
Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

TRANSFORMER OPERATORS PERFORM IN-CONTEXT
LEARNING BY OPERATOR GRADIENT DESCENT

Abhiti Mishra∗, Yash Patel∗, & Ambuj Tewari
Department of Statistics
University of Michigan
Ann Arbor, MI 48104, USA
{abhiti,yppatel,tewaria}@umich.edu

ABSTRACT

Neural operator surrogate models are becoming increasingly popular for material
design, where they are used to rapidly evaluate candidate designs. Such surro-
gate models, however, most commonly either amortize the flow map across initial
conditions for a fixed design parameter or vice versa. Towards this end, recent
interest has emerged in meta-operator learning to allow for simultaneous variation
of both, in which a meta-learner is trained to approximate the flow map across de-
sign parameters and then fine-tuned for the particular system of interest. Increas-
ing interest is being placed on performing such fine-tuning via in-context learn-
ing. While impressive empirical performance has been achieved with function in-
context learning, a mechanistic explanation of how such a behavior emerges has
yet to be provided. We, thus, here demonstrate that functional in-context learning,
when performed by transformer operators, is achieved by gradient descent in an
operator RKHS.

1 INTRODUCTION

The evaluation of material designs often requires the solution of PDEs to compute properties of
interest, such as elasticity or fracture Arruda & Boyce (1993); Gent (1996); Humphrey (2003).
Exploration of the design space then becomes limited by the computational cost of solving such
PDEs, which must be performed using numerical solvers Wilson et al. (2022); Winkel et al. (2012);
Arber et al. (2015); Tskhakaya et al. (2007); Ning et al. (2023). In particular, numerical solution
techniques fail to amortize computational cost across problem instances, rendering them overly ex-
pensive Biegler et al. (2003); De los Reyes (2015). For this reason, machine learning methods,
known as “neural operators,” have become increasingly popular avenues of investigation Jafarzadeh
et al. (2024); Oommen et al. (2024); You et al. (2022). Such approaches amortize the cost of so-
lution across either initial conditions or “system parameters,” which are parametric quantities that
characterize the PDE and are often the free parameters of design loops, such as the conductivity κ
of a material in the heat equation (Hsu, 1994; Challis & Guest, 2009; Dunning & Kim, 2015).

Current methods in the space of operator learning, however, only allow for amortization over one of
these two modalities. That is, methods learning operator flow maps across initial conditions fix the
system parameters and those across system parameters the initial conditions Li et al. (2020b;c;a);
Du et al. (2023); Liu et al. (2023). Neural operators are fundamentally unsuited to learning flow
maps across multiple system parameters, as the true solution operator then varies across samples.
Towards this end, significant work has emerged on neural operator meta-learning. In one branch
of this work, PDE foundation models are pre-trained and subsequently fine-tuned on the particular
systems of interest Cao et al. (2024a); Shen et al. (2024); Herde et al. (2024); Liu et al. (2024b). The
need to perform fine-tuning, however, degrades the computational benefits of surrogate modeling.

In a seemingly unrelated vein, the fine-tuning of LLMs is a similarly remarkably expensive task,
owing to their tremendous parameter counts Minaee et al. (2024). It has there been observed that
LLMs, and transformers more broadly, display remarkable capacities to be fine-tuned in-context,

∗Equal contributions

1

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

in which “training pairs” are placed into the context window with no weights of the model being
updated Dong et al. (2022). For this reason, much interest has emerged in extending the standard
transformer architecture to enable in-context learning in the context of operator learning Cao et al.
(2024b); Yang et al. (2023); Meng et al. (2025); Yang & Osher (2024). Despite significant empirical
validation, such operator in-context learning have yet to be mechanistically understood.

Recent theoretical work for standard, finite-dimensional transformers suggest that they are capable
of performing in-context learning by implicitly implementing optimization algorithms in their for-
ward passes Akyürek et al. (2022); Ahn et al. (2023); Von Oswald et al. (2023); Cheng et al. (2023).
We, therefore, herein extend this line of theoretical inquiry to characterize the generalized trans-
former architectures that have been leveraged for in-context operator learning Calvello et al. (2024).
In particular, we prove the generalized transformers leveraged for in-context operator learning do so
by performing gradient descent in a Reproducing Kernel Hilbert Space over operators.

2 BACKGROUND

2.1 NEURAL OPERATORS

Neural operator methods, while more broadly applicable, most often seek to amortize the solution
of a spatiotemporal PDE. Such PDEs are formally described by spatial fields that evolve over time,
namely some u : Ω × [0,∞) → R, where x ∈ Ω ⊂ Rd are spatial coordinates and t ∈ [0,∞) is a
time coordinate. While the more abstract operator learning framework can be formulated as seeking
to learn a map Ĝ : A → U between two function spaces A and U , we are most often interested
in learning time-rollout maps, in which the input and output function spaces are identical. In such
cases, it is assumed a dataset of the form D := {(u(0)i , u

(T)
i)} is available, where u(0) : Ω → R is

the initial condition, for which there exists some true operator G such that, for all i, u(T)
i = G(u(0)i).

While many different learning-based approaches have been proposed to solve this operator learning
problem, they all can be abstractly framed as seeking

min
Ĝ

||Ĝ − G||2L2(U,U) =

∫
U
||Ĝ(u0)− G(u0)||2U du0. (1)

Notably, in such works, it is often assumed that the operator of interest is mapping between two
sufficiently smooth spaces, on which the PDE is well-defined Kovachki et al. (2024); Boullé &
Townsend (2023). That is, most often A = U = Hs(Ω), where Hs(Ω) := {f : ||f ||Hs(Ω) < ∞} is
the standard s-Sobolev space, in which

||f ||Hs(Ω) :=
∑

|α|≤k:α∈Nd

||Dαf ||L2(Ω).

s is the smoothness parameter as determined by the PDE, and α is the condensed notation for the
corresponding mixed partials, i.e. α = (α1, ..., αd) corresponds to Dα := ∂α1

x1
...∂αd

xd
.

Within this broad family of operator learning, the most widely employed classes are the Deep Opera-
tor Networks (DeepONets) Lu et al. (2021; 2019); Wang et al. (2021); Kopaničáková & Karniadakis
(2025) and Fourier Neural Operators (FNOs) Li et al. (2020b;c;a); Bonev et al. (2023). FNOs are
parameterized as a sequence of layers of linear operators, given as kernel integral transforms, with
standard intermediate ReLU nonlinearities. Formally, a single layer is then given by

(Gℓu)(x) = σ

(∫
Ω

kℓ(x, y)u(y)dy

)
= σ

(
F−1(Rℓ ⊙F(u))

)
, (2)

where the latter equivalence follows from the standard convolution theorem under the assumption
the learned kernel is translation invariant, i.e. kℓ(x, y) = kℓ(x − y), where F denotes the Fourier
transform. Due to improved computational efficiency, therefore, the learning of the kernel is done
in Fourier rather than real space, where the kernel is learned up to some fixed truncation point kmax.

2.2 TRANSFORMERS AND IN-CONTEXT LEARNING

The attention mechanism is parameterized by θ := {Wk,Wq,Wv}, where Wk ∈ Rdk×d, Wq ∈
Rdq×d, and Wv ∈ Rdv×d for sequential data X ∈ Rd×T Vaswani (2017). In a generalized form,

Attn(X) := (WvX)MH ((WqX), (WkX)) , (3)

2

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

where M ∈ RT×T is a masking matrix and H : Rdq×T × Rdk×T → RT×T is a nonlinear trans-
form of key-query similarity measures, where [H(Q,K)]i,j = h(Q(i),K(j)) with Q(i) ∈ Rdq and
K(j) ∈ Rdk . In practice, most often dk = dq and h := softmax Cheng et al. (2023). Trans-
former architectures are then simply repeated compositions of such attention blocks with residual
connections and feedforward and normalization layers.

We additionally highlight the extension of the attention mechanism proposed in Calvello et al. (2024)
that permits its use for operator learning; such an extension is referred to as “continuum attention.”
In particular, in place of xi ∈ Rd, we assume xi ∈ X for some Hilbert space X ; notably, the
presentation of Calvello et al. (2024) was particular to X = F(Ω;Rd), i.e. the set of all functions
x : Ω → Rd. The natural generalization of the attention mechanism for function inputs then replaces
the Wk,Wq , and Wv matrices with corresponding linear operators, denoted as Wk : X → K,
Wq : X → Q, and Wv : X → V , where X ,K,Q, and V are Hilbert spaces. In practice, such
operators are implemented as kernel integral transforms in the way of FNOs, as

Wqx = F−1(Rq ⊙Fx), (4)

where Rq is the Fourier parameterization of the query kernel, with Rk and Rv similarly defined for
the key and value kernels. Thus, the continuum attention mechanism assumes K = Q and defines

ContAttn(X) := (WvX)M softmax ((WqX), (WkX)) (5)

where the interpretation of M remains the same as that in Equation (3). In particular, while the key,
query, and value operators need to be generalized, the resulting attention weights matrix still lies in
RT×T , meaning the M component remains identical to its form in the finite-dimensional case.

Transformer architectures, most notably in LLMs, have been observed to exhibit an unexpected
behavior known as “in-context learning” (ICL), in which they perform few-shot learning without
any explicit parameter updates but merely by having training examples in their context windows.
We follow the conventions of Cheng et al. (2023) in formalizing the ICL phenomenon. We suppose
the dataset D := {(Xi, yi)}ni=1 on which the transformer was trained has samples of the form

Xi =

[
x
(1)
i x

(2)
i . . . x

(T)
i x

(T+1)
i

y
(1)
i y

(2)
i . . . y

(T)
i 0

]
yi = y

(T+1)
i . (6)

We then suppose y(t)i = fi(x
(t)
i), where fi ̸= fj for i ̸= j. This is the critical difference in the

in-context learning setting versus typical learning settings: in the standard setting, fi = f is fixed
across samples and necessarily matches the f ′ present at test time, meaning the goal for the learner
is to merely learn such an f . In in-context learning, however, the learning algorithm must be capable
of “learning” an unseen f ′ at inference time without parameter updates.

2.3 OPERATOR META-LEARNING

Significant interest has emerged in meta-operator learning for spatiotemporal PDEs, in which a
single network maps from initial conditions to final states across system specifications Wang et al.
(2022); Zhang (2024); Sun et al. (2024b); Liu et al. (2024b); Cao et al. (2024b); Chakraborty et al.
(2022); Sun et al. (2024a); Yang et al. (2023). Formally, unlike the traditional setting discussed in
Section 2.1, here the dataset consists of pairs D := {(u(i)0 , u

(i)
T)}Ni=1, for which the true operator

can vary across samples, i.e. Gi satisfies u(T)
i = Gi(u

(0)
i) but Gi ̸= Gj for i ̸= j. The goal is to

then, given only a limited number of training samples D′ := {(u′0, u′T)}N
′

i=1 with N ′ ≪ N for a
fixed, potentially unseen operator G′, learn an approximation Ĝ′ ≈ G′. Most often, this is done by
pre-training a meta-learner GML on D and then fine-tuning GML on D′ to arrive at G′.

There are two primary settings in which this approach is often employed. In the first, meta-learning
is sought across different parametric PDEs, i.e. where sample i may be the solution of the Navier
Stokes equation and sample j of the shallow-water equations; meta-learners in this context are re-
ferred to as “foundation models” Sun et al. (2024a); Herde et al. (2024); Zhang (2024); Sun et al.
(2024b); Liu et al. (2024a); McCabe et al. (2024). In the second setup, pre-training is instead sought
over a fixed parametric PDE, where meta-learning happens across some system parameter, i.e. where
samples i and j are both solutions of the Navier Stokes equation but for different Reynolds numbers
νi ̸= νj Cao et al. (2024b); Yang et al. (2023); Meng et al. (2025); Yang & Osher (2024).

3

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

Building off of the observed ICL of LLMs and transformers more broadly, the fine-tuning of these
meta-learners too can be performed via explicit weight modification or via in-context learning. Ap-
proaches in the first setup nearly all require fine tuning, likely owing to the greater variability of
solution operators across PDEs. In the latter, however, in-context learning is the dominant paradigm,
although some works still perform explicit weight modification Rahman et al. (2024). In fact, an
entire offshoot of meta-learning known as in-context operator networks (ICONs) has spawned from
this approach Cao et al. (2024b); Yang et al. (2023); Meng et al. (2025); Yang & Osher (2024).

Recent works in this vein have demonstrated notable empirical performance leveraging bespoke
transformer architectures built atop the continuum attention from Equation (5) Cao et al. (2024b);
Alkin et al. (2024); Cao et al. (2025). Similar to Equation (6), it is assumed that a pre-training dataset
of the form D := {(U (0:T−1)

i , U
(T)
i)} is available, where U (0:T)

i := [u
(0)
i , u

(∆T)
i , ..., u

((T−1)∆T)
i],

with u
(t)
i ∈ L2(Ω). Notably, such a setup is equivalent to having n = T/∆T training pairs

{(u((t−1)∆T)
i , ut∆T

i)}nt=1. It is further assumed that, for each sample i, there is a true, determin-
istic solution operator Gi ∈ O that maps from the spatial field at some time t to its state at some
later t+∆T . The in-context learning goal, therefore, is, given a new sequence of (U (0:T−1))′ gen-
erated by some unseen operator G′, predict (U (T))′. Such behavior has been empirically displayed
by proposed methods but has yet to be mechanistically understood.

2.4 RELATED WORKS

We are interested herein in providing a mechanistic explanation of the in-context learning empir-
ically exhibited by continuum attention-based ICONs. Such mechanistic explanations have been
studied extensively for finite-dimensional transformer architectures Akyürek et al. (2022); Garg
et al. (2022); Dai et al. (2022). Most relevant in this line of work is that of Cheng et al. (2023).
Loosely speaking, they demonstrated that, if a kernel κ(·, ·) is defined with H denoting its associ-
ated RKHS and a transformer is then defined with a specificWk,Wq,Wv and h(q, k) = κ(q, k) from
Equation (3), that an inference pass through such a layer is equivalent to a single step of functional
gradient descent in H. They additionally demonstrated such a learned predictor is Bayes optimal un-
der particular circumstances. These results are formally provided in Appendix A. Notably, however,
these results require non-trivial changes to be generalized to function inputs.

While previous works have yet to formally provide a generalized mechanistic explanation, a recent
work Cole et al. (2024) began a line of inquiry into formally characterizing the functional ICL phe-
nomenon exhibited by continuum attention. This work, however, studied a fundamentally distinct
aspect of functional ICL than that studied herein, characterizing its sample complexity and studying
its resulting generalization, specifically in the restricted setting of linear elliptic PDEs.

3 METHOD

3.1 IN-CONTEXT LEARNING FORMALISM

We now consider a generalization of the continuum attention, paralleling that of Equation (3), allow-
ing for more general key-query similarity measures. In particular, instead of restricting Q = K as
required for Equation (5) to be well-defined, we allow H : Qn+1 × Kn+1 → (L(V))(n+1)×(n+1),
where L(V) denotes the set of bounded linear operators from V to V . Notably, this subsumes
softmax if for c ∈ R, c ∈ L(V) is understood in its natural sense to define cfv for fv ∈ V as
(cfv)(x) := cfv(x), from which we can view softmax : Q × K → L(V). Notably, H acts
component-wise as before, i.e. [H(Q,K)]i,j = h(Q(i),K(j)) for h : Q×K → L(V).
If V = X , an L-layer transformer operator T : X → X consisting of generalized continuum
attention layers with residual connections is well-defined as T := TL ◦ ... ◦ T0, where

Xℓ+1 = Tℓ(Xℓ) := Xℓ +
(
H(Wq,ℓXℓ,Wk,ℓXℓ)(Wv,ℓXℓM)T

)T
. (7)

Following the formalization established in Cole et al. (2024), we seek to learn in-context a map
X → Y , for which we construct a context window consisting of training pairs z(i) ∈ Z = X ⊗Y as

Z0 =

(
f (1) f (2) . . . f (n) f (n+1)

u(1) u(2) . . . u(n) 0

)
∈
(
Xn+1

Yn+1

)
,

4

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

where {(f (i), u(i))}ni=1 are n pairs of input-output functions, z(i) = (f (i), u(i)), and T : Zn+1 →
Zn+1. We predict u(n+1) as −[T (z)]2,n+1. While the typical use case assumes (f (i), u(i)) =

(u((i−1)∆t), u(i∆t)) for some time increment ∆t, we present our results in this more abstract light,
as they hold for more general applications. Notably, as in the typical formalization, the key and
query operators and nonlinearity operator are assumed to only act upon the space of input functions.
That is, denoting X0 = [f (1), f (2), . . . , f (n), f (n+1)] ∈ Xn+1 as the vector of input functions and
Xℓ ∈ Xn+1 as the first row of the matrix Zℓ,

Zℓ+1 = Zℓ +
(
H̃(Wq,ℓXℓ,Wk,ℓXℓ)(Wv,ℓZℓM)T

)T
. (8)

Notably, the layer ℓ query and key block operators Wq,ℓ : Xn+1 → Qn+1 and Wk,ℓ : Xn+1 →
Kn+1 only act on the restricted input space, whereas Wv,ℓ : Zn+1 → Zn+1 acts on the full space.

The mask block operator matrix M ∈ O2×2 is set as
[
I 0
0 0

]
. We also denote

Tℓ(f ; (Wv,Wq,Wk)|z(1), . . . , z(n)) := Zℓ (9)

obtained from setting the last entry of the first row of Z0 as f . Note that when the input passes
through an attention layer as defined in 8, we are assuming that multiplication makes sense in the
space Y . This is a stronger structure imposed on Y than just a Hilbert Space. Usual choices of Y ,
like L2(Rd) have a natural multiplicative structure, namely, pointwise multiplication of functions.

We state the formal theorem that the transformer operator architecture can perform in-context
learning by implementing operator gradient descent below. The formalism used for operators and
function-valued RKHS has been adopted from Kadri et al. (2016). We defer relevant definitions
and the full proof of the theorem to Appendix C. We, however, here highlight novelties of the proof
strategy in demonstrating this result. In particular, the explicit calculation of the gradient descent
expression over operator spaces is not as directly evident as it is over finite-dimensional vector
spaces. In addition, we had to invoke a generalized form of the Representer Theorem as provided in
Stepaniants (2023) in place of the more classical statement leveraged in Cheng et al. (2023).
Theorem 3.1. Let κ : X × X → L(Y) be an arbitrary operator-valued kernel. Let O denote
the operator RKHS induced by κ. We are given in-context examples of the form (f (i), u(i)) for
i = 1, . . . , n. The empirical loss functional L : O → R is given by

L(O) =

n∑
i=1

∥u(i) −Of (i)∥2Y .

Let O0 = 0 and let Oℓ denote the operator obtained from the l-th operator-valued gradient descent
sequence of L with respect to ∥ · ∥O as defined in Equation (16). Then there exist scalar step sizes
r′0, . . . , r

′
k such that the following holds-

Let [H̃(U,W)]i,j = κ(u(i), w(j)). Let Wv,ℓ =

(
0 0
0 −r′ℓI

)
, Wq,ℓ = I , Wk,ℓ = I . Then for any

f (n+1), the transformer operator’s prediction for u(n+1) at each layer ℓ matches the prediction of
the operator-valued gradient descent sequence at step ℓ, that is

[Tℓ(f ; (Wv,Wq,Wk)|z(1), . . . , z(n))]2,n+1 = −Oℓf.

4 DISCUSSION

In this paper, we provided a mechanistic explanation of the in-context learning phenomenon ex-
ploited in continuum transformer-based operator networks. Moving forward in this work, we would
like to extend more of the in-context learning results from Cheng et al. (2023) to the functional
setting. In particular, we would like to demonstrate that the specified key, query, and value opera-
tors giving rise to Theorem 3.1 are stationary points of in-context loss so as to demonstrate that the
transformer operator, over the course of training, may recover the operators necessary to perform
operator valued gradient descent. We additionally wish to empirically validate the theoretical claim
demonstrated herein and those that we wish to prove subsequently.

5

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36:45614–45650, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers: A framework for efficiently scaling neural opera-
tors. Advances in Neural Information Processing Systems, 37:25152–25194, 2024.

TD Arber, Keith Bennett, CS Brady, A Lawrence-Douglas, MG Ramsay, Nathan John Sircombe,
Paddy Gillies, RG Evans, Holger Schmitz, AR Bell, et al. Contemporary particle-in-cell approach
to laser-plasma modelling. Plasma Physics and Controlled Fusion, 57(11):113001, 2015.

Ellen M Arruda and Mary C Boyce. A three-dimensional constitutive model for the large stretch
behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2):
389–412, 1993.

Lorenz T Biegler, Omar Ghattas, Matthias Heinkenschloss, and Bart van Bloemen Waanders. Large-
scale pde-constrained optimization: an introduction. In Large-scale PDE-constrained optimiza-
tion, pp. 3–13. Springer, 2003.

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dy-
namics on the sphere. arXiv preprint arXiv:2306.03838, 2023.

Nicolas Boullé and Alex Townsend. A mathematical guide to operator learning. arXiv preprint
arXiv:2312.14688, 2023.

Edoardo Calvello, Nikola B Kovachki, Matthew E Levine, and Andrew M Stuart. Continuum atten-
tion for neural operators. arXiv preprint arXiv:2406.06486, 2024.

Shuhao Cao, Francesco Brarda, Ruipeng Li, and Yuanzhe Xi. Spectral-refiner: Fine-tuning of accu-
rate spatiotemporal neural operator for turbulent flows. arXiv preprint arXiv:2405.17211, 2024a.

Shuhao Cao, Francesco Brarda, Ruipeng Li, and Yuanzhe Xi. Spectral-refiner: Accurate fine-tuning
of spatiotemporal fourier neural operator for turbulent flows. In The Thirteenth International
Conference on Learning Representations, 2025.

Yadi Cao, Yuxuan Liu, Liu Yang, Rose Yu, Hayden Schaeffer, and Stanley Osher. Vicon: Vi-
sion in-context operator networks for multi-physics fluid dynamics prediction. arXiv preprint
arXiv:2411.16063, 2024b.

Ayan Chakraborty, Cosmin Anitescu, Xiaoying Zhuang, and Timon Rabczuk. Domain adaptation
based transfer learning approach for solving pdes on complex geometries. Engineering with
Computers, 38(5):4569–4588, 2022.

Vivien J Challis and James K Guest. Level set topology optimization of fluids in stokes flow. Inter-
national journal for numerical methods in engineering, 79(10):1284–1308, 2009.

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers implement functional gradient descent to
learn non-linear functions in context. arXiv preprint arXiv:2312.06528, 2023.

Frank Cole, Yulong Lu, Riley O’Neill, and Tianhao Zhang. Provable in-context learning of linear
systems and linear elliptic pdes with transformers. arXiv preprint arXiv:2409.12293, 2024.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers. arXiv
preprint arXiv:2212.10559, 2022.

6

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

Juan Carlos De los Reyes. Numerical PDE-constrained optimization. Springer, 2015.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint arXiv:2301.00234,
2022.

Yiheng Du, Nithin Chalapathi, and Aditi Krishnapriyan. Neural spectral methods: Self-supervised
learning in the spectral domain. arXiv preprint arXiv:2312.05225, 2023.

Peter D Dunning and H Alicia Kim. Introducing the sequential linear programming level-set method
for topology optimization. Structural and Multidisciplinary Optimization, 51:631–643, 2015.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Alan N Gent. A new constitutive relation for rubber. Rubber chemistry and technology, 69(1):
59–61, 1996.

Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. arXiv
preprint arXiv:2405.19101, 2024.

Yeh-Liang Hsu. A review of structural shape optimization. Computers in Industry, 25(1):3–13,
1994.

Jay D Humphrey. Continuum biomechanics of soft biological tissues. Proceedings of the Royal
Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2029):3–46,
2003.

Siavash Jafarzadeh, Stewart Silling, Ning Liu, Zhongqiang Zhang, and Yue Yu. Peridynamic neural
operators: A data-driven nonlocal constitutive model for complex material responses. Computer
Methods in Applied Mechanics and Engineering, 425:116914, 2024.

Hachem Kadri, Emmanuel Duflos, Philippe Preux, Stéphane Canu, Alain Rakotomamonjy, and
Julien Audiffren. Operator-valued kernels for learning from functional response data. Journal of
Machine Learning Research, 17(20):1–54, 2016. URL http://jmlr.org/papers/v17/
11-315.html.

Alena Kopaničáková and George Em Karniadakis. Deeponet based preconditioning strategies for
solving parametric linear systems of equations. SIAM Journal on Scientific Computing, 47(1):
C151–C181, 2025.

Nikola B Kovachki, Samuel Lanthaler, and Andrew M Stuart. Operator learning: Algorithms and
analysis. arXiv preprint arXiv:2402.15715, 2024.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
ential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020c.

Yuqiu Liu, Jingxuan Xu, Mauricio Soroco, Yunchao Wei, and Wuyang Chen. Data-efficient infer-
ence of neural fluid fields via sciml foundation model. arXiv preprint arXiv:2412.13897, 2024a.

Yuxuan Liu, Jingmin Sun, Xinjie He, Griffin Pinney, Zecheng Zhang, and Hayden Schaeffer. Prose-
fd: A multimodal pde foundation model for learning multiple operators for forecasting fluid dy-
namics. arXiv preprint arXiv:2409.09811, 2024b.

7

http://jmlr.org/papers/v17/11-315.html
http://jmlr.org/papers/v17/11-315.html

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

Ziyuan Liu, Yuhang Wu, Daniel Zhengyu Huang, Hong Zhang, Xu Qian, and Songhe Song. Spfno:
Spectral operator learning for pdes with dirichlet and neumann boundary conditions. arXiv
preprint arXiv:2312.06980, 2023.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Michael McCabe, Régaldo-Saint Blancard, Liam Parker, Ruben Ohana, Miles Cranmer, Alberto
Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al. Mul-
tiple physics pretraining for spatiotemporal surrogate models. Advances in Neural Information
Processing Systems, 37:119301–119335, 2024.

Tingwei Meng, Moritz Voss, Nils Detering, Giulio Farolfi, Stanley Osher, and Georg Menz. In-
context operator learning for linear propagator models. arXiv preprint arXiv:2501.15106, 2025.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024.

Jianguo Ning, Ziyan Jin, and Xiangzhao Xu. A multigrid partition coupled eulerian–lagrangian
method for fluid–solid interaction problems. Physics of Fluids, 35(9), 2023.

Vivek Oommen, Khemraj Shukla, Saaketh Desai, Rémi Dingreville, and George Em Karniadakis.
Rethinking materials simulations: Blending direct numerical simulations with neural operators.
npj Computational Materials, 10(1):145, 2024.

Md Ashiqur Rahman, Robert Joseph George, Mogab Elleithy, Daniel Leibovici, Zongyi Li, Boris
Bonev, Colin White, Julius Berner, Raymond A Yeh, Jean Kossaifi, et al. Pretraining codomain
attention neural operators for solving multiphysics pdes. Advances in Neural Information Pro-
cessing Systems, 37:104035–104064, 2024.

Junhong Shen, Tanya Marwah, and Ameet Talwalkar. Ups: Towards foundation models for pde
solving via cross-modal adaptation. arXiv preprint arXiv:2403.07187, 2024.

George Stepaniants. Learning partial differential equations in reproducing kernel hilbert spaces.
Journal of Machine Learning Research, 24(86):1–72, 2023. URL http://jmlr.org/
papers/v24/21-1363.html.

Jingmin Sun, Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Towards a foundation model
for partial differential equations: Multi-operator learning and extrapolation. arXiv preprint
arXiv:2404.12355, 2024a.

Jingmin Sun, Zecheng Zhang, and Hayden Schaeffer. Lemon: Learning to learn multi-operator
networks. arXiv preprint arXiv:2408.16168, 2024b.

David Tskhakaya, Konstantin Matyash, Ralf Schneider, and Francesco Taccogna. The particle-in-
cell method. Contributions to Plasma Physics, 47(8-9):563–594, 2007.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Hengjie Wang, Robert Planas, Aparna Chandramowlishwaran, and Ramin Bostanabad. Mosaic
flows: A transferable deep learning framework for solving pdes on unseen domains. Computer
Methods in Applied Mechanics and Engineering, 389:114424, 2022.

8

http://jmlr.org/papers/v24/21-1363.html
http://jmlr.org/papers/v24/21-1363.html

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
tial differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605,
2021.

Leighton Wilson, Robert Krasny, and Tyler Luchko. Accelerating the 3d reference interaction site
model theory of molecular solvation with treecode summation and cut-offs. Journal of Computa-
tional Chemistry, 43(18):1251–1270, 2022.

Mathias Winkel, Robert Speck, Helge Hübner, Lukas Arnold, Rolf Krause, and Paul Gibbon. A
massively parallel, multi-disciplinary barnes–hut tree code for extreme-scale n-body simulations.
Computer physics communications, 183(4):880–889, 2012.

Liu Yang and Stanley J Osher. Pde generalization of in-context operator networks: A study on 1d
scalar nonlinear conservation laws. Journal of Computational Physics, 519:113379, 2024.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator learning with data
prompts for differential equation problems. Proceedings of the National Academy of Sciences,
120(39):e2310142120, 2023.

Huaiqian You, Quinn Zhang, Colton J Ross, Chung-Hao Lee, and Yue Yu. Learning deep implicit
fourier neural operators (ifnos) with applications to heterogeneous material modeling. Computer
Methods in Applied Mechanics and Engineering, 398:115296, 2022.

Zecheng Zhang. Modno: Multi-operator learning with distributed neural operators. Computer
Methods in Applied Mechanics and Engineering, 431:117229, 2024.

9

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

A RKHS FUNCTIONAL GRADIENT DESCENT THEOREMS

We provide here the precise statements of the relevant results from Cheng et al. (2023).

Proposition A.1. (Proposition 1 from Cheng et al. (2023)) Let K be an arbitrary kernel. Let H
denote the Reproducing Kernel Hilbert space induced by K. Let z(i) = (x(i), y(i)) for i = 1, . . . , n
be an arbitrary set of in-context examples. Denote the empirical loss functional by

L(f) :=

n∑
i=1

(
f(x(i))− y(i)

)2
. (10)

Let f0 = 0 and let fℓ denote the gradient descent sequence of L with respect to ∥ · ∥H, as defined in
(3.1). Then there exist scalars stepsizes r0, . . . , rk such that the following holds:

Let H̃ be the function defined as

H̃(U,W)i,j := K(U (i),W (j)), (11)

where U (i) and W (j) denote the ith column of U and W respectively. Let

Vℓ =

[
0 0
0 −rℓ

]
, Bℓ = Id×d, Cℓ = Id×d. (12)

Then for any x := x(n+1), the Transformer’s prediction for y(n+1) at each layer ℓ matches the
prediction of the functional gradient sequence (3.1) at step ℓ, i.e., for all ℓ = 0, . . . , k,

Tℓ(x; (V,B,C)|z(1), . . . , z(n)) = −fℓ(x). (13)

Proposition A.2. (Proposition 2 from Cheng et al. (2023)) Let

X =
[
x(1), . . . , x(n+1)

]
, Y =

[
y(1), . . . , y(n+1)

]
. (14)

Let K : Rd × Rd → R be a kernel. Assume that Y |X is drawn from the K Gaussian Process. Let
the attention activation

H̃(U,W)ij := K(U (i),W (j)), (15)

and consider the functional gradient descent construction in Proposition 1. Then, as the number
of layers ℓ → ∞, the Transformer’s prediction for y(n+1) at layer ℓ (2.4) approaches the Bayes
(optimal) estimator that minimizes the in-context loss (2.5).

B GRADIENT DESCENT IN OPERATOR SPACE

We start by some defining notation that we will use in the next sections. We denote by X = {x :
DX → R} and Y = {y : DY → R} the separable Hilbert spaces in which our input and output
functions lie in respectively. We denote by C(X ,Y) the space of continuous operators from X to Y .
Let L(Y) denote the set of bounded linear operators from Y to Y .

We begin by defining gradient descent in operator space. Let O denote a space of bounded operators
from X to Y equipped with the operator norm ∥ · ∥O. Let L : O → R denote a loss function. The
gradient descent of L is defined as the sequence

Oℓ+1 = Oℓ − rℓ∇L(Oℓ) (16)

where

∇L(O) = argmin
G∈O,∥G∥O=1

d

dt
L(O + tG)

∣∣∣∣
t=0

.

Suppose we have n input-output function pairs as f (1), . . . , f (n) ∈ X and u(1), . . . , u(n) ∈ Y and
we define L as the weighted empirical least-squares loss

L(O) =

n∑
i=1

∥u(i) −Of (i)∥2Y .

10

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

Then ∇L(O) takes the form

∇L(O) = argmin
G∈O,∥G∥O=1

d

dt

n∑
i=1

∥u(i) − (O + tG)f (i)∥2Y
∣∣∣∣
t=0

. (17)

For simplification, suppose that we denote by G∗ the steepest descent direction. Then the method
of Lagrange multipliers states that there exists some λ for which the problem in Equation (17) is
equivalent to

G∗ = argmin
G∈O

d

dt

n∑
i=1

∥u(i) − (O + tG)f (i)∥2Y
∣∣∣∣
t=0

+ λ∥G∥2B(X ,Y) (18)

= argmin
G∈O

n∑
i=1

2⟨u(i) −Of (i), Gf (i)⟩Y + λ∥G∥2B(X ,Y). (19)

The second line can be calculated by thinking of the loss function as a composition of functions
L = L2 ◦ L1, L1 : R → Y which takes

L1(t) = u(i) − (O + tG)f (i)

and L2 : Y → R where
L2(y) = ⟨y, y⟩.

Then L′
1(t)(s) = Gu(i) and L′

2(y)(h) = 2⟨y, h⟩. We have

(L2 ◦ L1(t))
′(s) = L′

2(L1(t)) ◦ L′
1(t)(s)

= L′
2(u

(i) − (O + tG)f (i))(Gf (i))

= 2⟨u(i) − (O + tG)f (i), Gf (i)⟩Y .

Evaluating the derivative at t = 0 gives the desired expression

B.1 GRADIENT DESCENT IN OPERATOR RKHS

We now introduce the RKHS framework on our space of operators by using an operator-valued
kernel. The following definitions were posed in Kadri et al. (2016) (Section 4, Definitions 3 and 5).
Definition B.1. Operator-valued Kernel An operator-valued kernel is a function κ : X × X →
L(Y) such that

(i) κ is Hermitian, that is, for all f1, f2 ∈ X , κ(f1, f2) = κ(f2, f1)
∗ where ∗ denotes the

adjoint operator.

(ii) κ is positive definite on X if it is Hermitian and for every n ∈ N and all (fi, ui) ∈ X ×
Y ∀ i = 1, 2, . . . , n, the matrix with (i, j)-th entry ⟨κ(fi, fj)ui, uj⟩ is a positive definite
matrix.

Definition B.2. Operator RKHS Let O be a Hilbert space of operators O : X → Y , equipped
with an inner product ⟨·, ·⟩. We call O an operator RKHS if there exists an operator-valued kernel
L : X × X → L(Y) such that

(i) The function g → κ(f, g)u for X belongs to the space O for all f ∈ X , u ∈ Y .

(ii) κ satisfies the reproducing kernel property:

⟨Oκ(f, ·)u⟩O = ⟨Of, u⟩Y
for all O ∈ O, f ∈ X , u ∈ Y .

We now state the Representer Theorem for operator RKHS’s, as stated in Theorem 11 of Stepani-
ants (2023). Assume that O can be decomposed orthogonally into O = O0 ⊕ O1 where O0 is a
finite-dimensional Hilbert space spanned by the operators {Ek}rk=1 and O1 is its orthogonal com-
plement under the inner product ⟨·, ·⟩O. We denote the inner product ⟨·, ·⟩O restricted to O0,O1 as
⟨·, ·⟩O0 , ⟨·, ·⟩O0 respectively.

11

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

Theorem B.3. Let ψ : R → R be a strictly increasing real-valued function and let L(X×Y×Y) →
R be an arbitrary loss function. Then

Ô = argmin
O∈O

L
(
{f (i), u(i), Of (i)}ni=1

)
+ ψ(∥projO1

O∥O1)

has the form

Ô(x, y) =

r∑
k=1

dkEk +

n∑
i=1

αiκ(f
(i), ·)

for some d ∈ Rr and αi ∈ Y .

We use this theorem to simplify the expression for gradient descent in operator space.

Lemma B.4. Given any O ∈ O, let G∗ denote the steepest descent direction of the weighted least-
squares loss with respect to ∥ · ∥O as given in equation 18. Suppose O is an RKHS with kernel κ.
Then

G∗(·) = c
n∑

i=1

κ(f (i), ·)(u(i) −Of (i))

for some scalar c ∈ R+.

Proof. We apply theorem B.3 to equation Equation (18) with O0 the trivial subspace and ψ(s) =
λ
2 s

2. Then our solution has the form

G∗(·) =
n∑

i=1

κ(f (i), ·)αi. (20)

We also know that

∥G∗∥2O =

n∑
i,j=1

⟨κ(f (i), ·)αi, κ(f
(j), ·)αj⟩O =

n∑
i,j=1

⟨κ(f (i), f (j))αi, αj⟩Y

where the last equality follows from the RKHS property. We observe that
n∑

i,j=1

⟨κ(f (i), ·)αi, κ(f
(j), ·)αj⟩O =

n∑
i,j=1

⟨αi, κ(f
(i), f (j))αj⟩Y

by the same RKHS property. Note that κ(f (i), f (j)) ∈ L(Y), that is, is a linear operator from Y to
Y . Let U ∈ Xn, F ∈ Yn be such that Ui = u(i) and Fi = Of (i). Then

α∗ = argmin
α∈Yn

n∑
i,j=1

2⟨u(i) −Of (i), κ(f (i), f (j))αj⟩Y + λ⟨αi, κ(f
(i), f (j))αj⟩Y

= argmin
α∈Yn

n∑
i,j=1

⟨2(u(i) −Of (i) + λαi), κ(f
(i), f (j))αj⟩Y

Taking the gradient of α as zero, that is, ∇α = 0 gives us α ∝ U − OF (here we are looking at α
as an element of Yn). We also note that since ∥G∗∥O = 1,

n∑
i,j=1

⟨αi, κ(f
(i), f (j))αj⟩Y = 1.

It follows that

α∗ =
1∑n

i,j=1⟨αi, κ(f (i), f (j))αj⟩Y
(U −OF).

12

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

Therefore

G∗(·) = 1∑n
i,j=1⟨αi, κ(f (i), f (j))αj⟩Y

n∑
i=1

κ(f (i), ·)(u(i) −Of (i)).

This gives us an exact form of c as stated in equation Equation (20). We can re-write c as

c =

n∑
i,j=1

⟨αi, κ(f
(i), f (j))αj⟩Y = 1TM1

where (M)ij = ⟨αi, κ(f
(i), f (j))αj⟩Y and 1 is the vector of 1’s. Then c > 0 by the positive definite

property of the kernel κ.

C TRANSFORMER OPERATOR IN-CONTEXT LEARNING PROOF

We first recall some notation from section 3.1. We are given n demonstrations (f (i), u(i)) ∈ X ×Y
for all i ∈ [n]. The goal is to predict the output function for f (n+1). We stack these in a matrix Z0

that serves as the input to our transformer:

Z0 = [z(1), . . . , z(n), z(n+1)] =

(
f (1) f (2) . . . f (n) f (n+1)

u(1) u(2) . . . u(n) 0

)
.

Zℓ denotes the output of layer ℓ of the transformer as given in equation 8.

Theorem C.1. Let κ : X × X → L(Y) be an arbitrary operator-valued kernel. Let O denote
the operator RKHS induced by κ. We are given in-context examples of the form (f (i), u(i)) for
i = 1, . . . , n. The empirical loss functional L : O → R is given by

L(O) =

n∑
i=1

∥u(i) −Of (i)∥2Y .

Let O0 = 0 and let Oℓ denote the operator obtained from the ℓth operator-valued gradient descent
sequence of L with respect to ∥ · ∥O as defined in Equation (16). Then there exist scalar step sizes
r′0, . . . , r

′
k such that the following holds-

Let [H̃(U,W)]i,j = κ(u(i), w(j)). Let Wv,ℓ =

(
0 0
0 −r′ℓI

)
, Wq,ℓ = I , Wk,ℓ = I . Then for any

f (n+1), the transformer operator’s prediction for u(n+1) at each layer ℓ matches the prediction of
the operator-valued gradient descent sequence at step ℓ, that is

[Tℓ(f ; (Wv,Wq,Wk)|z(1), . . . , z(n))]2,n+1 = −Oℓf

for all ℓ = 0, 1, . . . , k.

Proof. From calculations in subsection Appendix B.1, we know that the ℓ-th step of gradient descent
has the form

Oℓ+1 = Oℓ + r′ℓ

n∑
i=1

κ(f (i), ·)(u(i) −Oℓf
(i)).

We now prove several basic facts. Firstly, note that Xℓ ≡ X0 for all l. This can be proved by
induction. For the base case, X0 = X0 trivially. Now suppose the claim holds for some layer ℓ.
Then at the lth, layer:

Zℓ+1 = Zℓ + Tℓ(f ; (Wv,Wq,Wk)|z(1), . . . , z(n)).

13

Published as a workshop paper at ICLR 2025 AI for Accelerated Materials Design Workshop

and the first row of Zℓ = X0 by the induction assumption. Hence it is enough to show that the first
row of T0(f) is all zeros.

Tℓ+1(f) =

(
H̃(Xℓ, Xℓ)

([
0 0
0 −r′ℓI

] [
f (1) . . . f (n) f

u
(1)
ℓ . . . u

(n)
ℓ u

(n)
ℓ

] [
I 0
0 0

])T
)T

=

(
H̃(X0, X0)

[
0 . . . 0 0

−r′ℓu
(1)
ℓ . . . −r′ℓu

(n)
ℓ −r′ℓu

(n+1)
ℓ

]T)T

=

κ(f (1), f (1)) κ(f (1), f (2)) . . . κ(f (1), f (n)) κ(f (1), f)
κ(f (2), f (1)) . . . κ(f (2), f (n)) κ(f (2), f)

...
...

κ(f, f (1)) . . . κ(f, f (n)) κ(f, f)

−r′ℓu
(1)
ℓ 0

...
...

−r′ℓu
(n)
ℓ 0

−r′ℓu
(n+1)
ℓ 0

T

= −r′ℓ
[

0 . . . 0 0∑n
i=1 κ(f

(1), f (i))u
(i)
ℓ . . .

∑n
i=1 κ(f

(n), f (i))u
(i)
ℓ

∑n
i=1 κ(f, f

(i))u
(i)
ℓ

]
.

(21)

This proves that Xℓ ≡ X0 for all l = 0, 1, . . . , k.

From the bottom row of the matrix in Equation (21), we see that

u
(i)
ℓ = u(i) + (−r′ℓ)

n∑
j=1

κ(f (i), f (j))u
(j)
ℓ .

This is equivalent to the fact:

u
(i)
ℓ = u(i) + Tℓ(f (i); (Wq,Wv,Wk)|z(1), . . . , z(n)) (22)

for all i = 0, . . . , n. In other words, “u(i) − u
(i)
ℓ is equal to the predicted label for f , if f (i) = f”.

Similar to equation Equation (21), the update at the ℓth layer looks like:

Tℓ(f) = −r′ℓ
[

0 . . . 0 0∑n
i=1 κ(f

(1), f (i))u
(i)
ℓ . . .

∑n
i=1 κ(f

(n), f (i))u
(i)
ℓ

∑n
i=1 κ(f, f

(i))u
(i)
ℓ

]
.

We now proceed to the proof of the theorem using induction. At step 0, Z0 := 0 = O0. Now assume
Tℓ(f ; (Wq,Wv,Wk)|z(1), . . . , z(n)) = −Oℓf holds up to some layer ℓ. For the next layer ℓ+ 1,

Tℓ+1(f ; (Wq,Wv,Wk)) = Tℓ(f ; (Wq,Wv,Wk)|z(1), . . . , z(n))− r′ℓ

n∑
i=1

[H̃(X0, X0)]n+1,iu
(i)
ℓ

= Tℓ(f ; (Wq,Wv,Wk)|z(1), . . . , z(n))− r′ℓ

n∑
i=1

[H̃(X0, X0)]n+1,i(u
(i) −Oℓf)

= −Oℓf − r′ℓ

n∑
i=1

κ(f, f (i))(u(i) −Oℓf)

= −Oℓ+1f.

Here, the first line follows from plugging in Wq,Wv,Wk in Equation (21). The second line follows
from Equation (22).

14

	Introduction
	Background
	Neural Operators
	Transformers and In-Context Learning
	Operator Meta-Learning
	Related Works

	Method
	In-Context Learning Formalism

	Discussion
	RKHS Functional Gradient Descent Theorems
	Gradient Descent in Operator Space
	Gradient Descent in Operator RKHS

	transformer operator In-Context Learning Proof

