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ABSTRACT

The emergence of multimodal large language models (MLLMs) has led to near-
human performance across various multimodal cognitive and reasoning tasks, de-
spite relying solely on next-token prediction objectives. A critical and under-
explored question is whether MLLMs trained under this paradigm truly exhibit
human-like visual conceptual representations and behaviors during multimodal
reasoning. To investigate this, we evaluated MLLMs on the widely-used behav-
ioral task of Odd-One-Out (O1O), revealing a limited predictive accuracy for hu-
man choices. To address this discrepancy, we propose a novel approach: instead
of merely using raw human behavioral data, we first identified core cognitive di-
mensions and judgmental bases from human behavioral records in O1O experi-
ments. Subsequently, we fine-tuned Qwen2.5-VL in a data-driven manner, guided
by these extracted human core cognitive dimensions, thereby markedly enhanc-
ing its behavioral consistency with humans. Intriguingly, we found that models
aligned with human cognition not only maintain their generality in downstream
tasks but can even achieve performance improvements. Furthermore, search-
light representational similarity analysis (RSA) and cortical projection analyses
revealed increased activation in brain regions associated with problem planning
and decision-making, such as the prefrontal cortex, in the fine-tuned model. This
finding potentially offers a neuroscientific explanation for the observed improve-
ments and human-like alignment.

1 INTRODUCTION

The advent of MLLMs marks a significant milestone in artificial intelligence, demonstrating capa-
bilities that rival human performance across a spectrum of cognitive and reasoning tasks (Bubeck
et al., 2023; Team et al., 2023; Bai et al., 2023). These models predicting token by token have de-
veloped a remarkable ability to process and integrate information from disparate modalities, such as
vision and language. This paradigm has fueled progress in areas from visual question answering to
complex multimodal reasoning. However, a fundamental question remains largely underexplored:
do these models, in achieving human-level performance, also develop human-like underlying rep-
resentations and behavioral patterns? Simply matching the outcome of a human decision does not
guarantee an alignment with the cognitive processes that led to it.

To probe this question, we turn to the Odd-One-Out (O1O) task (Crutch et al., 2009; Sinapov &
Stoytchev, 2010; Hebart et al., 2019; 2023), a cornerstone of cognitive psychology for evaluating
conceptual representation and reasoning. In this task, a subject is presented with three objects and
must identify the one that is least similar to the other two. This seemingly simple judgment re-
veals deep insights into the criteria, referred as cognitive dimensions, humans use to structure their
conceptual world. Despite models have powerful capabilities, their accuracy in predicting human
choices is surprisingly limited. This finding suggests that a fundamental gap exists between the mod-
els learned representations and the nuanced, context-dependent judgments characteristic of human
cognition. The dominant fine-tuning approach, which relies on aligning models with raw behavioral
data (i.e., what humans choose), appears insufficient to capture the richness of the human cognitive
landscape (i.e., why they choose it).
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Our key insight is that bridging this gap requires moving beyond mere behavioral mimicry to incor-
porate the foundational principles of human judgment. We hypothesize that fine-tuning an MLLM
on data enriched with the core cognitive dimensions underlying human decisions will foster a more
profound alignment. To this end, we propose a novel, data-driven methodology. We begin with the
THINGS dataset (Hebart et al., 2019; 2023), a large-scale collection of O1O judgments. While the
dataset provides the behavioral outcomes, the specific cognitive dimension for each trial is latent.
By employing a jackknife (Mahner et al., 2025) procedure inspired by recent neuro-computational
studies, we successfully infer the most probable cognitive dimension (e.g., man-made vs. natu-
ral, animal vs. non-animal) for each of triplets. Subsequently, we transform this triplet data with
cognitive dimension into a rich, natural language format suitable for instruction tuning.

Using this newly crafted, cognitively-informed dataset, we fine-tune the Qwen2.5-VL-7B-Instruct
model (Bai et al., 2025). Our experiments yield compelling results across multiple evaluation axes.
First, our fine-tuned model outperforms the compared models in predicting human choices on the
O1O task. Second, on a large-scale holdout set of over 90,000 trials sampling from 48 objects, our
model demonstrates substantially higher consistency with human judgment patterns. Intriguingly,
this enhanced human-like alignment does not come at the cost of general capabilities; the model’s
performance improves on the MMMU (test) (Yue et al., 2024a) and MMMU-Pro (Yue et al., 2024b)
benchmarks and only marginally decreases on MMMU (val), indicating a favorable trade-off. Most
notably, a searchlight representational similarity analysis (RSA) (Kriegeskorte et al., 2008) reveals
that the fine-tuned model’s internal representations show significantly increased alignment with neu-
ral activity in brain regions critical for planning and decision-making, such as the prefrontal cortex.
This neuroscientific evidence provides a potential explanation for the observed behavioral improve-
ments, suggesting our method encourages the model to develop representations that are not only
behaviorally but also neurologically more aligned with humans.

Our contributions, therefore, present a promising new direction for developing MLLMs that are not
just high-performing but are also more verifiably and fundamentally human-like.

2 RELATED WORK

Multimodal Large Language Models. The landscape of artificial intelligence has been reshaped
by the extension of Large Language Models (LLMs) into the multimodal domain. MLLMs, such
as LLaVA (Liu et al., 2023), MiniGPT-4 (Zhu et al., 2023), and the Qwen-VL series (Bai et al.,
2023; Wang et al., 2024; Bai et al., 2025), have achieved unprecedented success by integrating
powerful vision encoders with pre-trained LLMs. The dominant architecture typically involves a
visual backbone (e.g., ViT (Dosovitskiy et al., 2020)) that processes images, a projection module
that maps visual features into the language model’s embedding space, and the LLM itself, which
acts as the core reasoning engine. The training paradigm usually consists of two stages: an initial
vision-language alignment pre-training on large-scale image-text pairs, followed by instruction fine-
tuning on a curated set of multimodal conversational data to elicit desired behaviors. While this
paradigm has proven effective for a wide range of tasks, our work diverges by focusing on a more
cognitively-grounded fine-tuning objective, moving beyond standard instruction following.

Odd-One-Out Task. The O1O task has long been a staple in cognitive science for its effectiveness
in revealing the structure of human conceptual knowledge (Du et al., 2025) without relying on
verbal labels by analyzing patterns of choices, researchers can map out the psychological space of
objects. The THINGS dataset (Hebart et al., 2019; 2023) represents a landmark effort in this area,
providing a large-scale, high-quality benchmark of human O1O judgments. This dataset has been
instrumental in evaluating the human-likeness of computational models of vision and semantics.
Our work leverages this rich dataset not only as a benchmark but as a source from which to extract
latent cognitive dimensions, turning a classic psychological experiment into a novel resource for
fine-tuning the next generation of MLLMs.

Aligning with Human Behavior and Cognition. A growing body of research seeks to align more
closely with human behavior and cognitive patterns in Figure 1. A prominent example is Rein-
forcement Learning from Human Feedback (RLHF) (Wainwright & Lowe, 2023), which fine-tunes
models based on human preferences for generated outputs. Other studies have used behavioral data
more directly, for instance, by training models to predict human choices in economic games or moral
dilemmas. These approaches primarily focus on mimicking the outcomes of human decisions. Our
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research builds upon this foundation but makes a crucial distinction: we argue that true human-like
intelligence requires aligning with the underlying cognitive processes – the why behind a decision,
not just the what. Instead of using raw behavioral traces, we enrich the training data with explicit
representations of human cognitive dimensions, aiming for a deeper, more principled alignment.

Figure 1: Comparison of Model Alignment Methodologies. This figure illustrates the evolution of
alignment techniques aimed at making LLMs more human-like. (1) Reinforcement Learning from
Human Feedback (RLHF) (Schulman et al., 2017; Rafailov et al., 2023; Liang, 2025) aligns models
with human preferences by training a reward model on human-ranked outputs. (2) Supervised Fine-
Tuning (SFT) with Behavioral Data aligns models directly on human behavioral examples, such
as decisions in economic games or moral dilemmas. Both of these methods primarily focus on
mimicking human outputs (Binz et al., 2025). (3) Our proposed method, different from previous
work (Hebart et al., 2020; Sucholutsky et al., 2023; Zheng et al., 2018; Muttenthaler et al., 2023b;a),
SFT with Cognitive Behavioral Data, represents a key distinction. Instead of merely using raw
behavioral traces, we enrich the training data with explicit representations of the underlying human
cognitive dimensions. This approach aims for a deeper, more principled alignment with human
cognitive processes rather than just the final decisions.

3 METHODS

To integrate core cognitive dimension with corresponding triplets, we design a structured generation
pipeline shown in Figure 2. This pipeline consists of two stages: first, identifying the underlying
cognitive dimension driving human judgment, and second, incorporating this dimension into the
LLM prompt to guide reasoning.

Stage 1: Inferring Core Cognitive Dimensions. The first stage focuses on extracting the specific
latent cognitive dimensions (e.g., metallic or artificial, food-related) that humans utilize to make
O1O judgments. We leverage the THINGS database (Hebart et al., 2019; 2023), a curated collection
of 26,107 images representing 1,854 unique objects To extract these dimensions, we utilize Sparse
Positive Object Similarity Embedding (SPoSE) (Zheng et al., 2018) combined with Jackknife re-
sampling strategy (Mahner et al., 2025).

i. Embedding Initialization: For each triplet, we obtain the representational embedding of 66
dimensions (Hebart et al., 2023). We first compute the baseline probability of the target
object being the odd-one-out using the full embedding via the softmax function.

ii. Jackknife Resampling: To identify the “core” dimension, we iteratively prune each of the
66 dimensions one at a time. For each iteration, we re-compute the probability of the target
object using the remaining 65 dimensions.

iii. Scoring: We calculate the variation (absolute difference) between the baseline probability
and the pruned probability. This variation serves as the importance score for the pruned
dimension.
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iv. Selection: The dimension corresponding to the maximum variation score is identified as
the core cognitive dimension, as its removal causes the most significant divergence from
the original decision.

Stage 2: Transforming Core Cognitive Dimensions. Once we extract core cognitive dimensions,
the second stage is to use them to guide the reasoning of a LLM. We achieve through a structured
prompt approach shown in Figure 2. For each triplet, we take the explicit semantic-level cognitive
dimension identified in Stage 1 and incorporate it directly into the LLM prompt. We provide the
LLM with triplet brief descriptions. At the end of prompt, we add strong instruction with “Think
carefully and analyze in terms of core cognitive dimension”. This instruction compels LLM to
perform a deep, causal reasoning process based on the a priori human cognition, moving beyond
superficial lexical similarities. The structured and enhanced prompt forces LLM to articulate why
an object is the odd-one-out, leading to more aligned and interpretable outputs.

Figure 2: Two-Stage Pipeline to Integrate Core Cognitive Dimension. This figure illustrates our
methodology for creating a cognitive-enhanced dataset for alignment. Stage 1 shows the process of
Human Core Cognitive Dimensions Extraction. We use a crowdsourcing setup on image triplets
from the THINGS database to collect human O1O judgments. We then use SPoSE and Jackknife
analysis on their corresponding image embeddings to systematically extract the underlying core
cognitive dimensions (e.g., metallic, food-related, animal-related). Stage 2 demonstrates Cognitive
Dimension-Guided Prompt Enhancement. For a given triplet, we explicitly infuse a specific
cognitive dimension into the model prompt. This directs the model to analyze the objects—in this
example, a mousetrap, matchbox, and aardvark—along that precise dimension. This structured
approach allows the model to generate a detailed, human-aligned, and explainable analysis content,
effectively transforming a simple visual task into a cognitively-guided reasoning problem.

Visual Instruction Tuning We use Low-Rank Adaptation (Hu et al., 2022) approach with multi-
task mixed training strategy for visual instruction tuning to achieve preserved performance. For
architecture, we follow Qwen-2.5-VL-Instruct to adopt the most general framework, i.e., a vision
encoder (Dosovitskiy et al., 2020), a projector, and a LLM (Bai et al., 2025). Low-rank Adaptation
is a parameter-effective fine-tuning method that freezes the pretrained model weights and injects
trainable rank decomposition matrices into each layer of the Transformer architecture (Vaswani
et al., 2017), greatly reducing the number of trainable parameters for downstream tasks. We conduct
preliminary experiments between full and LoRA fine-tuning. The results demonstrates that applying
LoRA to the linear layers in projector and LLM achieves full fine-tuning level performance with less
training times. Continue training (Zhou et al., 2024) on the sequential tasks data may cause model
to converge to suboptimal local minima with poor performance due to distribution shift across tasks.
We randomly shuffle the training data to maximize effectiveness of regularization data and adopt
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placing all the image tokens in front of the prompt, while maintaining the placeholders within the
text, denoted as “In-the-front” format.

Human Consistency with MLLMs by Comparing Behaviors. We evaluate human consistency
from two aspects, one is O1O accuracy and the other is representational similarity matrix (RSM)
correlation for the 48 objects by calculating the choice probability of each object pair.

For the O1O accuracy, we compare human true choices with model predictions in the held-out data
as follows:

AccO1O =
1

n

n∑{
1, hc = mc

0, hc ̸= mc
(1)

where n corresponds to the number of held-out data; hc to the human true choice and mc to the
model prediction.

To measure the RSM correlation, following Rajalingham et al. (2018) work, we compute the Pearson
Correlation on the behavioral RSMs from the human (h) and model (m) and then divide that raw
Pearson Correlation by the geometric mean of the split-half internal reliability measured for each
system as follows:

ρ̃ (m,h) =
ρ(RSMm, RSMh)√

ρ
(
RSMhalf1

m , RSMhalf2
m

)
ρ
(
RSMhalf1

h , RSMhalf2
h

) (2)

where RSMhalf1
m and RSMhalf2

m are computed by using the split-half behavioral data of triplets of
the typical objects, and similar for human RSMhalf1

h and RSMhalf2
h .

Searchlight RSA. For fMRI, local cerebral RSMs were computed in subject space within a grey-
matter spherical region (6 mm diameter) centered at each voxel location. RSA (Kriegeskorte et al.,
2008) assessed the Pearson correlation r between the local cerebral RSM and each kind of the model
RSMs.

4 EXPERIMENTS

4.1 DATA

Mixture Dataset.

Figure 3: Single-image: COCO, ALLaVA-4V,
LLaVAR. Multi-image: Spot the Difference, Im-
age Edit Instruction, Visual Story Telling, Text-
rich VQA, and Low-level Comparision. O1O:
THINGS.

We use a mixture dataset composed primar-
ily of the THINGS dataset (triplet O1O task),
supplemented with additional datasets to pre-
serve the generalization capability and prevent
excessive specialization to specific domains.
THINGS is a large behavioral dataset of 4.70
million unique triplet responses crowdsourced
from 12,340 human participants for 1854 nat-
ural object images. Images used for collect-
ing human responses in the triplet O1O task are
taken from the THINGS object concept and im-
age database, which is a collection of natural
object images. We choose only the first 80,000
triplets with corresponding core cognitive di-
mension for each one. For additional datasets,
we meticulously select single-image and multi-
image scenarios (Alayrac et al., 2022; Jiang
et al., 2024; Li et al., 2023) data from previ-
ous open-source datasets including COCO (Lin
et al., 2014), ALLaVA-4V (Chen et al., 2024),
LLaVAR (Zhang et al., 2023b), and M4-Instruct (Li et al., 2024) as regularization data.
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We exhibit a data overview of mixture dataset in Figure 3 and show case task examples in Figure 4.
For the single-image data, they are consist of Caption and VQA tasks from rewritten COCO, Vision-
FLAN (Xu et al., 2024), or LAION (Schuhmann et al., 2022) raw data. For the multi-image data,
they are all from 5 tasks which are Spot the Difference (Jhamtani & Berg-Kirkpatrick, 2018; Johnson
et al., 2017), Image Edit Instruction Zhang et al. (2023a); Bodur et al. (2024), Visual Story Telling
(Ravi et al., 2021; Huang et al., 2016), Text-rich VQA (Mathew et al., 2020), and Low-level Com-
parision (Fu et al., 2023; Sundaram et al., 2024) in M4-Instruct. We provide detailed data statistics
in Appendix A.2

Figure 4: Task examples of mixture dataset.

Brain Dataset. We use Natural Scenes Dataset (NSD) (Allen et al., 2022) as the brain data, recog-
nized as the largest neuroimaging dataset linking brain insights with artificial intelligence, involves
richly sampled fMRI data from 8 subjects. Across 30-40 MRI sessions, each subject observed be-
tween 9,000-10,000 distinct natural scenes using whole-brain gradient-echo EPI at 1.8 mm isotropic
resolution and 1.6 s TR during 7T scanning. Image stimuli are selected from the COCO dataset,
with corresponding captions retrievable using COCO ID. To assess the correlation between humans
neural responses and MLLMs representations stimulated in the same, the stimulations for each par-
ticipant are chosen as the test set (because the searchlight RSA don’t need to train). Additionally,
fMRI responses linked to the stimulations across subjects S1, S2, S5, and S7 are earmarked for
subsequent analysis (because subjects S3, S4, S6, and S8 did not complete the full fMRI data acqui-
sition).

Benchmark Dataset. We evaluate our models from three aspects, generality in downstream tasks,
consistency between humans and models by comparing behaviors, and searchlight RSA with visu-
alizing on the brain. For the first generalization performance aspect, we choose two challenging
benchmarks: MMMU, a benchmark designed to evaluate multimodal models on massive multi-
discipline tasks demanding college-level subject knowledge and deliberate reasoning; and MMMU-
Pro, a more challenging benchmark with more stringent assessment methodologies to evaluate mul-
timodal models intrinsic understanding and reasoning capabilities. To assess behavior consistency,
our preference is for the held-out THINGS validation set which is a resource designed to encompass
1,854 living and non-living objects based on their practical usage in daily life, and comprehensive
triplets sampling on 48 objects. The final aspect for searchlight RSA to measure the correlation be-
tween humans neural responses and MLLMs representations, we use the brain dataset as mentioned
above.

4.2 EXPERIMENTAL SETUP

Constrained by available computational resources, We use ∼7B series MLLMs to conduct exper-
iments verifying our approach. We choose state of the art MLLMs, Qwen-2.5-VL-7B-Instruct, as
baseline among open-source MLLMs in the ∼7B parameters range and fine-tune it with different
parts of mixture dataset, resulting three distinct models for the following comparisions.

6
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• CogAligner (Baseline + Mixture dataset). Fine-tune Qwen-2.5-VL-7B-Instruct with the
entire mixture dataset.

• BehavImitator (Baseline + Mixture dataset without core cognitive dimensions in
THINGS). Fine-tune Qwen-2.5-VL-7B-Instruct with mixture dataset without integrating
core cognitive dimensions into THINGS part.

• Qwen-2.5-VL-7B-Instruct-NT (Baseline + Mixture dataset without THINGS). Fine-
tune Qwen-2.5-VL-7B-Instruct with mixture dataset without THINGS.

We fine-tune each model for one epoch, i.e., a single pass over respective training data. All fine-
tuning uses TRL (von Werra et al., 2020) with consistent hyperparameters for fair comparison. We
also evaluate recent a foundation model of human cognition, Centaur (Binz et al., 2025) published
on Nature, to compare with our CogAligner model.

To verify our method on other MLLMs, we extend experiments. We currently choose Gemma3-
12B-it as baseline series and fine-tune them with mixture dataset. These finetuned models with
mixture dataset are named as CogAlignermodel.

4.3 MAIN RESULTS

Behavioral Accuracy on O1O Task. To evaluate human consistency with MLLMs, we compare
behavioral accuracy of O1O on full validation set in the Figure 5. Few-shot prompting strategy is
adopted in Centaur (n = 3, 5 shots) to infer the O1O by leveraging prior examples as context, as
recommended in the Marcel Binz implementation. But zero-shot prompting strategy for others to
generate directly. The extended comparative experiments results are in Table 1.

Figure 5: Average accuracy are reported across total 453,642 triplets in the held-out THINGS
validation set. The instruction prompts in Centaur (n = 3, 5 shots) is constructed by providing 3 or 5
in-context examples. Qwen-2.5-VL-7B-Instruct (COT) adopts chain-of-thoughts (Wei et al., 2022)
prompt, is constructed by appending “Let’s think step by step” to the original prompt. The noise
ceiling accuracy: 68.74 ± 1.07% (Hebart et al., 2023).

Table 1: Extended Comparative Experiments. Each row shows one model (COT) performance on
O1O task reflected in choice accuracy. The CogAlignermodel indicates the O1O accuracy of aligned
model initialized from base model in the same row. The noise ceiling is 68.74± 1.07%.

Model Baseline CogAlignermodel(ours)

Gemma3-12B-it 55.766% 57.279%

Human Consistency by Comparing RSMs. Furthermore, we assess the behavioral consistency
between humans and MLLMs by comparing RSMs with Pearson Correlation metric for the 48 ob-
jects. The results and RSMs are shown in Figure 6. We find the human consistency of CogAligner
achieves 80.93% and outperforms others. We also observe interesting results from Centaur (3, 5
shots), demonstrating that different shots prompting influence the human consistency.

Generalization Performance on Downstream Tasks. We evaluate the generalization ability using
the MMMU and MMMU-Pro dataset with lmms-eval. Table 2 summarizes the accuracy of Qwen-
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Figure 6: Human Consistency between hu-
man and MLLMs. We quantify human
self-consistency by computing the Pearson
Correlation between the first half and the
second half of human RSM. And human
self-consistency serves as the noise ceiling
which is 91.05%. For each human con-
sistency, 95% confidence intervals are esti-
mated using 1000 bootstrap resamples (Hu-
man: 95%CI [0.8994, 0.9204], Qwen-2.5-
VL-7B-Instruct: 95%CI [0.6951, 0.768], Be-
havImitator: 95%CI [0.7712, 0.8304], Co-
gAligner: 95%CI [0.7786, 0.8373], Centaur
(3 shots): 95%CI [0.4314, 0.5339], Centaur
(5 shots): 95%CI [0.6121, 0.688]).

2.5-VL-7B-Instruct, Qwen-2.5-VL-7B-Instruct-NT, BehavImitator, adn CogAligner. We also add
extended experiments of on MMMU and MMMU-Pro dataset on other MLLMs in Table 2. We
observe that CogAligner achieves the best performance on MMMU-Pro Vision, surpassing the base-
line by 0.58%, while BehavImitator and Qwen-2.5-VL-7B-Instruct-NT also show improvements of
1.45% and 1.04% respectively. These results on MMMU and MMMU-Pro indicate that our method
not only maintain generality in downstream tasks but can even achieve performance improvements
without carefully adjusting model hyperparameters.

Table 2: Generalization performance on MMMU and MMMU-Pro. We report the average ac-
curacy on MMMU (validation and test sets) and MMMU-Pro (standard and vision). Details in
Appendix A.5

Model MMMUval MMMUtest MMMU-Prostandard MMMU-Provision

Qwen-2.5-VL-7B-Instruct 51.78% 40.90% 36.13% 33.24%

Qwen-2.5-VL-7B-Instruct-NT 49.33% 45.40% 37.63% 32.78%

BehavImitator 50.0% 46.40% 37.23% 32.37%

CogAligner (ours) 49.44% 46.10% 37.34% 33.82%

Gemma3-12B-it 47.11% 35.60% 31.33% 4.51%

CogAlignerGemma3-12B-it 44.56% 41.50% 30.87% 14.80%

Visualizing representative Odd-One-Out Task Example. We present a representative example for
O1O task among the validation set in Figure 7, identifying the most dissimilar object among triplet
objects (contour, rocket, and maggot), where the core human cognitive dimension is transportation-
related or movement-related. Our empirical findings reveal a significant discrepancy in the reasoning
capabilities. Specifically, Qwen2.5-VL-7B-Instruct model not only fails to provide the correct an-
swer but also adopts a reasoning perspective that is misaligned with the human cognitive dimension.
Conversely, while the Centaur model arrives at the correct conclusion, it lacks the necessary ex-
planatory capacity, raising questions about whether its success is due to genuine understanding or
merely superficial mimicry of human output. In sharp contrast, our CogAligner model correctly
identifies the most dissimilar object and, more importantly, provides a detailed and well-aligned ex-
planation that directly leverages the human core cognitive dimension which is transportation-related
or movement-related. This example shows that CogAligner exhibits a higher degree of alignment
with core human cognitive dimensions, enabling it to better predict human behavior and offering a
more interpretable pathway to its reasoning. This example also shows that CogAligner has emerged
with a deeper, human-like understanding.

Visualizing Searchlight RSA. We perform searchlight RSA between subjects and MLLMs, in-
cluding Qwen-2.5-VL-7B-Instruct, Qwen-2.5-VL-7B-Instruct-NT, BehavImitator, and CogAligner,
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Figure 7: A representative example study demonstrating the superior cognitive alignment of
the CogAligner model. The example is to identify the most dissimilar object among three items
(wheel rim, rocket, maggot) and the core human cognitive dimension is transportation-related
or movement-related. Qwen2.5-VL-7B-Instruct model provides an incorrect answer (B) and its
reasoning is misaligned with the human core cognitive dimension, instead relying on a stationary vs.
dynamic distinction. Centaur model, while providing the correct answer (C), offers no explanation,
leaving its reasoning process opaque. Our CogAligner model not only gives the correct answer (C)
but also provides a detailed reasoning process that is fully aligned with the core human cognitive
dimension.

separately. To enhance the contrast of between the brain alignment of CogAligner and others, we
visualize voxel-wise difference on Qwen-2.5-VL-7B-Instruct and CogAligner in Figure 8 via pro-
jection to the cerebral cortex (Gao et al., 2015). To each subject contrast result, we perform the
two-sample Kolmogorov-Smirnov test. We observe increasing activation in brain regions associated
with problem planning and decision-making, such as the prefrontal cortex, in the CogAligner.

Figure 8: Subject contrast results between Qwen-2.5-VL-7B-Instruct and CogAligner in
searchlight RSA experiment. Red indicates increased alignment of CogAligner relative to the
Qwen-2.5-VL-7B-Instruct, while blue indicates decreased alignment on the bar. Two-sample
Kolmogorov-Smirnov test to each subject contrast result (subject 1: KS = 0.0095; p < 0.05, sub-
ject 2: KS = 0.0151; p < 0.05, subject 5: KS = 0.0151; p < 0.05, subject 7: KS = 0.0149; p <
0.05)

9
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5 CONCLUSIONS

In this work, we address the critical yet underexplored challenge of bridging the gap between human-
level performance and human-like cognitive processes in MLLMs. We argue that conventional align-
ment techniques, which primarily focus on mimicking behavioral outcomes, are insufficient to close
this gap. Our key contribution is a novel fine-tuning paradigm, SFT with Cognitive Behavioral Data,
which moves beyond behavioral mimicry to align models with the underlying cognitive dimensions
that guide human judgment. Our methodology successfully extracts latent cognitive principles from
large-scale human behavioral data and explicitly integrates them into the model’s instruction-tuning
process.

The resulting model, CogAligner, demonstrates markedly superior alignment with human cogni-
tion. Empirically, CogAligner not only achieves higher accuracy in predicting human choices but
also exhibits internal representations that are significantly more consistent with human judgmental
patterns, as measured by RSA. Crucially, this enhanced cognitive alignment maintains and improve
performance on challenging downstream multimodal benchmarks, such as MMMU and MMMU-
Pro, without sacrificing generality.

Furthermore, our searchlight RSA analysis provides neuroscientific evidence corroborating these
findings, revealing that CogAligner’s representations are more aligned with neural activity in key
decision-making regions of the human brain, including the prefrontal cortex. This suggests our
approach encourages the development of a more principled and neurologically plausible reasoning
framework. Our findings chart a promising new course for developing MLLMs that are not only
performant but also more fundamentally and verifiably aligned with the nuances of human intelli-
gence.

6 LIMITATIONS AND FUTURE DIRECTIONS

Our current experimental verification focuses primarily on the Qwen-2.5-VL-7B-Instruct model.
While we extend our verification to Gemma3-12B-it model to demonstrate the generalizability of
our approach across different model families, we have not yet verified the efficacy of our method
on large-scale models (e.g., 32B, 70B) or closed-source models (e.g., GPT-5, Gemini 3). It remains
an open question whether the alignment with human cognitive dimensions emerges naturally with
scale or if the benefits of our method scale proportionally with model scale.

The core of our method relies on THINGS database, which contains judgments on 1,854 unique
natural objects. Consequently, the extracted 66 cognitive dimensions may not fully encompass the
complexity of human cognition required for abstract reasoning or understanding complex temporal
events in videos. The current framework is therefore limited to visual object understanding and may
require adaptation for broader multimodal tasks.

Our two-stage pipeline relies on the availability of high-quality human behavioral data (e.g., Odd-
One-Out triplets) to infer latent cognitive dimensions via SPOSE and Jackknife. This dependence
limits the immediate scalability of the method to domains where such rich behavioral datasets are
unavailable.

ETHICS STATEMENT

We confirm that all authors have read and comply with the ICLR code of ethics https://iclr.
cc/public/CodeOfEthics.

7 REPRODUCIBILITY STATEMENT
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A APPENDIX

A.1 USE OF LLMS

The authors explicitly declare the use of a large language model (LLM) in the preparation of this
manuscript. The LLM is utilized exclusively as an editing and proofreading tool to improve the
grammar, syntax, and overall readability of the text.

Specifically, the LLM is employed for the following purposes:

• Language Polishing: Correction of grammatical errors, spelling mistakes, and punctua-
tion.

• Sentence Structure: Refinement of sentence and paragraph structure to enhance clarity
and conciseness.

• Readability: Suggestions for more formal and academic phrasing to align with scholarly
writing standards.

The LLM was not used for any content-generating tasks, including but not limited to: ideation,
methodology development, result analysis, or the generation of core scientific arguments. All con-
tributions, experimental design, and analytical insights are solely the work of the authors. The
authors bear full responsibility for the content and integrity of this paper.
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A.2 DATA STATISTICS

Table 3: Detailed Mixture Dataset Statistics.

Task Dataset Training Samples Validation Samples

Single-image Scenarios

Caption (13.5K) COCO 12,150 1,351

ALLaVA-4V (69.98K) ALLaVA-VFLAN 17,991 1,999

ALLaVA-LAION 44,991 4,999

LLaVAR (43.167K) LLaVAR-GPT4 38,850 4,317

Multi-image Scenarios

Spot the Difference (14.659K) Spot-the-Diff 9,696 1,078

CLEVR-Change 3,690 195

Image Edit Instruction (23.013K) MagicBrush 17,601 1,956

IEdit 3,283 173

Visual Story Telling (32.941K) AESOP 6,569 346

IEdit 23,423 2,603

Text-rich VQA (21.387K) WebQA 8,871 467

TQA 7,836 413

OCR-VQA 1,805 95

DocVQA 1,805 95

Low-level Comparison (10.682K) Dreamsim 9,613 1,069

Behavioral Tasks

O1O (80K) THINGS 64,000 16,000

A.3 TRAINING DETAILS

In this section, we present all the hyperparameters we use to fine-tune in Table 4. These hyper-
parameter settings are shared across all finetuned models mentioned in this paper. All the training
processes are conducted using Transformers, PEFT, and TRL libraries.
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Table 4: Hyperparameter Settings for fine-tuning.

Hyperparameter Value
seed 42
LoRA Rank 8
LoRA α 32
LoRA dropout 0.05
LoRA bias No
learning rate 0.00005
epoch 1
dtype bfloat16
attn implementation sdpa
device numbers 6
gradient accumulation 8
train batch size (per device) 4
train batch size (total) 192
eval batch size (per device) 4
eval batch size (total) 192
padding side right
max pixels 451,584
min pixels 12,544

A.4 EVALUATION DETAILS

In this section, we introduce benchmarks of generalization of performance, O1O accuracy, human
consistency, and searchlight RSA in details.

Generalization of Performance. We use lmms-eval open-source evaluation suite of large multi-
modal models to test performance of MLLMs on MMMU (Val and test) and MMMU-Pro (standard
and vision). For MMMU and MMMU-Pro, we use zero shot and bfloat16 model dtype and default
settings(e.g., temperature=0.01, flash-attention-2) in lmms-eval.

O1O Accuracy and Human Consistency. we use model.generate with Transformers library (Wolf
et al., 2020) to sample outputs of MLLMs. The most important hyperparameters for inferring on
THINGS validation set are temperature, top p, and top k. To achieve stable outputs, we set the
temperature to 0.01, the top p to 0.001, and the top k to 1. For other hyperparameters, We use
bfloat16 (dtype) and sdpa/flash attention (attn implementation) with seed 42.

Searchlight RSA. We use our implementation with Pytorch to accelerate compute searchlight RSA.
We encourage the use of our released codes for searchlight RSA to save times.

A.5 MMMU AND MMMU-PRO DETAILED EVALUATION RESULTS

Table 5: Detailed Generalization Performance on MMMU Val.

Model Art and Design Business Health and Medicine Humanities and Social Science Science Tech and Engineering Average

Qwen-2.5-VL-7B-Instruct 69.167% 41.333% 55.333% 73.333% 41.333% 41.905% 51.778%
Qwen-2.5-VL-7B-Instruct-NT 66.667% 42.667% 52.0% 66.667% 36.0% 41.905% 49.333%

BehavImitator 69.167% 40.667% 56.667% 69.167% 36.667% 39.524% 50.0%

CogAligner (ours) 66.667% 39.333% 53.333% 64.167% 40.667% 41.905% 49.444%

Gemini-12B-it 65.0% 37.333% 48.667% 70.833% 35.333% 37.619% 47.111%
CogAlignerGemma3-12B-it 55.0% 38.667% 43.333% 65.833% 41.333% 33.81% 44.556%
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Table 6: Detailed Generalization Performance on MMMU Test.

Model Art and Design Business Health and Medicine Humanities and Social Science Science Tech and Engineering Average

Qwen-2.5-VL-7B-Instruct 55.4% 45.2% 46.1% 56.2% 34.1% 30.2% 40.9%

Qwen-2.5-VL-7B-Instruct-NT 59.5% 47.9% 50.9% 62.6% 39.4% 34.2% 45.4%

BehavImitator 60.5% 46.7% 52.6% 64.3% 40.8% 35.4% 46.4%
CogAligner (ours) 58.6% 45.1% 51.9% 65.2% 39.8% 36.6% 46.1%

Gemini-12B-it 39.5% 45.7% 35.2% 39.9% 32.6% 30.0% 35.6%

CogAlignerGemma3-12B-it 55.3% 38.2% 43.4% 62.5% 33.3% 36.1% 41.5%

Table 7: Detailed Generalization Performance on MMMU-Pro Standard.

Model Art and Design Business Health and Medicine Humanities and Social Science Science Tech and Engineering Average

Qwen-2.5-VL-7B-Instruct 56.140% 28.322% 30.42% 47.748% 31.615% 31.415% 36.127%

Qwen-2.5-VL-7B-Instruct-NT 54.386% 29.371% 34.615% 46.847% 34.708% 33.333% 37.630%
BehavImitator 56.579% 28.322% 34.266% 44.595% 34.021% 33.094% 37.225%

CogAligner (ours) 55.263% 28.322% 34.266% 46.847% 34.021% 33.094% 37.341%

Gemini-12B-it 50.877% 24.126% 26.573% 47.748% 26.46% 23.501% 31.329%
CogAlignerGemma3-12B-it 47.807% 20.28% 25.524% 51.351% 27.835% 23.741% 30.867%

Table 8: Detailed Generalization Performance on MMMU-Pro Vision.

Model Art and Design Business Health and Medicine Humanities and Social Science Science Tech and Engineering Average

Qwen-2.5-VL-7B-Instruct 46.491% 24.825% 28.322% 45.495% 31.959% 29.496% 33.237%

Qwen-2.5-VL-7B-Instruct-NT 44.737% 24.476% 28.671% 42.342% 32.990% 29.496% 32.775%

BehavImitator 45.175% 26.923% 28.322% 41.892% 30.241% 28.297% 32.37%

CogAligner (ours) 45.175% 25.874% 29.371% 43.243% 34.021% 30.935% 33.815%
Gemini-12B-it 7.456% 1.748% 6.643% 8.559% 4.811% 0.959% 4.51%

CogAlignerGemma3-12B-it 16.667% 14.685% 9.091% 21.622% 14.777% 14.149% 14.798%

A.6 66 COGNITIVE DIMENSIONS
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Table 9: 66 Dimensions Name.

axis Dimension axis Dimension

0 metallic or artificial 1 food-related

2 animal-related 3 textile

4 plant-related 5 house-related or furnishing-related

6 valuable or precious 7 transportation-related or movement-related

8 body-related or people-related 9 wood-related or brown

10 electronics or technology 11 colorful or playful

12 outdoors 13 circular or round

14 paper-related or flat 15 sports-related or playing-related

16 tools or elongated 17 fluid-related or drink-related

18 water-related 19 oriented or many things

20 decay-related or grainy 21 white

22 coarse pattern or many things 23 red

24 long or thin 25 weapon-related or danger-related

26 black 27 household

28 feminine (stereotypical) 29 body part-related

30 tubular 31 music-related, hearing-related, or hobby-related

32 grid-related or grating-related 33 repetitive or spiky

34 construction-related or craftsman-related 35 spherical or voluminous

36 string-related or stringy 37 seating-related, standing-related, or lying-related

38 flying-related or sky-related 39 disgusting or slimy

40 elliptical or curved 41 sand-colored

42 green 43 bathroom-related or wetness-related

44 yellow 45 heat-related or light-related

46 beams-related or mesh-related 47 foot-related or walking-related

48 box-related or container 49 stick-shaped or cylindrical

50 head-related 51 upright, elongated, or volumous

52 pointed or spiky 53 child-related or cute

54 farm-related or historical 55 seeing-related, small, or round

56 medicine-related 57 dessert-related

58 orange 59 thin or flat

60 cylindrical, conical, or cushioning 61 coldness-related or winter-related

62 measurement-related or numbers-related 63 fluffy or soft

64 masculine (stereotypical) 65 fine-grained pattern

18


	Introduction
	Related work
	Methods
	Experiments
	Data
	Experimental setup
	Main Results

	Conclusions
	Limitations and future directions
	Reproducibility statement
	Appendix
	Use of LLMs
	Data Statistics
	Training Details
	Evaluation Details
	MMMU and MMMU-Pro Detailed Evaluation Results
	66 Cognitive Dimensions


