployable RL. For instance, Verma et al. (2018) [50]
proposed PIRL, a programmatically interpretable RL framework designed to generate policies that
are both interpretable and verifiable. Hein et al. (2018) in [16] proposed GPRL, which uses genetic

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability Workshop.

programming to evolve interpretable algebraic policy equations through model-based reinforcement
learning. While providing interpretable solutions, these approaches typically suffer from low data
efficiency and performance degradation compared to standard deep RL baselines.

To address this critical gap, we propose symbolic policy distillation for interpretable RL. Our goal
is to distill a symbolic policy from a pretrained DNN policy such that it preserves performance
and faithfully reproduces its decision-making behavior. This allows the distilled symbolic policy to
not only serve as an interpretable surrogate for inspecting the teacher DNN policy, but also to act
as a standalone, efficient, and deployable agent in real-world problems. Our approach is based on
imitation learning, where state–action pairs from a DNN policy are used to train a symbolic policy in
a supervised learning fashion. A major challenge in this setting is distribution shift [34], which arises
when the symbolic policy encounters states that deviate from those used during training, potentially
leading to inaccurate and unfaithful behavior. To address this distributional shift, previous methods
employ DAGGER [36], which iteratively collects action labels on states generated by the symbolic
policy itself. However, standard DAGGER often results in overly complex symbolic expressions or
reward degradation, as it treats all mistakes equally, regardless of their importance.

To overcome this issue, Bastani et al. (2018) [1] introduced Q-DAGGER, which uses information from
the DNN policy’s Q-function to prioritize critical states. Although Q-DAGGER improves performance,
optimizing only for a single performance metric such as cumulative reward may result in symbolic
policies that deviate substantially from the original DNN behavior, which is an undesirable property
for interpretable RL. To create a balance trade-off between performance and faithfulness, we propose
GM-DAGGER, which uses a geometric mean loss to jointly optimize these two criteria. Building on
this, we introduce Symbolic Policy Interpretable Distillation (SPID), which distills any DNN policy
into a symbolic policy that preserves performance, is faithful, and analytically interpretable.

Our contributions are summarized as follows:

• We propose symbolic policy distillation, a novel framework that distills any DNN policy into a
compact symbolic policy that offers transparency and interpretability while preserving performance.

• We introduce GM-DAGGER, an imitation learning method that provably balances faithfulness and
reward by optimizing a geometric mean objective.

• We develop SPID, which extracts symbolic policies that faithfully reproduce the original DNN
behavior while preserving performance.

• We further show that SPID distilling policies at different checkpoints can identify how the successful
training achieves and why the bad training fails.

2 Related Work

2.1 Policy Distillation

Policy distillation [38], originally derived from knowledge distillation [18], aims to train smaller and
more efficient policies while maintaining expert-level performance. It has emerged as a prominent
area within RL that enables the transfer of knowledge across policies and helps the development of
more efficient and general agents. For instance, authors in [54] introduced a hierarchical experience
replay framework that supports the transfer of multiple expert policies into a single multi-task policy
through distillation. Subsequent works have focused on improving the fundamental distillation
mechanisms [6], increasing distillation efficiency [45, 33], and learning multiple tasks policy [2, 53,
15], or continual RL [48, 14].

Despite its success, policy distillation suffers from distribution shift, a challenge similar to that in the
imitation learning, where the student policy visits states that are not well covered by the expert policy.
Several prior works focus on mitigating this issue, including iterative online correction methods such
as SMILe [35] and DAGGER [36], distribution matching methods such as GAIL [19], ValueDICE [21],
IQ-Learn [10], and regularization-based techniques such as BANs [9].

2.2 Symbolic Policies and Interpretable RL

Interpretable symbolic policies in RL can be in different forms, ranging from decision trees [1, 37, 4,
29, 42, 20, 28], rule-based and program-based systems [50, 49, 7, 3, 32, 26], to compact mathematical

2

and analytical functional forms [22, 12, 51, 23, 25, 56]. For example, PIRL [50] proposes NDPS to
learn programmatic policies that are interpretable and verifiable, and Silve et al. (2020) [42] develop
differentiable decision trees in an online RL for interpretability.

Despite the success of symbolic RL policies, most existing works use learning schemas that are
not specifically designed for decision-level interpretability, i.e., understanding the internal decision-
making process of DNN policies. As a result, the learned symbolic policies are typically optimized
for performance (e.g., cumulative rewards) rather than fidelity to the teacher DNN policy. A few
works explicitly address distillation in the context of interpretability: VIPER [1] proposes Q-DAGGER
that extracts interpretable decision trees from DNN policies with a performance guarantee; PIRL [50]
and INTERPRETER [20] both distill DNN policies into symbolic programs or trees. However, these
methods often trade off fidelity for performance or interpretability. In contrast, this paper focuses on
faithful distillation, which aims to extract symbolic policies that not only preserve performance but
also retain high behavioral fidelity to the original DNN policy.

3 Preliminary

3.1 Reinforcement Learning

Reinforcement Learning (RL) problems are commonly formalized as a finite-horizon Markov Deci-
sion Process (MDP), defined by the tuple (S,A, P,R, T). Here, S denotes the set of states, A the
set of possible actions, P : S × A × S → [0, 1] the transition probabilities, and R : S × A → R
the reward function. At each time step t ∈ {0, . . . , T − 1}, an agent in state st ∈ S selects an
action at ∈ A, receives a reward rt = R(st, at), and transitions to the next state st+1 according
to P (st+1|st, at). Here, the objective is to learn a policy π that maximizes the expected sum of
cumulative rewards. In RL, policies can be deterministic, mapping each state to a single action, or
stochastic, defining a probability distribution over actions given a state. Moreover, policies are often
assumed to be stationary and Markovian, i.e., the action selection depends only on the current state
and not on the history. In this paper, we consider policies to be stationary, Markovian, and stochastic.

To formalize state distributions in an MDP, let d(π)0 (s) = I[s = s0] denote the initial distribution. For
t > 0, the state distribution evolves as

d
(π)
t (s) =

∑
s′∈S

P (s′, π(s′), s)d
(π)
t−1(s

′) .

The average visitation distribution is then given by d(π)(s) = T−1
∑T−1

t=0 d
(π)
t (s). The cost-to-go of

π from s0 is J(π) = −V (π)
0 (s0). For a given policy π, the state-value function is defined as

V
(π)
t (s) = R(s, π(s)) +

∑
s′∈S

P (s, π(s), s′)V
(π)
t+1(s

′),

where V
(π)
T (s) = 0. Similarly, the action-value function is defined as, Q(π)

t (s, a) = R(s, a) +∑
s′∈S P (s, a, s′)V

(π)
t+1(s

′). Without loss of generality, we assume that there is a single initial state
s0 ∈ S. Value-based methods aim to approximate the value functions V or Q and implicitly derive
the optimal policy, typically by acting greedily with respect to the Q-function [31]. On the other hand,
policy gradient methods directly optimize a parameterized policy πθ without explicitly estimating
Q [46]. In both of these methods, since returns can be noisy, estimating Q or policy gradient
methods suffer from high variance and instability. To reduce the variance, the advantage function
A(s, a) = Q(s, a)− V (s) is usually employed. Advantage Actor-Critic (A2C) [30] jointly learns a
policy πθ (e.g., actor) and a value function V̂ϕ (e.g., critic), where the critic provides feedback to the
actor. Proximal Policy Optimization (PPO) [40] further improves the stability via a clipped surrogate
objective function. The overestimation bias and sample efficiency further improve in Twin Delayed
Deep Deterministic (TD3) [8] and Soft Actor-Critic (SAC) [13]. In this paper, we consider all these
algorithms, which include policy-based and a combination of actor-critic and value-based methods.

3.2 Dataset Aggregation

Dataset Aggregation or DAGGER [36] addresses the distribution shift in imitation learning, where a
policy π̂ trained on expert demonstrations d(π

∗) encounters a different state distribution d(π̂) during

3

Algorithm 1 Symbolic Policy Interpretable Distillation (SPID).

1: procedure GM-DAGGER((S,A, P,R), π∗, Q∗, α, β, ϵ,M,N)
2: Initialize dataset D ← ∅
3: Initialize policy π̂0 ← π∗

4: for i = 0 to N do
5: Execute policy πi according to (5)
6: Collect M trajectories Di = {(s, π∗(s)) ∼ πi(s)}
7: Compute GM loss components:
8: gp(s, π̂) = V ∗(s)−Q∗(s, π̂(s)) + α
9: gf (s, π̂) = ∥π̂(s)− π∗(s)∥2 + ϵ

10: ℓ(s, π̂) =
√

gp(s, π̂(s))× gf (s, π̂(s))
11: Aggregate dataset D ← D ∪Di

12: Train symbolic policy π̂i ← SymbolicRegression(D, ℓ(s, π̂))
13: end for
14: return Best policy π̂ ∈ {π̂1, . . . , π̂N} on validation
15: end procedure

execution, leading to compounding errors that can accumulate over time. To reduce this issue, DAG-
GER iteratively collects trajectories under the current policy π̂, queries the expert policy π∗ for correct
actions on these newly visited states, and aggregates this with previous datasets to retrain the policy.
Thus, the goal of DAGGER becomes to train a policy π̂ ∈ Π as, π̂ = argminπ∈Π Es∼d(π) [ℓ(s, π)],
where the loss function is defined as 0-1 loss ℓ(s, π) = I[π(s) ̸= π∗(s)] or the surrogate loss function,
which provides a convex upper bound of the 0− 1 loss.

Q-DAGGER [1] extends DAGGER by leveraging the expert policy’s Q-function to prioritize learning
on critical states where action choices significantly impact the future performance. Q-DAGGER
enhances the loss function to focus on the cost-to-go difference between optimal and chosen actions

ℓt(s, π) = V
(π∗)
t (s)−Q

(π∗)
t (s, π(s)). (1)

4 Proposed Method

In this section, we introduced Symbolic Policy Interpretable Distillation (SPID), a framework for
distilling deep RL policies into interpretable symbolic representations. The key component of SPID
is GM-DAGGER, which is a geometric mean variant of DAGGER. This variant provides a principled
way to balance performance and faithfulness to the original policy.

Unlike standard multi-objective RL methods, in which we explicitly search for Pareto-optimal
policies that can be exponentially large, our method directly learn a single Pareto-optimal policy
by incorporating the performance and fidelity objectives into a single regularized loss function.
This formulation allows us to train a single symbolic policy that simultaneously achieves strong
performance and high fidelity to the teacher policy.

4.1 Geometric Mean Dataset Aggregation

We begin by formalizing the geometric mean loss that derives GM-DAGGER (Geometric Mean
Dataset Aggregation). GM-DAGGER extends standard DAGGER [36] and Q-DAGGER by integrating
performance and fidelity objectives into a single balanced objective.

Performance gap. We evaluate the performance difference between the distilled policy π relative to
the teacher policy π∗ in the form of

gpt (s, π) = V
(π∗)
t (s)−Q

(π∗)
t (s, π(s)) + α , (2)

where V π∗
and Qπ∗

are the teacher’s value and Q-functions, and α > 0 ensures positivity for the
geometric mean. This term directly corresponds to the original Q-DAGGER loss.

Fidelity gap. We quantify the divergence between the distilled policy π and the teacher policy π∗ as

gft (s, π) = ||π(s)− π∗(s)||2 + ϵ , (3)

4

......

Trajectory 1

Trajectory 2

Trajectory 3

(a) Example showing difference of DAGGER, Q-DAGGER and GM-DAGGER.
Performance

Fi
de
lit
y

DAGGER

-DAGGER

GM-DAGGER

(b) Objective difference.

Figure 1: Illustrative example demonstrating the trade-offs between different imitation learning
approaches. (a) A finite-horizon MDP with deterministic transitions showing three sub-optimal
trajectories and the optimal teacher policy π∗ (dashed). Each approach favors different trajectories:
DAGGER prefers high-fidelity Trajectory 2, Q-DAGGER favors high-performance Trajectory 3, while
GM-DAGGER balances both objectives by selecting Trajectory 1. (b) Pareto frontier illustrating the
performance-faithfulness trade-off, where GM-DAGGER achieves a balanced solution between the
extremes of pure fidelity and pure performance optimization

where ϵ > 0 is added to prevent the fidelity gap from being 0.

GM-DAGGER loss. By combining (2) and (3) loss terms, GM-DAGGER defines

ℓt(s, π) =

√
gpt (s, π) · g

f
t (s, π) . (4)

This formulation of the new loss function makes sure that the distilled policy is efficient as well
as faithful. In other words, the poor behavior in either objective cannot be compensated by strong
performance in the other, which naturally balances the trade-off. Next, we demonstrate the distinct
mechanisms underlying DAGGER, Q-DAGGER, and GM-DAGGER.

Proposition 4.1. In a discrete action space finite time MDP, for policy π with disagreements d(π)
and performance gap ∆(π) over the time horizon T , we have

ℓDAGGER =
d(π)

T
, ℓQ-DAGGER =

∆(π)

T
, ℓGM-DAGGER =

√
(
∆(π)

T
+ α)(

d(π)

T
+ ϵ).

By performing optimization on those loss functions, the algorithms exhibit different preferences:

• DAGGER prioritize behavioral mimicking: d(πi) < d(πj)⇔ πi ≻ πj .

• Q-DAGGER prioritize performance: ∆(πi) < ∆(πj)⇔ πi ≻ πj .

• GM-DAGGER balances fidelity and performance through multiplicative trade-off
(∆(πi) + αT)(d(πi) + ϵT) < (∆(πj) + αT)(d(πj) + ϵT)⇔ πi ≻ πj .

Example 4.2. We make the gap explicit to demonstrate Proposition 4.1 in an example shown in
Figure 1a. Figure 1a shows a simple finite-horizon MDP, with initial state s0, deterministic transitions
shown in arrows, and with the finite time horizon of T = 3(k+ 1). In this MDP, the possible rewards
for each state are R(s′−k = T − 3τ), R(sk) = T − τ , R(s̃) = T , and R(s) = 0.

As shown in the Figure 1a, we only consider 4 trajectories named as “Trajectory 1, 2, 3” and "π∗".
As can be seen, the teacher policy π∗, shown in dashed edges, achieves the optimal trajectory with
reward T . Since the perfect imitation is impossible, we mainly focus on the remaining 3 trajectories
that deviate from the optimal policy π∗ to understand the different characteristics of DAGGER, Q-
DAGGER, and GM-DAGGER. For straightforward understanding, trajectory 2 can be considered the
most faithful trajectory a policy will follow, but it sacrifices significant performance. Trajectory 3,
on the other hand, represents the highest performance retention behavior but shows no faithfulness.
Trajectory 1 focuses on balancing both faithfulness and performance, with modest sacrifices in each.
With the calculation following Proposition 4.1 (detailed calculation in Appendix A), we found

• DAGGER: ℓDAGGER
2 < ℓDAGGER

1 < ℓDAGGER
3 ⇔ π2 ≻ π1 ≻ π3.

5

• Q-DAGGER: ℓQ-DAGGER
3 < ℓQ-DAGGER

1 < ℓQ-DAGGER
2 ⇔ π3 ≻ π1 ≻ π2.

• GM-DAGGER: ℓGM-DAGGER
1 < ℓGM-DAGGER

2 < ℓGM-DAGGER
3 ⇔ π1 ≻ π2 ≻ π3.

This shows that, when imitation is imperfect, DAGGER only focus on fidelity while ignore performance
and Q-DAGGER favors performance but ignores fidelity. However, GM-DAGGER creates a trade-off
and yields a distilled policy that lies on the Pareto front (Figure 1b). This illustrative example
demonstrates the main reason and advantage of the GM-DAGGER in providing a single-objective
loss that implicitly creates the trade-off between performance and faithfulness.

4.2 Symbolic Policy Interpretable Distillation

We now combine the GM-DAGGER with symbolic regression [27] to propose SPID (shown in
Algorithm 1), an approach that aims to distill the teacher’s DNN policy into an interpretable analytical
symbolic formulation that describes the policy behavior. For the symbolic regression part, we employ
the efficient, scalable, and high-performance PySR library [5].

The full training pipeline is as follows. First, we sample state action pairs from π∗, store them in a
dataset D, and fit an initial symbolic policy π̂0 via symbolic regression. We refer to this as a Dataset
Initialization step. In practice, at this step, the symbolic policy often performs poorly due to the
distribution shift. Recall that, in the symbolic policy distillation, the distribution shift means the
symbolic policy π̂0 likely follows a completely different trajectory during validation, which remains
unseen in π∗’s trajectories. We refer to this as the distribution shift of the symbolic policy π̂0

To address this distribution shift problem, we follow the data aggregation principle in DAGGER. At
each iteration, we mix the symbolic policy π̂i with the teacher policy π∗ using the mixing coefficient
β, which provably yeild a hybrid policy as:

πi = βπ∗ + (1− β)π̂i, (5)

where β = 0.5 in our experiments. We call this policy mixing step. After this step, we execute
πi for M trajectories to collect new state-action pairs and store them in the dataset. Subsequently,
we compute the performance gap and fidelity gap from (2) and (3) accordingly to compute the
GM-DAGGER loss function (4). By minimizing this loss function, our proposed GM-DAGGER
improves the overall performance and fidelity, which makes it an optimal choice for interpretability.

Finally, in the last step, we retrain a new symbolic policy π̂i+1 on the aggregated dataset using the
symbolic regression (PySR [5]), which ultimately minimizes the GM loss. Our symbolic regression
operates via a multi-population evolutionary search algorithm over analytical functions to create a
trade-off between fidelity and performance.

5 Experimental Result

5.1 Experimental setup

To evaluate SPID, we perform experiments across six Gymnasium [47] environments, including a
range of different problems: CartPole, MountainCar, Pendulum, Acrobot, Reacher, and Swimmer.
These environments pose different control challenges from simple balancing to complex multi-body
coordination, providing a comprehensive testbed for evaluating the robustness and generalizability of
SPID. Moreover, we employ five deep RL algorithms to train teacher policies for distillation with
SPID. These algorithms includes on-policy algorithms such as PPO [40], TRPO [39] and off-policy
algorithms DDPG [24], SAC [13], and TD3 [8]. For fair evaluation, we compare SPID against three
interpretable policy distillation baselines. Our first baseline is the symbolic policy regressions [22],
which applies symbolic regression directly on state–action trajectories to obtain closed-form policies.
Our second baseline is VIPER [1], a decision tree distillation method with depth limited to 4 to ensure
interpretability [44]. (Performance of VIPER without tree depth limits to guarantee interpretability is
shown in the Appendix B.) Our third baseline is PIRL [50], which is a programmatically interpretable
RL method specifically designed to distill DNN policies to programmatic policies.

6

Table 1: Performance comparison of policy distillation methods.
Deep RL Algorithm Distillation Methods

Env Name Performance Regression PIRL VIPER SPID

CartPole PPO 1000.0± 0.0 576.4± 190.2 1000.0± 0.0 585.9± 229.6 1000.0± 0.0

TRPO 1000.0± 0.0 326.3± 89.2 1000.0± 0.0 265.8± 228.9 1000.0± 0.0

DDPG 1000.0± 0.0 142.0± 122.9 1000.0± 0.0 985.0± 45.0 1000.0± 0.0

SAC 1000.0± 0.0 158.9± 30.1 1000.0± 0.0 573.2± 327.5 1000.0± 0.0

TD3 1000.0± 0.0 40.4± 12.5 997.5± 5.8 220.1± 13.7 1000.0± 0.0

MountCar PPO 91.1± 0.1 −146.0± 4.4 −12.4± 0.0 91.2± 0.3 94.7± 1.4

TRPO 93.9± 0.0 −55.7± 4.9 −9.5± 1.3 93.9± 0.0 94.4± 0.8

DDPG 93.9± 0.3 −59.4± 4.8 −7.4± 0.6 94.0± 0.2 95.0± 0.3

SAC 93.6± 0.1 −98.0± 2.0 −1.5± 1.4 93.8± 0.3 93.8± 0.7

TD3 93.8± 0.2 −95.7± 1.5 −7.4± 0.6 93.8± 0.2 94.7± 0.2

Pendulum PPO −263.9± 119.3 −1255.8± 451.2 −1161.1± 191.2 −903.4± 333.8 -253.3± 124.5

TRPO −181.7± 78.2 −1128.6± 167.2 −1254.7± 209.8 −893.0± 402.7 -346.6± 361.0

DDPG −155.1± 79.0 −1347.5± 320.0 −1413.1± 28.6 −369.1± 252.3 -193.8± 74.2

SAC −145.2± 93.1 −1381.7± 283.5 −1567.6± 64.6 −797.9± 324.1 -214.7± 123.5

TD3 −170.5± 93.8 −1210.1± 202.3 −1563.0± 46.6 −621.5± 611.6 -173.3± 111.2

Acrobot PPO −37.8± 3.3 −79.9± 7.3 −109.3± 31.3 −37.7± 4.5 -36.7± 0.5

TRPO −40.2± 0.4 −117.1± 13.2 −92.7± 21.8 -44.7± 8.5 −73.8± 4.9

DDPG −34.5± 0.7 −74.7± 18.4 −91.0± 32.0 -39.4± 4.0 −48.3± 6.3

SAC −35.0± 0.0 −82.0± 17.2 −85.6± 18.3 -37.6± 3.5 −45.9± 1.8

TD3 −37.3± 0.5 −82.5± 7.4 −75.2± 11.8 −49.9± 12.2 -49.5± 4.0

Swimmer PPO 356.2± 1.4 −3.8± 30.7 −5.8± 21.0 357.7± 2.1 350.5± 3.6

TRPO 339.0± 1.3 30.2± 7.3 −4.0± 19.7 338.1± 2.0 338.1± 2.3

DDPG 347.6± 1.1 172.2± 82.6 4.0± 19.5 348.0± 3.3 354.8± 1.5

SAC 349.6± 1.3 22.3± 4.9 −0.7± 22.3 344.0± 1.8 345.3± 1.6

TD3 355.5± 1.5 −20.2± 5.6 −9.2± 14.7 351.7± 1.8 354.2± 1.4

Reacher PPO −5.1± 2.0 −25.2± 17.9 −11.2± 3.8 −5.9± 1.7 -5.7± 4.2

TRPO −5.8± 1.9 −26.1± 17.6 −11.4± 3.5 −7.3± 2.3 -6.5± 2.0

DDPG −4.7± 0.8 −11.4± 4.2 −8.8± 4.3 −7.0± 3.0 -6.4± 2.2

SAC −3.3± 1.3 −21.8± 11.2 −11.3± 1.9 −7.9± 2.5 -6.1± 1.7

TD3 −3.6± 1.0 −14.2± 1.7 −7.4± 4.7 −6.6± 2.6 -5.7± 3.0

5.2 Main Results

In this section, we present the main experiments of the paper. From these experiments, we try to
answer these research questions (A) How effective is SPID in preserving the performance of the
teacher policy compared to distillation baselines? (B) To what extent does SPID maintain fidelity to the
teacher DNN policy? (C) What kinds of meaningful insights can we extract from symbolic policies?
(D) Can symbolic policies provide insights into the training dynamics of deep RL algorithms?

Question (A) To evaluate how effective SPID is in preserving teacher policy performance, we
conducted experiments in all six environments and report the mean and standard deviation of
returns evaluated on 10 trajectories during testing in Table 1. These results demonstrate that the
regression method performs the worst, mainly because of the distribution shift, as it is fitting only to
offline trajectories and fails to generalize to novel states. Although PIRL and VIPER mitigate this
distribution shift via dataset aggregation, they still struggle in complex control tasks. In contrast, SPID
consistently achieves the highest performance in all environments and algorithms. SPID achieves this
by combining symbolic regression with GM-DAGGER, which not only mitigates the distribution shift
but also produces symbolic policies that remain competitive with the teacher policy.

Question (B) To answer this question, we measure fidelity by computing the trajectory-wise L2
distance between distilled and teacher policy across 10 rollouts with the same initial state s0. These
results are shown in Table 2, where the smaller L2 distance means more faithfulness of the distilled
policy. As expected, regression and PIRL perform poorly because they fail to mimic complex
behaviors. VIPER performs better in simple tasks due to the flexibility of decision trees. However,

7

Table 2: Fidelity comparison of policy distillation methods.
Distillation Methods

Environment Algorithm Regression PIRL VIPER SPID

CartPole PPO 0.000± 0.002 0.000± 0.002 0.001± 0.003 0.000± 0.001

TRPO 0.002± 0.024 0.006± 0.031 0.003± 0.019 0.002± 0.007

DDPG 0.084± 0.044 0.026± 0.037 0.015± 0.032 0.015± 0.055

SAC 0.078± 0.061 0.119± 0.096 0.059± 0.069 0.079± 0.166

TD3 0.300± 0.298 0.391± 0.294 0.250± 0.298 0.347± 0.269

MountainCar PPO 0.541± 0.604 0.746± 0.331 0.178± 0.391 0.315± 0.234

TRPO 0.598± 0.441 0.758± 0.356 0.388± 0.625 0.158± 0.193

DDPG 0.679± 0.505 0.754± 0.361 0.311± 0.488 0.164± 0.196

SAC 0.456± 0.535 0.722± 0.358 0.169± 0.391 0.084± 0.104

TD3 0.396± 0.514 0.772± 0.327 0.315± 0.548 0.244± 0.262

Pendulum PPO 0.258± 0.461 0.312± 0.406 0.124± 0.266 2.431± 5.125

TRPO 0.242± 0.586 0.242± 0.482 0.242± 0.455 0.224± 0.370

DDPG 0.389± 0.856 0.374± 0.685 1.663± 0.643 0.347± 0.715

SAC 0.295± 0.658 0.184± 0.512 1.720± 0.581 0.151± 0.496

TD3 3.317± 1.621 0.306± 0.634 0.237± 0.777 0.212± 0.499

Acrobot PPO 1.167± 0.802 0.981± 0.619 0.078± 0.462 0.219± 0.718

TRPO 0.843± 0.703 0.631± 0.481 0.218± 0.267 0.513± 0.506

DDPG 1.245± 0.870 0.893± 0.691 0.437± 0.944 0.113± 0.071

SAC 0.868± 0.524 0.684± 0.451 0.893± 0.691 0.482± 0.497

TD3 1.063± 0.711 0.795± 0.592 0.931± 0.699 0.457± 0.790

Swimmer PPO 0.228± 0.285 1.331± 0.130 1.333± 0.129 0.097± 0.099

TRPO 0.254± 0.208 1.258± 0.181 1.260± 0.179 0.107± 0.148

DDPG 0.296± 0.192 1.381± 0.077 1.381± 0.077 0.071± 0.120

SAC 0.196± 0.179 1.194± 0.125 1.193± 0.125 0.071± 0.088

TD3 0.235± 0.253 1.362± 0.114 1.362± 0.114 0.119± 0.166

Reacher PPO 0.232± 0.208 0.071± 0.056 0.074± 0.064 0.070± 0.063

TRPO 0.682± 0.967 0.076± 0.093 0.068± 0.090 0.066± 0.075

DDPG 0.558± 3.703 0.068± 0.080 0.083± 0.093 0.109± 0.144

SAC 0.140± 0.161 0.110± 0.081 0.078± 0.097 0.077± 0.083

TD3 0.320± 0.227 0.097± 0.106 0.078± 0.091 0.095± 0.159

SPID outperforms all baselines, achieving the lowest policy divergence across tasks. This again
validates that our method effectively aligns with both teacher behavior and task performance.

Question (C) To answer (C), we run experiments with SPID to distill policies. Table 3 presents
representative policies distilled by SPID in the CartPole environment (with results for all environments
provided in Appendix C). These results show that SPID produces compact symbolic expressions that
enable mechanistic understanding. Moreover, the distilled expressions are straightforward to interpret
and readily deployable.

For example, in CartPole, the TRPO policy, unlike PPO, does not rely on the position feature s0,
instead basing its decisions on the remaining three features. To validate this, we mask the CartPole
environment by removing s0 and rerun TRPO policy. Our results show that this omission does not
degrade performance, as the TRPO on this modified environment yields nearly identical returns
(994.9 ± 8.43). Although this finding is important in understanding the underlying model and
reducing the state space, it also exposes potential risks. To show this, we perform a deeper analysis
on the vulnerability under perturbations, where velocity s1 > 1.3 and TRPO fails miserably with
performance dropping to 5.0± 0.0. Such analyses, which are impossible to obtain from black-box
teacher DNN policies, demonstrate how symbolic distillation can uncover brittle strategies and inform
safer deployment rather than simply deploying a DNN-based policy.

Question (D) To investigate whether symbolic policies provide insights into training dynamics
and failure modes, we perform experiments with PPO on CartPole and MountainCar. Figure 2
demonstrates the PPO training on these environments. In CartPole (Figure 2a), PPO fails to learn
anything during the first 300 episodes. At this stage, SPID reveals that the policy relies primarily on

8

Table 3: Distilled symbolic policy for CartPole environment.
Environment Algorithm Policy Expression from SPID

CartPole PPO a = (s2 + (((0.055− (−0.193) · (s3 + s0)))− 0.135s1)) ∗ 1.697
TRPO a = (s3 + (s1 + s2)) · (4.401− (−0.804− s1)

2)

DDPG a = ((s3 · (−0.098))− s2) · (−20.292)
SAC a = (2.359− (s3 + 0.825)4) · ((s2 · 3.526) + s3)

TD3 a = (s1 + 2.551) · ((s3 + s2) + s1)

0 100 200 300 400 500
Episodes

200

400

600

800

1000

To
ta

l R
ew

ar
d

a= 0.326× s2

a= 0.351× s2

a= s3 + (1.806× (s2 − s2
1))

a= ((s2 + s3)× 2.195) + s1
Max Reward

(a) CartPole.

0 20 40 60 80 100
Episodes

60

40

20

0

20

40

60

80

To
ta

l R
ew

ar
d

a= (s0 × 0.016)− ((s1 × 0.052) + (−0.049))

a= ((s0 × 0.0015) + 0.043) + (s1 × 0.008)

a= ((s0 + (−0.373))× 0.0009)− (s1 × (−0.042))

Max Reward

(b) MountainCar.

Figure 2: Training dynamics analysis through symbolic policy distillation.

angle-based control (e.g., s2). As training progresses, PPO gradually incorporates velocity (s1) and
cart position (s3), which leads to high returns and improved stability. This trajectory of symbolic
expressions provides an interpretable and transparent perspective of how the policy evolves during
training. In contrast, PPO fails in MountainCar, converging to near-zero returns through a form of
reward hacking. Rather than pursuing the sparse terminal reward of reaching the goal (+100), the
agent exploits the penalty term by avoiding large actions: since each timestep the environment incurs
a negative reward of −0.1a2 for actions of large magnitude, the agent learns to minimize this penalty
rather than solve the task. This behavior is reflected in Figure 2b, where the learned coefficients of
s0 progressively shrink over time (0.016→ 0.0015→ 0.0009), preventing PPO from ever learning
to reach the goal. Interestingly, such investigations, which are only possible through SPID, directly
provide fixes such as reward shaping, increased rollout horizons, or entropy regularization, which are
difficult to identify from a black-box teacher DNN policy.

6 Conclusions

In this paper, we addressed the problem of performance-fidelity trade-off in interpretable policy dis-
tillation. We proposed GM-DAGGER, which employs a geometric mean loss to optimize performance
and fidelity. Building on this, we introduce SPID, a framework that distills symbolic policies that
are both faithful and efficient. Experiments across six environments with five deep RL algorithms
show that SPID preserves performance and fidelity while providing interpretable policies that reveal
underlying mechanistic decision-making and training dynamics.

Limitations and future work. Our paper focuses on continuous control tasks with physical state
representations. In future, we plan to extend SPID to settings with high-dimensional inputs (e.g., raw
images) that require feature extraction, potentially via neural encoders, before symbolic distillation.
Moreover, while symbolic policies are interpretable, this advantage gradually weakens as task
complexity increases. Therefore, developing methods to maintain interpretability in complex settings
remains an important area for future research.

9

Acknowledgments

This work was supported by the Office of Naval Research under Grants N000142412405 and
N000142212474.

References
[1] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via

policy extraction. Advances in neural information processing systems, 31, 2018.

[2] Glen Berseth, Cheng Xie, Paul Cernek, and Michiel Van de Panne. Progressive reinforcement
learning with distillation for multi-skilled motion control. In International Conference on
Learning Representations, 2018.

[3] Subhajit Chaudhury, Sarathkrishna Swaminathan, Daiki Kimura, Prithviraj Sen, Keerthiram
Murugesan, Rosario Uceda-Sosa, Michiaki Tatsubori, Achille Fokoue, Pavan Kapanipathi, Asim
Munawar, and Alexander Gray. Learning symbolic rules over Abstract Meaning Representations
for textual reinforcement learning. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,
editors, Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 6764–6776, Toronto, Canada, July 2023. Association for
Computational Linguistics.

[4] Vinícius G. Costa, Jorge Pérez-Aracil, Sancho Salcedo-Sanz, and Carlos E. Pedreira. Evolving
interpretable decision trees for reinforcement learning. Artif. Intell., 327(C), February 2024.

[5] Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

[6] Wojciech M Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant Jayakumar, Grzegorz
Swirszcz, and Max Jaderberg. Distilling policy distillation. In The 22nd international conference
on artificial intelligence and statistics, pages 1331–1340. PMLR, 2019.

[7] Quentin Delfosse, Hikaru Shindo, Devendra Dhami, and Kristian Kersting. Interpretable and
explainable logical policies via neurally guided symbolic abstraction. Advances in Neural
Information Processing Systems, 36:50838–50858, 2023.

[8] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[9] Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1607–1616. PMLR, 10–15 Jul 2018.

[10] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems,
34:4028–4039, 2021.

[11] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international
conference on robotics and automation, pages 3389–3396. IEEE, 2017.

[12] Jiaming Guo, Rui Zhang, Shaohui Peng, Qi Yi, Xing Hu, Ruizhi Chen, Zidong Du, Ling Li,
Qi Guo, Yunji Chen, et al. Efficient symbolic policy learning with differentiable symbolic
expression. Advances in neural information processing systems, 36:36278–36304, 2023.

[13] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[14] Muhammad Burhan Hafez and Kerim Erekmen. Continual deep reinforcement learning with
task-agnostic policy distillation. Scientific Reports, 14(1):31661, 2024.

10

[15] Abhinav Narayan Harish, Larry Heck, Josiah P. Hanna, Zsolt Kira, and Andrew Szot. Rein-
forcement learning via auxiliary task distillation. In Computer Vision – ECCV 2024: 18th
European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part LXXXI,
page 214–230, Berlin, Heidelberg, 2024. Springer-Verlag.

[16] Daniel Hein, Steffen Udluft, and Thomas A Runkler. Interpretable policies for reinforcement
learning by genetic programming. Engineering Applications of Artificial Intelligence, 76:158–
169, 2018.

[17] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

[18] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[19] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Proceedings of
the 30th International Conference on Neural Information Processing Systems, NIPS’16, page
4572–4580, Red Hook, NY, USA, 2016. Curran Associates Inc.

[20] Hector Kohler, Quentin Delfosse, Riad Akrour, Kristian Kersting, and Philippe Preux. Inter-
pretable and editable programmatic tree policies for reinforcement learning. arXiv preprint
arXiv:2405.14956, 2024.

[21] Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribu-
tion matching. In International Conference on Learning Representations, 2020.

[22] Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt,
Nathan Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic policies with deep
reinforcement learning. In International Conference on Machine Learning, pages 5979–5989.
PMLR, 2021.

[23] Peilang Li, Umer Siddique, and Yongcan Cao. From explainability to interpretability: Inter-
pretable reinforcement learning via model explanations. In Reinforcement Learning Conference,
2025.

[24] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[25] Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. Toward interpretable deep reinforce-
ment learning with linear model u-trees. In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14,
2018, Proceedings, Part II, page 414–429, Berlin, Heidelberg, 2018. Springer-Verlag.

[26] Zhihao Ma, Yuzheng Zhuang, Paul Weng, Hankz Hankui Zhuo, Dong Li, Wulong Liu, and
Jianye Hao. Learning symbolic rules for interpretable deep reinforcement learning, 2021.

[27] Nour Makke and Sanjay Chawla. Interpretable scientific discovery with symbolic regression: a
review. Artificial Intelligence Review, 57(1):2, 2024.

[28] Sascha Marton, Tim Grams, Florian Vogt, Stefan Lüdtke, Christian Bartelt, and Heiner Stucken-
schmidt. Mitigating information loss in tree-based reinforcement learning via direct optimization,
2025.

[29] Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Zheyuan Ryan Shi, Charles Kamhoua,
Evangelos E. Papalexakis, and Fei Fang. Maviper: Learning decision tree policies for inter-
pretable multi-agent reinforcement learning. In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23,
2022, Proceedings, Part IV, page 251–266, Berlin, Heidelberg, 2022. Springer-Verlag.

11

[30] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The
33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518:529–533, 2015.

[32] Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In International
Conference on Learning Representations, 2022.

[33] Xinghua Qu, Yew Soon Ong, Abhishek Gupta, Pengfei Wei, Zhu Sun, and Zejun Ma. Impor-
tance prioritized policy distillation. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD ’22, page 1420–1429, New York, NY, USA,
2022. Association for Computing Machinery.

[34] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence.
Dataset Shift in Machine Learning. MIT Press, 2009.

[35] Stephane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Yee Whye
Teh and Mike Titterington, editors, Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research,
pages 661–668, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

[36] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and
Miroslav Dudík, editors, Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages
627–635, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

[37] Aaron M. Roth, Nicholay Topin, Pooyan Jamshidi, and Manuela Veloso. Conservative q-
improvement: Reinforcement learning for an interpretable decision-tree policy, 2019.

[38] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

[39] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–1897.
PMLR, 2015.

[40] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[41] Umer Siddique, Paul Weng, and Matthieu Zimmer. Learning fair policies in multi-objective
(deep) reinforcement learning with average and discounted rewards. In International Conference
on Machine Learning, pages 8905–8915. PMLR, 2020.

[42] Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Op-
timization methods for interpretable differentiable decision trees applied to reinforcement
learning. In International conference on artificial intelligence and statistics, pages 1855–1865.
PMLR, 2020.

[43] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of go without human knowledge. Nature, 550:354–359, 2017.

12

[44] Victor Feitosa Souza, Ferdinando Cicalese, Eduardo Laber, and Marco Molinaro. Decision trees
with short explainable rules. Advances in neural information processing systems, 35:12365–
12379, 2022.

[45] Giacomo Spigler. Proximal policy distillation. Transactions on Machine Learning Research,
2025.

[46] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In Advances in Neural Information Processing
Systems 12, pages 1057–1063, 2000.

[47] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A
standard interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032,
2024.

[48] René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Guanghang Cai, Natalia Díaz-
Rodríguez, and David Filliat. Discorl: Continual reinforcement learning via policy distillation.
arXiv preprint arXiv:1907.05855, 2019.

[49] Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize programs
as interpretable and generalizable policies. Advances in neural information processing systems,
34:25146–25163, 2021.

[50] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International conference on machine
learning, pages 5045–5054. PMLR, 2018.

[51] Maxime Wabartha and Joelle Pineau. Piecewise linear parametrization of policies: Towards
interpretable deep reinforcement learning. In The Twelfth International Conference on Learning
Representations, 2024.

[52] Mingkang Wu, Umer Siddique, Abhinav Sinha, and Yongcan Cao. Offline reinforcement
learning with failure under sparse reward environments. In 2024 IEEE 3rd International
Conference on Computing and Machine Intelligence (ICMI), pages 1–5. IEEE, 2024.

[53] Charles Xu, Qiyang Li, Jianlan Luo, and Sergey Levine. Rldg: Robotic generalist policy
distillation via reinforcement learning, 2024.

[54] Haiyan Yin and Sinno Pan. Knowledge transfer for deep reinforcement learning with hierarchical
experience replay. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

[55] Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding dqns.
In International conference on machine learning, pages 1899–1908. PMLR, 2016.

[56] Hengzhe Zhang, Aimin Zhou, and Xin Lin. Interpretable policy derivation for reinforcement
learning based on evolutionary feature synthesis. Complex & Intelligent Systems, 6(3):741–753,
2020.

13

A Detailed Calculation Example

Proof. DAGGER 0-1 loss function: The DAGGER loss measures stepwise disagreements with the
expert policy:

ℓDAGGER = I[π(s) ̸= π∗(s)]

For Trajectory 1, there are 2 disagreements in the whole trajectory over finite horizon T = 3(k + 1).
The average stepwise loss is:

ℓDAGGER
1 = 2T−1.

For Trajectory 2, 1 disagreement occurred, yielding:

ℓDAGGER
2 = T−1.

For Trajectory 3, there are T disagreements in the whole trajectory over finite horizon T , giving:

ℓDAGGER
3 = 1.

Comparing these losses, trajectory 2 is preferred by DAGGER:

ℓDAGGER
2 < ℓDAGGER

1 < ℓDAGGER
3

Q-DAGGER loss function: The Q-DAGGER loss measures the value difference between expert and
learned policies:

ℓQ-DAGGER = V
(π∗)
t (s)−Q

(π∗)
t (s, π(s)).

According to Lemma 2.1 in [1], we have the relationship Tℓ(π) = J(π) − J(π∗). In our setting,
J(π∗) = −T (cost-to-go formulation with negative values).

For trajectory 1 with J(π1) = −(T − 3τ), we compute:

ℓQ-DAGGER
1 = [−(T − 3τ)− (−T)] · T−1 = 3τT−1

For trajectory 2 with J(π2) = 0, we obtain:

ℓQ-DAGGER
2 = [0− (−T)] · T−1 = 1

For trajectory 3 with J(π3) = −(T − τ), we have:

ℓQ-DAGGER
3 = [−(T − τ)− (−T)] · T−1 = τT−1

Since τ ∈ [0, 1), the ordering becomes clear. Therefore, trajectory 3 is preferred by Q-DAGGER:

ℓQ-DAGGER
3 < ℓQ-DAGGER

1 < ℓQ-DAGGER
2

GM-DAGGER loss function: The GM-DAGGER loss combines performance and behavioral terms via
geometric mean:

ℓGM-DAGGER =

√
gpt (s, π) · g

f
t (s, π)

=

√
[V

(π∗)
t (s)−Q

(π∗)
t (s, π(s)) + α] · [||π(s)− π∗(s)||2 + ϵ]

For the performance term gp(π), using Lemma 2.1 in [1], we have Tgp(π) = J(π)− J(π∗) + αT ,
which gives us the average stepwise performance loss plus regularization.

For trajectory 1, the performance term becomes gp(π1) = 3τT−1 + α. In the discrete action setting,
2 disagreements occurred. Since π(s) ̸= π∗(s) implies ||π(s)− π∗(s)||2 = 1, the behavioral term is
gf (π1) = 2T−1 + ϵ. Thus:

ℓGM-DAGGER
1 =

√
(3τT−1 + α)(2T−1 + ϵ)

14

Similarly, for trajectory 2 with gp(π2) = 1 + α and 1 disagreement:

ℓGM-DAGGER
2 =

√
(1 + α)(T−1 + ϵ)

For trajectory 3 with gp(π3) = τT−1 + α and full disagreements (T total disagreements):

ℓGM-DAGGER
3 =

√
(τT−1 + α)(1 + ϵ)

To establish the ordering, note that as τ ∈ [0, 1) and α, ϵ ∈ (0, 1), for sufficiently large T ≥ 1
min(α,ϵ)

(most cases in deep RL), the regularization terms dominate the trajectory-dependent terms. This
asymptotic analysis yields:

ℓGM-DAGGER
1 < ℓGM-DAGGER

2 < ℓGM-DAGGER
3

Therefore, trajectory 1 is preferred by GM-DAGGER.

B VIPER

Table 4 presents VIPER performance without tree depth limitation across different reinforcement learn-
ing environments and algorithms, with mean performance ± standard deviation reported alongside
the resulting tree complexity (nodes, depth).

Table 4: VIPER performance without tree depth limitation.
Algorithm

Environment PPO TRPO DDPG SAC TD3

CartPole 1000.0± 0.0 372.7± 198.5 1000.0± 0.0 1000.0± 0.0 1000.0± 0.0
(2981, 42) (3011, 38) (6951, 47) (7661, 41) (6279, 38)

MountainCar 91.1± 0.2 93.9± 0.0 94.1± 0.2 93.6± 0.1 93.8± 0.2
(127, 11) (157, 11) (809, 24) (83, 10) (891, 35)

Pendulum −217.9± 165.0 −153.4± 108.7 −146.6± 72.0 −141.8± 85.0 −147.3± 68.9
(11187, 34) (5029, 85) (1749, 43) (4809, 47) (6741, 30)

Acrobot −36.0± 0.0 −41.3± 3.0 −35.1± 0.3 −35.6± 0.7 −41.0± 4.9
(63, 7) (1419, 21) (957, 27) (1311, 22) (839, 26)

Reacher −4.8± 1.2 −6.1± 2.7 −4.7± 1.5 −4.2± 1.5 −4.9± 1.6
(4656, 27) (5424, 34) (5384, 47) (6912, 39) (4624, 38)

Swimmer 358.0± 1.9 341.0± 2.4 348.2± 1.1 350.1± 2.5 357.6± 2.5
(3414, 25) (62638, 47) (31054, 57) (120138, 71) (45542, 73)

C Distilled Symbolic Policy

Table 5 presents all interpretable symbolic policies distilled using SPID across six environments with
five different deep RL algorithms.

15

Table 5: Distilled symbolic policy.
Environment Algorithm Policy Expression from SPID

CartPole PPO a = (s2 + (((0.055− (−0.193) · (s3 + s0)))− 0.135s1)) ∗ 1.697
TRPO a = (s3 + (s1 + s2)) · (4.401− (−0.804− s1)

2)

DDPG a = ((s3 · (−0.098))− s2) · (−20.292)
SAC a = (2.359− (s3 + 0.825)4) · ((s2 · 3.526) + s3)

TD3 a = (s1 + 2.551) · ((s3 + s2) + s1)

MountainCar PPO a = sin((s1 − 1.509) · (s0 + 37.711))

TRPO a = sin(((s1 · 64.859) + s40 · 2.156)− 1.407)

DDPG a = sin((s0 · 1.480)2 + (−0.851) + (s1 · 52.793))
SAC a = sin(sin(s20 + ((s1 · 52.426) + (−0.729))) · 1.540)
TD3 a = sin(((s1 − (−0.448)) · 67.462) + (s0/(−0.708))4)

Pendulum PPO a = ((((s0 − s1) · (−2.411)) + 1.199) · s2)− (s1 · 8.199)
TRPO a = (s0 · sin(sin(s1 + (s2 · 0.231)) · 3.322)) · (−2.205)
DDPG a = ((s1 · 5.767) + s2) · ((−0.366)− s0)

SAC a = sin((((s2 · (−0.477))− s1) · s0)− s1) · 2.463
TD3 a = sin((s2 · (−0.410))− (s1 · 1.748)) · (s0 · 3.165)

Acrobot PPO a = (s4/
√
s24) · (−1.925)

TRPO a = (sin(s4) + (s3 + s4)) · (−0.539)
DDPG a = s5 + (s1 · 2.953)
SAC a = sin((−0.406 · s4)− ((s2 + s0) · sin(s4))) · 2.073
TD3 a = sin(s2 − ((s3 − (−0.395))2 + s4))− s4

Swimmer PPO a1 = sin(((sin(0.488/s6)
2 · s6)− s2) · 2.061)

a2 = sin(sin((s6 · 0.641) + (s1 · 1.217)) · 1.788)
TRPO a1 = sin(((s1 · s3) + 1.658) · sin(s0 − (s2 · 2.358)))

a2 = sin((s4 + s1) · 0.744)
DDPG a1 = sin(sin(sin((s4 − s1)− s2)− s2) · 1.896)

a2 = sin(sin(s5 · (−1.877))− s5)

SAC a1 = sin((s6/((s4 · s6) + 1.790))− s2)
a2 = sin((sin(s5) · 1.311) + (s6 · (−0.281))) · (−0.941)

TD3 a1 = sin(((−0.086)/s2) + (s2 · (−1.840)))
a2 = sin(sin(s5 − (s6 · (−0.074))) · (−1.903))

Reacher PPO a1 = s9 · ((((s8 · 2.318) · s7) + s21) · (−1.831))
a2 = cos((−0.590) · s7) · (0.078 · ((−0.099)− s1))

TRPO a1 = 0.0002/(0.096− s1)
a2 = ((s2 + 1.245) · (s7 + (−12.931)))2 · (−0.0002)

DDPG a1 = ((cos(s7)− s5)
2)2 · s8

a2 = (s8 − (((s4 + 0.248) · 0.083) · s7)) · 1.228
SAC a1 = (s1 · s6) · 0.043

a2 = s9 · (−1.652)
TD3 a1 = (s8 − (s7 · 0.021)) + ((sin((−0.425)− s6)− s6) · 0.010)

a2 = ((s7 · (−0.021)) + (s8 + (−0.004))) · ((s4 · s6) + 1.148)

16

	Introduction
	Related Work
	Policy Distillation
	Symbolic Policies and Interpretable RL

	Preliminary
	Reinforcement Learning
	Dataset Aggregation

	Proposed Method
	Geometric Mean Dataset Aggregation
	Symbolic Policy Interpretable Distillation

	Experimental Result
	Experimental setup
	Main Results

	Conclusions
	Detailed Calculation Example
	Viper
	Distilled Symbolic Policy

