
SoftFlow: Probabilistic Framework for
Normalizing Flow on Manifolds

Hyeongju Kim, Hyeonseung Lee, Woo Hyun Kang, Joun Yeop Lee, Nam Soo Kim
Department of Electrical and Computer Engineering and INMC,

Seoul National University,
Seoul, South Korea

{hjkim, hslee, whkang, jylee}@hi.snu.ac.kr, nkim@snu.ac.kr

Abstract

Flow-based generative models are composed of invertible transformations between
two random variables of the same dimension. Therefore, flow-based models cannot
be adequately trained if the dimension of the data distribution does not match
that of the underlying target distribution. In this paper, we propose SoftFlow, a
probabilistic framework for training normalizing flows on manifolds. To sidestep
the dimension mismatch problem, SoftFlow estimates a conditional distribution
of the perturbed input data instead of learning the data distribution directly. We
experimentally show that SoftFlow can capture the innate structure of the manifold
data and generate high-quality samples unlike the conventional flow-based models.
Furthermore, we apply the proposed framework to 3D point clouds to alleviate the
difficulty of forming thin structures for flow-based models. The proposed model
for 3D point clouds, namely SoftPointFlow, can estimate the distribution of various
shapes more accurately and achieves state-of-the-art performance in point cloud
generation. Our implementation is available at https://github.com/ANLGBOY/
SoftFlow.

1 Introduction

Ever since Dinh et al. (2014) first introduced Non-linear Independent Component Estimation (NICE)
that exploits a change of variables for density estimation, flow-based generative models have been
widely studied and have shown competitive performance in many applications such as image genera-
tion (Kingma & Dhariwal, 2018), speech synthesis (Prenger et al., 2019; Kim et al., 2018), video
prediction (Kumar et al., 2019) and machine translation (Ma et al., 2019). With this success, flow-
based models are considered a potent technique for unsupervised learning due to their attractive
merits: (i) exact log-likelihood evaluation, (ii) efficient synthetic data generation, and (iii) well-
structured latent variable space. These properties enable the flow-based model to learn complex
dependencies within high-dimensional data, generate a number of synthetic samples in real-time, and
learn a semantically meaningful latent space which can be used for downstream tasks or interpolation
between data points.

There also have been some theoretical developments as well as various application of flow-based
models in recent years. For example, unlike the conventional flow-based models which typically
perform dequantization by adding uniform noise to discrete data points (e.g., image) as a pre-process
for the change of variable formula (Dinh et al., 2016; Papamakarios et al., 2017), Flow++ (Ho
et al., 2019) proposed to leverage a variational dequantization technique to provide more natural
and smoother density approximator of discrete data. Another example is a continuous normalizing
flow (CNF) (Chen et al., 2018; Grathwohl et al., 2018). While discrete flow-based models adopt
a restricted architecture for ease of computing the determinant of the Jacobian, CNFs impose no

Preprint. Under review.

ar
X

iv
:2

00
6.

04
60

4v
3

 [
cs

.C
V

]
 3

1
A

ug
 2

02
0

https://github.com/ANLGBOY/SoftFlow
https://github.com/ANLGBOY/SoftFlow

limits on the choice of model architectures since the objective function of CNFs can be efficiently
calculated via Hutchinson’s estimator (Hutchinson, 1990).

In this paper, we further aim to overcome another limitation of existing flow-based models, i.e.,
normalizing flows on manifolds. To begin with, we show that current normalizing flows cannot
accurately estimate the data distribution if the data resides on a low dimensional manifold. To
circumvent this issue, we propose a novel probabilistic framework for training a flow-based model on
manifolds. The proposed method, namely SoftFlow, perturbs the data with random noise sampled
from different distributions and estimates the conditional distribution of the perturbed data. Unlike
the conventional normalizing flows, SoftFlow is able to capture the distribution of the manifold data
and synthesize high-quality samples. Furthermore, we also propose SoftPointFlow for 3D point cloud
generation which relieves the difficulty of forming thin structures. We experimentally demonstrate
that SoftPointFlow achieves cutting-edge performance among many point cloud generation models.
Our framework is intuitive, simple and easily applicable to the existing flow-based models including
both discrete and continuous normalizing flows.

2 Flow-based generative model

A normalizing flow (Rezende & Mohamed, 2015) consists of invertible mappings from a simple
latent distribution pZ(z) (e.g., isotropic Gaussian) to a complex data distribution pX(x). Let fi be an
invertible transformation from zi−1 to zi , z0 = z and zn = x (zi ∈ RD for i = 0, ..., n). Then, the
log-likelihood log pX(x) can be expressed in terms of the latent variable z following the change of
variables theorem:

z = f−11 ◦ f−12 ◦ ... ◦ f−1n (x), (1)

log pX(x) = log pZ(z)−
n∑
i=1

log

∣∣∣∣det

(
∂fi
∂zi−1

)∣∣∣∣ . (2)

Eqs. (1) and (2) suggest that the optimization of flow-based models requires the tractability of
computing f−1i and log

∣∣∣det
(

∂fi
∂zi−1

)∣∣∣. After training, sampling process can be performed efficiently
as follows:

z ∼ pZ(z), (3)

x = fn ◦ fn−1 ◦ ... ◦ f1(z). (4)

Recently, Chen et al. (2018) introduced a continuous normalizing flow (CNF) where the latent variable
is assumed to be time-varying and the change of log-density follows the instantaneous change of
variables formula. More specifically, continuous-time analogs of Eqs. (1) and (2) can be given by

z(t0) = z(t1) +

∫ t0

t1

f(z(t), t)dt, (5)

log p(z(t1)) = log p(z(t0))−
∫ t1

t0

Tr

(
∂f(z(t), t)

∂z(t)

)
dt, (6)

where f(z(t), t) = dz(t)
dt , z(t0) = z and z(t1) = x. Unlike conventional normalizing flows, CNFs

impose no restriction on the choice of model architecture since the trace operation in Eq. (6) can
be efficiently computed using the Hutchinson’s estimator (Grathwohl et al., 2018) and the sampling
process is performed by reversing the time interval in Eq. (5). However, due to the large computational
cost of the ODE solver, CNFs usually require a long time for training (e.g., Grathwohl et al. (2018)
reported that they trained the CNF on MNIST for 5 days using 6 GPUs).

3 Normalizing flow on manifolds

Although normalizing flows have shown promising results on various tasks such as image gen-
eration (Kingma & Dhariwal, 2018), voice conversion (Serrà et al., 2019) and machine trans-
lation (Ma et al., 2019), current flow-based models are not suitable for estimating the distri-
bution of the data sitting on a lower-dimensional manifold. We note that Eqs. (2) and (6)
are valid only when the data distribution and the target distribution have the same dimensions.

2

Data dist. Latent space Target dist.

Figure 1: Illustration of normalizing flow trained
on 2D data distribution (top) and 1D manifold data
distribution (bottom).

To demonstrate this limitation, we trained 2
FFJORD models (Grathwohl et al., 2018) on
different data distributions and present the re-
sults in Fig. 1 where the left column represents
the data distribution, the central column repre-
sents the scatter plot of the corresponding latent
variables warped from the data points through
the trained networks, and the right column de-
notes the target latent distribution that we ini-
tially set for training. When the dimension of
the data distribution matches to that of the tar-
get distribution, the FFJORD model properly
transforms the data points into the latent points.
However, when the FFJORD model is trained on
1D manifold data scattered over 2D space, the
distribution of the latent variables corresponding
to the data points is quite different from the tar-
get latent distribution. This simple experiment
exhibits the shortcoming of the current normalizing flows that they cannot expand the 1D manifold
data points to the 2D shape of the target distribution since the transformations used in flow networks
are homeomorphisms (Dupont et al., 2019). If the transformed latent variables cannot represent the
whole 2D space, it is unclear which part of the data space would match the latent points outside the
lines. The observation suggests that training the normalizing flows on manifolds according to Eq. (2)
or Eq. (6) may result in degenerated performance.

𝐹

ℝ𝑚 ℝ𝑛

𝐴 𝑀𝐴 𝑀

Latent space Data space

Figure 2: Example of the function that maps the
contented subset of Rm to the manifold of Rn.

In fact, the change of variables theorem used in
Eq. (2) is not useful anymore if the dimension
of the domain is lower than the dimension of
the image. Let F be a function from the con-
tented subset A ⊂ Rm to a manifold M ⊂ Rn
where m < n as shown in Fig. 2. If z ∈ A and
x ∈ M satisfy F (z) = x, the m-dimensional
infinitesimal volume dVx around x is given by

dVx =
√

det(DF)†DFdVz (7)

where DF is the n ×m Jacobian matrix (i.e.,
DFij = ∂xi

∂zj
), dVz is the infinitesimal volume

around z, and † represents the transpose operation (Gemici et al., 2016; Ben-Israel, 1999). Therefore,
the log-likelihood log pX(x) can be computed as follows:

log pX(x) = log pZ(z)− 1

2
log(det(DF)†DF). (8)

Unfortunately, however, it is not straightforward to design a flow-based model according to Eq. (8)
for a few reasons. First, transforming x to z is problematic as F cannot be invertible in general. This
prevents the use of maximum likelihood since flow-based models cannot be optimized according
Eq. (8) without knowing z. Secondly, we are no longer able to employ the trick of setting the Jacobian
to a lower triangular matrix as in the general flow models. It is because that det(DF)†DF is always
a symmetric matrix. This restriction may lead to O(m3) computational cost for the determinant.
Finally, we need prior knowledge on the dimension of the manifold data in order to exactly determine
m. Otherwise, we may rely on a heuristic search for m. These difficulties motivated us to come up
with a novel probabilistic framework for training normalizing flows on manifolds which is presented
in the following section.

4 SoftFlow

Our ultimate goal is to appropriately train the normalizing flows on manifolds and generate realistic
samples. The main cause of the aforementioned difficulties is the inherent nature of normalizing flows
that the network output is homeomorphic to the input. To bridge the gap between the dimensions

3

𝑐𝑖 ~ 𝑈𝑛𝑖𝑓 𝑎, 𝑏

…

𝜈𝑖 ~ 𝑁 0, Σ𝑖

Σ𝑖 = 𝑐𝑖
2𝐼

Noise sampling

+𝜈𝑖 𝑓−1(𝑥𝑖 + 𝜈𝑖|𝑐𝑖)

Data dist. Latent space

Perturbation Conditional Flow

Perturbed data dist.

Figure 3: Proposed technique for training a normalizing flow on manifold data.

of the data and the target latent variable, we propose to estimate a conditional distribution of the
perturbed data. The key idea is to add noise sampled from a randomly selected distribution and use
the distribution parameters as a condition. For implementation, we perform the following steps for
the i-th data point xi: First, we sample a random value ci from the uniform distribution unif [a, b],
and set the noise distribution to N (0,Σi) where Σi = c2i I . Next, we sample a noise vector νi from
N (0,Σi) and obtain the perturbed data point x′i by adding νi to xi. Note that now the distribution of
x′i is not confined to a low dimensional manifold due to the addition of νi. Let f(·|ci) be the flow
transformation from the latent variable z to x′i (i.e., f(z|ci) = x′i), then the final objective function is
given by

log pX(x′i|ci) = log pZ(z)− log

∣∣∣∣det

(
∂f(z|ci)
∂z

)∣∣∣∣ . (9)

A summary of the proposed training procedure is illustrated in Fig.3. Since the support of the
perturbed data distribution spans the entire dimensions of the data space, the normalizing flow on
manifolds can be reliably trained according to Eq. (9). In addition, during training, the flow networks
observe various distributions with different volumes and learn to transform the randomly perturbed
data points into the latent variables properly. This enables the flow networks to understand and
generalize the relation between the shape of data distributions and the noise distribution parameters.
As a result, we can synthesize a realistic sample xsp by setting csp to a small value or even zero as
follows:

zsp ∼ pZ(z), (10)

xsp = f(zsp|csp). (11)
Furthermore, it is obvious that the method can be extended to any CNF by adopting the following
dynamics:

dz(t)

dt
= f(z(t), t, ci), z(t0) = z, z(t1) = xi + νi. (12)

The proposed framework, namely SoftFlow, provides a new way to exploit a normalizing flow
for manifold data. SoftFlow overcomes the dimension mismatch by estimating a perturbed data
distribution which is conditioned on noise parameters. Both the training and sampling processes can
be easily implemented within the existing flow-based frameworks.

4.1 Experiments on artificial data

We conducted a set of experiments in order to validate the proposed framework. To implement
SoftFlow within the FFJORD architecture, we augmented another dimension for a noise distribution
parameter to the conditioning networks. During training, we sampled ci from Unif [0, 0.1] and
perturbed each data point xi by adding νi which was drawn from N (0, c2i I). We scaled up ci by
multiplying 20 to get cini and passed cini to the CNF networks for conditioning. We employed the
same way of conditioning time t in FFJORD for conditioning cini . SoftFlow and FFJORD were
trained on the data sampled from 5 different distributions1 using the Adam optimizer (Kingma & Ba,

1We provide the code for the 2sines and target distributions in Appendix A.

4

Data

Glow

FFJORD

2spirals targetswissroll circles 2sines

SoftFlow

Figure 4: Samples from SoftFlow, Glow, and FFJORD trained on 5 different distributions.

𝑐𝑠𝑝 = 0 𝑐𝑠𝑝 = 0.02 𝑐𝑠𝑝 = 0.04 𝑐𝑠𝑝 = 0.06 𝑐𝑠𝑝 = 0.08 𝑐𝑠𝑝 = 0.1

Figure 5: Examples of synthetic data points sampled from SoftFlow with different values of csp.

2014) with learning rate 10−3 for 36K iterations. We also trained a 100-layer Glow model for 100K
iterations. All the distribution shapes were set to be composed of only 1D lines to exclude volume
components.

The generative performance of SoftFlow, Glow, and FFJORD is shown in Fig. 4. For sampling,
csp in SoftFlow was set to zero. We can observe that Glow showed the worst performance in most
distributions, and some parts of the sample clusters generated by FFJORD failed to fit the data
distribution. Especially in the case of the circles distribution, both Glow and FFJORD generated poor
samples which were scattered around the circles and formed a curved line connecting the inner and
outer circles. The results demonstrate that Glow and FFJORD suffer from difficulties in estimating
the distribution of the manifold data and cannot synthesize appropriate samples that agree with the
data distribution. In contrast, SoftFlow is optimized according to the adequate objective function for
manifold data. As a result, SoftFlow is capable of generating high-quality samples that follow the
data distribution quite perfectly.

To examine how well the proposed model understands and generalizes the relation between the shape
of a distribution and a noise distribution parameter, we drew different groups of samples obtained
from SoftFlow by varying csp from 0 to 0.1. As shown in Fig. 5, SoftFlow generated various samples
which faithfully follow different distributions as we intended. The experimental results imply that
SoftFlow can be further exploited to estimate an unseen distribution or produce a plausible synthetic
distribution.

5 SoftPointFlow

3D point clouds are a compact representation of geometric details which leverage sparsity of the
data. Point clouds are becoming popular and attractive since they are processed by simple geometric
operations and can be efficiently acquired by using various range-scanning devices such as LiDARs.
In light of the benefits of point clouds, some recent works have proposed generative models for

5

𝑀 𝑝𝑜𝑖𝑛𝑡s

Point set 𝑋𝑠𝑒𝑡

Encoder

𝑞𝜙

𝜇𝑠

Σ𝑠

𝑆ℎ𝑎𝑝𝑒

~

Actnorm

Invertible

1x1

Conv.

AR

Layer

X 𝑁𝐷

DecoderFlow

𝑔𝜃
−1

Actnorm

Invertible

1x1

Conv.

Affine

Coupling

Layer

X 𝑁𝑃

PriorFlow

𝑓𝜓
−1

Normal dist.

(3-dim.)

Normal dist.

(dim. of 𝑆)

Perturbation

Scale up

𝑍𝑆

…

𝑥1

𝑥2

𝑥3

𝑥𝑀

…

𝑧1

𝑧2

𝑧3

𝑧𝑀
0

𝑖 = 1, 2, … ,𝑀

𝑢𝑛𝑖𝑓[𝑎, 𝑏]Σ𝑖 𝑐𝑖 ~

Figure 6: Schematic block diagram of SoftPointFlow.

point clouds (Yang et al., 2019; Achlioptas et al., 2017; Groueix et al., 2018). However, generative
modelling of point clouds is still a challenging task due to the high complexity of the space of
point clouds. PointFlow (Yang et al., 2019) is the current state-of-the-art model for point cloud
generation but still had difficulty forming thin structures. We assume that the difficulty stems from the
inability of normalizing flows to estimate the density on lower-dimensional manifolds, and propose
SoftPointFlow to mitigate the issue by applying the SoftFlow technique to PointFlow.

The overall architecture of SoftPointFlow2 is shown in Fig. 6. SoftPointFlow models two-level
hierarchical distributions of shape and points, following the same training framework of PointFlow.
Given a point set Xset consisting of M points, we first encode Xset into a latent variable S using the
reparameterization trick (Kingma & Welling, 2013). The encoder employs the same architecture as
in PointFlow. We provide a more expressive and learnable prior for S by employing PriorFlow, a
Glow-like architecture for estimating the likelihood of S. Each xi is randomly perturbed as follows:

x′i = xi + νi, νi ∼ N (0, c2i I), ci ∼ unif [a, b]. (13)

The perturbed point x′i goes through DecoderFlow to compute the conditional likelihood given S and
ci. DecoderFlow adopts an autoregressive function for flow transformation (AR Layer) which offers
parallel computation for training. Even though AR Layer requires serial operations for sampling, the
sampling speed will not be degraded significantly since AR Layer only processes a 3-dimensional
vector. Our final objective function L(Xset; θ, ψ, φ) is given as follows:

L(Xset; θ, ψ, φ) = Eqφ(S|Xset)[log pθ(Xset|S) + log pψ(S)− log qφ(S|Xset)]

≈ Eqφ(S|Xset)

[
M∑
i=1

(
Eci∼unif [a,b]

[
log p(zi)− log

∣∣∣∣det

(
∂gθ(zi|S, ci)

∂zi

)∣∣∣∣])

+ log p(Z)− log

∣∣∣∣det

(
∂fψ(Z)

∂Z

)∣∣∣∣
]

+H[qφ(S|Xset)],

(14)

where Z = f−1ψ (S), zi = g−1θ (x′i|S, ci), and H represents the entropy.

5.1 Experiments on point clouds

We conducted a set of experiments using the ShapeNet Core dataset (v2) (Chang et al., 2015) to
evaluate the proposed framework for 3D point clouds. Three different categories were used for the
experiments: airplane, chair, and car. We followed the same configuration for the training and test sets

2The CNF networks in PointFlow are replaced with discrete normalizing flows for two reasons: (1) slow
convergence of the CNF networks, and (2) validation of the proposed framework on discrete normalizing flows.

6

Data

PointFlow

Ours

Seen Unseen Sampling

Reconstruction

Generation

Figure 7: Examples of point clouds generated by PointFlow and SoftPointFlow. From left to right:
reconstructed samples of seen data, reconstructed samples of unseen data, and synthetic samples.

PointFlow

Ours
Data

𝜎𝑍 = 0.6 𝜎𝑍 = 1.4𝜎𝑍 = 0.8 𝜎𝑍 = 1.0 𝜎𝑍 = 1.2

Figure 8: Reconstructed samples transformed from different latent distributions.

as in Yang et al. (2019), and used 5K points per shape in the training set to construct the validation
set. We trained SoftPointFlow for 15K epochs with a batch size of 128 using four 2080-Ti GPUs.
The initial learning rate of the Adam optimizer was set to 0.002 and decayed by half after every 5K
epochs. Each point set Xset was compoesd of 2048 points (M = 2048).

SoftPointFlow was built on two discrete normalizing flow networks, PriorFlow and DecoderFlow.
PriorFlow consisted of 12 flow blocks of an actnorm, an invertible 1x1 convolution, and an affine
coupling layer (Np = 12). For the affine coupling layer, PriorFlow employed 4 convolution layers
with gated tanh nonlinearities as well as residual connections and skip connections with 256 channels.
The latent variable S was squeezed to have 8 channels before going through PriorFlow and 2 of the
channels were factored out after every 4 flow blocks following the multi-scale architecture (Dinh
et al., 2016). On the other hand, DecoderFlow consisted of 9 flow blocks of an actnorm, an invertible
1x1 convolution, and an autoregressive (AR) layer (ND = 9). Each AR layer employed 3 linear
layers with gated tanh units. We set the number of channels in the linear and gate layers to 256. A
concatenated vector of the input point and the noise parameter was passed to the linear layers. Also,
the latent variable S was used as a global condition by going through the gate layers. During training,
ci was sampled from unif [0, 0.075] and scaled up to have a maximum value 2 for the AR layers. For
sampling, csp was set to zero.

We report some samples generated by PointFlow and SoftPointFlow in Fig. 7. The axis ratio was
adjusted to highlight the difference between the samples. We can observe that PointFlow generated
blurry samples that failed to form thin structures such as chair legs or wing tips. In contrast,
SoftPointFlow captured fine details of an object well and produced high-quality samples. We provide
various samples generated by each model in Appendices B and C.

What would happen if we sample latent variables from N (0, σ2
zI) with different values of σz , and

transform them into the data space? If the latent variable is sampled from the vicinity of high
density (i.e., a low value of σz), we can expect that the corresponding points in the data space would
be focused on the main part of an object (e.g., a chair body). In the opposite case, the points may be
gathered around the thin structure (e.g., chair legs). To investigate the representations that each model
learned, we generated various point sets by varying σz , and report the results in Fig. 8. The overall
tendency is similar to what we expected. However, as σz increases, we observe that PointFlow failed

7

to capture an X-shaped structure beneath the chair body while SoftPointFlow produced points that
form the X shape. Also, as σz decreases, the samples generated by PointFlow are concentrated on
the center of the chair while the point clouds of SoftPointFlow well preserve the whole structure.
The results demonstrate that SoftPointFlow learns more desirable features from manifold data and is
robust to the variance of latent variables.

Table 1: Generation results on 1-NNA (%). Lower
is better.

Category Model CD EMD

Airplane

l-GAN (EMD) 87.65 85.68
PC-GAN 94.35 92.32
PointFlow 75.68 75.06
SoftPointFlow 70.92 69.44

Chair

l-GAN (EMD) 64.73 65.56
PC-GAN 76.03 78.37
PointFlow 60.88 59.89
SoftPointFlow 59.95 63.51

Car

l-GAN (EMD) 69.74 68.32
PC-GAN 92.19 90.87
PointFlow 60.65 62.36
SoftPointFlow 62.63 64.71

In order to compare SoftPointFlow with other
generative models, we measured 1-nearest
neighbor accuracy (1-NNA) of SoftPointFlow.
The 1-NNA represents the leave-one-out accu-
racy of the 1-NN classifier and its ideal score
is 50% (Lopez-Paz & Oquab, 2016). To com-
pute the 1-NNA, two different distance metrics,
Chamfer distance (CD) and earth mover’s dis-
tance (EMD), can be employed to measure the
similarity between point clouds. The genera-
tion results on 1-NNA are shown in Table 1.
The results of l-GAN (Achlioptas et al., 2017),
PC-GAN (Li et al., 2018) and PointFlow are
taken from Yang et al. (2019). In all categories,
SoftPointFlow achieved the significantly better
results than the GAN-based models. Compared
to PointFlow, SoftPointFlow showed the com-
petitive performance on the airplane and chair
data sets, and recorded the slightly lower scores
on the car data set. Since the proportion of thin structures in the car data set is relatively low, we
believe the results still support the validity of the proposed framework.

12%

12%

13%

22%

27%

34%

12%

11%

8%

27%

17%

19%

76%

76%

79%

51%

56%

47%

Airplane (seen)

Airplane (unseen)

Chair (seen)

Chair (unseen)

Car (seen)

Car (unseen)

PointFlow Neutral SoftPointFlow

Figure 9: Results on preference test.

We also conducted a preference test to evaluate
the perceptual quality of samples. We randomly
selected 60 point sets for each categories (air-
plane, chair, and car) and obtained the recon-
structed samples from PointFlow and SoftPoint-
Flow. Each question presented a reference point
cloud and two reconstructed samples in a ran-
dom order. We asked 31 participants to assess
which sample is more similar to the reference
and better in quality. The results are shown in
Fig. 9. Surprisingly, SoftPointFlow received
better scores than PointFlow in all cases. In par-
ticular, SoftPointFlow outperformed by a large
margin in the airplane shapes and the seen chair
shapes. The overall results demonstrate that the proposed framework is considerably useful and
suitable for modelling generative flows on point clouds.

6 Conclusion

In this paper we have introduced a novel probabilistic framework, SoftFlow, for training a normalizing
flow on manifolds. We experimentally demonstrated that SoftFlow is capable of capturing the innate
structure of the manifold data and produces high-quality samples while the current flow-based models
cannot. Also, we have successfully applied the proposed framework to point clouds to overcome the
difficulty of modelling thin structures. Our generative model, SoftPointFlow, produced point clouds
that describe more exactly the details of an object and achieved state-of-the-art performance for point
cloud generation. We believe that our framework can be further improved by theoretically identifying
which noise distribution is more useful for training or by searching an architecture to leverage noise
parameters efficiently.

8

References
Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas, L. Learning representations and generative

models for 3d point clouds. arXiv preprint arXiv:1707.02392, 2017.

Ben-Israel, A. The change-of-variables formula using matrix volume. SIAM Journal on Matrix
Analysis and Applications, 21(1):300–312, 1999.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva,
M., Song, S., Su, H., et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. Neural ordinary differential
equations. In Advances in neural information processing systems, pp. 6571–6583, 2018.

Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

Dupont, E., Doucet, A., and Teh, Y. W. Augmented neural odes. In Advances in Neural Information
Processing Systems, pp. 3134–3144, 2019.

Gemici, M. C., Rezende, D., and Mohamed, S. Normalizing flows on riemannian manifolds. arXiv
preprint arXiv:1611.02304, 2016.

Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I., and Duvenaud, D. Ffjord: Free-form
continuous dynamics for scalable reversible generative models. arXiv preprint arXiv:1810.01367,
2018.

Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., and Aubry, M. A papier-mâché approach to
learning 3d surface generation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 216–224, 2018.

Ho, J., Chen, X., Srinivas, A., Duan, Y., and Abbeel, P. Flow++: Improving flow-based generative
models with variational dequantization and architecture design. arXiv preprint arXiv:1902.00275,
2019.

Hutchinson, M. F. A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines. Communications in Statistics-Simulation and Computation, 19(2):433–450, 1990.

Kim, S., Lee, S.-g., Song, J., Kim, J., and Yoon, S. Flowavenet: A generative flow for raw audio.
arXiv preprint arXiv:1811.02155, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with invertible 1x1 convolutions. In Advances
in Neural Information Processing Systems, pp. 10215–10224, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Kumar, M., Babaeizadeh, M., Erhan, D., Finn, C., Levine, S., Dinh, L., and Kingma, D. Videoflow:
A flow-based generative model for video. arXiv preprint arXiv:1903.01434, 2(5), 2019.

Li, C.-L., Zaheer, M., Zhang, Y., Poczos, B., and Salakhutdinov, R. Point cloud gan. arXiv preprint
arXiv:1810.05795, 2018.

Lopez-Paz, D. and Oquab, M. Revisiting classifier two-sample tests. arXiv preprint arXiv:1610.06545,
2016.

Ma, X., Zhou, C., Li, X., Neubig, G., and Hovy, E. Flowseq: Non-autoregressive conditional
sequence generation with generative flow. arXiv preprint arXiv:1909.02480, 2019.

9

Papamakarios, G., Pavlakou, T., and Murray, I. Masked autoregressive flow for density estimation.
In Advances in Neural Information Processing Systems, pp. 2338–2347, 2017.

Prenger, R., Valle, R., and Catanzaro, B. Waveglow: A flow-based generative network for speech
synthesis. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3617–3621. IEEE, 2019.

Rezende, D. J. and Mohamed, S. Variational inference with normalizing flows. arXiv preprint
arXiv:1505.05770, 2015.

Serrà, J., Pascual, S., and Perales, C. S. Blow: a single-scale hyperconditioned flow for non-
parallel raw-audio voice conversion. In Advances in Neural Information Processing Systems, pp.
6790–6800, 2019.

Yang, G., Huang, X., Hao, Z., Liu, M.-Y., Belongie, S., and Hariharan, B. Pointflow: 3d point
cloud generation with continuous normalizing flows. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 4541–4550, 2019.

10

A Code for the 2-sines and target distributions

1 i m p o r t numpy as np

3 d e f g e t _ d a t a _ b a t c h (bsz , d i s t) :
bsz : b a t c h s i z e

5

rng = np . random . RandomState ()
7

i f d i s t == "2− s i n e s " :
9 x = (rng . r and (bsz) − 0 . 5) ∗ 2 ∗ np . p i

u = (rng . b i n o m i a l (1 , 0 . 5 , bsz) − 0 . 5) ∗ 2
11 y = u ∗ np . s i n (x) ∗ 2 . 5

13 e l i f d i s t == " t a r g e t " :
s h a p e s = np . random . r a n d i n t (7 , s i z e = bsz)

15 mask = []
f o r i i n r a n g e (7) :

17 mask . append ((s h a p e s == i) ∗ 1 .) # b o o l e a n t o f l o a t

19 t h e t a = np . l i n s p a c e (0 , 2 ∗ np . pi , bsz , e n d p o i n t = F a l s e)

21 x = (mask [0] + mask [1] + mask [2]) ∗ (rng . r and (bsz) − 0 . 5) ∗ 4 +\
(−mask [3] + 0 ∗ mask [4] + mask [5]) ∗ 2 ∗ np . ones (bsz) + \

23 mask [6] ∗ np . cos (t h e t a)

25 y = (−mask [0] + 0 ∗ mask [1] + mask [2]) ∗ 2 ∗ np . ones (bsz) + \
(mask [3] + mask [4] + mask [5]) ∗ (rng . r and (bsz) −0.5) ∗ 4 +\

27 mask [6] ∗ np . s i n (t h e t a)

29 r e t u r n np . s t a c k ((x , y) , 1)

11

B Examples of generated point clouds

B.1 Reconstruction of seen data

Data

PointFlow

Ours

Data

PointFlow

Ours

Data

PointFlow

Ours

Figure 10: Reconstructed point clouds of seen data.

12

B.2 Reconstruction of unseen data

Data

PointFlow

Ours

Data

PointFlow

Ours

Data

PointFlow

Ours

Figure 11: Reconstructed point clouds of unseen data.

13

B.3 Generation

Figure 12: Synthetic point clouds generated by SoftPointFlow.

14

C Point clouds generated by PointFlow and SoftPointFlow (original ratio)

C.1 Reconstruction of seen data

Data

PointFlow

Ours

Data

PointFlow

Ours

Data

PointFlow

Ours

Figure 13: Reconstructed point clouds of seen data.

15

C.2 Reconstruction of unseen data

Data

PointFlow

Ours

Data

PointFlow

Ours

Data

PointFlow

Ours

Figure 14: Reconstructed point clouds of unseen data.

16

C.3 Generation

Figure 15: Synthetic point clouds generated by SoftPointFlow.

17

	1 Introduction
	2 Flow-based generative model
	3 Normalizing flow on manifolds
	4 SoftFlow
	4.1 Experiments on artificial data

	5 SoftPointFlow
	5.1 Experiments on point clouds

	6 Conclusion
	A Code for the 2-sines and target distributions
	B Examples of generated point clouds
	B.1 Reconstruction of seen data
	B.2 Reconstruction of unseen data
	B.3 Generation

	C Point clouds generated by PointFlow and SoftPointFlow (original ratio)
	C.1 Reconstruction of seen data
	C.2 Reconstruction of unseen data
	C.3 Generation

