
Published as a conference paper at ICLR 2022

NODEPIECE: COMPOSITIONAL AND PARAMETER-
EFFICIENT REPRESENTATIONS OF LARGE KNOWL-
EDGE GRAPHS

Mikhail Galkin, Etienne Denis, Jiapeng Wu and William L. Hamilton
Mila, McGill University
Montreal, Canada
{mikhail.galkin,deniseti,jiapeng.wu,hamilton}@mila.quebec

ABSTRACT

Conventional representation learning algorithms for knowledge graphs (KG) map
each entity to a unique embedding vector. Such a shallow lookup results in a linear
growth of memory consumption for storing the embedding matrix and incurs high
computational costs when working with real-world KGs. Drawing parallels with
subword tokenization commonly used in NLP, we explore the landscape of more
parameter-efficient node embedding strategies. To this end, we propose NodePiece,
an anchor-based approach to learn a fixed-size entity vocabulary. In NodePiece,
a vocabulary of subword/sub-entity units is constructed from anchor nodes in a
graph with known relation types. Given such a fixed-size vocabulary, it is possible
to bootstrap an encoding and embedding for any entity, including those unseen
during training. Experiments show that NodePiece performs competitively in node
classification, link prediction, and relation prediction tasks while retaining less than
10% of explicit nodes in a graph as anchors and often having 10x fewer parameters.
To this end, we show that a NodePiece-enabled model outperforms existing shallow
models on a large OGB WikiKG 2 graph having ~70x fewer parameters1.

1 INTRODUCTION

Representation learning tasks on knowledge graphs (KGs) often require a parameterization of each
unique atom in the graph with a vector or matrix. Traditionally, in multi-relational KGs such
atoms constitute a set of all nodes n ∈ N (entities) and relations (edge types) r ∈ R (Nickel
et al., 2016). Assuming parameterization with vectors, atoms are mapped to d-dimensional vectors
through shallow encoders fn : n → Rd and fr : r → Rd which scale linearly to the number
of nodes and edge types2, i.e., having O(|N |) space complexity of the entity embedding matrix.
Albeit efficient on small conventional benchmarking datasets based on Freebase (Toutanova & Chen,
2015) (~15K nodes) and WordNet (Dettmers et al., 2018) (~40K nodes), training on larger graphs
(e.g., YAGO 3-10 (Mahdisoltani et al., 2015) of 120K nodes) becomes computationally challenging.
Scaling it further up to larger subsets (Hu et al., 2020; Wang et al., 2021; Safavi & Koutra, 2020) of
Wikidata (Vrandecic & Krötzsch, 2014) requires a top-level GPU or a CPU cluster as done in, e.g.,
PyTorch-BigGraph (Lerer et al., 2019) that maintains a 78M × 200d embeddings matrix in memory
(we list sizes of current best performing models in Table 1).

Taking the perspective from NLP, shallow node encoding in KGs corresponds to shallow word
embedding popularized with word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014)
that learned a vocabulary of 400K-2M most frequent words, treating rarer ones as out-of-vocabulary
(OOV). The OOV issue was resolved with the ability to build infinite combinations with a finite
vocabulary enabled by subword units. Subword-powered algorithms such as fastText (Bojanowski
et al., 2017), Byte-Pair Encoding (Sennrich et al., 2016), and WordPiece (Schuster & Nakajima,
2012) became a standard step in preprocessing pipelines of large language models and allowed to
construct fixed-size token vocabularies, e.g., BERT (Devlin et al., 2019) contains ~30K tokens and

1The code is available on GitHub: https://github.com/migalkin/NodePiece
2We then concentrate on nodes as usually their size is orders of magnitude larger than that of edge types.

1

https://github.com/migalkin/NodePiece

Published as a conference paper at ICLR 2022

Table 1: Node embedding sizes of state-of-the-art KG embedding models compared to BERT Large.
Parameters of type float32 take 4 bytes each. FB15k-237, WN18RR, and YAGO3-10 models as
reported in Sun et al. (2019), OGB WikiKG2 as in Zhang et al. (2020c), Wikidata 5M as in Wang
et al. (2021), PBG Wikidata as in Lerer et al. (2019), and BERT Large as in Devlin et al. (2019).

FB15k-237 WN18RR YAGO3-10 OGB WikiKG2 Wikidata 5M PBG Wikidata BERT Large

Vocabulary size 15k 40k 120k 2.5M 5M 78M 30k
Embedding dim 2000 1000 1000 200 512 200 1024
GPU RAM, GB 0.12 0.15 0.46 1.87 9.69 58.1 0.12

GPT-2 (Radford et al., 2019) employs ~50K tokens. Importantly, relatively small input embedding
matrices enabled investing the parameters budget into more efficient encoders (Kaplan et al., 2020).

Drawing inspiration from subword embeddings in NLP, we explore how similar strategies for tokeniz-
ing entities in large graphs can dramatically reduce parameter complexity, increase generalization,
and naturally represent new unseen entities as using the same fixed vocabulary. To do so, tokenization
has to rely on atoms akin to subword units and not the total set of nodes.

To this end, we propose NodePiece, an anchor-based approach to learn a fixed-size vocabulary V
(|V | � |N |) of any connected multi-relational graph. In NodePiece, the set of atoms consists of
anchors and all relation types that, together, allow to construct a combinatorial number of sequences
from a limited atoms vocabulary. In contrast to shallow approaches, each node n is first tokenized
into a unique hash(n) of k closest anchors and m immediate relations. A key element to build a node
embedding is a proper encoder function enc(n) : hash(n)→ Rd which can be designed leveraging
inductive biases of an underlying graph or downstream tasks. Therefore, the overall parameter budget
is now defined by a small fixed-size vocabulary of atoms and the complexity of the encoder function.

Our experimental findings suggest that a fixed-size NodePiece vocabulary paired with a simple en-
coder still yields competitive results on a variety of tasks including link prediction, node classification,
and relation prediction. Furthermore, anchor-based hashing enables conventional embedding models
to work in the inductive and out-of-sample scenarios when unseen entities arrive at inference time,
which otherwise required tailored learning mechanisms.

2 RELATED WORK

Conventional KG embedding approaches. To the best of our knowledge, all contemporary em-
bedding algorithms (Ji et al., 2020; Ali et al., 2020) for link prediction on KGs employ shallow
embedding lookups mapping each entity to a unique embedding vector thus being linear O(|N |)
to the total number of nodes |N | and size of an embedding matrix. This holds for different em-
bedding families, e.g., translational (Sun et al., 2019), tensor factorization (Lacroix et al., 2018),
convolutional (Dettmers et al., 2018), and hyperbolic (Chami et al., 2020; Balazevic et al., 2019).
The same applies to relation-aware graph neural network (GNN) encoders (Schlichtkrull et al., 2018;
Vashishth et al., 2020) who still initialize each node with a learned embedding or feature vector before
message passing. Furthermore, shallow encoding is also used in higher-order KG structures such as
hypergraphs (Fatemi et al., 2020) and hyper-relational graphs (Rosso et al., 2020; Galkin et al., 2020).
NodePiece can be used as a drop-in replacement of the embedding lookup with any of those models.

Distillation and compression. Several recent techniques for reducing memory footprint of embed-
ding matrices follow successful applications of distilling large language models in NLP (Sanh et al.,
2019), i.e., distillation (Wang et al., 2020; Zhu et al., 2020) into low-dimensional counterparts, and
compression of trained matrices into discrete codes (Sachan, 2020). However, all of them require a
full embedding matrix as input which we aim to avoid designing NodePiece.

Vocabulary reduction in recommender systems. Commonly, recommender systems operate
on thousands of categorical features combined in sparse high-dimensional vectors.Recent ap-
proaches (Medini et al., 2021; Liang et al., 2021) employ anchor-based hashing techniques to
factorize sparse feature vectors into dense embeddings. Contrary to those setups, we do not expect
availability of feature vectors for arbitrary KGs and rather learn vocabulary embeddings from scratch.

2

Published as a conference paper at ICLR 2022

r1 r3

r7

r1_inv r3_inv

a1

a2

a3

a3 a1 a2

Closest anchors
+

Anchor distances

1

Relational context

2 3

r1_inv r3_inv r7

Encoder

Target node

Target node

Figure 1: NodePiece tokenization strategy. Given three anchors a1, a2, a3, a target node can be
tokenized into a hash of top-k closest anchors, their distances to the target node, and the relational
context of outgoing relations from the target node. This hash sequence is passed through an injective
encoder to obtain a unique embedding. Inverse relations are added to ensure connectivity.

Entity descriptions and language models. A recent line of work such as KG-BERT (Yao et al.,
2019), MLMLM (Clouâtre et al., 2021), BLP (Daza et al., 2021) utilize entity descriptions passed
through a language model (LM) encoder as entity embeddings suitable for link prediction. We would
like to emphasize that such approaches are rather orthogonal to NodePiece. Textual features are
mostly available in Wikipedia-derived KGs like Wikidata but are often missing in domain-specific
graphs like social networks and product graphs. We therefore assume textual features are not available
and rather learn node representations based on their spatial characteristics. Still, textual features can
be easily added by concatenating NodePiece-encoded features with LM-produced features.

Out-of-sample representation learning. This task focuses on predictions involving previously
unseen, or out-of-sample, entities that attach to a known KG with a few edges. These new edges are
then utilized as a context to compute its embedding. Previous work (Wang et al., 2019; Hamaguchi
et al., 2017; Albooyeh et al., 2020) proposed different neighborhood aggregation functions for this
process or resorted to meta-learning (Chen et al., 2019; Baek et al., 2020; Zhang et al., 2020a).
However, all of them follow the shallow embedding paradigm. Instead, NodePiece uses the new
edges as a basis for anchor-based tokenization of new nodes in terms of an existing vocabulary.

3 NODEPIECE VOCABULARY CONSTRUCTION

Given a directed KG G = (N,E,R) consisting of |N | nodes, |E| edges, and |R| relation types, our
task is to reduce the original vocabulary size of |N | nodes to a smaller, fixed-size vocabulary of
node pieces akin to subword units. In this work, we represent node pieces through anchor nodes
a ∈ A,A ⊂ N , a pre-selected set of nodes in a graph following a deterministic or stochastic
strategy. A full NodePiece vocabulary is then constructed from anchor nodes and relation types, i.e,
V = A+R. Note that in order to maintain reachability of each node and balance in- and out-degrees
we enrich G with inverse edges with inverse relation types, such that |R|inverse = |R|direct and
|R| = |R|direct + |R|inverse . Using elements of the constructed vocabulary each node n can be
tokenized into hash(n) as a sequence of k closest anchors, discrete anchor distances, and a relational
context of m immediate relations. Then, any encoder function enc(n) : hash(n) → Rd can be
applied to embed the hash into a d-dimensional vector. An intuition of the approach is presented in
Fig. 1 with each step explained in more detail below.

3.1 ANCHOR SELECTION

Subword tokenization algorithms such as BPE (Sennrich et al., 2016) employ deterministic strategies
to create tokens and construct a vocabulary, e.g., based on frequencies of co-occurring n-grams,
such that more frequent words are tokenized with fewer subword units. On graphs, such strategies
might employ centrality measures like degree centrality or Personalized PageRank (Page et al., 1999).
However, in our preliminary experiments, we found random anchor selection to be as effective as

3

Published as a conference paper at ICLR 2022

centrality-based strategies. A choice for deterministic strategies might be justified when optimizing
for certain task-specific topological characteristics, e.g., degree and PPR strategies indeed skew
the distribution of shortest anchor distances towards smaller values thus increasing chances to find
anchors in 2- or 3-hop neighborhood of any node (we provide more evidence for that in Appendix C).

3.2 NODE TOKENIZATION

Once the vocabulary V = A + R is constructed, each node n can be hashed (or tokenized) into a
hash(n) using 1) k nearest anchors and their discrete distances; 2) m immediate outgoing relations
from the relational context of n. Since anchor nodes are concrete nodes in G, they get hashed in the
same way as other non-anchor nodes.

Anchors per node. Given |A| anchor nodes, it is impractical to use all of them for encoding each
node. Instead, we select k anchors per node and describe two possible strategies for that, i.e., random
and deterministic. The basic random strategy uniformly samples an unordered set of k anchors from
A yielding

(|A|
k

)
possible combinations. To avoid collisions when hashing the nodes, |A| and k are

to be chosen according to the lower bound on possible combinations that is defined by the total
number of nodes, e.g.,

(|A|
k

)
≥ |N |. Note that running depth-first search (DFS) to random anchors at

inference time is inefficient and, therefore, hash(n) of the random strategy has to be pre-computed.

On the other hand, the deterministic strategy selects an ordered sequence of k nearest anchors. Hence,
the anchors can be obtained via breadth-first search (BFS) in the l-hop neighborhood of n at inference
time (or pre-computed for speed reasons). However, the combinatorial bound is not applicable in
this strategy and we need more discriminative signals to avoid hash collisions since nearby nodes
will have similar anchors (we elaborate on the uniqueness issue in Appendix K). Such signals have
to better ground anchors to the underlying graph structure, and we accomplish that using anchor
distances3 and relational context described below.

A node residing in a disconnected component is assigned with an auxiliary [DISCONNECTED]
token or can be turned into an anchor. However, the majority of existing KGs are graphs with one
large connected component with very few disconnected nodes, such that this effect is negligible.

Anchor Distances. Given a target node n and an anchor ai, we define anchor distance zai ∈
[0; diameter(G)] as an integer denoting the shortest path distance between ai and n in the original
graph G. Note that when tokenizing an anchor aj with the deterministic strategy, the nearest
anchor among top-k is always aj itself with distance 0. We then map each integer to a learnable
d-dimensional vector fz : zai → Rd akin to relative distance encoding scheme.

Relational Context. We also leverage the multi-relational nature of an underlying KG. Commonly4,
the amount of unique edge types in G is orders of magnitude smaller than the total number of nodes,
i.e., |R| � |N |. This fact allows to include the entire |R| in the NodePiece vocabulary VNP and
further featurize each node with a unique relational context. We construct a relational context of a
node n by randomly sampling a set of m immediate unique outgoing relations starting from n, i.e.,
rconn = {rj}m ⊆ Nr(n) where Nr(n) denotes all outgoing relation types. Due to a non-uniform
degree distribution, if |Nr(n)| < m, we add auxiliary [PAD] tokens to complete rconn to size m.

3.3 ENCODING

At this step, a node n is tokenized into a sequence of k anchors, their k respective distances, and
relational context of size m:

hash(n) =
[
{ai}k, {zai}k, {rj}m

]
(1)

Taking anchors vectors an and relation vectors rn from the learnable NodePiece vocabulary V ∈
R|V |×d, and anchor distances zan from Z ∈ R(diameter(G)+1)×d, we obtain a vectorized hash:

hash(n) =
[
an + zan , rn

]
=
[
ân, rn

]
∈ R(k+m)×d (2)

3A full relational path can be mined as well but it has proven to be not scalable as each path needs to be
encoded separately through a sequence encoder, e.g., GRU.

4As of 2021, one of the largest open KGs Wikidata contains about 100M nodes and 6K edge types

4

Published as a conference paper at ICLR 2022

Although other operations are certainly possible, in this work, we use anchor distances as positional
encodings of corresponding anchors and sum up their representations that helps to maintain the
overall hash dimension of (k +m)× d.

Finally, an encoder function enc : R(k+m)×d → Rd is applied to the vectorized hash to bootstrap
an embedding of n. In our experiments, we probe two basic encoders: 1) MLP that takes as input a
concatenated hash vector R1×(k+m)d projecting it down to Rd; 2) Transformer encoder (Vaswani
et al., 2017) with average pooling that takes as input an original sequence R(k+m)×d. While MLP is
faster and better scales to graphs with more edges, Transformer is slower but requires less trainable
parameters. As the two encoders were chosen to illustrate the general applicability of the whole
approach, we leave a study of even more efficient and effective encoders for future work.

While the nearest-neighbor hashing function has a greater number of collisions, its non-arbitrary
mapping means that it is effectively permutation invariant. We show this in Proposition 1 through the
framework of Janossy pooling and permutation sampling based SGD, π-SGD (Murphy et al., 2019).
A proof is provided in Appendix H.

Proposition 1. The nearest-anchor encoder with
(|A|
k

)
anchors and |m| subsampled relations, can

be considered a π-SGD approximation of (k + |m|)-ary Janossy pooling with a canonical ordering
induced by the anchor distances.

Janossy pooling with π-SGD can be used to learn a permutation-invariant function from a broad class
of permutation-sensitve functions such as MLPs (Murphy et al., 2019). The permutation-invariant
nature of the nearest-neighbor encoding scheme combined with the lack of transductive features such
as node-specific embeddings mean that NodePiece can be used for inductive learning tasks as well.

With a fixed-size vocabulary VNP , the overall complexity and parameter budget of downstream
models are largely defined by the complexity of the encoder and its inductive biases. By design, the
NodePiece smaller vocabulary - larger encoder framework is similar to various Transformer-based
language models (Qiu et al., 2020) whose vocabulary size remains rather stable with the encoder
being the most important part responsible for the final performance.

4 EXPERIMENTS

We design the experimental program not seeking to outperform the best existing approaches but to
show the versatility of NodePiece on a variety of KG-related tasks: transductive, inductive, out-of-
sample link prediction, and node classification (with relation prediction results in Appendix I). With
this desiderata, we formulate the following research questions: RQ 1) Is it necessary to map each
node to a unique vector for an acceptable performance on KG tasks?; RQ 2) What is the effect of
hashing features?; RQ 3) Is there an optimal number of anchors per node, after which diminishing
returns hit the performance?

4.1 TRANSDUCTIVE LINK PREDICTION

Setup. We run experiments on five KGs of different sizes (Appendix A.1) varying the total number
of nodes from ~15K to ~2.5M. As a baseline, we compare to RotatE (Sun et al., 2019) that remains
one of state-of-the-art shallow embedding models for transductive link prediction tasks. To balance
with NodePiece, RotatE operates on a graph with added inverse edges as well. We report MRR with
Hits@10 in the filtered (Bordes et al., 2013) setting as evaluation metrics, and count parameters for
all models. On larger KGs, we also compare to a smaller RotatE with a similar parameter budget.

In this task, NodePiece is equipped with a 2-layer MLP encoder. For a fair comparison, we also adopt
the RotatE scoring function as a link prediction decoder. As to the NodePiece configuration, we
generally keep the number of anchors below 10% of total nodes in respective graphs. We select 1k/20
for FB15k-237 (i.e., total 1000 anchors and 20 anchors per tokenized node) with 15 unique outgoing
relations in the relational context; 500/50 with 4 relations for WN18RR; 7k/20 with 6 relations for
CoDEx-L; 10k/20 with 5 relations for YAGO 3-10. Other hyperparameters are listed in Appendix A.

Discussion. Generally, the results suggest that a fixed-size NodePiece vocabulary of <10% of nodes
sustains 80-90% of Hits@10 compared to 10x larger best shallow models. Some performance loss is
expected due to the compositional and compressive nature of entity tokenization. On smaller graphs

5

Published as a conference paper at ICLR 2022

Table 2: Transductive link prediction on smaller KGs. † results taken from (Sun et al., 2019). |V |
denotes vocabulary size (anchors + relations), #P is a total parameter count (millions). % denotes the
Hits@10 ratio based on the strongest model.

FB15k-237 WN18RR

|V | #P (M) MRR H@10 % |V | #P (M) MRR H@10 %

RotatE 15k + 0.5k 29 0.338† 0.533† 100 40k + 22 41 0.476† 0.571† 100
NodePiece + RotatE 1k + 0.5k 3.2 0.256 0.420 79 500 + 22 4.4 0.403 0.515 90

- no rel. context 1k + 0.5k 2 0.258 0.425 80 500 + 22 4.2 0.266 0.465 81
- no distances 1k + 0.5k 3.2 0.254 0.421 79 500 + 22 4.4 0.391 0.510 89

- no anchors, rels only 0 + 0.5k 1.4 0.204 0.355 67 0 + 22 0.3 0.011 0.019 0.3

Table 3: Transductive link prediction on bigger KGs. The same denotation as in Table 2. Second
RotatE has a similar parameter budget as a NodePiece-based model.

CoDEx-L YAGO 3-10

|V | #P (M) MRR H@10 % |V | #P (M) MRR H@10 %

RotatE (500d) 77k + 138 77 0.258 0.387 100 123k + 74 123 0.495† 0.670† 100
RotatE (20d) 77k + 138 3.8 0.196 0.322 83 123k + 74 4.8 0.121 0.262 39
NodePiece + RotatE 7k + 138 3.6 0.190 0.313 81 10k + 74 4.1 0.247 0.488 73

- no rel. context 7k + 138 3.1 0.201 0.332 86 10k + 74 3.7 0.249 0.482 72
- no distances 7k + 138 3.6 0.179 0.302 78 10k + 74 4.1 0.250 0.491 73

- no anchors, rels only 0 + 138 0.6 0.063 0.121 31 0 + 74 0.5 0.025 0.041 6

(Table 2), parameter saving might not be well pronounced due to the overall small number of nodes to
embed. Still, taking even as few as 500 nodes as anchors on WN18RR retains 90% of the best model
performance. On bigger graphs (Table 3), parameter efficiency is more pronounced, i.e., on YAGO
3-10, a RotatE model of comparable size is 20 Hits@10 points worse than a NodePiece-based one.
This observation can be attributed to the fact the shrinking shallow models results in shrinking the
embedding dimension of each node (20d for RotatE) which is inefficient on small parameter budgets.
In contrast, a small fixed-size vocabulary allows for larger anchor embedding dimensions (100d for
NodePiece with RotatE) since most of the parameter budget is defined by the encoder.

We further study the effect of different anchor selection combinations (Fig. 2). On WN18RR, fewer
anchors with fewer anchors per node (|A|/k) yield relatively low accuracy but starting from 50/20
(~0.1% of 40k nodes in the graph) the Hits@10 performance starts to saturate. On FB15k-237, as few
as 25 anchors already exhibit the signs of saturation where a further increase to 500 or 1000 anchors
only marginally improves the performance. We hypothesize such a difference can be explained by
graph density, e.g., WN18RR is a sparse graph with a diameter of 23 and average anchor distance
of 6 hops; while FB15k-237 is a denser graph with an average anchor distance of 2-3. Hence, on a
sparse graph with longer distances, it takes more anchors to properly encode a node.

However, more precise predictions (e.g., Hits@1) reflected in the MRR metric (see Appendix E) still
remain a challenging task for small vocabulary NodePiece setups, and bigger |A|/k combinations
alleviate this issue. We also observe that diminishing returns, which make further vocabulary increase
less rewarding, start to appear from anchor set sizes of ~1% of total nodes.

Ablations. In the ablation study, we measure the impact of relational context and anchor distances
on link prediction (Table 2). Removing relational context and anchor distances does not tangibly
affect the denser FB15k-237 data but does impair the accuracy on the sparser WN18RR. Pushing
vocabulary sizes to the limit, we also investigate NodePiece behavior in the absence of anchors at all,
i.e., when hashes are defined only by the relational context of size m. Interestingly, this still yields
fair performance on FB15k-237 with just 7 points Hits@10 drop, but drops to zero the WN18RR
performance. The fact that node embeddings might not be at all necessary but relations are more
important supports the recent findings of Teru et al. (2020) that relies only on relations seen in a
small subgraph around a target node. However, at this point, it seems to be a virtue of graphs with a
diverse set of unique relations. That is, FB15k-237 has 20x more unique relations than WN18RR and
resulting hashes have more diverse combinations of relations which lead to more discriminative node
representations. Additionally, we visualize anchor embedding projections in Appendix D.

6

Published as a conference paper at ICLR 2022

5 10 20 30 40 50 100
0

0.1

0.2

0.3

0.4

0.5

Anchors per node
H

its
@

10

WN18RR

5 10 20 30 40

0.36

0.38

0.4

0.42

0.44

Anchors per node

H
its

@
10

FB15k-237

A=25
A=50
A=100
A=500

A=1000

Figure 2: Combinations of total anchors A and anchors per node. Denser FB15k-237 saturates faster
on smaller A while sparse WN18RR saturates at around 500 anchors.

4.1.1 OGB WIKIKG 2

Table 4: Test MRR and parameter
budget on OGB WikiKG 2.

Model #Params MRR

NP + AutoSF 6.9M 0.570 ±0.003

- rel. context 5.9M 0.592 ±0.003

- anc. dists 6.9M 0.570 ±0.004

- no anchors 1.3M 0.476 ±0.001

AutoSF 500M 0.546 ±0.005

PairRE 500M 0.521 ±0.003

RotatE 1250M 0.433 ±0.002

TransE 1250M 0.426 ±0.003

To measure the benefits of NodePiece on large-scale KGs, we
run a link prediction experiment on OGB WikiKG 2 (Hu et al.,
2020), a subset of Wikidata that consists of 2.5M nodes and
16M edges. NodePiece is configured to sample a vocabulary
20K anchor nodes (< 1% of total nodes) where each node
is represented with k = 20 nearest anchors and a relational
context of size m = 12, and we use a 2-layer MLP as a hash
encoder (other hyperparameters as in Appendix A). Gener-
ally, such a NodePiece configuration can be paired with any
link prediction decoder and we chose a non-parametric Au-
toSF (Zhang et al., 2020b) as one of the strongest decoders
on this graph. Overall, the NodePiece + AutoSF model has
only 6.9M parameters, about 70× smaller than top shallow
models. Compared to the best reported shallow approaches,
the NodePiece-enabled model exhibits (cf. Table 4, averaged over 10 seeds) even better performance
achieved with a orders of magnitude smaller parameter budget. We believe this result shows the
effectiveness of NodePiece on large KGs with a dramatic parameter size reduction without significant
performance losses. Ablations report the duality of a relational context, i.e., removing it from hashes
leads to even higher MRR scores. On the other hand, the relational context alone with 0 learnable
anchors still yields considerably better results than 1000× larger shallow models RotatE and TransE.

4.2 INDUCTIVE LINK PREDICTION

We conduct a set of experiments on the inductive link prediction benchmark introduced by Teru et al.
(2020) to measure the performance of NodePiece features in the extreme case when anchor nodes are
not available and only relational context can be used to compose entity representations.

Setup. The unique feature of this benchmark compared to other evaluated tasks is that training and
inference graphs are disjoint, i.e., inference at validation and test time is performed on a completely
new graph comprised of new entities, and link prediction involves only entities unseen during training.
As inference graphs are disconnected from training ones, learning anchors from the training graph is
useless, so node hashes are built only using the m-sized relational context. On top of the obtained
NodePiece features we then employ a relational message passing GNN, CompGCN (Vashishth et al.,
2020), with RotatE (Sun et al., 2019) as a scoring function for triples. More details on the setup and
best hyperparameters for NodePiece are presented in Appendix J.

Baselines. We compare NodePiece + CompGCN with two families of models applicable in the
inductive setting, i.e., rule-based methods, Neural LP (Yang et al., 2017), DRUM (Sadeghian et al.,
2019), RuleN (Meilicke et al., 2018), and GNNs: GraIL (Teru et al., 2020) and recently proposed
Neural Bellman-Ford Nets (NBFNet) (Zhu et al., 2021).

Discussion. Generally, the results confirm the trend identified previously: relation-only features
are strong performers in dense relation-rich graphs. NodePiece features paired with CompGCN
significantly improve over path-based methods where performance gap might reach 37 absolute
Hits@10 points, e.g., in FB15k-237 V1 and NELL-995 V1. Comparing to GNNs, NodePiece +

7

Published as a conference paper at ICLR 2022

Table 5: Inductive link prediction results, Hits@10. Best results are in bold, second best are
underlined. † results taken from Teru et al. (2020). NBFNet results taken from Zhu et al. (2021).

Class Method FB15k-237 WN18RR NELL-995

V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4

Path
Neural LP † 0.529 0.589 0.529 0.559 0.744 0.689 0.462 0.671 0.408 0.787 0.827 0.806
DRUM † 0.529 0.587 0.529 0.559 0.744 0.689 0.462 0.671 0.194 0.786 0.827 0.806
RuleN † 0.498 0.778 0.877 0.856 0.809 0.782 0.534 0.716 0.535 0.818 0.773 0.614

GNN
GraIL † 0.642 0.818 0.828 0.893 0.825 0.787 0.584 0.734 0.595 0.933 0.914 0.732
NBFNet 0.834 0.949 0.951 0.960 0.948 0.905 0.893 0.890 - - - -
NP + CompGCN 0.873 0.939 0.944 0.949 0.830 0.886 0.785 0.807 0.890 0.901 0.936 0.893

Table 6: Node classification results. |V | denotes vocabulary size (anchors + relations), #P is a total
parameter count (millions).

WD50K (5% labeled) WD50K (10% labeled)

|V | #P (M) ROC-AUC PRC-AUC Hard Acc ROC-AUC PRC-AUC Hard Acc

MLP 46k + 1k 4.1 0.503 0.016 0.001 0.510 0.017 0.002
CompGCN 46k + 1k 4.4 0.836 0.280 0.176 0.834 0.265 0.161
NodePiece + GNN 50 + 1k 0.75 0.981 0.443 0.513 0.981 0.450 0.516

- no rel. context 50 + 1k 0.64 0.982 0.446 0.534 0.982 0.449 0.530
- no distances 50 + 1k 0.74 0.981 0.448 0.516 0.981 0.448 0.513

- no anchors, rels only 0 + 1k 0.54 0.984 0.453 0.532 0.984 0.456 0.533

CompGCN outperforms GraIL by a large margin in all (except one) experiments and is competitive
to NBFNet on relation-rich FB15k-237 splits. As expected, NodePiece features are less efficient on
sparse graphs (like WN18RR with few unique relations) but still outperform topology-based GraIL.

4.3 NODE CLASSIFICATION

Setup. Due to the lack of established node classification datasets on multi-relational KGs, we design
a multi-class multi-label task based on a triple version of a recent WD50K (Galkin et al., 2020)
extracted from Wikidata. The pre-processing steps are described in Appendix F, and the final graph
consists of 46K nodes and 222K edges. The task belongs to the family of transductive (the whole
graph is seen during training) semi-supervised (only a fraction of nodes are labeled) problems, where
labels are 465 classes as seen in Wikidata. In a semi-supervised mode, we test the models on a graph
with 5% and 10% of labeled nodes. Node features have to be learned as node embeddings.

As baselines, we compare to a 2-layer MLP and CompGCN (Vashishth et al., 2020) in a full-batch
mode which is one of the strongest GNN encoders for multi-relational KGs. Both baselines learn a
full entity vocabulary. We report ROC-AUC, PRC-AUC, and Hard Accuracy metrics as commonly
done in standard graph benchmarks like OGB (Hu et al., 2020). For PRC-AUC and Hard Accuracy,
we binarize predicted logits using a threshold of 0.5. Hard Accuracy corresponds to the exact match
of a predicted sparse 465-dimensional vector to a sparse 465-dimensional labels vector.

NodePiece is configured to have only 50 anchors and use 10 nearest anchors per node with 5 unique
relations in the relational context. The dimensionality of anchors and relations is the same as in the
baseline CompGCN. Each epoch, we first materialize all entity embeddings through the NodePiece
encoder and then send the materialized matrix to CompGCN with the class predictor.

Discussion. Surprisingly, ~1000x vocabulary reduction ratio (50 anchors against 46k for shallow
models) greatly outperforms the baselines (Table 6). MLP, as expected, is not able to cope with
the task producing random predictions. CompGCN, in turn, outperforms MLP demonstrating non-
random outputs as seen by the ROC-AUC score of 0.836 and higher PRC-AUC and Hard Accuracy
metrics. Still, a NodePiece-equipped CompGCN with 50 anchors reaches even higher ROC-AUC of
0.98 with considerable improvements along other metrics, i.e., +16-19 PRC-AUC points and 3x boost
along the hardest accuracy metric. We attribute such a noticeable performance difference to better
generalization capabilities of the NodePiece model. That is, a generalization gap between training
and validation metrics of the NodePiece + CompGCN is much smaller compared to the baselines who
overfit rather heavily (cf. the training curves in the Appendix G). The effect remains after increasing

8

Published as a conference paper at ICLR 2022

Table 7: Out-of-sample link prediction. † results are taken from (Albooyeh et al., 2020). |V | denotes
vocabulary size (anchors + relations), #P is a total parameter count (millions).

oFB15k-237 oYAGO 3-10 (117k)

|V | #P (M) MRR H@10 % |V | #P (M) MRR H@10 %

oDistMult-ERAvg 11k + 0.5k 2.4 0.256† 0.420† 100 117k + 74 23.4 OOM OOM -
NodePiece + DistMult 1k + 0.5k 1 0.206 0.372 88 10k + 74 2.7 0.133 0.261 100

- no rel. context 1k + 0.5k 1 0.173 0.329 78 10k + 74 2.7 0.125 0.245 94
- no distances 1k + 0.5k 1 0.208 0.372 88 10k + 74 2.7 0.133 0.260 99

- no anchors, rels only 0 + 0.5k 0.8 0.069 0.127 30 0 + 74 0.7 0.015 0.017 6

the number of labeled nodes to 10%. Even with 50 anchors, the overall performance is saturated as
the further increase of the vocabulary size did not bring any improvements.

Ablations. We probe setups where NodePiece hashes use only anchors or only relational context, and
find they both deliver a similar performance. Following the previous experiments on dense graphs
with lots of unique relations, it appears that node classification can be performed rather accurately
based only on the node relational context which is captured by NodePiece hashes.

4.4 OUT-OF-SAMPLE LINK PREDICTION

Setup. In the out-of-sample setup, validation and test splits contain unseen entities that arrive with
a few edges connected to the seen nodes. For this experiment, we use the out-of-sample FB15k-
237 split (oFB15k-237) as designed in Albooyeh et al. (2020). We do not employ their version of
WN18RR as the split contains too many disconnected entities and components in the train graph.
Instead, using the authors script, we sample a much bigger out-of-sample version of YAGO 3-10.

As a baseline, we compare to oDistMult (Albooyeh et al., 2020) which aggregates embeddings
of all seen neighboring nodes around the unseen one (akin to 1-layer message passing with mean
aggregator). We adopt the same evaluation protocol - given an unseen node with its connecting
edges, we mask one of the edges and predict its tail or head using the rest of the edges, repeating this
procedure for each edge. We report filtered MRR and Hits@10 as main metrics.

NodePiece enables traditional transductive-only models to perform inductive inference as both seen
and unseen nodes are tokenized using the same vocabulary. For a smaller oFB15k-237 the NodePiece
vocabulary has 1k/20 configuration with 15 relations, while in a bigger oYAGO 3-10 we use 10k/20
with 5 relations. For this task, we apply a transformer encoder instead of MLP. For a fair comparison,
we use DistMult as a scoring function as well.

Discussion. The results in Table 7 show that a simple NodePiece-based model retains ~90% of the
baseline performance on oFB15k-237, but achieved faster and computationally inexpensive compared
to oDistMult. Moreover, while oDistMult is tailored specifically for the out-of-sample task, we
did not do any task-specific modifications to the NodePiece-enabled model as it is inductive by
design. Furthermore, oDistMult is not able to scale to a bigger oYAGO 3-10 on a 256 GB RAM
machine due to the out of memory crash. Conversely, a NodePiece-equipped model has the same
computational requirements as in other tasks and converges rather quickly (40 epochs). Performed
ablations underline the importance of having both anchors and relational context for tokenizing
unseen entities. We elaborate more on possible inference strategies for transductive and inductive
tasks in Appendix A.6.

5 CONCLUSION

In this paper, we have introduced NodePiece, a compositional approach for representing nodes in
multi-relational graphs with a fixed-size vocabulary. Similar to subword units, NodePiece allows to
tokenize every node as a combination of anchors and relations where the number of anchors can be
10–100× smaller than the total number of nodes. We show that in some tasks, node embeddings are
not even necessary for getting an acceptable accuracy thanks to a rich set of relation types. Moreover,
NodePiece is inductive by design and is able to tokenize unseen entities and perform downstream
prediction tasks in the same fashion as on seen ones.

9

Published as a conference paper at ICLR 2022

Reproducibility Statement. The source code is openly available on GitHub. All hyperparameters
and implementation details are presented in Appendix A. Information on the used datasets is presented
in Table 8 and we provide more details on dataset construction for node classification and out-of-
sample link prediction tasks in Appendix F. The proof for Proposition 1 is given in the Appendix H.

Ethics Statement. As NodePiece is a general graph representation learning method, we do not
foresee immediate ethical consequences pertaining to the method itself.

Acknowledgements. The authors would like to thank Koustuv Sinha, Gaurav Maheshwari, and
Priyansh Trivedi for insightful and valuable discussions at earlier stages of this work. We also thank
anonymous reviewers for the helpful comments. This work is partially supported by the Canada
CIFAR AI Chair Program and Samsung AI grant (held at Mila). We thank Mila and Compute Canada
for access to computational resources.

REFERENCES

Marjan Albooyeh, Rishab Goel, and Seyed Mehran Kazemi. Out-of-sample representation learning
for knowledge graphs. In Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 2657–2666, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.findings-emnlp.241. URL https://www.aclweb.org/anthology/
2020.findings-emnlp.241.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail Galkin, Sahand Shar-
ifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann. Bringing light into the dark: A large-
scale evaluation of knowledge graph embedding models under a unified framework. CoRR,
abs/2006.13365, 2020.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh, Volker
Tresp, and Jens Lehmann. PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge
Graph Embeddings. Journal of Machine Learning Research, 22(82):1–6, 2021. URL http:
//jmlr.org/papers/v22/20-825.html.

Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang. Learning to extrapolate knowledge: Transductive
few-shot out-of-graph link prediction. Advances in Neural Information Processing Systems, 33,
2020.

Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. Multi-relational poincaré graph em-
beddings. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pp. 4465–4475, 2019.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors
with subword information. Transactions of the Association for Computational Linguistics, 5:135–
146, 2017. doi: 10.1162/tacl_a_00051. URL https://www.aclweb.org/anthology/
Q17-1010.

Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Christopher J. C. Burges, Léon
Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger (eds.), Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pp.
2787–2795, 2013.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-
dimensional hyperbolic knowledge graph embeddings. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel R. Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 6901–6914. Association
for Computational Linguistics, 2020.

Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen, and Huajun Chen. Meta relational learning
for few-shot link prediction in knowledge graphs. In Proceedings of the 2019 Conference on

10

https://www.aclweb.org/anthology/2020.findings-emnlp.241
https://www.aclweb.org/anthology/2020.findings-emnlp.241
http://jmlr.org/papers/v22/20-825.html
http://jmlr.org/papers/v22/20-825.html
https://www.aclweb.org/anthology/Q17-1010
https://www.aclweb.org/anthology/Q17-1010

Published as a conference paper at ICLR 2022

Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 4208–4217, 2019.

Louis Clouâtre, Philippe Trempe, Amal Zouaq, and Sarath Chandar. MLMLM: link prediction with
mean likelihood masked language model. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021,
Online Event, August 1-6, 2021, volume ACL/IJCNLP 2021 of Findings of ACL, pp. 4321–4331.
Association for Computational Linguistics, 2021.

Daniel Daza, Michael Cochez, and Paul Groth. Inductive entity representations from text via link
prediction. In Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia (eds.), WWW

’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, pp. 798–808.
ACM / IW3C2, 2021.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pp. 1811–1818. AAAI Press, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186.
Association for Computational Linguistics, 2019.

Bahare Fatemi, Perouz Taslakian, David Vázquez, and David Poole. Knowledge hypergraphs:
Prediction beyond binary relations. In Christian Bessiere (ed.), Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 2191–2197. ijcai.org,
2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens Lehmann. Mes-
sage passing for hyper-relational knowledge graphs. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 7346–7359. Association for
Computational Linguistics, 2020.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. Knowledge transfer
for out-of-knowledge-base entities : A graph neural network approach. In Carles Sierra (ed.),
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017, pp. 1802–1808. ijcai.org, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A survey on knowledge
graphs: Representation, acquisition and applications. CoRR, abs/2002.00388, 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition
for knowledge base completion. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pp. 2869–2878. PMLR, 2018.

11

Published as a conference paper at ICLR 2022

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex
Peysakhovich. PyTorch-BigGraph: A Large-scale Graph Embedding System. In Proceedings of
the 2nd SysML Conference, Palo Alto, CA, USA, 2019.

Paul Pu Liang, Manzil Zaheer, Yuan Wang, and Amr Ahmed. Anchor & transform: Learning sparse
embeddings for large vocabularies. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=Vd7lCMvtLqg.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. YAGO3: A knowledge base from
multilingual wikipedias. In Seventh Biennial Conference on Innovative Data Systems Research,
CIDR 2015, Asilomar, CA, USA, January 4-7, 2015, Online Proceedings. www.cidrdb.org, 2015.

Tharun Medini, Beidi Chen, and Anshumali Shrivastava. {SOLAR}: Sparse orthogonal learned
and random embeddings. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=fw-BHZ1KjxJ.

Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, and Heiner
Stuckenschmidt. Fine-grained evaluation of rule- and embedding-based systems for knowledge
graph completion. In The Semantic Web - ISWC 2018 - 17th International Semantic Web Conference,
Monterey, CA, USA, October 8-12, 2018, Proceedings, Part I, volume 11136 of Lecture Notes in
Computer Science, pp. 3–20. Springer, 2018.

Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In Christopher J. C. Burges, Léon
Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger (eds.), Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pp.
3111–3119, 2013.

Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling:
Learning deep permutation-invariant functions for variable-size inputs, 2019.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational
machine learning for knowledge graphs. Proc. IEEE, 104(1):11–33, 2016.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, November 1999. Previous
number = SIDL-WP-1999-0120.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 8024–8035, 2019.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pp.
1532–1543. ACL, 2014.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
models for natural language processing: A survey. Science China Technological Sciences, pp.
1–26, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. Beyond triplets: Hyper-relational knowl-
edge graph embedding for link prediction. In Proceedings of The Web Conference 2020, pp.
1885–1896, 2020.

12

https://openreview.net/forum?id=Vd7lCMvtLqg
https://openreview.net/forum?id=fw-BHZ1KjxJ

Published as a conference paper at ICLR 2022

Mrinmaya Sachan. Knowledge graph embedding compression. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 2681–2691, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.238. URL https:
//www.aclweb.org/anthology/2020.acl-main.238.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. DRUM: end-to-end
differentiable rule mining on knowledge graphs. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 15321–15331, 2019.

Tara Safavi and Danai Koutra. CoDEx: A Comprehensive Knowledge Graph Completion Benchmark.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 8328–8350, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.669. URL https://www.aclweb.org/anthology/
2020.emnlp-main.669.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. URL http://arxiv.
org/abs/1910.01108.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In The Semantic Web - 15th
International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings,
volume 10843 of Lecture Notes in Computer Science, pp. 593–607. Springer, 2018.

Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2012, Kyoto, Japan, March
25-30, 2012, pp. 5149–5152. IEEE, 2012. doi: 10.1109/ICASSP.2012.6289079. URL https:
//doi.org/10.1109/ICASSP.2012.6289079.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, August 2016. Association
for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https://www.aclweb.
org/anthology/P16-1162.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Komal K. Teru, Etienne Denis, and Will Hamilton. Inductive relation prediction by subgraph
reasoning. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp.
9448–9457. PMLR, 2020.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and
text inference. In Proceedings of the 3rd Workshop on Continuous Vector Space Models and
their Compositionality, pp. 57–66, Beijing, China, July 2015. Association for Computational
Linguistics. doi: 10.18653/v1/W15-4007. URL https://www.aclweb.org/anthology/
W15-4007.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BylA_C4tPr.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Commun.
ACM, 57(10):78–85, 2014.

13

https://www.aclweb.org/anthology/2020.acl-main.238
https://www.aclweb.org/anthology/2020.acl-main.238
https://www.aclweb.org/anthology/2020.emnlp-main.669
https://www.aclweb.org/anthology/2020.emnlp-main.669
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/W15-4007
https://www.aclweb.org/anthology/W15-4007
https://openreview.net/forum?id=BylA_C4tPr

Published as a conference paper at ICLR 2022

Kai Wang, Yu Liu, Qian Ma, and Quan Z Sheng. Mulde: Multi-teacher knowledge distillation for
low-dimensional knowledge graph embeddings. arXiv preprint arXiv:2010.07152, 2020.

Peifeng Wang, Jialong Han, Chenliang Li, and Rong Pan. Logic attention based neighborhood
aggregation for inductive knowledge graph embedding. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 7152–7159, 2019.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang.
KEPLER: A unified model for knowledge embedding and pre-trained language representation.
Trans. Assoc. Comput. Linguistics, 9:176–194, 2021.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowledge
base reasoning. In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
2319–2328, 2017.

Liang Yao, Chengsheng Mao, and Yuan Luo. KG-BERT: BERT for knowledge graph completion.
CoRR, abs/1909.03193, 2019. URL http://arxiv.org/abs/1909.03193.

Chuxu Zhang, Huaxiu Yao, Chao Huang, Meng Jiang, Zhenhui Li, and Nitesh V Chawla. Few-shot
knowledge graph completion. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 3041–3048, 2020a.

Yongqi Zhang, Quanming Yao, Wenyuan Dai, and Lei Chen. Autosf: Searching scoring functions for
knowledge graph embedding. In 36th IEEE International Conference on Data Engineering, ICDE
2020, Dallas, TX, USA, April 20-24, 2020, pp. 433–444. IEEE, 2020b.

Yongqi Zhang, Quanming Yao, Wenyuan Dai, and Lei Chen. Autosf: Searching scoring functions for
knowledge graph embedding. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE), pp. 433–444. IEEE, 2020c.

Yushan Zhu, Wen Zhang, Hui Chen, Xu Cheng, Wei Zhang, and Huajun Chen. Distile: Distiling
knowledge graph embeddings for faster and cheaper reasoning. arXiv preprint arXiv:2009.05912,
2020.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. In Neural Information
Processing Systems, NeurIPS, 2021.

14

http://arxiv.org/abs/1909.03193

Published as a conference paper at ICLR 2022

A IMPLEMENTATION & HYPERPARAMETERS

Table 8: Dataset statistics. LP - link prediction, RP - relation prediction, NC - node classification,
OOS - out-of-sample. In OOS-LP, Nodes also shows the amount of unseen nodes in validation/test.

Dataset Task Nodes Relations Edges Train Validation Test

FB15k-237 (Toutanova & Chen, 2015) LP, RP 14,505 237 310,079 272,115 17,526 20,438
WN18RR (Dettmers et al., 2018) LP, RP 40,559 11 92,583 86,835 2824 2924
CoDEx-Large (Safavi & Koutra, 2020) LP 77,951 69 612,437 551,193 30,622 30,622
YAGO 3-10 (Mahdisoltani et al., 2015) LP, RP 123,143 37 1,089,000 1,079,040 4978 4982
OGB WikiKG 2 (Hu et al., 2020) LP 2,500,604 535 17,137,181 16,109,182 429,456 598,543

WD50K NC 46,164 526 222,563 4600 (N) 4600 (N) 4600 (N)

oFB15k-237 (Albooyeh et al., 2020) OOS-LP 11k/1395/1395 234 292,173 193,490 44,601 54,082
oYAGO 3-10 OOS-LP 117k/2960/2959 37 1,086,416 988,124 47,112 51,180

Table 9: Inductive relation prediction dataset statistics. Facts denote the size of the input graph while
queries denote the triples to be predicted. Training sets contain all queries as facts. Note that in
validation and test we receive a new graph disjoint from the training one, and queries are sent against
this new inference graph (hence the number of entities and facts for validation and test is the same).

Dataset Relations Train Validation Test
Entity Query Facts Entity Query Fact Entity Query Facts

FB15k-237

v1 183 2,000 4,245 4,245 1,500 206 1,993 1,500 205 1,993
v2 203 3,000 9,739 9,739 2,000 469 4,145 2,000 478 4,145
v3 218 4,000 17,986 17,986 3,000 866 7,406 3,000 865 7,406
v4 222 5,000 27,203 27,203 3,500 1,416 11,714 3,500 1,424 11,714

WN18RR

v1 9 2,746 5,410 5,410 922 185 1,618 922 188 1,618
v2 10 6,954 15,262 15,262 2,923 411 4,011 2,923 441 4,011
v3 11 12,078 25,901 25,901 5,084 538 6,327 5,084 605 6,327
v4 9 3,861 7,940 7,940 7,208 1,394 12,334 7,208 1,429 12,334

NELL-995

v1 14 3,103 4,687 4,687 225 101 833 225 100 833
v2 88 2,564 8,219 8,219 4,937 459 4,586 4,937 476 4,586
v3 142 4,647 16,393 16,393 4,921 811 8,048 4,921 809 8,048
v4 77 2,092 7,546 7,546 3,294 716 7,073 3,294 731 7,073

NodePiece is implemented in Python using igraph library (licensed under GNU GPL 2) for com-
puting centrality measures and perform basic tokenization. Downstream tasks employ NodePiece
in conjunction with PyTorch (Paszke et al., 2019) (BSD-style license), PyKEEN (Ali et al., 2021)
(MIT License), and PyTorch-Geometric (Fey & Lenssen, 2019) (MIT License). We ran experiments
on a machine with one RTX 8000 GPU and 64 GB RAM. The OGB WikiKG 2 experiments were
executed on a single Tesla V100 16 GB VRAM and 64 GB RAM. All used datasets are available
under open licenses.

For all downstream tasks and datasets we employ the deterministic anchor selection strategy where
40% of the total number of anchors |A| are nodes with top PPR scores, 40% are top degree nodes,
and remaining 20% are selected randomly. All anchor sets are non-overlapping and disjoint, i.e., if
some top degree nodes have already been selected with the PPR policy, they will be skipped in favor
of next nodes in the sorted list. The choice for this strategy is motivated in Appendix C.

A.1 DATASETS

Details on the datasets for transductive link prediction, out-of-sample link prediction, relation
prediction and node classification are collected in Table 8. The inductive link prediction benchmark
introduced by Teru et al. (2020) includes 3 graphs, FB15k-237, WN18RR, and NELL-995, each has 4
different splits that vary in the number of unique relations, number of nodes and triples at training and
inference time. Full dataset statistics is provided in Table 9. FB15k-237 and most splits of NELL-995
can be considered as relation-rich graphs while WN18RR is a sparse graph with few relation types.

15

Published as a conference paper at ICLR 2022

A.2 TRANSDUCTIVE LINK PREDICTION

The optimizer is Adam for all experiments. As RotatE is a scoring function in the complex space, the
reported embedding dimensions are a sum of real and imaginary dimensions, e.g., 1000d means that
both real and imaginary vectors are 500d.

Table 10: NodePiece hyperparameters for transductive link prediction experiments

Parameter FB15k-237 WN18RR CoDEx-L YAGO 3-10 OGB WikiKG 2

Anchors, |A| 1000 500 7000 10000 20000
Anchors per node, k 20 50 20 20 20
Relational context, m 15 4 6 5 12
Vocabulary dim, d 200 200 200 200 200
Batch size 512 512 256 512 512
Learning rate 0.0005 0.0005 0.0005 0.00025 0.0001
Epochs 400 600 120 600 300k (steps)
Encoder type MLP MLP MLP MLP MLP
Encoder dim 400 400 400 400 400
Encoder layers 2 2 2 2 2
Encoder dropout 0.1 0.1 0.1 0.1 0.1
Loss function BCE NSSAL BCE NSSAL NSSAL
Margin - 15 - 50 50
Negative samples - 20 - 10 128
Label smoothing 0.4 - 0.3 - -

Training time, hours 7 5.5 26 23 11

Table 11: RotatE hyperparameters for transductive link prediction experiments. CoDEx-L and YAGO
3-10 also list the hyperparameters (after the symbol /) for smaller models (reported in Table 3) of the
same parameter budget as NodePiece

Parameter FB15k-237 WN18RR CoDEx-L YAGO 3-10

Embedding dim, d 2000 1000 1000 / 50 1000 / 40
Batch size 1024 512 512 / 512 1024 / 512
Loss function NSSAL NSSAL NSSAL NSSAL
Margin 9 6 25 / 9 24 / 15
Negative samples 256 1024 100 / 100 400 / 100

A.3 RELATION PREDICTION

Configurations (Table 12) for the compared models are almost identical to those of the transductive
link prediction experiment. We mostly reduce the number of epochs and negative samples as models
converge faster on this task.

A.4 NODE CLASSIFICATION

In this experiment (Table 13), NodePiece is used at the initial step to bootstrap a node embeddings
matrix which is then sent to the CompGCN graph encoder. In contrast, CompGCN and MLP baselines
use directly a trained node embedding matrix as their initial input.

A.5 OUT-OF-SAMPLE LINK PREDICTION

The set of NodePiece hyperparameters (Table 14) is similar to the set of the transductive experiments
except the scoring function (DistMult), encoder function (Transformer), and number of epochs as the
model converges faster. We do not provide a setup for the baseline oDistMult on oYAGO 3-10 as the
model was not able to pre-process the dataset on a machine with 256 GB RAM. Reported training

16

Published as a conference paper at ICLR 2022

Table 12: Hyperparameters for relation prediction experiments. The content is largely identical to
Table 10, only changed parameters are listed

NodePiece + RotatE RotatE

Parameter FB15k-237 WN18RR YAGO 3-10 FB15k-237 WN18RR YAGO 3-10

Batch size 512 512 512 512 512 512
Epochs 20 150 7 150 150 150
Loss function NSSAL NSSAL NSSAL NSSAL NSSAL NSSAL
Margin 15 12 25 9 3 5
Negative samples 20 20 20 20 20 20

Training time, min 25 30 25 28 10 57

Table 13: Hyperparameters for node classification experiments

Parameter NodePiece + CompGCN CompGCN MLP

Anchors, |A| 50 - -
Anchors per node, k 10 - -
Relational context, m 5 - -
Vocabulary dim, d 100 100 100
Batch size 512 512 512
Learning rate 0.001 0.001 0.001
Epochs 4000 4000 4000
NodePiece encoder MLP - -
NodePiece encoder dim 200 - -
NodePiece encoder layers 2 - -
NodePiece encoder dropout 0.1 - -
GNN (MLP) layers 3 3 3
GNN (MLP) dropout 0.5 0.5 0.5
Loss function BCE BCE BCE
Label smoothing 0.1 0.1 0.1

Training time, hours 14 22 6

times for NodePiece models exclude evaluation. Training times of the baseline oDistMult were not
reported by its authors.

A.6 DEPLOYMENT IN REAL-WORLD DYNAMIC KNOWLEDGE GRAPHS

NodePiece, on account of its compositional representation, can be applied to dynamic real-world
knowledge graphs where nodes are added and removed over time. That is, training on a graph snapshot
we can obtain the embeddings of new nodes without re-computing and updating representations
of every other node in the graph. This is valuable in settings where there are latency requirements
such as many online services. For example, if a user creates an account on a social media service
and begins liking content (represented as a “like” edge in the social network graph between the user
and the content), it would be desirable to make future content recommendations rapidly reflect this
new data without waiting for the next batched retraining to update the users embedding. In order to
reduce latency the entire embedding matrix can be materialized and cached ahead of time, updating
embeddings as new nodes and edges are added. The parameter efficiency and compositionality of
NodePeice means that for large real-world graphs NodePiece subsumes what would before have been
a complex system of a large-scale embedding framework like Pytorch-BigGraph (Lerer et al., 2019),
an OOV embedding method (e.g,. ERAvg) and a shallow embedding method (e.g., RotatE).

17

Published as a conference paper at ICLR 2022

Table 14: Hyperparameters for out-of-sample link prediction experiments. The content is largely
identical to Table 10, only changed parameters are listed

NodePiece + DistMult oDistMult

Parameter oFB15k-237 oYAGO 3-10 oFB15k-237

Anchors, |A| 1000 10000 -
Anchors per node, k 20 20 -
Relational context, m 15 5 -
Vocabulary dim, d 200 200 200
Batch size 256 256 1000
Learning rate 0.0005 0.0005 0.01
Epochs 40 40 1000
NodePiece encoder Transformer Transformer -
NodePiece encoder dim 512 512 -
NodePiece encoder layers 2 2 -
NodePiece encoder dropout 0.1 0.1 -
Loss function Softplus Softplus Softplus
Negative samples 5 5 1

Training time, hours 2 8 -

B LIMITATIONS AND FUTURE WORK

Our experimental results demonstrate the promise of using NodePeice to significantly reduce the
parameter complexity of node embeddings. While it is difficult to prove, we also hypothesize that
the parameters required by NodePeice to maintain the same level of performance (as the graph
scales) increase sublinearly according to the size of the graph. The intuition for this is twofold. First,
the number of unique anchor combinations of size k that can be encoded increases according to(|A|
k

)
(i.e. O(|A|k)) if randomly sampled — if the sampling is done via nearest neighbor anchor

selection then the number of unique permutations is expected to increase polynomially. Second,
increasing the size of the graph will only require sublinear increase in the number of anchors in
order to maintain the same average node-anchor distance. Although proving causality is difficult, we
believe that maintaining hashing uniqueness and node-anchor distances stable will be sufficient to
maintain equivalent performance.

C ANCHOR SELECTION STRATEGIES

Here, we provide more details as to anchor configurations (k nearest from total A anchors) and
anchor distances. Recall that there exist several ways to select the total set of anchors A as stated
in Section 3.1, i.e., random or centrality-measure based. Then, k anchors per node can be chosen
either as k nearest (default NodePiece mode) or k random anchors. Figure 3 depicts the effect of
those strategies on the distribution of anchor distances (number of hops between a target node and its
anchors). We use the configurations used in the main experiments, i.e., 1000 anchors and 20 anchors
per node for FB15k-237, and 500 anchors with 50 anchors per node on WN18RR.

First, we observe that PPR, degree, and mixed (40% PPR, 40% degree, 20% random) strategies
generally skew the distribution towards smaller anchor distances compared to random strategies. This
fact supports the hypothesis that deterministic strategies improve the chances to find an anchor in a
closer l-hop neighborhood of a target node. Second, varying the way of selecting k anchors per node
between nearest (left column) and random (right column), we also observe the skew of a distribution
of anchor distances.

Next, we fix the anchor selection strategy to the mix, fix the number of anchors per node (50 for
WN18RR and 20 for FB15k-237), and vary a total number of anchors A (50 to 1000 for WN18RR
and 20 to 1000 for FB15k-237) along with the method of sampling k anchors per node, i.e., nearest
and random. Figure 4 shows that increasing the total number of anchors together with k nearest

18

Published as a conference paper at ICLR 2022

0

100000

200000

300000

400000

500000

600000

700000

nu
m

_a
nc

ho
rs

strategy = mixed | sampling_method = nearest

0

100000

200000

300000

400000

500000

600000

700000

800000
strategy = mixed | sampling_method = random

0

100000

200000

300000

400000

500000

600000

700000

nu
m

_a
nc

ho
rs

strategy = degree | sampling_method = nearest

0

100000

200000

300000

400000

500000

600000

700000

800000
strategy = degree | sampling_method = random

0

100000

200000

300000

400000

500000

600000

700000

nu
m

_a
nc

ho
rs

strategy = ppr | sampling_method = nearest

0

100000

200000

300000

400000

500000

600000

700000

800000
strategy = ppr | sampling_method = random

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
anchor_distance

0

100000

200000

300000

400000

500000

600000

700000

nu
m

_a
nc

ho
rs

strategy = random | sampling_method = nearest

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
anchor_distance

0

100000

200000

300000

400000

500000

strategy = random | sampling_method = random

(a) WN18RR

0

20000

40000

60000

80000

100000

120000

140000

160000

nu
m

_a
nc

ho
rs

strategy = mixed | sampling_method = nearest

0

50000

100000

150000

200000

strategy = mixed | sampling_method = random

0

20000

40000

60000

80000

100000

120000

140000

nu
m

_a
nc

ho
rs

strategy = degree | sampling_method = nearest

0

50000

100000

150000

200000

strategy = degree | sampling_method = random

0

20000

40000

60000

80000

100000

120000

140000

nu
m

_a
nc

ho
rs

strategy = ppr | sampling_method = nearest

0

50000

100000

150000

200000

strategy = ppr | sampling_method = random

0 1 2 3 4 5 6 7
anchor_distance

0

50000

100000

150000

200000

nu
m

_a
nc

ho
rs

strategy = random | sampling_method = nearest

0 1 2 3 4 5 6 7
anchor_distance

0

20000

40000

60000

80000

100000

120000

140000

strategy = random | sampling_method = random

(b) FB15k-237

Figure 3: Distribution of anchor distances under various anchor selection strategies. Top-bottom:
mixed, degree-based, PPR-based, random. For each dataset, left: selecting k nearest anchors,
right: k random anchors. (a) Selecting a fixed 500/50 configuration on WN18RR; (b) Selecting a
fixed 1000/20 configuration on FB15k237. Generally, all strategies except random ones skew the
distributions towards nearest anchors.

0

100000

200000

300000

400000

nu
m

_p
at

hs

anchors = 50 | sampling_method = nearest

0

100000

200000

300000

400000

anchors = 50 | sampling_method = random

0

100000

200000

300000

400000

500000

600000

nu
m

_p
at

hs

anchors = 100 | sampling_method = nearest

0

100000

200000

300000

400000

500000
anchors = 100 | sampling_method = random

0

100000

200000

300000

400000

500000

600000

700000

nu
m

_p
at

hs

anchors = 500 | sampling_method = nearest

0

100000

200000

300000

400000

500000

anchors = 500 | sampling_method = random

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19
path_len

0

100000

200000

300000

400000

500000

600000

700000

800000

nu
m

_p
at

hs

anchors = 1000 | sampling_method = nearest

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19
path_len

0

100000

200000

300000

400000

500000

anchors = 1000 | sampling_method = random

(a) WN18RR

0

20000

40000

60000

80000

100000

120000

nu
m

_p
at

hs

anchors = 20 | sampling_method = nearest

0

20000

40000

60000

80000

100000

120000
anchors = 20 | sampling_method = random

0

25000

50000

75000

100000

125000

150000

175000

200000

nu
m

_p
at

hs

anchors = 50 | sampling_method = nearest

0

20000

40000

60000

80000

100000

120000

anchors = 50 | sampling_method = random

0

25000

50000

75000

100000

125000

150000

175000

200000

nu
m

_p
at

hs

anchors = 100 | sampling_method = nearest

0

20000

40000

60000

80000

100000

120000

140000

anchors = 100 | sampling_method = random

0 1 2 3 4 5 6 7
path_len

0

20000

40000

60000

80000

100000

120000

140000

160000

nu
m

_p
at

hs

anchors = 1000 | sampling_method = nearest

0 1 2 3 4 5 6 7
path_len

0

20000

40000

60000

80000

100000

120000

140000

160000
anchors = 1000 | sampling_method = random

(b) FB15k-237

Figure 4: Distribution of anchor distances under the fixed mix anchor selection strategy when varying
the total number of anchors A (50–1000 for WN18RR, 20–1000 for Fb15k-237). For each dataset,
left column - k nearest anchors, right - k random anchors. On both graphs, increase in A with the
nearest anchors always leads to shorter anchor distances.

anchors again skews the distribution of anchor distances towards smaller values and, hence, to higher
probabilities of finding anchors in a closer neighborhood of a target node.

We would recommend using centrality-based strategies to select A with k nearest anchors per node if
anchor distances and probability of finding anchors in a closer neighborhood are of higher importance.

19

Published as a conference paper at ICLR 2022

Finally, we fix the anchor selection strategy as mix, obtain nearest anchors per node, and under
this setup study average anchor distances varying k - the number of anchors per node in various
combinations of total anchors A. The results presented on Figure 5 suggest that sparser graphs (like
WN18RR) benefit more from increasing the number of anchors A, i.e., the delta between distances
is much larger than that of dense FB15k-237. The difference in distances on Figure 5 might also
explain the performance on Figure 8, i.e., generally, smaller A/k configurations like 25/5 are inferior
on sparser graphs but perform competitively on denser ones.

0 200 400 600 800 1000
Total Anchors

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

av
g

an
ch

or
 d

ist

k
5
10
15
20
25
30
40
50

(a) WN18RR

0 200 400 600 800 1000
Total Anchors

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

av
g

an
ch

or
 d

ist

k
5
10
15
20
25
30
40
50

(b) FB15k-237

Figure 5: Average node-anchor distances when varying the total number of anchors A from 25 to
1000 and k nearest anchors per node from 5 to 50. Note that on a sparser WN18RR the gap between
min and max values is much wider than of denser FB15k-237. Signs of saturation suggest that further
increasing A is not beneficial.

D EMBEDDING VISUALIZATIONS

To further study learned representations of anchors and capabilities of the encoder, we build tSNE
and UMAP projections from subsamples of FB15k-237 and WN18RR based on trained models from
the transductive link prediction experiments (hyperparameters listed in Table A).

For FB15k-237, we randomly sample 1000 entities (out of total 15K) and find their top-100 most
common anchors. The anchor embeddings are extracted from the learned tensor while 1000 entity
embeddings are obtained through the NodePiece encoder. Similarly for WN18RR, we sample 4000
entities (out of total 40K) keeping their top-100 most common anchors. As we use the RotatE decoder
that assumes entities and anchors are modeled in a complex space, we visualize their real parts (e.g.,
first 100 dimensions out of 200).

Recalling that link prediction performance of NodePiece + RotatE retains 80-90% of the state of the
art models performance, the results on Fig. 6 and Fig. 7 demonstrate that (1) NodePiece encoder is
able to reconstruct clusters of similar entities; (2) anchors are well-scattered among communities.
Albeit entity embeddings are built as a composition of k anchors, it can be seen that all communities
have "specialized" nearby anchors. On a higher level, common anchors tend to be well-scattered in
the space. Less common anchors, as seen on FB15k-237 and Fig. 6, tend to group together. However,
thanks to the non-linear nature of the NodePiece encoder, resulting entity embeddings still form
different clusters and communities not concentrated around one point. We believe this is the effect of
a compositional encoder and plan to investigate this phenomenon further.

E TRANSDUCTIVE LINK PREDICTION RESULTS: MRR

In addition to Figure 2 that presents Hits@10, we report variations of mean reciprocal rank (MRR)
depending on combinations of A and k on Figure 8 from the same set of experiments. On sparser
WN18RR, smaller A/k combinations like 25/5 or 50/10 struggle with more precise predictions like

20

Published as a conference paper at ICLR 2022

Figure 6: tSNE (left) and UMAP (right) projections of 1000 encoded entities sampled randomly from
FB15k-237 and their top 100 most common anchors.

Figure 7: tSNE (left) and UMAP (right) projections of 4000 encoded entities sampled randomly from
WN18RR and their top 100 most common anchors.

Hits@1 which is captured by low values of MRR. Starting from 500/10, the WN18RR performance
starts to saturate. On the other hand, on denser FB15k-237, the difference between minimum and
maximum MRR is less than 4 points, and performance exhibits signs of saturation already at 50/10.

F DATASETS CONSTRUCTION

F.1 NODE CLASSIFICATION: WD50K NC

The original WD50K (Galkin et al., 2020) contains a triple-only KG version on which we base a new
dataset for semi-supervised multi-class multi-label node classification. First, we remove all triples
containing Wikidata properties P31 (instance of) and P279 (subclass of) as they already contain
class information. We then remove nodes that became disconnected after removing those edges.
Third, using SPARQL queries, for each remaining node in a graph, we extract a 3-hop class hierarchy
of Wikidata classes and their superclasses. We only keep class labels that occur at least 50 times in
the training set. Then, we sample 10% of nodes with labels for validation and 10% for test, and of
remaining 80% we sample a set of nodes for the semi-supervised setup, i.e., we keep only 5% and

21

Published as a conference paper at ICLR 2022

5 10 20 30 40 50 100
0

0.1

0.2

0.3

0.4

Anchors per node

M
R

R

WN18RR

5 10 20 30 40
0.2

0.22

0.24

0.26

Anchors per node

M
R

R

FB15k-237

A=25
A=50

A=100
A=500
A=1000

Figure 8: Combinations of total anchors A and anchors per node. Denser FB15k-237 saturates faster
on smaller A while sparse WN18RR saturates at around 500 anchors. MRR metric captures all ranks.
Note that performance gap on FB15k-237 is very small indicating that saturation has occurred already
with small anchor configurations.

10% of those nodes. The resulting graph has 46k nodes, 526 distinct relation types, and 465 class
labels.

F.2 OUF-OF-SAMPLE LINK PREDICTION: OYAGO 3-10

For sampling the out-of-sample version of a bigger YAGO 3-10 we largely follow the same original
procedure described in Section 4 of (Albooyeh et al., 2020). We first merge the train, validation and
test triples from the original dataset for transductive link prediction. Then, from all entities appearing
in at least two triples, we randomly sample 5% of nodes to be the out-of-sample entities for validation
and 5% for test. All triples containing the out-of-sample entities on subject or object positions are put
into validation or test, respectively, as edges that connect an unseen entity with the seen graph.

G NODE CLASSIFICATION: TRAINING CURVES

Figure 9 depicts train and validation values of Hard Accuracy and PRC-AUC metrics for all the
compared models on WD50K NC with 5% of labeled nodes. The NodePiece model has only 50 total
anchors with 10 nearest anchors per node, and 5 unique relation types in the relational context. The
performance on the dataset with 10% of nodes is almost the same, so we report the charts only on 5%
dataset. By the generalization gap we understand the delta between training and validation values.

The MLP baseline quickly overfits but fails to generalize on the validation. The generalization gap
of CompGCN is smaller compared to MLP but is still significant, i.e., validation performance is
2–3× smaller than train. Finally, the NodePiece-enabled model has the smallest generalization gaps,
especially along the Hard Accuracy metric where the validation performance is very close to that of
train. Similarly, the gap on PRC-AUC is smaller than 10 points.

As shown in the ablation study in Table 6, it appears that explicit node embeddings do not contribute
to the classification performance. Hence, the baseline models tend to be overparameterized where
learnable node embeddings add noise, while the NodePiece model has only a few anchors (or no an-
chors at all when using only the relational context), much fewer parameters, and therefore generalizes
better. This hypothesis also explains the observation that the node classification performance does
not improve when increasing A/k anchor configurations.

H PROOFS

Proposition 2. The nearest-anchor encoder with
(|A|
k

)
anchors and |m| subsampled relations, can

be considered a π-SGD approximation of (k + |m|)-ary Janossy pooling with a canonical ordering
induced by the anchor distances.

22

Published as a conference paper at ICLR 2022

Figure 9: Generalization gap on WD50K (5% labeled nodes). NodePiece-based model has observably
smaller generalization gaps compared to the baselines.

Proof.

We begin by providing the definition of Janossy pooling as it was presented in the original paper
Murphy et al. (2019).

Definition 1 (Janossy pooling). Let H∪ be the union of all anchors and relations. Consider a function
f
⇀

: N × H∪ × Rd → F on variable-length but finite sequences h, parameterized by θ(f) ∈ Rd,
d > 0. A permutation-invariant function f : N×H∪ × Rd → F is the Janossy function associated
with f

⇀

if

f(|h|,h;θ(f)) =
1

|h|!
∑

π∈Π|h|

f
⇀

(|h|,hπ;θ(f)), (3)

where Π|h| is the set of all permutations of the integers 1 to |h|, and hπ represents a particular
reordering of the elements of sequence h according to π ∈ Π|h|. We refer the operation used to
construct f from f

⇀

as Janossy pooling.

While Janossy pooling provides a simple approach to construct permutation-invariant functions from
arbitrary permutation sensitive functions, it is computationally intractable due to the need to sum
over all computations. Three general strategies proposed under this framework to overcome this
combinatorial challenge: canonical orderings, k-ary Janossy pooling, and π-SGD approximations.

A very effective way of reducing the complexity is to constrain the permutations to a canonical
ordering that is independent of a specific adjacency matrix ordering over a given graph. More
precisely, one defines as a function CANONICAL : H∪ → H∪ such that CANONICAL(h) =

CANONICAL(hπ)∀π ∈ Π|h| and only considers functions f
⇀

based on the composition f
⇀

=

CANONICAL ◦ f
⇀′

(Murphy et al., 2019). In the case of NodePiece we are able to define this
ordering for the anchors according to their distance to the target node. Assuming that the number of
relations is fixed or grows at slow rate throughout the life-cycle of a graph we can define an arbitrary
ordering for relations as a canonical ordering for the relational context. However, since anchors can
be equidistant such a canonical ordering does fully satisfy permutation invariance. We propose a
trivial relaxation of the original definition of canonical orderings simply requiring that an ordering
greatly reduce the number of unique permutations since in practice an exact canonical ordering is
rarely feasible. Specifically, |{CANONICAL(hπ)∀π ∈ Π|h|}| � |{(hπ)∀π ∈ Π|h|}|.
To further reduce the number of permutations we can truncate our ordered sequence h. This is
known as k-ary Janossy pooling pooling (Definition 2) and is implicitly performed by the NodePeice
algorithm by varying the anchor per node parameter, k, and the size of the relational context, |m|.
Definition 2 (k-ary Janossy pooling). Fix k ∈ N. For any sequence h, define ↓k (h) as its projection
to a length k sequence; in particular, if |h| ≥ k, we keep the first k elements. Then, a k-ary

23

Published as a conference paper at ICLR 2022

Table 15: Relation prediction results. |V | denotes vocabulary size (anchors + relations).

FB15k-237 WN18RR YAGO 3-10

|V | MRR H@10 |V | MRR H@10 |V | MRR H@10

RotatE 15k + 0.5k 0.905 0.979 40k + 22 0.774 0.897 123k + 74 0.909 0.992
NodePiece + RotatE 1k + 0.5k 0.874 0.971 500 + 22 0.761 0.985 10k + 74 0.951 0.997

- no rel. context 1k + 0.5k 0.876 0.968 500 + 22 0.541 0.958 10k + 74 0.898 0.993
- no distances 1k + 0.5k 0.877 0.970 500 + 22 0.746 0.975 10k + 74 0.943 0.997

- no anchors, rels only 0 + 0.5k 0.873 0.971 0 + 22 0.545 0.947 0 + 74 0.951 0.998

permutation-invariant Janossy function f is given by

f(|h|,h;θ(f)) =
1

|h|!
∑

π∈Π|h|

f
⇀

(|h|, ↓k(hπ);θ(f)). (4)

Since an imperfect truncated canonical ordering may still result in a potentially intractable number
of permutations, we use permutation sampling also known as π-SGD to learn arbitrary functions
that approximate (k + |m|)-ary Janossy pooling. This is done by randomly ordering anchors that are
equidistant resulting in a uniform sampling of possible permutations during training and evaluation.
For more details on the formal definition of π-SGD we point the reader to the original paper (Murphy
et al., 2019).

I RELATION PREDICTION

Setup. We conduct the relation prediction experiment on the same FB15k-237, WN18RR, and YAGO
3-10 datasets. While link prediction deals with entities, the relation prediction model has to rank a
correct relation given a (head, ?, tail) query. We report MRR and Hits@10 in the filtered setting as
evaluation metrics. Similar to the link prediction configuration, we use NodePiece + 2-layer MLP
and compare against RotatE of the same total parameter count.

Discussion. The reported results (Table 15) demonstrate a competitive performance of NodePiece-
based models with reduced vocabulary sizes bringing more than 97% Hits@10 across graphs of
different sizes. In the case of WN18RR and YAGO 3-10, NodePiece models with fewer anchors even
slightly improve the accuracy upon the shallow embedding baseline. The ablation study suggests
that on dense graphs with a reasonable amount of unique relations having explicit learnable node
embeddings might not be needed at all for this task. That is, we see that on FB15k-237 and YAGO
3-10 the NodePiece hashes comprised only of the relational context deliver the same performance
without any performance drop confirming the findings from the previous experiment.

J INDUCTIVE LINK PREDICTION

Setup. Nodes in the inference graphs do not have any associated feature vectors which makes this
benchmark very relevant for graph representation learning. Importantly, the set of relation types
in the inference graphs is a subset of those seen in the training set. Since the relation embedding
matrix can be learned on the training graph, we therefore have a uniform method for constructing
node representations both on seen and unseen graphs. As an encoder we try MLP and Transformer.

Evaluation Protocol. Following the original work (Teru et al., 2020), we employ a filtered setting
and rank each triple against 50 random negative triples reporting the Hits@10 metric. This setup is
motivated by computational complexity of GraIL at inference time, while NodePiece + CompGCN is
as fast in the inductive inference as in the transductive regime reported in other experiments.

Discussion. For each KG, there are 4 splits of increasing size of train and inference nodes and
edges. The empirical results on this spectrum of various sizes demonstrates interesting scalability
properties of NodePiece in inductive settings. Without anchor nodes, the NodePiece vocabulary size
is independent of the number of nodes and edges, depending only on the number of relation types.
On dense relation-rich graphs such a vocabulary is enough to yield very competitive performance.

24

Published as a conference paper at ICLR 2022

Table 16: Hyperparameters for inductive link prediction experiments. Entries are shared among 4
splits of each graph if not particularly specified. V1 | V2 | V3 | V4 otherwise.

Parameter FB15k-237 WN18RR NELL-995

Anchors, |A| - - -
Anchors per node, k - - -
Relational context, m 12 4 | 4 | 4 | 3 4 | 6 | 4 | 6
Vocabulary dim, d 100 100 100
Batch size 512 512 512
Learning rate 0.0001 0.0001 0.0001
Num negatives 32 32 32
Epochs 2500 V1 | 2000 rest 590 | 2000 | 210 | 2000 2000
NodePiece encoder MLP MLP MLP | MLP | MLP | Trf
NodePiece encoder dim 200 200 200
NodePiece encoder layers 2 2 2
NodePiece encoder dropout 0.1 0.1 0.1
CompGCN layers 3 3 | 6 | 6 | 10 3 | 4 | 3 | 3
CompGCN attention yes yes yes
CompGCN dropout 0.1 0.1 0.2 | 0.1 | 0.1 | 0.1
Loss function NSSAL NSSAL NSSAL
Margin 25 | 15 | 15 | 25 15 | 15 | 5 | 20 15 | 20 | 30 | 20

Training time, hours 2 | 4 | 16 | 19 1 | 18 | 4 | 10 6 | 5 | 8 | 8

K UNIQUENESS OF NODE HASHES

NodePiece represents nodes as a sequence of tokens and a natural question in this context is how
unique such sequences can be in light of different anchor selection and tokenization strategies.

Assuming the input graph is a single connected component, when sampling |A| total anchors and
selecting randomly k anchors per node, the number of possible hash combinations is bounded by(|A|
k

)
. In this scenario, uniqueness of hashes is achieved by having this number bigger than the number

N of nodes in a graph,
(|A|
k

)
> N , and this happens with high probability for any reasonably large

|A|, eg,
(

50
20

)
encodes about 4.7 · 1013 combinations which covers all existing public KGs combined.

In the deterministic selection of nearest anchors per node we do not have such guarantees. Never-
theless, additional sequences of relational contexts and anchor distances help to obtain more unique
hashes. Collisions are possible in highly regular graphs like Wordnet, but real-world KGs like
Wikidata and DBpedia do not exhibit such a regular structure. Similar to homonyms whose meaning
depends on the surrounding context in a sentence, we hypothesize that adding message passing layers
(that can be seen as encoding of a neighboring context for a given node) on top of NodePiece hashes
might further improve the diversity of node representations. That said, the future work research
agenda might include proving tighter theoretical bounds on hashes uniqueness and developing new
anchor sampling and tokenization strategies.

25

	Introduction
	Related Work
	NodePiece Vocabulary Construction
	Anchor Selection
	Node Tokenization
	Encoding

	Experiments
	Transductive Link Prediction
	OGB WikiKG 2

	Inductive Link Prediction
	Node Classification
	Out-of-sample Link Prediction

	Conclusion
	Implementation & Hyperparameters
	Datasets
	Transductive Link Prediction
	Relation Prediction
	Node Classification
	Out-of-sample Link Prediction
	Deployment in Real-world Dynamic Knowledge Graphs

	Limitations and Future Work
	Anchor Selection Strategies
	Embedding Visualizations
	Transductive Link Prediction Results: MRR
	Datasets Construction
	Node Classification: WD50K NC
	Ouf-of-sample Link Prediction: oYAGO 3-10

	Node Classification: Training Curves
	Proofs
	Relation Prediction
	Inductive Link Prediction
	Uniqueness of Node Hashes

