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Abstract

A key property of neural networks driving their
success is their ability to learn features from data.
Understanding feature learning from a theoretical
viewpoint is an emerging field with many open
questions. In this work we capture finite-width
effects with a systematic theory of network ker-
nels in deep non-linear neural networks. We show
that the Bayesian prior of the network can be writ-
ten in closed form as a superposition of Gaussian
processes, whose kernels are distributed with a
variance that depends inversely on the network
width N . A large deviation approach, which is
exact in the proportional limit for the number of
data points P = αN → ∞, yields a pair of
forward-backward equations for the maximum a
posteriori kernels in all layers at once. We study
their solutions perturbatively to demonstrate how
the backward propagation across layers aligns ker-
nels with the target. An alternative field-theoretic
formulation shows that kernel adaptation of the
Bayesian posterior at finite-width results from
fluctuations in the prior: larger fluctuations corre-
spond to a more flexible network prior and thus
enable stronger adaptation to data. We thus find a
bridge between the classical edge-of-chaos NNGP
theory and feature learning, exposing an intricate
interplay between criticality, response functions,
and feature scale.
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1. Introduction
A central quest of the theory of deep learning is to under-
stand the inductive bias of network architectures, which is
their ability to find solutions that generalize well despite net-
works being highly overparametrized. The regime of lazy
learning (Chizat et al., 2019), in which the network width
N →∞ tends to infinity while the number of training data
points P stays constant, is well understood in terms of the
neural network Gaussian process (NNGP) (Lee et al., 2018)
and the neural tangent kernel (NTK) (Jacot et al., 2018).
The NNGP is, however, identical to training the readout
weights only (Lee et al., 2019; Yang, 2019). The NNGP
kernel follows from the central limit theorem applied to ran-
dom networks, neglecting any adaptation to the data. While
the NTK describes the evolution of weights in all layers, it
applies to the case of small learning rates, effectively lin-
earizing the mapping between weights and outputs around
the point of initialization. Consequently, weights change
only negligibly compared to initialization.

At finite network width or when keeping the ratio α = P/N
constant and taking the limit N → ∞, the intermediate
network layers adapt to data; they learn “features”. Feature
learning typically outperforms networks in the lazy regime
(Novak et al., 2019; Lee et al., 2020; Geiger et al., 2020;
Petrini et al., 2022) and is also required to understand trans-
fer learning, the central mechanism that enables modern
foundation models (Bommasani et al., 2022).

We here derive a theory of data-adaptive kernels in deep non-
linear networks trained in a Bayesian manner. We show that
the prior for the network outputs f can be written as a super-
position of Gaussian processes f ∼

∫
N (0, C) p(C) dC.

Feature learning may be understood as a reweighing of
different components N (0, C) within this prior ensemble
according to the evidence p(Y |C) = N (Y |0, C) of the
training labels Y . As a result, the posterior is dominated
by those Gaussian components N (0, C) that have a high
evidence. A wide distribution p(C) leads to a rich prior (see
Fig. 1) and thereby enables strong adaptation to the training
data. This view allows us to connect feature learning to
the notion of criticality: these are points in hyperparame-
ter space where the distribution p(C) becomes particularly
wide because the network is at the verge of transitioning
between two qualitatively different regimes.
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The main contributions of this work are:

• an exact decomposition of the network prior into a su-
perposition of Gaussian processes, whose covariances
are distributed with width of O(N−1);

• exact expressions for the Bayesian maximum a posteri-
ori kernels in the proportional limit N, P →∞ with
P/N = α that follow from a large deviation approach,
yielding a set of forward-backward self-consistent ker-
nel propagation equations;

• demonstration that a perturbative evaluation of the
forward-backward propagation of kernels captures fea-
ture learning in trained networks;

• the discovery of a tight link between fluctuations near
a critical point and the ability of the network to show
feature learning, uncovering the driving mechanism
behind feature learning as a tradeoff between criticality
and feature learning scale of the network output.

2. Related works
Previous work has investigated deep networks within the
Gaussian process limit for infinite width N →∞ (Schoen-
holz et al., 2017; Lee et al., 2018). (Schoenholz et al., 2017)
found optimal backpropagation of signals and gradients
when initializing networks at the critical point, the transition
to chaos (Molgedey et al., 1992). Our work goes beyond the
Gaussian process limit by studying the joint limit N →∞,
P → ∞ with P/N = α fixed. This limit has been inves-
tigated with tools from statistical mechanics in deep linear
networks (Li & Sompolinsky, 2021), where kernels adapt
to data by only changing their overall scale compared to
the NNGP limit. A rigorous non-asymptotic solution for
deep linear networks in terms of Meijer-G functions (Hanin
& Zlokapa, 2023) has shown that the posterior of infinitely
deep linear networks with data-agnostic priors is the same
as that of shallow networks with evidence-maximizing data-
dependent priors. For a teacher-student setting, (Zavatone-
Veth et al., 2022) show that in deep linear networks feature
learning corrections to the generalization error result from
perturbation corrections only at quadratic order or higher.
For deep kernel machines, (Yang et al., 2023) find a similar
trade-off between network prior and data term as we do;
in contrast to our work they study a different limit with P
fixed and train on N copies of the data. Their main results
can be obtained from ours in the special case of deep linear
networks (see C); most importantly for non-linear networks
they require the use of normalizing flows to capture non-
Gaussian effects while our work provides a mechanistic
understanding of such effects.

Previous theoretical work on non-linear networks of finite
width N < ∞ has employed three different approxima-

tion techniques. First, a perturbative approach that com-
putes corrections where the non-linear terms constitute the
expansion parameter (Halverson et al., 2021). Second,
a perturbative approach based on the Edgeworth expan-
sion that uses the strength of the non-Gaussian cumulants
as an expansion parameter. These corrections are com-
puted either in the framework of gradient-based training
(Dyer & Gur-Ari, 2020; Huang & Yau, 2020; Aitken &
Gur-Ari, 2020; Roberts et al., 2022; Bordelon & Pehlevan,
2023) or Bayesian inference (Yaida, 2020; Antognini, 2019;
Naveh et al., 2021; Cohen et al., 2021; Roberts et al., 2022).
(Zavatone-Veth et al., 2021) derive a general form of finite-
width corrections, resulting from the linear readout layer
and the quadratic loss function. Third, non-perturbative
Bayesian approaches (Naveh & Ringel, 2021; Seroussi et al.,
2023; Pacelli et al., 2023; Cui et al., 2023), that derive self-
consistency equations either by saddle-point integration or
by variational methods to obtain the Bayesian posterior.
(Cui et al., 2023) exploits the Nishimori conditions that
hold for Bayes-optimal inference, where student and teacher
have the same architecture and the student uses the teacher’s
weight distribution as a prior; the latter is assumed Gaussian
i.i.d., which allows them to use the Gaussian equivalence
principle (Goldt et al., 2020) to obtain closed-form solutions.
Our work is most closely related to these non-perturbative
Bayesian approaches. The qualitative difference is that we
describe the trade-off between the data term and the network
prior in a large deviation approach that is exact in the pro-
portional limit and we do not require particular assumptions
on the data statistics. Our alternative field-theoretical view
connects this approach to finite-size fluctuations, by which
we discover a link between feature learning corrections and
criticality in deep networks.

3. Feature learning theory of Bayesian
network posterior

We consider a fully-connected, deep, feed-forward network

h(0)
α = W (0)xα + b(0) ,

h(l)
α = W (l)φ

(
h(l−1)
α

)
+ b(l) l = 1, . . . , L, (1)

fα = h(L)
α ,

with data indices α ∈ {1, . . . , P}, where P denotes the
number of training samples. We have inputs xα ∈ RD,
hidden states h(l)

α ∈ RN , and network output fα ∈ R.
To ease notation, we assume identical width N for
all layers. We derive the theoretical framework for
arbitrary activation functions φ : R 7→ R, but consider
φ(x) = erf(x) for quantitative results in subsequent
sections. Further we assume Gaussian i.i.d. priors for all
weights W (0) ∈ RN×D, W (l) ∈ RN×N , W (L) ∈ R1×N

and biases b(l) ∈ RN , b(L) ∈ R so that
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W
(0)
ij

i.i.d.∼ N (0, g0/D) , W
(l)
ij

i.i.d.∼ N (0, gl/N) for i, j =

1, . . . , N and l = 1, . . . , L − 1, W (L)
i

i.i.d.∼ N (0, gL/N)

and b
(l)
i

i.i.d.∼ N (0, gb) for i = 1, . . . , N and l = 0, . . . , L.
We study the Bayesian posterior distribution conditioned on
a training data set consisting of inputs X = (xα)α=1,...,P

and corresponding labels Y = (yα)α=1,...,P as in (Naveh
et al., 2020; Li & Sompolinsky, 2021; Segadlo et al., 2022).
This can alternatively be seen as training the network with
stochastic Langevin dynamics (see Appendix G).

3.1. Network prior as superposition of Gaussians

Assuming sample-wise i.i.d. Gaussian regular-
ization noise of variance κ, the network prior
p(Y |X) =

∫ ∏P
α=1N (yα|fα, κ) p(f |X) df with net-

work outputs f = (fα)α=1,...,P follows from the network
mapping (1) by enforcing the network architecture
through Dirac distributions, taking the expectation over all
parameters Θ = {W (l), b(l)}l, and introducing auxiliary
variables C(l)

αβ := gl/N φ
(l−1)
α · φ(l−1)T

β + gb with the

shorthand φ(l)
αi = φ

(
h

(l)
αi

)
, similar to (Segadlo et al., 2022)

(see Appendix A)

p(Y |X) =

∫
DCN

(
Y |0, C(L) + κI

)
p(C), (2)

p(C) =

∫
DC̃ exp

(
−tr C̃TC +W(C̃|C)

)
, (3)

where C̃(l) is the conjugate kernel to C(l) and
tr C̃TC =

∑
αβl C̃

(l)
αβC

(l)
αβ . This expression shows that

the network output is a superposition of centered
Gaussian processes N

(
0, C(L) + κI

)
. Its covari-

ance depends on C(L) that itself is distributed as
p(C(L)) =

∫
dC(1≤l<L) p(C), where the joint distribution

p(C) = p(C(L)|C(L−1)) · · · p(C(1)|C(0)) of all C(1≤l≤L)

decomposes into a chain of conditionals. The distribution
p(C(L)) is given by its cumulant generating function

W(C̃|C) (4)

= N

L−1∑
l=0

ln
〈

exp
(gl+1

N
φ(l)TC̃(l+1)φ(l)

)〉
N (0,C(l))

+ C̃gb + C̃(0)TC(0),

where φTC̃φ =
∑
αβ φαC̃αβφβ . We write here and in

the following 〈. . .〉N (0,C(l)) ≡ 〈. . .〉h(l)∼N (0,C(l)) for the
Gaussian expectation value of the activations h(l) with re-
gard to a centered Gaussian measure with covariance matrix
C(l) ∈ RP×P and denote as

C(0) =
g0

D
XXT + gb (5)

the Gaussian kernel after the readin layer. The network
prior (2), written as a superposition of Gaussians, is an

−1 1

−1

1

y¯

y®

(a) Rigid network prior

¯

Target

®

−1 1

−1

1

y¯

y®

(b) Flexible network prior

¯

Target

®

Figure 1. Larger kernel fluctuations enable stronger feature learn-
ing. The network prior is a superposition of Gaussians given
by f ∼

∫
N (0, C) p(C) dC (pink ellipses). Depending on the

network hyperparameters, the distribution of kernels is more con-
centrated (a) or wider (b), corresponding to smaller or larger kernel
fluctuations. The target kernel is given by Y Y T (inset); the target
value for the indicated example samples α, β (dashed lines in
inset) from different classes lies at (+1,−1) (red cross). In the
Bayesian posterior Gaussian components are reweighed according
to the data. Larger fluctuations in (b) allow stronger adaptation to
data, leading to richer feature learning.

exact result. We next determine the maximum a posteriori
(MAP) estimate for the C(l).

3.2. Large deviation approach for the maximum a
posteriori kernel

The cumulant-generating function (4) has what is known
as a scaling form (Touchette, 2009)W(C̃) = N λ(C̃/N)
with an N -independent function λ; thus its k-th cumulant
scales with 1/Nk−1 so that C concentrates as N → ∞
around its mean. So while the kernel of the input layer
C(0) is deterministic, all subsequent auxiliary variables
C(1≤l≤L) are fluctuating quantities with a variance of or-
derW ′′ ∼ O(N−1). The scaling form at large N implies
that we may approximate the integral over C̃(l) in (3) for
1 ≤ l ≤ L by the Gärtner-Ellis theorem to obtain a large
deviation principle (l.d.p.)

− ln p(C(l+1)|C(l)) (6)
l.d.p.
' sup

C̃(l+1)

tr C̃(l+1)TC(l+1) −W(C̃(l+1)|C(l))

=: Γ(C(l+1)|C(l)),

expressed in terms of the rate function Γ (Touchette, 2009).
To provide more intuition for the rate functions Γ, we show
in Appendix C that for linear networks the rate function
reduces to the Kullback-Leibler divergence between the
Gaussian distributions of the two adjacent layers’ activations.
Thus, the prior has the tendency to keep the distributions in
adjacent layers close to one another. The joint probability
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p(C) in (3) then decomposes as

ln p(C) = ln p(C(L)|C(L−1)) · · · p(C(1)|C(0))

l.d.p.
' −

L∑
l=1

Γ(C(l)|C(l−1)) =: −Γ(C).

The supremum condition in (6) amounts to

C
(l+1)
αβ ≡ ∂W

∂C̃
(l+1)
αβ

= gl+1

〈
φ(l)
α φ

(l)
β

〉
P(l) + gb, (7)

〈
. . .
〉
P(l) ∝

〈
. . . exp

( gl
N
φ(l)TC̃(l+1)φ(l)

)〉
N (0,C(l))

,

(8)

where we defined the non-Gaussian measure 〈. . .〉P(l) ≡
〈. . .〉h(l)∼P(C̃(l+1),C(l)) and its proportionality constant is
given by the proper normalization (for details see A.3).

We condition on the training data, enforcing the la-
bels {yα}α, to obtain the posterior distribution for C
as p(C|Y ) ∝ p(Y,C) ≡ N

(
Y |0, C(L) + κI

)
p(C), where

we read off the latter form of the joint density of Y and C
from (2). We are interested in the maximum a posteriori
estimate for C, which is given by the stationary points of

S(C) := ln p(C|Y )
l.d.p.
' SD(C(L))− Γ(C) + ◦, (9)

SD(C(L)) := −1

2
Y T(C(L) + κI)−1Y

− 1

2
ln det(C(L) + κI),

where we dropped terms ◦ that are independent of C and
approximated p(C) by its rate function (6). The exponent
S(C) has two terms: The log likelihood of the training
labels SD(C(L)) ∼ O(P ) and the rate function −Γ(C)
which arises from the network prior. It is easy to see from
(4) that its Legendre transform Γ scales with O(N).

The stationary point ∂S(C)/∂C(L) !
= 0 of (9) with regard

to C(L) therefore arises from a trade-off between the net-
work prior term in the form of Γ and the data term SD. In
the last layer this yields

C̃(L) =
1

2
(C(L) + κI)−1Y Y T(C(L) + κI)−1 (10)

− 1

2
(C(L) + κI)−1,

which expresses the value of C̃(L) in the final layer in terms
of the value of C(L) and the training labels Y . We further
show in Appendix A.5 that the conjugate kernel C̃(L) can
be expressed in terms of the second moment of the discrep-
ancies between target and the network output and its trace
measures the training loss. Using Price’s theorem (see Ap-
pendix F) and the fundamental property of the Legendre

transform in (6), stationarity ∂S(C)/∂C(l) !
= 0 yields for

intermediate network layers 1 ≤ l < L

C̃
(l)
αβ = −∂Γ(C(l+1)|C(l))

∂C
(l)
αβ

Legendre
≡ ∂W(C̃(l+1)|C(l))

∂C
(l)
αβ

Price’s theorem
= gl+1 C̃

(l+1)
αβ

〈(
φ(l)
α

)′ (
φ

(l)
β

)′ 〉
P(l)

(11)

+ δαβ gl+1 C̃
(l+1)
αα

〈(
φ(l)
α

)′′
φ(l)
α

〉
P(l)

+O(N−1),

where we do not spell out terms ∝ O(N−1) (the form of
which is given in Appendix A). This equation thus gives
C̃(l) in terms of C̃(l+1) and C(l). The conjugate kernels
C̃(l) propagate information about the relation between in-
puts and outputs backwards across layers. By (10), these are
driven by the difference of two terms: The conjugate kernel
of the output layer C̃(L) measures the mismatch between
output kernel C(L) and target kernel Y Y T and can be inter-
preted as an error signal. In the following we will see that
this error signal on the level of the kernel is backpropagated
by the backward response function and exhibits an expo-
nential decay over layers (similar to the response studied
in (Schoenholz et al., 2017)), indicating how information
backpropagates within the network.

3.3. Forward-backward kernel propagation in the
proportional limit

The main result of the previous section is the pair of equa-
tions (7) and (11)

C(l+1) (7)
= F (C(l), C̃(l+1)), (12)

C̃(l) (11)
= G(C(l), C̃(l+1)) C̃(l+1), (13)

with initial and final conditions, respectively, given by (5)
and (10), rewritten as

C̃(L) =
1

2
(C(L) + κI)−1(Y Y T − C(L) − κI)(C(L) + κI)−1.

(14)

This set of equations (including the term O(N−1) in (11))
is exact in the proportional limit P = αN → ∞; this is
so because the rate function (6) approximates − ln p(C)
correct up to additive constants, so that the stationary points
correctly determine the mode of the posterior for C(l).

The first equation (12) maps the MAP kernelC(l) 7→ C(l+1)

forward through the network. This mapping in the l-th layer
depends on C̃(l+1). This result is similar to the NNGP
limit (Neal, 1996; Williams, 1996; Lee et al., 2017): We
in fact recover the latter in the case of a fixed number of
training samples P and an infinitely wide network with
N → ∞ from the stationary point of (9) which is then
approximated as S(C) ' −Γ(C). In this limit it follows
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from the equation of state ∂Γ(C)/∂C
(l)
αβ = C̃

(l)
αβ that C̃ ≡ 0

vanishes and the measure (8) becomes the Gaussian measure
with covariance C(l). In consequence (7) reduces to the
NNGP C

(l+1)
αβ = gl+1

〈
φ

(l)
α φ

(l)
β

〉
N (0,C(l))

+ gb. Among

others, (Yang & Hu, 2020) show that the NNGP limit fails
to capture feature learning which appears in neural networks
in the rich regime. Furthermore, we show in Appendix E
that the NTK is contained in our framework as a special
case that assumes a linear dependence of the output on all
layer’s weights.

The here presented theoretical framework captures feature
learning in settings where the log-likelihood of the data
SD is not negligible compared to Γ in (9); so either in the
limit N → ∞ when the number of data samples scales
linearly P = αN , or when N,P are both large but finite.
In the latter case, feature learning results from the leading-
order fluctuation corrections in N−1, as we show in the
Appendix B. In both cases, the maximum a posteriori for C
balances the maximization of the likelihood of the data SD
and the maximization of the log probability −Γ(C) from
the prior, leading to the equation (13), which propagates
C̃(l+1) → C̃(l) backwards and in addition depends on C(l).
In particular, we will see that the data term in (9) leads to
the correction of the output kernel C(L) towards the target
kernel Y Y T in (10) and (13). Such an alignment means
that the output of the network more closely reproduces the
outputs given by the training data. Such a term is absent
both in the NNGP and the NTK, both of which only depend
on the training data inputs x, and are hence unable to form
relationships for the input-label pairs (x, y). In Appendix
D, we show for deep linear networks that to leading order
the correction terms add a rank one contribution Y Y T to
the kernel.

Instead of taking expectations over the standard Gaussian
measure with covariance C(l) as in the NNGP, the forward
propagation (12) here employs a non-Gaussian probabil-
ity measure (8) that involves the activation function φ, the
kernels C(l), and the conjugate kernel C̃(l+1).

Finally, the value for C̃(L) given by (14) allows for an intu-
itive interpretation: C(L) + κI = Y Y T implies C̃(L) = 0
and, subsequently by the linear dependence on C̃(l+1) in
(13), that all vanish, C̃(1≤l≤L) = 0. Hence at this point
C̃ does not drive further adaptation towards the target, as
the output kernel is already perfectly aligned to the desired
target.

3.4. Perturbative, leading-order solution of the
forward-backward equations

The presented approach does not depend on the choice of
the activation function φ. For general activation functions φ,
however, the exact expressions for the feature learning limit

are hardly tractable due to the non-Gaussian expectation
value with regard to the measure (8). The non-Gaussianity
in the measure (8) comes in the form of glN φ

(l)
α C̃

(l+1)
αβ φ

(l)
β in

the exponent, so the magnitude of the entries are diminished
by N−1 compared to those of − 1

2h
(l)
α [C(l)]αβh

(l)
α from the

Gaussian part of the measure. So expanding in N−1, which
amounts to expanding to linear order in C̃, we may replace
the forward propagation (7) by

C
(l+1)
αβ = gl+1

〈
φ(l)
α φ

(l)
β

〉
N (0,C(l))

+ gb (15)

+
g2
l+1

N

∑
γ,δ

V
(l)
αβ,γδ C̃

(l+1)
γδ +O

(
N−2

)
,

V
(l)
αβ,γδ :=

〈
φ(l)
α φ

(l)
β φ

(l)
γ φ

(l)
δ

〉
N (0,C(l))

(16)

−
〈
φ(l)
α φ

(l)
β

〉
N (0,C(l))

〈
φ(l)
γ φ

(l)
δ

〉
N (0,C(l))

,

where all expectation values are Gaussian 〈. . .〉N (0,C(l)).
Likewise, at the same order of approximation, we may re-
place in (11) 〈. . .〉P(l) by 〈. . .〉N (0,C(l)), because corrections
come with at least one factor N−1. While the two-point
integrals in (11), (15) and (16) have closed-form analyti-
cal solutions for certain non-linearities such as φ = erf(x),
the four-point integral in (16) is evaluated numerically (for
details see Appendix H). The kernels C(l+1) thus receive
a correction from the backpropagated error signal in the
form of C̃(l+1). The correction of C(l+1)

αβ results not only

from the kernel element itself C̃(l+1)
αβ , but also depends on

its interaction with all other data samples via the four-point
interaction term

∑
γ,δ V

(l)
αβ,γδ C̃

(l+1)
γδ .

We solve the self-consistency equations for both kernels
C(l) and conjugate kernels C̃(l) iteratively. Details on a
numerically stable implementation are given in Appendix
H. All code is available under (10.5281/zenodo.11205498).

EXPERIMENTS

We compare the obtained analytical results for the output
kernel C(L) conditioned on the training data to the numer-
ical implementation of sampling the kernel C(L)

emp from the
posterior distribution using Langevin stochastic gradient de-
scent (see Appendix G). As a measure we use the centered
kernel alignments (CKA, see Appendix I) of both the ana-
lytical kernel C(L) and the Langevin sampled kernels C(L)

emp

with the target kernel Y Y > respectively. Since our frame-
work does not presuppose any assumptions on the data, we
study two different tasks: XOR and binary classification on
MNIST digits; the numerical results match our theoretical
expectations consistently in both cases.

XOR (Refinetti et al., 2021) show that random feature
models, which are known to correspond to the NNGP (Mei
& Montanari, 2022), are unable to solve the non-linearly
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Figure 2. Comparison between theory and simulation for the XOR task. The difference ∆CKA = CKA(C(l), Y Y T) −
CKA(CNNGP, Y Y T) measures kernel adaptation relative to the naive NNGP kernels. The ∆CKA of the data-dependent kernels (blue:
theory; red: empirical) increases significantly (a) for smaller weight variance, (b) for more narrow networks, and (c) for larger amounts
of training data. Parameters: XOR task with σ2 = 0.4, D = 100, L = 3, (a) N = 500, P = 12, (b) P = 12, gl = 1.2, (c)
N = 500, gl = 1.2. Results are averaged over 10 training data sets and error bars indicate standard deviation.

separable task XOR optimally. We study the XOR task
in a setting where neural networks exhibit feature learn-
ing compared to random feature models (Refinetti et al.,
2021). The feature-corrected kernels that we obtain from
our theory have a larger CKA than the NNGP (see Fig. 2),
indicating that finite-width effects lead to kernel corrections
in the direction of the target kernel. Note that the CKA is
by construction invariant to a global rescaling of the ker-
nel and instead captures the kernel structure. Thus, the
difference between NNGP and empirical kernels is further
numerical evidence that the kernels acquire structure be-
yond a global rescaling, in contrast to deep linear networks
(Li & Sompolinsky, 2021) and opposed to approximate re-
sults employing Gaussian equivalence theory (Pacelli et al.,
2023; Baglioni et al., 2024). We observe a stronger kernel
alignment for smaller weight variance gl (see Fig. 2(a)). As
expected, the feature-corrected kernels approach the NNGP
limit for α = P/N → 0 when keeping P fixed in Fig. 2(b).
Deviations for small N in Fig. 2(b) and in Fig. 2(c) for
increasing P at fixed N result from the perturbative treat-
ment of C̃ in the numerical solution of the self-consistency
equations, which is strictly valid only for α = P/N � 1.

MNIST We study a binary classification task on MNIST
(LeCun et al., 1998) between digits 0 and 3. The feature-
corrected kernels obtained from theory show increased ker-
nel alignment with the target kernel Y Y T compared to the
NNGP, matching the behavior in neural networks trained by
Langevin dynamics (see Fig. 3).

4. Interplay between criticality and output
scale

To understand the driving forces behind kernel adaptation
to data as presented in the previous section, we study the

self-consistency equations (11) for the network kernels in
detail. For the presented feature learning theory, we reveal
a link to fluctuations, the response function and the scales
within the network.

4.1. Fluctuations lead to feature learning

For the network prior in (2), we have defined auxiliary
variables C(l)

αβ = gl/N φ
(l−1)
α · φ(l−1)T

β + gb. For infinitely-
wide networks N → ∞ these quantities concentrate, the
scalar product over neuron indices becomes an expec-
tation value and we obtain the NNGP kernel given by
C

(l),NNGP
αβ = gl 〈φ(l−1)

α φ
(l−1)
β 〉N (0,C(l−1)) + gb. For large

but finite network width N < ∞, the realizations of the
auxiliary variables measured from a particular network re-
alization Θ =

{
W (l), b(l)

}
l

fluctuate around the NNGP
kernel

C
(l)
αβ = C

(l),NNGP
αβ + δC

(l)
αβ .

We now show that corrections to the NNGP result derived
from the perturbative approach (15) can alternatively be
understood as fluctuation corrections in a field-theoretic
formulation (see Appendix B). We rewrite (2) and (3) as

p(Y |X) =

∫
DC

∫
DC̃ exp

(
S(C, C̃) + SD(C(L)|Y )

)
,

SD(C(L)|Y ) = lnN (Y |0, C(L) + κI). (17)

We perform a Laplace approximation of exp
(
S(C, C̃)

)
around its saddle point C(l),∗ = C(l),NNGP, C̃(l),∗ = 0:

p(Y |X) (18)

'
∫
DδC

∫
DδC̃ exp

(1

2
(δC, δC̃)TS(2) (δC, δC̃)

+ SD(C
(L)
∗ + δC(L)|Y )

)
,
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Figure 3. Comparison between theory and simulation for MNIST.
The strength of kernel adaptation measured as CKA(C(l), Y Y T)
shows a maximum that is consistent for theory (blue) and simula-
tion (red). Kernel adaptation increases significantly relative to the
NNGP (gray). Parameters: MNIST task with L = 2, N = 2000.
Results are averaged over 10 training data sets and error bars
indicate plus minus one standard deviation.

where we write δC = C−C∗, δC̃ = C̃−C̃∗ and we denote
the Hessian of S(C, C̃) as S(2) = ∂2S/∂(C, C̃), whose
negative inverse yields the second cumulant of (C, C̃)

[
−S(2)

]−1

=

(
〈δC δC〉 〈δC δC̃〉
〈δC̃ δC〉 0

)
.

Computing the saddle point of δC in (18) by taking the
effect of ∂SD/∂δC

(L) into account, we get

δC
(l)
αβ = gl

∑
γδ

∂〈φ(l−1)
α φ

(l−1)
β 〉N (0,C(l−1))

∂C
(l−1)
γδ

δC
(l−1)
γδ

(19)

+ g2
l

∑
γδ

V
(l−1)
αβ,γδ δC̃

(l)
γδ .

The first term in (19) results from linearly correcting the
NNGP expression by the shift in δC

gl

〈
φ(l−1)
α φ

(l−1)
β

〉
N (0,C(l−1)+δC(l−1))

= C
(l),NNGP
αβ +

∑
γδ

∂C
(l),NNGP
αβ

∂C
(l−1)
γδ

δC
(l−1)
γδ +O(δC)2.

The second term in (19) corresponds to the corrections in
(15). By identifying g2

l V
(l−1)
αβ,γδ given by (16) with the co-

variance of the auxiliary variables, we see how the feature
learning corrections in the self-consistency equations result
from fluctuation corrections. Thus, larger fluctuations lead
to stronger feature learning. Fluctuations become especially
larger close to critical points that mark phase transitions
between qualitatively different states in neural networks.

4.2. Feature learning corrections close to criticality

We study the relation of the self-consistency equations to
criticality in neural networks (Schoenholz et al., 2017). The
self-consistency equations for the conjugate kernels C̃(l) are
given by the iterative expression (11). Ultimately, the net-
work kernels C(l−1) receive a correction from the conjugate
kernel C̃(l). For α 6= β it can be explicitly written to linear
order as

C̃
(l)
αβ = C̃

(L)
αβ χ

(l),←
αβ , (20)

χ
(l),←
αβ :=

L−1∏
s=l

gs+1

〈(
φ(s)
α

)′ (
φ

(s)
β

)′ 〉
h(s)∼N (0,C(s))

,

(21)

where C̃(L) is given by (10). As discussed in the previous
section, the term C̃(L) is related to the mismatch between
the output kernel C(L) and the target kernel given by Y Y T.
This error signal gets backpropagated from layer to layer
by the multiplicative terms in (21). We identify χ(l),← as
the gradient response function. It is related to the forward
response function (Schoenholz et al., 2017) that measures
how perturbations in the input kernel affect network kernels
in later layers χl,→αβ = ∂C

(l)
αβ/∂C

(0)
αβ

∣∣
CNNGP

. Both response
functions appear naturally in a field-theoretic description of
neural networks by considering Gaussian fluctuations of the
kernels as a first-order correction at finite width (Segadlo
et al., 2022; Fischer et al., 2023). The main difference be-
tween the forward and gradient response function is that
the signal perturbation leading to responses in the network
arises in different layers and thus propagates in opposite di-
rections: forward response propagates from input to output,
gradient response propagates from output to input.

For a particular set of network hyperparameters, both re-
sponse functions exhibit long-range correlation across layers
(see Fig. 4(a)-(b)). This hyperparameter manifold separates
an ordered and a chaotic phase for which the network signal
for different inputs either strongly correlates or decorrelates.
Therefore, this is referred to as the critical point. Close to
criticality the signal can propagate to large depths and thus
network trainability in deep feed-forward neural networks
is improved. This is known as edge-of-chaos initialization
(Poole et al., 2016; Schoenholz et al., 2017) and closely
related to the idea of dynamical isometry (Saxe et al., 2014;
Pennington et al., 2017; Burkholz & Dubatovka, 2019).

Due to the gradient response function appearing in the self-
consistency equation (11) for feature learning corrections,
these fluctuation corrections also propagate furthest close
to criticality (see Fig. 4(d)). However, the error signal C̃(L)

(10) itself depends non-linearly on both weight variance gl
and bias variance gb, becoming largest for small weight vari-
ance gl (see Fig. 4(d)). To get a qualitative idea, we study
the interplay of these two effects at the NNGP, which corre-
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Figure 4. Finite-size effects close to criticality in feature learning. (a)-(b) Forward response χl,→ and gradient response χl,← measure
relative signal propagation across network layers. The signal propagates furthest close to criticality (gl increases from dark to light blue).
(c) Backpropagated conjugate kernel C̃(l) across network layers for varying weight variance gl (increasing from dark to light). The kernel
mismatch C̃(L) in the output also depends on the weight variance gl, so that the curves of C̃(l) intersect at different depths. Larger C̃(1)

in the first layer leads to stronger feature learning corrections in (15). (d) The kernel correction term C̃(0) in the readin layer (solid line,
slice for l = 1 in (c)) is composed of the gradient response χ1,← (dotted line, slice for l = 1 in (b)) and the error signal C̃(L) (dashed
line). Thus, strongest feature learning corrections occur for a weight variance gf shifted away from the critical point (vertical line) to
smaller values. (e) CKA for trained networks between C(l)

emp and Y Y T (l = 10, 15, 20 from top to bottom). Other parameters: XOR task
with σ2 = 0.4, gl ∈ {0.6, 0.825, 1.1, gcrit ≈ 1.38, 2.2} , gb = 0.05, L = 20, N = 500 , κ = 10−3, P = 12.

sponds to the initial iteration step of the full self-consistent
solution. The total gradient signal consisting of the error
signal C̃(L) and the gradient response χ(l),← depends on the
network depth (see Fig. 4(c)). The product of the two terms
in (20) leads to a peak of C̃(1) in the first layer at a weight
variance gl ' gf , which is well below the critical value gcrit
(see Fig. 4(d)). Numerical evidence in Fig. 4(e) confirms
that indeed kernel adaptation in fully trained networks tends
to increase up to around g ' gf when approached from
above. Below gf adaptation suddenly drops, as the network
enters the regime of vanishing gradients. While criticality
is known to be not the only relevant criteria for network
training (Bukva et al., 2023), we are able to explicitly point
out the interaction of criticality with other factors like output
scale.

4.3. Downscaling of network output enhances feature
learning

Now that we have seen how feature learning corrections
result from the interplay between response function and
error signal of the output kernel, we can ask how we can
promote feature learning in deep neural networks. While the
response function depends on the behavior across layers, the
error signal depends solely on the output layer. Reducing
only the weight variance of the output layer gL shrinks
the scale of the output kernel C(L) relative to the target
kernel Y Y T, thereby directly increasing feature learning
corrections in (11).

Previous works (Geiger et al., 2020; 2021; Yang & Hu,

2020; Yang et al., 2021; Bordelon & Pehlevan, 2023) studied
how the scaling of the output layer affects the transition
between lazy and feature learning. We here consider the
case where the output weight variance is reduced by a factor
γ0 that is not extensive in the number of hidden units so that
gL 7→ gL/γ0. To understand the effect of such a feature
scale γ0 on the self-consistency equations (11), we derive
the dependence of feature learning corrections on the output

kernel C(L)
αβ ∝ gL/γ0 as C̃(L)

αβ

(10) for κ=0
∝ γ2

0 + O(γ0).

From (21) follows χ(L),← ∝ gL/γ0, so that the fluctuation
corrections resulting from the conjugate kernel in the input
layer C̃(0)

αβ increase linearly with the feature scale

C̃
(0)
αβ = χ(L),←C̃

(L)
αβ ∝ γ0 +Oγ0(1), (22)

leading to a stronger adaptation of the network to given
training data. From (22) follows that gradually increasing
the feature scale γ0 consistently increases feature learning
in all network layers Fig. 5(a). The intuition for this effect is
that the reduced scale of the output kernel C(L) causes the
network kernels C(l) to expand into the direction of the tar-
get kernel Y Y T. While the interplay between criticality and
weight variance gl for l < L from the previous subsection
stays the same, increasing the feature scale overall increases
feature learning for any weight variance gl Fig. 5(b).

5. Discussion
We here present a new theoretical framework that describes
how network kernels adapt non-linearly to training data,
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Figure 5. Increase of feature scale leads to stronger kernel adaption.
(a) Network kernel C(l) across layers l = 1, 2, 3 for different val-
ues of feature scale γ0. Despite only rescaling the output layer,
feature learning is enhanced in all network layers. Other parame-
ters: XOR task with σ2 = 0.4, P = 12, N = 200, L = 3, gl =
g = 0.5. (b) CKA between output kernel C(L) and target kernel
Y Y T for different levels of feature scaling (γ0 = 1, 2, 3 from dark
to light blue). Larger feature scale consistently leads to stronger
kernel adaptation. Results are averaged over 10 training data sets
and error bars indicate standard deviation. Other parameters: XOR
task with σ2 = 0.4, P = 12, L = 3.

thereby learning features of a given task. We present
two complimentary approaches: For the proportional limit
P = αN → ∞, we employ a large deviation principle
which yields a pair of forward-backward propagation equa-
tions for the maximum a posteriori kernel and its conjugate
kernel that need to be solved self-consistently. We here
explore a perturbative solution in N−1, which can be re-
garded as the limit where P/N = α� 1, which yet shows
reasonable agreement with fully trained networks. In partic-
ular, it correctly predicts the adaptation of the kernel to the
target in deep non-linear networks, in contrast to the kernel
scaling theory for deep linear networks (Li & Sompolin-
sky, 2021) or shallow non-linear networks in a Gaussian
equivalence setting (Baglioni et al., 2024). In the limit
P = const., N →∞, the solutions of our theory converge
to the NNGP as they should. A complimentary view obtains
qualitatively identical equations for finite-width networks by
deriving kernels from fluctuating auxiliary variables. This
view shows that the network prior comprises a plethora of
kernels in the form of a superposition of Gaussians, a result
that holds exactly. When conditioning on the training data
in a Bayesian manner, the Gaussian components and their
associated kernels get reweighed in the network posterior,
yielding a data-dependent maximum a posteriori kernel. The
kernel fluctuations allow the network to sample from many
different kernels, making it more adaptive to data.

In addition to obtaining data-dependent posterior network
kernels, the presented theory allows us to understand driv-

ing forces behind feature learning: We observe an inter-
play between the response function of the network and the
error signal that is being propagated backwards through
the network by the response function. While being close
to criticality allows the signal to propagate to deep layers
(Schoenholz et al., 2017), the error signal itself depends
differently on network hyperparameters. In consequence,
kernel adaptation is strongest slightly away from criticality.
Finally, we see how downscaling the network output by
feature scaling increases the error signal, thereby promoting
feature learning in the network.

Limitations For the self-consistency equations to be
tractable for non-linear networks, we approximate them
to linear order in the conjugate kernels. This assumes small
corrections relative to the NNGP limit, more specifically
α = P/N � 1. For linear networks, this additional approx-
imation is not required. By iterating from wider networks
to more narrow networks, we are able to determine kernel
corrections for different network widths. Nevertheless, the
here presented approach is strictly valid only for large N ,
since we use a large deviation principle, and for non-linear
networks is limited to small amounts of training data relative
to the network size α = P/N � 1.

Outlook While the here presented results focus on ker-
nels, we aim to extend the theoretical framework to study
the predictor statistics in the future. This requires comput-
ing non-Gaussian corrections from the posterior of kernels
and determining the interaction between test samples with
training samples. The theoretical framework can be straight-
forwardly extended to other network architectures such as
RNNs, CNNs, and ResNets, using the respective network
priors (Segadlo et al., 2022; Garriga-Alonso et al., 2019;
Fischer et al., 2023). Investigating the differences in kernel
adaptation for these network architectures is an interesting
question for future work. To study the effect of noise in
input data on feature learning (Lindner et al., 2023), we
plan to include fluctuations of the input kernel in the theo-
retical framework. Furthermore, the theoretical framework
can be extended to study feature learning in other network
architectures such as transformers, for which the NNGP
is already known (Hron et al., 2020). We believe that the
presented theoretical framework constitutes a versatile tool
for studying different aspects of data-dependent kernels and
feature learning.

Impact Statement
Engineering of novel technologies in AI continues to super-
sede our theoretical understanding of it. Understanding what
mechanisms drive kernel adaptation in neural networks is
highly relevant for task-sensitive hyperparameter optimiza-
tion (HPO) as it enables informed decisions about network
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width, network depth, network initialization etc. In this
work, we draw a novel link between kernel adaptation and
criticality, showing that maximal kernel adaptation happens
at prior weight variances that are significantly different from
those predicted by criticality only.
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Appendix
A. Detailed derivation of feature learning theory
In this appendix we present all details of the calculations leading to the self-consistency equations in Section 3. We start
from the network architecture

h(0)
α = W (0)xα + b(0), (23)

h(l)
α = W (l)φ

(
h(l−1)
α

)
+ b(l) l = 1, . . . , L, (24)

fα = h(L)
α , (25)

with Gaussian i.i.d. priors W (0)
ij

i.i.d.∼ N (0, g0/D) , W
(l)
ij

i.i.d.∼ N (0, gl/N) , W
(L)
i

i.i.d.∼ N (0, gL/N) , b
(l)
i

i.i.d.∼ N (0, gb) on
the network weights and biases. We assume that the network width N is the same across all layers l = 0, . . . , L. We
condition on the set of training data consisting of inputs X = (xα)α=1,...,P and corresponding labels Y = (yα)α=1,...,P .

A.1. Network prior

With the assumption of sample-wise Gaussian regularization noise κ, the prior reads

p(Y |X) =

∫ P∏
α=1

N (yα|fα, κ) p(f |X) df. (26)

We obtain p(f |X) by enforcing the network architecture (25) using Dirac Delta distributions

p(f |X) =

∫
D{W (l), b(l)}

P∏
α=1

δ
(
−fα +W (L)φ

(
h(L−1)
α

)
+ b(L)

)
(27)

×
L−1∏
l=1

δ
(
− h(l)

α +W (l) φ
(
h(l−1)
α

)
+ b(l)

)
(28)

× δ
(
−h(0)

α +W (0)xα + b(0)
)
, (29)

where we use the shorthand D{W (l), b(l)} to indicate the Gaussian measures given by the prior distributions on the weights
and biases. In order to perform the averages, we express the Dirac Delta distributions using their Fourier transform
δ(x) = 1/(2πi)

∫ i∞
−i∞ exp(xx̃) dx̃, yielding

δ

−h(l)
αk +

N∑
j=1

W
(l)
kj φ

(
h

(l−1)
αj

)
+ b

(l)
k

 =

∫ i∞

−i∞

dh̃
(l)
αk

2πi
exp

−h(l)
αkh̃

(l)
αk + h̃

(l)
αk

N∑
j=1

W
(l)
kj φ

(
h

(l−1)
αj

)
+ h̃

(l)
αkb

(l)
k

 ,

(30)

δ

−fα +

N∑
j=1

W
(L)
j φ

(
h

(L−1)
αj

)
+ b

(L)
k

 =

∫ i∞

−i∞

df̃α
2πi

exp

−fαf̃α + f̃α

N∑
j=1

W
(L)
j φ

(
h

(L−1)
αj

)
+ f̃αb

(L)

 . (31)

By doing the Fourier transform, we introduce conjugate variables f̃ for the network output f and h̃(l) for the layer
activations h(l). Next we perform the averages over network parameters Θ = {W (l), b(l)}l which are i.i.d. Gaussian random
variables. In doing so, we identify the moment generating function (MGF) of these variables; for a Gaussian it computes to
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〈exp(j x)〉x∼N (0,C) = exp
(
C/2 j2

)
. Thus we get for the final layer of the network

∏
α

〈
exp

f̃α N∑
j=1

W
(L)
j φ

(L−1)
αj + f̃αb

(L)

〉
W (L),b(L)

=

〈
exp

∑
α,j

f̃αW
(L)
j φ

(L−1)
αj

〉
W (L)

〈
exp

(∑
α

f̃αb
(L)

)〉
b(L)

, (32)

MGF
= exp

 gL
2N

∑
αβ

f̃α

 N∑
j=1

φ
(L−1)
αj φ

(L−1)
βj

 f̃β
 exp

gb
2

∑
αβ

f̃αf̃β

 , (33)

with the shorthand φ(l−1)
αj = φ

(
h

(l−1)
αj

)
. All subsequent layers yield a similar structure

∏
α

〈
exp

h̃(l)
α

N∑
j=1

W
(l)
j φ

(l−1)
αj + h̃(l)

α b
(l)

〉
W (l),b(l)

=

〈
exp

∑
α,j

h̃(l)
α W

(l)
j φ

(l−1)
αj

〉
W (l)

〈
exp

(∑
α

h̃(l)
α b

(l)

)〉
b(l)

, (34)

MGF
= exp

 gl
2N

∑
αβ

h̃(l)
α

[
φ(l−1)φ(l−1)T

]
αβ
h̃

(l)
β

 exp

gb
2

∑
αβ

h̃(l)
α h̃

(l)
β

 , (35)

where we introduced
[
φ(l−1)φ(l−1)T

]
αβ

:=
∑
j φ

(l−1)
αj φ

(l−1)
βj . The exception is the input layer, which contains the input

overlap matrix XXT =
∑D
j=1 xαjxβj

∏
α

〈
exp

∑
i,j

h̃
(0)
αiW

(0)
ij xαj + h̃

(0)
αi b

(0)
i

〉
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= exp
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αβh̃
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 exp
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2
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αi h̃

(0)
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 .

(36)

From this we can see that introducing the auxiliary variables

C
(0)
αβ =

g0

D

(
XXT

)
αβ

+ gb, (37)

C
(l)
αβ =

gl
N

[
φ(l−1)φ(l−1)T

]
αβ

+ gb l = 1, . . . , L, (38)

is beneficial as we can show that∫
Dh̃(l)

i exp

−h̃(l)
αih

(l)
αi +

1

2

∑
αβ

h̃
(l)
αiC

(l)
αβh̃

(l)
βi

 = N
(
h

(l)
i |0, C

(l)
αβ

)
0 ≤ l < L,

by the Fourier representation of the Gaussian. Likewise one obtains N (f |0, C(L)
αβ ). The form above shows that the h(l)

αi

are independent across neuron index i. Note that the input kernel C(0) is static for fixed input data sets X , whereas all
subsequent auxiliary variables C(l) include network activations φ(L−1)

αj and are hence fluctuating. We now enforce the
structure of the fluctuating auxiliary variables using Dirac Delta distributions

δ
(
−C(l)

αβ +
gl
N

[
φ(l−1)φ(l−1)T

]
αβ

+ gb

)
=

∫ i∞

−i∞

dC̃
(l)
αβ

2πi
exp

(
−C̃(l)

αβC
(l)
αβ + C̃

(l)
αβ

gl
N

[
φ(l−1)φ(l−1)T

]
αβ

+ C̃
(l)
αβgb

)
.

(39)
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Combining all those expressions in (27) yields p(f |X), which depends on X only through C(0) given by (37)

p(f |X) ≡ p(f |C(0)) (40)

=

∫
D{C̃, C}N

(
f |0, C(L)

αβ

)〈
exp(S(C, C̃))

〉
h
, (41)

S(C, C̃) = −
L∑
l=1

C̃
(l)
αβC

(l)
αβ + C̃

(l)
αβ

( gl
N

[
φ(l−1)φ(l−1)T

]
αβ

+ gb
)
,

where the average 〈. . .〉h indicates the averaging over the Gaussian distributed hidden states N
(
h

(l)
i |0, C

(l)
αβ

)
and repeated

indices α, β are summed over. As these distributions are independent for each neuron index j, averaging the third line
reduces to〈

exp

C̃(l)
αβ

gl
N

N∑
j=1

φ
(l−1)
αj φ

(l−1)
βj

〉
{N
(
h
(l−1)
j |0,C(l−1)

αβ

)
}j

h
(l−1)
j i.i.d. in j

=
〈

exp
( gl
N
C̃

(l)
αβφ

(l−1)
α φ

(l−1)
β

)〉N
N
(
h(l−1)|0,C(l−1)

αβ

) .
(42)

Overall, this yields

p(f |X) =

∫
D{C̃, C}N

(
f |0, C(L)

αβ

)
exp

(
−

L∑
l=1

C̃
(l)
αβC

(l)
αβ +W(C̃|C)

)
, (43)

W(C̃|C) =

L∑
l=1

∑
αβ

C̃
(l)
αβgb +N

L∑
l=1

ln
〈

exp
( gl
N
C̃

(l)
αβφ

(l−1)
α φ

(l−1)
β

)〉
N (0,C(l−1))

, (44)

C
(0)
αβ =

g0

D

(
XXT

)
αβ

+ gb. (45)

As we are interested in the prior p(Y |X) and assume Gaussian i.i.d. noise on the labels, the prior reads

p(Y |X) =

∫
D{C̃, C}

∏
α

dfαN (yα|fα, κ)N
(
fα|0, C(L)

αβ

)
exp(−tr C̃TC +W(C̃|C)).

Here we use the same shorthand as in the main text tr C̃TC =
∑
αβl C̃

(l)
αβC

(l)
αβ . The integral over fα has the form of a

convolution of the normal distribution N (yα|fα, κ) ∝ exp
(
− (yα − fα)2/(2κ)

)
with N

(
fα|0, C(L)

αβ

)
, which amounts

to the summation of two random variables ηα
i.i.d.∼ N (0, κ) and fα ∼ N

(
fα|0, C(L)

αβ

)
, so their variances add up to the

variance C(L)
αβ + κI. One therefore obtains the expression for the network prior in (2)

p(Y |X) =

∫
DCN

(
Y |0, C(L) + κI

)
p(C), (46)

p(C) :=

∫
DC̃ exp

(
− tr C̃TC +W(C̃|C)

)
. (47)

A.2. Large deviation approach to network posterior

When writing the integrals for p(C) given by (47) we see that the conditional probabilities p
(
C(l)|C(l−1)

)
appear naturally

as Fourier integrals over the conjugate variable C̃(l)

p
(
C(l)|C(l−1)

)
=

∫
DC̃(l) exp

(
−tr C̃(l)TC(l) +W

(
C̃(l)|C(l−1)

))
, (48)

W
(
C̃(l)|C(l−1)

)
= C̃(l)gb +N ln

〈
exp

( gl
N
φ(l−1)TC̃(l)φ(l−1)

〉
h(l−1)∼N (0,C(l−1))

1 ≤ l < L, (49)
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where C(0) is given by (45). Due to the layerwise summations in (44), the full expressions p(C) consists of the prod-
uct of these conditional probabilities p(C) = p

(
C(L)|C(L−1)

)
· · · p

(
C(1)|C(0)

)
. Computing the conditional probabil-

ities p
(
C(l)|C(l−1)

)
by the Fourier integral in (48) is intractable for general non-linearities. However, we can write

W
(
C̃(l)|C(l−1)

)
in the form

W
(
C̃(l)|C(l−1)

)
= N λ

(
C̃(l)

N
|C(l−1)

)
, (50)

λ
(
K|C(l−1)

)
:= K gb + ln

〈
exp

(
glφ

(l−1)TKφ(l−1)
〉
N (0,C(l−1))

. (51)

We observe thatW has the form of a scaled cumulant-generating function so that the limit limN→∞N−1W(N K|C(l−1)) =
λ(K|C(l−1)) exists trivially. This allows us to utilize the Gärtner-Ellis theorem to approximate ln p

(
C(l)|C(l−1)

)
forN � 1

(see, e.g., (Touchette, 2009), i.p. their Appendix C) by a large-deviation principle as

− ln p
(
C(l)|C(l−1)

)
' sup

C̃(l)

trC̃(l)>C(l) −W
(
C̃(l)|C(l−1)

)
(52)

=: Γ
(
C(l)|C(l−1)

)
,

with the rate function Γ
(
C(l)|C(l−1)

)
. We can hence approximate the full distribution p(C) by

ln p(C) = ln
(
p
(
C(L)|C(L−1)

)
· · · p

(
C(1)|C(0)

))
, (53)

' −
L∑
l=1

Γ
(
C(l)|C(l−1)

)
=: −Γ(C). (54)

With the rate function we can express the prior p(Y |X) as:

p(Y |X) '
∫
DCN

(
Y |0, C(L) + κI

)
exp

(
− Γ(C)

)
, (55)

From the supremum condition (52) and by evaluating the integral

p(Y |X) '
∫
DC exp

(
S(C)

)
, (56)

S(C) := ln p(C|Y )
l.d.p.
' SD(C(L))− Γ(C), (57)

SD(C(L)) := −1

2
Y >(C(L) + κI)−1Y − 1

2
ln det(C(L) + κI), (58)

in a saddle-point approximation in C(l), we obtain the equations for the network kernels C(l) and the conjugate kernels C̃(l).

A.3. Maximum a posteriori network kernels C(l)

The definition of Γ(C(l)|C(l−1)) (52) enforces the supremum in C̃(l). Hence we require stationarity in C̃(l)

∂

∂C̃(l)

[
trC̃(l)>C(l) −W

(
C̃(l)|C(l−1)

)]
!
= 0

to obtain the supremum as

C
(l)
αβ −

∂W
∂C̃

(l)
αβ

= 0 (59)

→ C
(l)
αβ = gl

〈
φ(l−1)
α φ

(l−1)
β

〉
P(l−1)

+ gb (60)
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where we used the form ofW in (49) and introduced 〈. . .〉P(l) to indicate averages over the measure P(l), which is given by

〈. . .〉P(l) =

〈
. . . exp

(
gl
N φ

(l)TC̃(l+1)φ(l)
)〉
N (0,C(l))〈

exp
(
gl
N φ

(l)TC̃(l+1)φ(l)
)〉
N (0,C(l))

. (61)

This expression corresponds to 7 in the main text.

A.4. Self-consistent conjugate kernels C̃(l)

By performing the saddle-point approximation of (56) in C(l), we obtain expressions for C̃(l). We first need two fundamental
properties that follow from the Legendre transform in the definition of Γ(C(l)|C(l−1)): The first is the equation of state

∂

∂C(l)
Γ(C(l)|C(l−1)) = C̃(l), (62)

which follows because the supremum condition yields

∂

∂C(l)
sup
C̃(l)

trC̃(l)TC(l) −W(C̃(l)|C(l−1))

=C̃(l) + tr
∂C̃(l)T

∂C(l)
C(l) − tr

∂W(C̃(l)|C(l−1))T

∂C̃(l)︸ ︷︷ ︸
≡C(l)T

∂C̃(l)

∂C(l)

so that the latter two terms cancel each other.

The second fundamental property of the Legendre transform applies to the derivative by C(l−1), which here plays the role of
a parameter, for which holds

∂

∂C(l−1)
Γ(C(l)|C(l−1)) = −∂W(C̃(l)|C(l−1))

∂C(l−1)
, (63)

again, because of the supremum condition

∂

∂C(l−1)
sup
C̃(l)

trC̃(l)TC(l) −W(C̃(l)|C(l−1))

= tr
∂C̃(l)T

∂C(l−1)
C(l) − tr

∂WT

∂C̃(l)︸ ︷︷ ︸
≡C(l)

∂C̃(l)

∂C(l−1)
− ∂W
∂C(l−1)

,

the first two terms on the right hand side cancel. The stationary points of (57) for 1 ≤ l < L then follow with the explicit
form of Γ(C) =

∑L
l=1 Γ

(
C(l)|C(l−1)

)
from (54) as

0
!
=
∂S(C)

∂C(l)
=

∂

∂C(l)

L∑
l=1

Γ
(
C(l)|C(l−1)

)
(64)

=
∂Γ(C(l)|C(l−1))

∂C(l)
+
∂Γ(C(l+1)|C(l))

∂C(l)

(62),(63)
= C̃(l) − ∂W(C̃(l+1)|C(l))

∂C(l)
.

Using the definition ofW , we compute

∂

∂C
(l)
αβ

W(C̃(l+1)|C(l)) = N

∂

∂C
(l)
αβ

〈
exp

( gl+1

N φ(l)TC̃(l+1)φ(l)
)〉
N (0,C(l))〈

exp
( gl+1

N φ(l)TC̃(l+1)φ(l)
)〉
N (0,C(l))

(65)
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by Price’s theorem (see F): the derivative in the numerator is

∂

∂C
(l)
αβ

〈
exp

(gl+1

N
φ(l)TC̃(l+1)φ(l)

)〉
h(l)∼N (0,C(l))

(108)
=

1

2

〈 ∂

∂h
(l)
α ∂h

(l)
β

exp

gl+1

N

∑
γδ

φ(l)
γ C̃

(l+1)
γδ φ

(l)
δ

〉
h(l)∼N (0,C(l))

,

(66)

which yields with (64) for C̃(l) with 1 ≤ l < L

C̃
(l)
αβ =

∂W(C̃(l+1)|C(l))

∂C
(l)
αβ

= gl+1

[〈(
φ(l)
α

)′ (
φ

(l)
β

)′〉
P(l)

C̃
(l+1)
αβ + δαβ

∑
γ

〈
φ(l)
γ

(
φ(l)
α

)′′〉
P(l)

C̃(l+1)
γα

]

+ 2
g2
l+1

N

∑
γ,δ

C̃(l+1)
αγ C̃

(l+1)
βδ

〈(
φ(l)
α

)′
φ(l)
γ

(
φ

(l)
β

)′
φ

(l)
δ

〉
P(l)

, (67)

with measure P(l) as defined in (61). In the main text in (11), we only keep terms ∝ C̃ on the right hand sides of (67). In
the case l = L, we additionally need to consider the data-term in (56), yielding

0
!
=
∂S(C)

∂C
(L)
αβ

=
∂

∂C
(L)
αβ

(
SD(C(L))− Γ(C(L)|C(L−1))

)
(68)

(62)
=

1

2

(
(C(L) + κI)−1Y Y T(C(L) + κI)−1 − (C(L) + κI)−1

)
− C̃(L), (69)

which is the result (10) in the main text. To compute ∂SD(C(L))/∂C(L) with (58) we used the matrix derivatives

∂ ln det(C)

∂Cαβ
=
[
C
]−1

αβ
, (70)

∂
[
C
]−1

γδ

∂Cαβ
= −

[
C
]−1

γα

[
C
]−1

βδ
, (71)

yielding

C̃(L) =
1

2
(C(L) + κI)−1(Y Y T)(C(L) + κI)−1 − 1

2
(C(L) + κI)−1. (72)

A.5. Relation between conjugate kernel and discrepancy

To understand the meaning of the conjugate kernel C̃, we generalize the regularization κI with a generic covariance matrix
Kαβ in (46)

p(Y |X,K) :=

∫
DC

∫
Df N (Y |f,K)N (f |0, C(L)) p(C), (73)

which shows that, given C(L), the statistics of Y is a convolution of two centered Gaussian distributions with covariances
C(L) and K, respectively. In large deviation theory, this yields the action

S(C|K) = −1

2
yα
[
C(L) +K

]−1

αβ
yβ −

1

2
ln det(C +K)− Γ(C). (74)

Writing (73) explicitly

p(Y |X,K) =
1

(2π)
M
2 (detK)

1
2

∫
DC

∫
Df exp

(
− 1

2
(yα − fα)

[
K−1

]
αβ

(yβ − fβ)
)
N (f |0, C(L)) p(C),
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we may use K−1 as a bi-linear source term so that we obtain within the MAP approximation for the kernels C, the second
moment of the discrepancies as

−1

2
〈(yα − fα) (yβ − fβ)〉 =

∂

∂[K−1]αβ

(
ln p(Y |X,K)− 1

2
detK−1

)∣∣∣
K=κI

(75)

MAP' ∂

∂[K−1]αβ
S(C|K) +

∂S

∂C︸︷︷︸
=0

∂C

∂(K−1)αβ
− 1

2
K
∣∣∣
K=κI

(74)
=
[
− 1

2
K
[
C(L) +K

]−1
Y Y T

[
C(L) +K

]−1
K +

1

2
K (C(L) +K)−1K

]
αβ
− 1

2
K
∣∣∣
K=κI

=
[
− 1

2
κ2
[
C(L) + κI

]−1
(Y Y T)

[
C(L) + κI

]−1
+

1

2
κ2 (C∗ + κI)−1 − 1

2
κI
]
αβ

(72)
= −κ2C̃∗αβ −

1

2
κδαβ ,

where we used that ∂[K−1]γδ/∂Kαβ = −K−1
γα K

−1
βδ and by symmetry ∂Kγδ/∂[K−1]αβ = −KγαKβδ . This may also be

rewritten as

〈∆α ∆β〉 = 2κ2C̃
(L)
αβ + κδαβ , (76)

∆α = yα − fα,

so that the expected training error is

〈L〉 :=
1

2
tr 〈∆ ∆〉 (77)

=κ2 trC̃(L) +
1

2
κP.

Expressions (76) and (77) show that the conjugate kernel C̃ is, apart from the diagonal term, given by the expected squared
discrepancies ∆ between target and network output.

B. Relation between feature learning and fluctuation corrections
We here show that the shift of the saddle point of C(l) by conditioning on the training data can be regarded as accounting for
fluctuation corrections for the auxiliary variables C and C̃ around the reference point, which is the NNGP. As opposed to the
rigorous approach of the main text that is based on a large deviation principle, we here obtain the result from a perspective
of field theory. To this end, we rewrite the network prior (2) as an integral over the pair of fields (C, C̃) as in (46)

p(Y |X) =

∫
DC

∫
DC̃N (Y |0, C(L) + κI) exp

(
S(C, C̃)

)
, (78)

S(C, C̃) := −tr C̃TC +W(C̃|C),

with cumulant-generating function W given by (4). Adding the normal distribution in (78) as exp(SD) one has a joint
measure for the pair of variables (C, C̃) which is, up to normalization, given by

(C, C̃) ∼ exp
(
S(C, C̃) + SD(C(L)|Y )

)
SD(C(L)|Y ) := lnN (Y |0, C(L) + κI)

≡ −1

2
Y T(C(L) + κI)−1 Y − 1

2
ln det(C(L) + κI).

Now we will expand S(C, C̃) around its saddle point, which, with regard to C̃(l) for 1 ≤ l ≤ L yields

0
!
=

∂S
∂C̃

(l)
αβ

= −C(l)
αβ +

∂W
∂C̃

(l)
αβ

(79)

= −C(l)
αβ + gl

〈
φ(l−1)
α φ

(l−1)
β

〉
P(l−1)

+ gb,
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and the initial value C(0) given by (5) for l = 0. This result is of course identical to (7), as it corresponds to the supremum
condition in (6). The second saddle point equation for C(L) yields

0
!
=

∂S
∂C

(L)
αβ

= −C̃(L)
αβ , (80)

and for 1 ≤ l < L the equation is given by (11) of the main text. Together this shows by induction that the stationary point
is C̃(1≤l≤L)

∗ ≡ 0; so the measure P(l−1) appearing in (79) reduces to a Gaussian N (0, C(l−1)) and the propagation of C(l)

over layers becomes the NNGP, whose solution we will denote as C(l)
∗ and C̃(l)

∗ ≡ 0.

Computing the next-to-leading-order in N−1, we need the Hessian of the action S, evaluated at the NNGP saddle point,
which is

S(2)(l,m)
(αβ)(γδ)

∣∣∣
C∗,C̃≡0

=

 ∂2S
∂C

(l)
αβ∂C

(m)
γδ

∂2S
∂C

(l)
αβ∂C̃

(m)
γδ

∂2S
∂C̃

(l)
αβ∂C

(m)
γδ

∂2S
∂C̃

(l)
αβ∂C̃

(m)
γδ

 (81)

=

 0 −δl,m δ(αβ),(γδ) + δm−1,l gm
∂〈φ(m−1)

γ φ
(m−1)
δ 〉

N(0,C
(l)
∗ )

∂C
(l)
αβ

−δl,m δ(αβ),(γδ) + δl−1,m gl
∂〈φ(l−1)

α φ
(l−1)
β 〉

N(0,C
(l)
∗ )

∂C
(m)
γδ

δl,m g
2
l 〈φ

(l−1)
α φ

(l−1)
β , φ

(l−1)
γ φ

(l−1)
δ 〉

c,N (0,C
(l)
∗ )

 ,

where we used thatW(0|C) ≡ 1 ∀C, so that its derivative in the upper left element vanishes and all expectation values
〈. . .〉N (0,C

(l)
∗ )

are with regard to the Gaussian measure of the NNGP. Since the expectation values of products of φ(l) only

depend on the value of C(l) in the same layer, the non-trivial terms in the off-diagonal elements are proportional to Kronecker
symbols δm−1,l (upper right) and δl−1,m (lower left). The lower right element contains the connected two-point correlation
function 〈f, g〉c := 〈fg〉 − 〈f〉〈g〉, coming from the second derivative by C̃; derivatives by C̃(l) and C̃(m) with l 6= m
vanish, because the cumulant-generating function (4) decomposes into a sum of cumulant-generating functions across layers,
showing their statistical independence, so that connected correlations across layers vanish.

Within this expansion, the network prior (78) takes the form

p(Y |X) '
∫
DδC

∫
DδC̃ exp

(1

2
(δC, δC̃)TS(2) (δC, δC̃) + SD(C

(L)
∗ + δC(L)|Y )

)
(82)

because for C̃∗ ≡ 0 the zeroth order Taylor term S(C∗, 0) ≡ 0 and also the linear term vanishes, because C∗ has been
chosen as the stationary point. We may now study the influence of SD on the saddle point of δC and δC̃. This term only
affects the saddle point through its affect on δC(L), namely like a source term trJT δC(L) with

Jαβ :=
∂SD

∂C
(L)
αβ

. (83)

So the saddle point equation for the shift (δC, δC̃) of the saddle points reads

[
S(2)

(
δC

δC̃

)](l)
+

(
J
0

)
δl L = 0, (84)

Written explicitly with help of the Hessian (81), the first line of (84) therefore reads

−δC̃(l)
αβ + gl+1

∑
γδ

∂〈φ(l)
γ φ

(l)
δ 〉N (0,C(l))

∂C
(l)
αβ

δC̃
(l+1)
γδ + δl,L Jαβ = 0. (85)
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Employing Price’s theorem (108) one has

∑
γδ

∂〈φ(l)
γ φ

(l)
δ 〉N (0,C(l))

∂C
(l)
αβ

δC̃
(l+1)
γδ

=
1

2

∑
γδ

〈 ∂

∂h
(l)
α

∂

∂h
(l)
β

φ(l)
γ φ

(l)
δ

〉
N (0,C(l))

δC̃
(l+1)
γδ

=
〈(
φ(l)
α

)′(
φ

(l)
β

)′〉
N (0,C(l))

δC̃
(l+1)
αβ

+ δαβ
∑
γ

〈(
φ(l)
α

)′′(
φ(l)
γ

)〉
N (0,C(l))

δC̃(l+1)
αγ ,

where we used that C̃ and C are both symmetric. Inserted into (85), we obtain, to linear order in C̃, the same propagation
equation as stated in (11).

The second line of (84) reads explicitly

−δC(l)
αβ + gl

∑
γδ

∂〈φ(l−1)
α φ

(l−1)
β 〉N (0,C(l−1))

∂C
(l−1)
γδ

δC
(l−1)
γδ + g2

l

∑
γδ

〈φ(l−1)
α φ

(l−1)
β , φ(l−1)

γ φ
(l−1)
δ 〉c,N (0,C(l−1)) δC̃

(l)
γδ = 0.

Rewritten, this reads

δC
(l)
αβ = gl

∑
γδ

∂〈φ(l−1)
α φ

(l−1)
β 〉N (0,C(l−1))

∂C
(l−1)
γδ

δC
(l−1)
γδ + g2

l

∑
γδ

V
(l−1)
αβ,γδ δC̃

(l)
γδ ,

where we used the definition V (l−1)
αβ,γδ ≡ 〈φ

(l−1)
α φ

(l−1)
β , φ

(l−1)
γ φ

(l−1)
δ 〉c,N (0,C(l−1)) from (15). The first term on the right

hand side yields the linear correction to δC due to the shift δC in (79) and the second term is identical to the correction from
δC̃ in (15). This shows that the self-consistency equations derived in the main text, up to linear order in δC, are identical to
taking fluctuations of C up to Gaussian order into account. This allows us to link points where these fluctuations are large,
critical points, to feature learning.

C. Deep linear networks
In this section we consider the special case of a deep linear network to make the connection to previous works (Li &
Sompolinsky, 2021; Zavatone-Veth et al., 2022; Yang et al., 2023). This case allows us to obtain closed-form expressions
for both, the forward iteration equation (7) and the backward equation (11); these expressions in particular do not require us
to apply a perturbative treatment but only rest on the use of the large deviation principle.

We also show here that in the case of a linear network, our action (9), valid for general non-linear networks, reduces to the
one by (Yang et al., 2023), their Eq. (1), derived for deep kernel machines. This new result has three main implications:

1. It shows that in the proportional limit P = αN considered here, deep linear networks reduce to deep kernel machines.

2. The here found iterative forward-backward equations may also be used to determine the MAP estimate for the kernels
in deep linear neural networks and in deep kernel machines.

3. It allows us to provide the alternative view of kernel adaptation generated by kernel fluctuations, as outlined in (4), also
for deep linear networks and deep kernel machines; this point is useful, because it shows how the corrections found in
the proportional P = αN , N →∞, apply to networks at finite size.

The derivation here will follow along the same steps as in the general non-linear case in Appendix A. We will here only
point out the important differences. The setting of a deep linear neural network here is (25), only replacing the activation
function by the identity φ = id. This change only affects the mapping for the hidden layers which are now

h(l)
α = W (l) h(l−1)

α + b(l) l = 1, . . . , L.
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Moreover, we use the same prior distributions for all parameters as in the general case. Following the same steps as in
Section A.1, the network prior corresponding to (44) of the non-linear network takes the following form for the linear
network

p(f |X) =

∫
D{C̃, C}N

(
f |0, C(L)

αβ

)
exp

(
−

L∑
l=1

C̃
(l)
αβC

(l)
αβ +W(C̃|C)

)
, (86)

W(C̃|C) =

L∑
l=1

∑
αβ

C̃
(l)
αβgb +N

L∑
l=1

ln
〈

exp
( gl
N
C̃

(l)
αβh

(l−1)
α h

(l−1)
β

)〉
N (0,C(l−1))

, (87)

C
(0)
αβ =

g0

D

(
XXT

)
αβ

+ gb. (88)

In contrast to the non-linear case, here the expectation value in the definition ofW(C̃|C) is a Gaussian integral with the
closed-form solution

W(C̃|C) =

L∑
l=1

W(C̃(l)|C(l−1)) (89)

W(C̃(l)|C(l−1)) :=
∑
αβ

C̃
(l)
αβgb +N ln

〈
exp

( gl
N
C̃

(l)
αβh

(l−1)
α h

(l−1)
β

)〉
N (0,C(l−1))

=
∑
αβ

C̃
(l)
αβgb −

N

2
ln det

(
[C(l−1)]−1 − 2

gl
N
C̃(l)

)
− N

2
ln det(C(l−1)).

Since this cumulant-generating function has the scaling form so that the limit λ(k) := limN→∞W(Nk)/N exists trivially,
we may employ the Gärtner-Ellis theorem to approximate the conditional probabilities p(C(l)|C(l−1)) (cf. (48)) by a rate
function Γ

− ln p
(
C(l)|C(l−1)

)
:= −

∫
DC̃(l) exp

(
−tr C̃(l)TC(l) +W

(
C̃(l)|C(l−1)

))
l.d.p.
' Γ(C(l)|C(l−1)) (90)

:= sup
C̃(l)

trC̃(l)>C(l) −W
(
C̃(l)|C(l−1)

)
=

N

2gl
tr
(
[C(l−1)]−1(C(l) − gb)

)
− N

2
ln det

(
C(l) − gb

)
+
N

2
ln det(C(l−1)) + const. ,

where we dropped terms that are constant in the C and used that the supremum condition in the penultimate line evaluates to

0
!
=

∂

∂C̃
(l)
αβ

(
trC̃(l)>C̃(l) −W

(
C̃(l)|C(l−1)

))
(91)

= C
(l)
αβ − gb − gl

(
[C(l−1)]−1 − 2

gl
N
C̃(l)

)−1

αβ
.

This yields the equation to propagate the kernels C forward through the network (corresponding to (7) and (60) in the
non-linear case), which, for C̃ = 0, again reduces to the NNGP result as expected. Solved for C̃ the latter yields

C̃(l) =
N

2

(
[glC

(l−1)]−1 − [C(l) − gb]−1
)
,

which, inserted into the penultimate line of (90) yields the last line there.

At this point we are able to make the connection to deep kernel machines studied in (Yang et al., 2023). The action for the
kernels C, corresponding to (9) in the non-linear case, in the case of the linear networks with (87) and (90) takes the form

S(C) := ln p(C|Y )
l.d.p.
' SD(C(L))− Γ(C) + ◦ , (92)

Γ(C) =

L∑
l=1

Γ(C(l)|C(l−1)).
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The specific form of the rate function Γ(C(l)|C(l−1)) in (90) is that of a Kullback-Leibler divergence between two pairs of
centered Gaussian covariates with 〈z(l−1)

αi z
(l−1)
βj 〉 = δijglC

(l−1) and 〈z(l)
αi z

(l)
βj 〉 = δij

(
C(l) − gb

)
, respectively, namely

KL(N (0, C(l) − gb)||N (0, glC
(l−1))) (93)

= −
〈

lnN (z(l)|0, glC(l−1)
)〉
z(l)∼N (0,C(l)−gb)

+
〈

lnN (z(l)|0, C(l) − gb
)〉
z(a)∼N (0,C(a)−gb)

=
N

2gl
tr [C(l−1)]T(C(l) − gb) +

N

2
ln det

(
C(l−1)

)
− N

2
ln det

(
C(l) − gb

)
+ const. ,

where the factors N result from the zαi being i.i.d. in i = 1, . . . , N . Apart from constant terms that we dropped, this is
the same form as (90). In the case gb = 0, the action (92) thus reduces to the main result by (Yang et al., 2023), their Eq.
(1), when setting all relative layer width ν` = 1 as assumed here and using K = id, valid for deep kernel machines. Our
approach is thus consistent with theirs, if we study deep linear networks. Note that our general result, the action (9), is valid
for deep non-linear networks.

As for the non-linear networks considered in the main text, we may derive the pair of forward-backward equations for the
kernel adaptation in the linear case. The forward iteration (91) can be rewritten as

C(l) = gb + gl C
(l−1)

(
I− 2

gl
N
C̃(l)C(l−1)

)−1
. (94)

The backward equation for C̃ arises from computing the MAP estimate of C from (92) as ∂S(C)/∂C
(l)
αβ

!
= 0, which for

l = L yields (10) and for 1 ≤ l < L evaluates to (cf. (64))

0
!
=

∂

∂C
(l)
αβ

(
Γ(C(l)|C(l−1)) + Γ(C(l+1)|C(l))

)
= C̃

(l)
αβ −

∂

C
(l)
αβ

W(C̃(l+1)|C(l)),

with the explicit form (89) written asW(C̃(l+1)|C(l)) =
∑
αβ C̃

(l+1)
αβ gb − N

2 ln det
(
I− 2 gl+1

N C̃(l+1)C(l)
)

so that

C̃(l) = gl+1 C̃
(l+1)

(
I− 2

gl+1

N
C̃(l+1)C(l)

)−1
. (95)

Note that the form of the forward equation (94) and the backward equation (95) show a symmetry such that
[glC̃

(l)]−1C̃(l−1) = [glC
(l−1)]−1 (C(l) − gb) =

(
I− 2 glN C̃(l)C(l−1)

)−1
.

To test the behavior of linear networks, we use a linearly separable Ising task: Each pattern xα in the Ising task is D-
dimensional and xαi ∈ {±1}. If the pattern belongs to class −1, each xαi realizes xαi = +1 with a probability of
p1 = 0.5−∆p and the value xαi = −1 with p2 = 0.5+∆p. The value for each pattern element xαi is drawn independently.
If the pattern belongs to class +1, the probabilities for xαi = 1 and xαi = −1 are inverted. The task separability increases
with larger ∆p. In Fig. 6 we plot the mean squared error difference between the numerically sampled kernels and the
feature-corrected kernels from theory, the NNGP kernels and the linear approximation in C̃ of the feature corrections for
a linear single-hidden layer network as a function of the ratio α = P/N between the number of training samples P and
network width N . The feature-corrected kernels from the full theory converge to the empirically measured kernels when
increasing the network width N while keeping α = P/N fixed, showing that the large deviation result becomes more and
more precise. The linear approximation in C̃ yields only a slightly higher error, justifying this approximation. The deviation
between the NNGP and the empirical kernel is consistently higher, showing that feature corrections remain important in the
proportional limit.

D. Adaptation towards the target in linear networks
To gain more intuition into the adaptation of the kernels towards the target, we may investigate a linear network. To this end
consider the second-order cumulant expansion ofW given by (89) as

W(C̃(l)|C(l−1)) =
∑
αβ

C̃
(l)
αβgb + gl C̃

(l)
αβC

(l−1)
αβ +

g2
l

2N
C̃

(l)
αβ

(
C(l−1)
αγ C

(l−1)
βδ + C

(l−1)
αδ C

(l−1)
βγ

)
C̃

(l)
γδ +O(C̃3), (96)
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Figure 6. Dependence on the ratio between training samples and network width α = P/N for linear single-hidden layer network.
The mean squared error difference MSE(C,Cemp) = 1/D2 ∑D

α,β=1(Cαβ − Cemp
αβ )2 measures kernel adaptation relative to the

numerically sampled kernels. The MSE of the data-dependent kernels (blue: NNGP; red: linear approximation; black: full theory)
shows that the feature-corrected kernels are consistently closer to the empirical kernel than the NNGP kernel. Parameters: Ising task
∆p = 0.2, D = 1000, L = 1, gl = {0.2, 0.6, 1.0}, κ = 0.001, σ2

b = 0.05 for N = 100, 200, 500, 1000. Results are averaged over
10 training data sets and error bars indicate standard deviation.

where summation over repeated indices on the right are implied and where we used that 〈hαhβ , hγhδ〉c = 〈hαhβhγhδ〉 −
〈hαhβ〉 〈hγhδ〉, decomposed the fourth moment into cumulants by Wick’s theorem and what remains are the pairings
〈hαhγ〉 〈hβhδ〉+ 〈hαhδ〉 〈hβhγ〉 = Cαγ Cβδ + Cαδ Cβγ . The stationarity condition (91) with (96) takes the form

C
(l+1)
αβ = gb + gl+1 C

(l)
αβ + 2

g2
l+1

N
C(l)
αγ C̃

(l+1)
γδ C

(l)
δβ .

Considering the case gb = 0 in the following, the correction term comes with a factor N−1, so we may approximate within
the correction term gl+1C

(l) ' C(l+1) + O(N−1). The correction term in the last layer l = L in this approximation
becomes

C
(L)
αβ ' gL C

(L−1)
αβ +

2

N
C(L)
αγ C̃

(L)
γδ C

(L)
δβ +O(N−1).

Now assuming κ = 0 (no regularization, training without noise) and inserting the form of C̃(L) =
1
2 (C(L))−1Y Y T(C(L))−1 − 1

2 (C(L))−1 given by (10), we obtain the correction term

2

N
C(L)
αγ C̃

(L)
γδ C

(L)
δβ =

2

N
C(L)
αγ

[1
2

(C(L))−1Y Y T(C(L))−1 − 1

2
(C(L))−1

]
γδ
C

(L)
δβ

=
1

N

(
Y Y T − C(L)

)
,

so that we get the final result

C
(L)
αβ ' gL C

(L−1)
αβ +

1

N

(
Y Y T − C(L)

)
αβ
. (97)

This shows that correction term tends to push the kernel into the rank-one direction of the target Y Y T in order to increase
the log-likelihood of the data.
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E. Relation to the Neural Tangent Kernel
This section links our work to the neural tangent kernel (NTK). This material only serves the purpose to recast the known
results on the NTK (Jacot et al., 2018; Lee et al., 2019) into our setting and notation. We here consider the specific case of
the NTK for the squared error loss function

L(f ;Y ) =
1

2

P∑
α=1

‖fα − yα‖2 (98)

and the network architecture is given by

h(0)
α = W (0)xα,

h(l)
α = W (l)φ

(
h(l−1)
α

)
, l = 1, . . . , L, (99)

fα = h(L)
α ∈ R,

where to simplify notation we set the biases to zero – an extension to non-zero biases is of course possible. To further
simplify notation and to connect the calculations to the main results of the current work, we assume that the widths for
all layers are the same and are denoted as N . In the NTK architecture the weights are scaled as W (l) = w(l)/

√
N with

O(1) ∼ w(l) ∼ N (0, gl) at initialization. For simplicity, we also assume the same dimension for the data xα ∈ RN here.
The w(l) are considered the trainable parameters which implies that the gradient is multiplied by 1/

√
N and is hence reduced

for large networks. This leads to the weights w(l) not departing strongly from their initialization. For equal layer widths the
gradient scaling with 1/

√
N corresponds to using a rescaled loss function L̄ = L/

√
N , so the NTK studies the learning

dynamics

∂tW = −∇W L̄. (100)

In the following we will only make the link to the NTK right after initialization, because it has been shown that on the
limit N → ∞ the NTK stays constant over training (Jacot et al., 2018). As shown in (Lee et al., 2019) the NTK at
initialization is equivalent to linearizing the network outputs fα around a set of initial weights. This assumption corresponds
to assuming that the trained weights do not depart strongly from their initial point. We will show here that the framework of
Bayesian inference we employ here reduces to the NTK at initialization under the additional assumption of such a linear
dependence of the network output on the parameters of the network. This corresponds replacing the mapping between
inputs X ∈ R(P+1)×N and outputs f(X|W ) ∈ RP+1 implied by (99) by a linearized dependency on the parameters
W = {w(0)

ij ....w
(L)
ij }

f(X|W ) ' f(X|W0) +∇f(X|W0)ω (101)
=: f0 +∇f ω,

ω = W −W0,

where R(P+1) 3 ∇f(X|W0)ω :=
∑
l,ij

∂f(X|W )

∂w
(l)
ij

∣∣
W0

ω
(l)
ij and the ω denote the deviations of the weights from their initial

values. Here X ∈ R(P+1)×N is the matrix of all 1 ≤ α ≤ P + 1 data points, corresponding to P training points and one
test point α = ∗ and ∇f ∈ R(P+1)×LN2+N is the Jacobi matrix of the corresponding network outputs with regard to the
LN2 +N weight parameters of the network (99).

In contrast to (100), the main part of our work considers training with a stochastic learning dynamics with weight decay (see
G)

∂tW (t) = −γW (t)−∇L(f(X,W (t));Y ) +
√

2Tζ(t) , (102)〈
ζi(t)ζj(s)

〉
= δijδ(t− s).

We recover NTK training (100) by first changing the time scale by a factor τ =
√
N as

τ ∂tW (t) = −γW (t)−∇L(f(X,W (t));Y ) +
√

2Tτ ζ(t) , (103)〈
ζi(t)ζj(s)

〉
= δijδ(t− s).

26



Critical feature learning in deep neural networks

Since the stationary distribution is invariant under a change of time scale, both dynamics (102) and (103) obey the same
stationary distribution. Ultimately we need to set the temperature T and the weight decay γ to zero. We will take γ = 0
immediately, but leave T finite for the intermediate steps of the calculation and only take the limit in the end. In addition we
will use the linearization (101) and therefore study the dynamics of the ω(t) following from (103) by dividing by τ as

∂tω(t) = −∇ω(t) L̄(f0 +∇f ω(t) ; Y ) +
√

2T/τ ζ(t).

The stationary distribution of ω(t) under this dynamics obeys

p0(ω|W0) ∝ exp
(
− τ

T
L̄(f0 +∇f ω; Y )

)
,

which for the quadratic loss function (98) is a Gaussian distribution in ω. The resulting joint distribution of network outputs
f and labels Y is then Gaussian, too, because of the affine linear dependence of f on ω in (101). It corresponds to the
network prior we compute in the main text (2) and here takes the form

p(Y, f |X,W0) ∝
∫
dω exp

(
− τ

T
L̄(f ;Y )

)
δ(f − f0 −∇f ω))

=

∫
dω exp

(
− 1

T
L(f ;Y )

)
δ(f − f0 −∇f ω)).

To investigate the statistics of the output conditioned on the training labels Y , it is easiest to introduce the cumulant-generating
function for the conditional p(f |Y,X,W0) := p(Y, f |X,W0)/

∫
df p(Y, f |X,W0) with jTf =

∑P+1
α=1 jαfα

W(j|Y,X,W0) = ln

∫
df p(Y, f |X,W0) ej

Tf∫
df p(Y, f |X,W0)

(104)

= ln
〈
ej

Tf
〉
f∼p(Y,f |X,W0)

+ const.

= ln

∫
df

∫
dω exp

(
jTf − 1

2T
‖Y − f‖2P

)
δ
(
f − f0 −∇f ω

)
+ const.

= ln

∫
dω exp

(
jT(f0 +∇f ω)− 1

2T
‖Y − f0 −∇f ω‖2P

)
+ const.

= ln

∫
dω exp

(
jT(f0 +∇f ω)− 1

2T
ωT∇fT∇f ω +

1

T
(Y − f0)T∇f ω

)
+ const.

= ln

∫
dω exp

(
jTf0 +

(
jT∇f +

1

T
(Y − f0)T∇f

)
ω − 1

2T
ωT∇fT∇f ω

)
+ const.

= jTf0 +
T

2

(
jT∇f +

1

T
(Y − f0)T∇f

) [
∇fT∇f

]−1(
jT∇f +

1

T
(Y − f0)∇f

)T
+ const.,

where we performed the Gaussian integral over the ω ∈ R(LN2+N) in the last step and dropped all constant terms
(independent of j) along the way. Note that here the norm ‖Y − f‖2P is with regard to the P training points only, likewise
all inner products following from it; the only inner products that involve the test point are those in jT∇f and jTf0. From
the latter form we can read off that the statistics of the output is Gaussian, because we obtain a polynomial of degree two in
j; the mean for the test point α = ∗ is hence its linear coefficient

µ∗ =
∂

∂j∗
W
∣∣
j=0

= f0,∗ +∇f∗
[
∇fT∇f

]−1∇fT(Y − f0), (105)

which is in particular independent of T , so that the limit T → 0 exists. The variance is given by the term ∝ j2 which is
linear in T and hence vanishes for T → 0. To recover the NTK result in the known form, we may use that for any matrix X
associativity holds, so that

(XTX)XT = XT (XXT),

from which follows by multiplying with (XTX)−1 from left and by (XXT)−1 from right

XT (XXT)−1 = (XTX)−1XT.
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We may use this to rewrite the mean of the predictor in (105) as

µ∗ =
∂

∂j∗
W
∣∣
j=0

= f0,∗ +∇f∗∇fT
[
∇f∇fT

]−1
(Y − f0), (106)

where the NTK kernel

Θαβ = [∇f∇fT]αβ ≡
∑
l,ij

∂fα

∂W
(l)
ij

∂fβ

∂W
(l)
ij

(107)

for 1 ≤ α, β ≤ P + 1 appears; specifically, the matrix
[
∇f∇fT

]
1≤α,β≤P is with regard to the P training points only

(inherited from the norm ‖ . . . ‖2P ), while [∇f∗∇fT]1≤β≤P is a vector of dimension P , fixing the left index to the training
point α = ∗ (coming from the derivative by j∗). The expression (106) is the stationary point of the NTK predictor for the
linearized network (cf. Eqs. (10)-(11) in (Lee et al., 2019)).

The original work (Theorem 2 in Sec 4.2 of (Jacot et al., 2018)) has shown that in the limit N →∞ the NTK stays constant
over training, which implies that the expressions obtained here remain valid throughout training.

This shows that the posterior we compute in our general framework is consistent with the NTK if we make the additional
assumption that the dependence of the network output can be linearized with regard to the trained parameters; such an
assumption is justified if the weights do not depart strongly from their initial values, as in the NTK setting in the N →∞
limit. Our general approach does not require this linearization. In addition, for the NTK we took vanishing weight decay
– an extension to non-zero weight decay would be possible, though, still remaining with a Gaussian ω and hence f . The
computation here also shows that we may use a non-zero T in the training dynamics as we do in the main text and would still
obtain the same result (106) for the mean of the predictor, albeit with a non-zero variance that can be read off from (104).

The conceptually important difference between the NTK kernel Θ (107) and the kernels C we study is that the NTK kernel
is agnostic to the training labels Y – the shape of the kernel only depends on the network architecture and the data points X ,
but not on the labels Y . Similar to the NNGP the NTK is hence unable to relate the inputs X and the labels Y and hence
does not capture feature learning. Our work, in contrast, investigates how kernels are shaped by the joint statistics of X and
Y – this is evident from the fact that the MAP estimate of the kernels results from an interplay of the likelihood of the labels
SD and the prior term in (9) and is shown by the increase of the CKA between C(L) and Y Y T; for linear networks this
increase is shown explicitly in (97).

F. Price’s theorem
Consider an expectation value of f : RN → R over centered jointly Gaussian distributed xi with covariance C

〈f(x)〉x∼N (0,C).

We assume that f(x) grows slower than ex
2
i for large xi. Rewriting the Gaussian N (0, C) in terms of its Fourier transform

N (0, C) =
{∏

j

∫ i∞
−i∞

dx̃j
2πi

}
exp

(
− xTx̃+ 1

2 x̃
TCx̃

)
one obtains

〈f(x)〉x∼N (0,C) =
∏
j

{∫ ∞
−∞

dxj

∫ i∞

−i∞

dx̃j
2πi

}
f(x) exp

(
− xTx̃+

1

2
x̃TCx̃

)
,

which yields the property

∂

∂Ckl
〈f(x)〉x∼N (0,C) =

∏
j

{∫ ∞
−∞

dxj

∫ i∞

−i∞

dx̃j
2πi

}
f(x)

1

2
x̃kx̃l exp

(
− xTx̃+

1

2
x̃TCx̃

)
.

One notices that one may replace both occurrences of x̃i → −∂/∂xi under the integral: integrating by parts twice and using
the assumption that f grows slower than ex

2
i for large xi so that boundary terms vanish, one obtains

∂

∂Ckl
〈f(x)〉x∼N (0,C) =

∏
j

{∫ ∞
−∞

dxj

∫ i∞

−i∞

dx̃j
2πi

} 1

2

{ ∂

∂xk

∂

∂xl
f(x)

}
exp

(
xTx̃+

1

2
x̃TCx̃

)
=

1

2

〈
f

(2)
kl

〉
x∼N (0,C)

, (108)
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where f (2)
kl is the Hessian of f . This expression is known as Price’s theorem (Price, 1958; Papoulis & Pillai, 2002). Note

that sometimes the theorem is only stated for derivatives by Ck 6=l only.

This theorem can be used to rewrite

∂

∂C
(l)
αβ

〈
exp

(gl+1

N
φ(l)TC̃(l+1)φ(l)

)〉
h(l)∼N (0,C(l))

(109)

to obtain an expression for ∂

∂C
(l)
αβ

W(C̃(l+1)|C(l)) in (11) (see A.4).

G. Langevin stochastic gradient descent
To compare theoretical results to real networks we sample numerically from the posterior of networks that have been
conditioned on the training data X = (xα)α=1,...,P , Y = (yα)α=1,...,P . We therefore train the network (1) using Langevin
stochastic gradient descent (LSGD). According to (Naveh et al., 2021) evolving parameters Θ with the stochastic differential
equation

∂tΘ(t) = −γΘ(t)−∇ΘL(Θ(t);Y ) +
√

2Tζ(t), (110)〈
ζi(t)ζj(s)

〉
= δijδ(t− s),

with the squared error loss L(Θ;Y ) =
∑P
α=1(fα(Θ)− yα)2 and fα(Θ) denoting the network output for sample α, leads to

sampling from the equilibrium distribution for Θ for large times t which reads

lim
t→∞

p (Θ(t)) ∼ exp

(
− γ

2T
‖Θ‖2 − 1

T
L(Θ;Y )

)
. (111)

The equilibrium distribution may be derived from the Fokker-Planck equation (Risken, 1996) for the density of Θ. Conversely,
this implies a density for the output

p(Y |X) ∝
∫
dΘ exp

(
− γ

2T
‖Θ‖2 − 1

T
‖f − Y ‖2

)
(112)

∝
〈

exp
(
− 1

T
‖f − Y ‖2

)〉
Θk

i.i.d.∼N (0,T/γ)

∝N (Y |f, T/2) 〈δ
[
f − f(Θ)

]
〉
Θk

i.i.d.∼N (0,T/γ)
,

which, with p(f |X) ≡ 〈δ
[
f − f(Θ)

]
〉
Θk

i.i.d.∼N (0,T/γ)
, is identical to (2) if one identifies κ = T/2 with the regularization

noise and T/γ = g/N with the variance of the parameter Θk. To implement different variances in practice, one requires a
different weight decay γ for each parameter.

The time discrete version of (110) is implemented as

Θt = Θt−1 − η (γΘt−1 +∇ΘL(Θt−1;Y )) +
√

2Tη ζt, (113)
〈ζtζs〉 = δts,

with standard normal ζt and finite time step η, which can also be interpreted as a learning rate. To accurately reflect the time
evolution according to (110) the learning rate needs to be small. Hence Langevin stochastic gradient descent corresponds to
full-batch gradient descent with the addition of i.i.d. distributed standard normal noise and weight decay regularization
(Krogh & Hertz, 1991). The value for κ, which appears in the main text as the regularizer on the diagonal of the output
kernel C(L), quantifies the tradeoff between the influence of the prior and the influence of the training data via the loss
term. Choosing large κ corresponds to large T = 2κ and hence a large noise in the LSGD, putting more emphasis on the
parameter priors. In contrast, small regularization values κ favor the training data in the loss in the exponent. When using
LSGD to sample from the equilibrium distribution, it needs to be ensured that the distribution is equilibrated and subsequent
network samples drawn from the distribution are uncorrelated. For empirical results, we therefore sample networks after an
initial warmup of 50.000 training steps in distances of 1.000 time steps.
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H. Additional details of theory implementation
H.1. Setting weight variance of input layer

The response functions χl,→ describe the effect of a perturbation in the input kernel the kernel in layer l. It depends on the
network kernels C(k)

αα of all layers before layer k. For simplicity, we set the weight variance of the input layer g0 such that
the diagonal elements of the network kernels C(l)

αα are already at their fixed point value for large depth (Schoenholz et al.,
2017). Consequently, the convergence of the diagonal kernel elements does not influence the response functions and there
remains only one relevant relaxation scale for the latter.

H.2. Gaussian integrals

We solve the self-consistency equations in (11) iteratively. This requires computing two-point and four-point Gaussian
integrals. For φ = erf, we obtain the following analytical expressions for the two-point integrals

〈φ(hα)φ(hβ)〉h∼N (0,C) =


4
π arctan

(√
1 + 4Cαα

)
− 1 α = β,

2
π arcsin

(
2Cαβ√

1+2Cαα
√

1+2Cββ

)
else,

〈φ′(hα)φ′(hβ)〉h∼N (0,C) =


4
π

1√
4Cαα+1

α = β,

4
π

(
2 (Cαα + Cββ) + 1 + 4

(
CααCββ − C2

αβ

))−0.5

else,

〈φ(hα)φ′′(hβ)〉h∼N (0,C) =

−
8
π

Cαα
(2Cαα+1)

√
4Cαα+1

α = β,

− 8
π

Cβα

(2Cαα+1)
√

2(Cαα+Cββ)+1+4(CααCββ−C2
αβ)

else.

We are not aware of an analytical solution for the appearing four-point integral
〈
φ(hα)φ(hβ)φ(hγ)φ(hδ)

〉
h∼N (0,C)

.

Therefore, we determine this integral numerically using Monte-Carlo sampling with nMC = 105 samples.

H.3. Annealing in network width

In Section 3 we derived self-consistency equations for the posterior kernels perturbatively up to linear order in the conjugate
kernels C̃(l) (see (11)). We solve these equations iteratively: i) Initialize C(0) by (5) and set C̃ = 0 initially. ii) Iterate
(15) forward until C(L); in the first iteration this step still corresponds to the NNGP. iii) Determine C̃(L) in the final layer
from (10). iv) Propagate C̃ backward with (11) (but using the Gaussian measure 〈. . .〉N (0,C(l)) instead of the non-Gaussian
measure 〈. . .〉P(l) throughout (11)). Then go back to step ii) with C̃ 6= 0 and iterate until convergence. To improve the
stability of these iterations, we use a damping parameter γ = 0.5 and replace per iteration i as

C(l),i 7→ (1− γ)C(l),i+1 + γC(l),i,

C̃(l),i 7→ (1− γ)C̃(l),i+1 + γC̃(l),i.

When solving these equations iteratively, we use the NNGP kernel as the starting value. For wide networks and fixed
training data P/N → 0, corrections to the NNGP kernel become small and posterior kernels are well described by including
corrections up to linear order. To obtain posterior kernels for arbitrary network widths, we use that corrections are small
when determining the posterior kernels based on the posterior kernels of a slightly wider network: We start from very wide
networks and compute corrections to the NNGP kernel. Then we use these corrected kernels as the starting point for slightly
narrower networks and repeat until a certain network width (see pseudo code in 1).

In Fig. 7, we show the CKA between the output kernel C(L) and target kernel Y Y T relative to the NNGP kernel for
annealing in network width.

I. Centered kernel alignment
According to (Canatar & Pehlevan, 2022), the kernel alignment between two kernels A, B ∈ RP×P is measured by

Tr(AB)√
Tr(AA) Tr(BB)

.
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Algorithm 1 Width annealing of kernels
Input: data X , labels Y , network widths {Ni}i
Compute NNGP kernel C(l)

NNGP from data X .
Set start values to NNGP kernel C(l)

init = C
(l)
NNGP and C̃(l)

init = 0.
for N in {Ni}i do

Compute corrected kernels C(l)
corr = f(C

(l)
init, C̃

(l)
init, Y,N) and conjugate kernels C̃(l)

corr = g(C
(l)
init, C̃

(l)
init, Y,N).

Reset start values C(l)
init = C

(l)
corr and C̃(l)

init = C̃
(l)
corr.

end for
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Figure 7. Annealing in network width to solve self-consistency equations. (a) Network kernel C(l) across layers l = 1, 2, 3 for different
network width N and gl = g = 0.5. More narrow networks show stronger adaptation to the target kernel Y Y T across layers. (b) CKA
between network kernels C(L) and target kernel Y Y T for different network width. For wide networks, the CKA (blue markers) remains
close to that of the NNGP (solid line). For more narrow networks, the corrections towards the target kernel and away from the NNGP
kernel increase continuously. The correction strength depends on other network hyperparameters such as the weight variance gl (increasing
from dark to light). Other parameters: XOR task with σ2 = 0.4, gl ∈ {0.5, 0.7, 1.0, 1.5} , gb = 0.05, L = 3, κ = 10−3, P = 12.

This corresponds to the cosine similarity between the flattened kernels and is thus invariant under scaling the kernels by a
scalar A 7→ aA. To remove constant components in the eigendecomposition of the kernel (Cortes et al., 2012), we use the
centered kernel alignment (CKA): the kernels are transformed as A 7→ HAH and B 7→ HBH with the centering matrix
H = I− 1

P 11T where 1 is the matrix with all ones as elements. Throughout this work, we study the CKA between network
kernels C(l) and the target kernel Y Y T.
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