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Abstract

Large language models (LLMs) have revolu-001
tionized artificial intelligence, but their per-002
formance on specific tasks is often limited by003
knowledge boundaries. While fine-tuning tech-004
niques like low-rank adaptation (LoRA) aim005
to address this, they can suffer from overfit-006
ting. We propose flexible low-rank adaptation007
(Flexora), a novel method that automatically008
selects the most critical layers for fine-tuning009
to optimize performance across diverse down-010
stream tasks. Flexora formulates layer selec-011
tion as a hyperparameter optimization problem,012
employs unrolled differentiation for efficient013
solving, and identifies the most impactful lay-014
ers based on optimized hyperparameters. Ex-015
tensive experiments across various pre-trained016
models and natural language tasks demonstrate017
that Flexora consistently outperforms existing018
baselines. We provide theoretical insights and019
comprehensive ablation studies to elucidate the020
effectiveness of Flexora. Therefore, Flexora021
offers a robust solution to enhance LoRA fine-022
tuning for LLMs, potentially advancing the023
field of adaptive language model optimization.024

1 Introduction025

The advent of large language models (LLMs) (Zhao026

et al., 2023; Xu et al., 2023) has revolutionized027

artificial intelligence, offering unprecedented ca-028

pabilities across various domains. However, this029

progress comes at a significant cost: LLMs demand030

substantial computational resources due to their031

vast parameter sets and complex functionalities032

(Wei et al., 2022; Touvron et al., 2023). This chal-033

lenge has spurred the development of parameter-034

efficient fine-tuning (PEFT) methods (Li and Liang,035

2021; Lester et al., 2021), with low-rank adaptation036

(LoRA) (Hu et al., 2021) emerging as a particu-037

larly promising approach. The innovation of LoRA038

lies in its ability to freeze pre-trained parameters039

while introducing trainable auxiliary parameters040

(∆W ) at each layer, dramatically reducing training041

costs while maintaining impressive performance. 042

However, despite its widespread adoption, LoRA 043

is not without limitations. It can underperform on 044

certain tasks, likely due to overfitting issues, as 045

evidenced in benchmarks like GLUE (Wu et al., 046

2024b), summary tasks (Liu et al., 2024), and com- 047

plex reasoning tasks (Zhang et al., 2024). Existing 048

techniques to combat overfitting, such as dropout 049

(Lin et al., 2024) and novel regularization strategies 050

(Mao et al., 2024b), often yield performance com- 051

parable to or lower than vanilla LoRA and lack the 052

flexibility to adapt across different tasks. Moreover, 053

current methods typically require manual hyperpa- 054

rameter tuning, limiting their practical applicability 055

in diverse scenarios. These challenges therefore 056

underscore the urgent need for an algorithm that 057

delivers superior performance, enables automatic 058

hyperparameter tuning, and supports flexible train- 059

ing across various tasks. 060

To address these limitations, we introduce 061

flexible low-rank adaptation (Flexora), a novel 062

framework designed to flexibly fine-tune LLMs 063

using an automated layer-level policy. Our ap- 064

proach is inspired by hyperparameter optimization 065

(HPO) and offers several key innovations. First, we 066

demonstrate that fine-tuning only the most critical 067

layers can significantly reduce overfitting and en- 068

hance performance. Second, we frame the layer 069

selection problem as an HPO task and employ un- 070

rolled differentiation (UD) to solve it efficiently. 071

Third, we develop a three-stage process that auto- 072

matically identifies and focuses on the most impor- 073

tant layers for downstream tasks. As illustrated in 074

Figure 1, Flexora operates through an initializa- 075

tion stage (Sec. 4.1) that injects defined hyperpa- 076

rameters into LoRA parameters, a flexible layer 077

selection stage (Sec. 4.2) that optimizes these hy- 078

perparameters using UD, and a fine-tuning stage 079

(Sec. 4.3) that selectively updates only the most 080

crucial layers, significantly reducing computational 081

overhead. Our extensive empirical results (Sec. 5) 082
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Figure 1: An overview of Flexora: (a) Initialization of hyperparameters α̂ and their integration with LoRA
parameters to produce the Trainable Model. (b) Simultaneous training of LoRA parameters and hyperparameters α̂
using different datasets, minimizing empirical risk for both validation and training datasets. The hyperparameter
vector α̂ is then ranked based on magnitude. (c) Flexible selection of layers to be trained, where higher-ranked
layers are activated for training while others remain frozen.

demonstrate that Flexora effectively reduces unim-083

portant LoRA parameters, mitigates overfitting,084

and enhances overall performance across a vari-085

ety of tasks and model architectures.086

In summary, our key contributions consist of: (a)087

the introduction of Flexora, a novel framework for088

automatic layer selection in LoRA fine-tuning; (b)089

a formulation of layer selection as an HPO task,090

efficiently solved using unrolled differentiation; (c)091

comprehensive validation through extensive exper-092

iments on various LLMs and downstream tasks;093

and (d) theoretical insights into the performance094

improvements achieved by Flexora, providing a095

deeper understanding of its effectiveness.096

2 Related Work097

Low-Rank Adaptation (LoRA) Low-Rank098

Adaptation (LoRA) methods are widely used to099

reduce training parameters when fine-tuning large100

language models (LLMs) for specific applications.101

However, LoRA often suffers from overfitting,102

which can degrade performance on downstream103

tasks. To mitigate this, various strategies have been104

proposed: LoRA-SP (Wu et al., 2024b) randomly105

freezes half of the LoRA parameters during fine-106

tuning to alleviate overfitting; LoRA-FA (Zhang107

et al., 2023a) freezes down-projection weights108

while updating only up-projection weights; VeRA109

(Kopiczko et al., 2024) introduces vector-based ran-110

dom matrix adaptation, significantly reducing train-111

able parameters compared to LoRA; LoRA-drop112

(Zhou et al., 2024) prunes less important param-113

eters based on layer output analysis; AdaLoRA114

(Zhang et al., 2023b) dynamically allocates the115

parameter budget across weight matrices based116

on importance scores; LoRAPrune (Zhang et al.,117

2024) jointly prunes parts of the LoRA matrix and 118

LLM parameters based on gradients; and LoRAS- 119

hear (Chen et al., 2023) employs knowledge-based 120

structured pruning to reduce costs while enhancing 121

generalization. Despite their benefits, these meth- 122

ods often (a) require significant design effort, (b) 123

struggle to adapt across different tasks, and (c) can 124

be overly complex for practical application. In con- 125

trast, we introduce Flexora, a framework designed 126

for flexible LoRA fine-tuning across various tasks 127

using a simple, automated layer-level policy. 128

Hyperparameter Optimization (HPO) HPO is 129

widely applied across various domains. Specifi- 130

cally, in the domain of neural architecture search, 131

DARTS (Liu et al., 2019) conceptualizes the co- 132

efficients defining the network architecture as hy- 133

perparameters. In the domains of feature learning, 134

DS3L (Guo et al., 2020) considers feature extrac- 135

tors as hyperparameters. In the field of data science, 136

TPOT (Olson et al., 2016) employs hyperparame- 137

ters as weights to measure the importance of data. 138

By minimizing the validation loss over these hy- 139

perparameters, the optimal variables, e.g., the ar- 140

chitectures in Liu et al. (2019), the features in Guo 141

et al. (2020), and the data in Olson et al. (2016), 142

are identified, leading to superior performance in 143

their respective domains. Drawing inspiration from 144

these works, we initially formulated the layer se- 145

lection in the LoRA method as an HPO problem. 146

This involves optimizing hyperparameters to quan- 147

tify the contributions of different layers, aiming to 148

achieve optimal performance on downstream tasks 149

and thereby select the most crucial layers for fine- 150

tuning. This formulation subsequently led to the 151

development of our Flexora. 152
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Figure 2: This figure depicts the relationship between the number of LoRA fine-tuning layers and model accuracy
across four distinct datasets: Hellaswag, PIQA, Winogrande, and RACE, with the latter including two separate
tasks, RACE-mid and RACE-high, which vary in difficulty. Results for LoRA rank 8 are shown here. The x-axis
represents the number of fine-tuned layers, ranging from 0 to 32, where 0 corresponds to the base model without
fine-tuning. Selected configurations include 6, 12, 18, 24, and 32 randomly fine-tuned layers. The full 32-layer
configuration, representing the vanilla LoRA setup, is shown as a horizontal dashed line in the plots. The y-axis
indicates model accuracy as a percentage.

3 Preliminaries153

In this section, we first provide empirical insights154

showing that layer selection is crucial for improv-155

ing the performance of LLMs in Sec. 3.1, and then156

frame the layer selection problem as a well-defined157

HPO problem in Sec. 3.2.158

3.1 Empirical Insights159

To study the impact of the number of LoRA fine-160

tuning layers on overall performance, we con-161

ducted a preliminary study using Llama3-8B (Meta,162

2024) across a range of downstream tasks. Here,163

we randomly selected different subsets of layers,164

different ranks (e.g., 4, 8, 16, 32) for LoRA fine-165

tuning, and evaluated their performance on these166

tasks. The findings, shown in Figure 2 and Ap-167

pendix C.9, reveal a clear trend: while increasing168

the number of fine-tuned layers generally improves169

model performance, there is a critical point beyond170

which fine-tuning more layers leads to potential171

overfitting and subsequent performance decline.172

This hence suggests that selecting an optimal subset173

of layers for LoRA fine-tuning is crucial for max-174

imizing performance, which interestingly aligns175

with the previous empirical studies(Zhu et al., 2023;176

Zhou et al., 2024; Chen et al., 2023).177

3.2 Problem Formulation178

Inspired by the empirical insights above, we179

aim to identify the most critical layers in LoRA180

fine-tuning to improve generalization performance181

across a variety of downstream tasks. Formally,182

we consider an N -layer LLM with LoRA fine-183

tuning parameters θ ∈ Rd, and let the hyper-184

parameter α ∈ {0, 1}N denote the selection of185

fine-tuning layers, where a value of 1 indicates186

that a layer is selected for fine-tuning. Given the187

test data distribution Dtest and the training dataset 188

Strain, we then define the expected test and train- 189

ing error as Rtest(θ, α) ≜ Ex∼Dtest [ℓ(x, θ;α)] and 190

Rtrain(θ, α) ≜ Ex∼Strain [ℓ(x, θ;α)], respectively. 191

Hence, to select the optimal LoRA fine-tuning 192

layers for maximized performance on downstream 193

tasks, we aim to solve the following bilevel opti- 194

mization problem: 195

min
α∈{0,1}N

Rtest(θ∗(α), α)

s.t. θ∗(α) = argmin
θ∈Rd

Rtrain(θ, α) .
(1) 196

This formulation follows a standard hyperparame- 197

ter optimization (HPO) approach as demonstrated 198

in Bao et al. (2021), where α serves as the hyper- 199

parameter. Thus, the layer selection problem for 200

LoRA fine-tuning in LLMs is framed as a well- 201

defined HPO problem. 202

Unfortunately, it is typically infeasible to access 203

the full test distributions, denoted by Dtest, for this 204

optimization. This expected test error can typi- 205

cally be approximated by the empirical validation 206

error based on the validation dataset Sval, which is 207

defined as R̂val(θ, α) ≜ Ex∼Sval [ℓ(x, θ;α)] There- 208

fore, (1) can be simplified as: 209

min
α∈{0,1}N

R̂val(θ∗(α), α)

s.t. θ∗(α) = argmin
θ∈Rd

Rtrain(θ, α) .
(2) 210

4 The Flexora Framework 211

To address the layer selection problem defined 212

above, we propose our flexible low-rank adapta- 213

tion for LLMs (Flexora) framework in Figure 1. 214

As illustrated in Figure 1, the Flexora framework 215

consists of three key stages: an initial stage (de- 216

tailed in Sec. 4.1), a flexible layer selection stage 217
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(detailed in Sec. 4.2), and a fine-tuning stage for218

the selected LoRA layers (detailed in Sec. 4.3).219

4.1 Initial Stage220

We begin by introducing a special formulation of221

LoRA, which incorporates the layer selection hy-222

perparameter α = (α(1), · · · , α(N)) ∈ {0, 1}N , as223

follows:224

h(i) = Wz(i)+α(i)B(i)A(i)z(i), s.t. αi ∈ {0, 1} .
(3)225

Here, h(i) is the output of the i-th layer, where226

W is the original weight matrix, z(i) is the in-227

put, and B(i) and A(i) are the low-rank adapta-228

tion matrices of LoRA. The hyperparameter α(i)229

determines whether LoRA is applied for layer i.230

Specifically, if α(i) = 0, the equation simplifies231

to h(i) = Wz(i), meaning the i-th layer reverts232

to standard computation without LoRA, implying233

that the additional complexity of LoRA is unnec-234

essary for layer i. Conversely, when α(i) = 1,235

the equation becomes the standard LoRA form,236

h(i) = Wz(i)+B(i)A(i)z(i), indicating that LoRA237

significantly enhances the performance of layer i238

by allowing the low-rank matrices to better capture239

complex patterns. So, this dynamic adjustment al-240

lows the model to selectively apply LoRA when a241

specific layer is most beneficial, thereby optimizing242

the fine-tuning process and mitigating overfitting.243

However, due to the inherent difficulty of directly244

optimizing the discrete layer selection hyperparam-245

eter α, we adopt a continuous relaxation approach246

by replacing the α in (3) with its continuous coun-247

terpart, α̂ = (α̂(1), · · · , α̂(N)):248

h(i) = W0z
(i) + α̂(i)B(i)A(i)z(i),

s.t. α̂(i) =
exp (α(i))∑

i∈[N ] exp (α
(i))

N .
(4)249

Notably, α ∈ RN now and α are typically initial-250

ized to zeros, providing a neutral starting point251

where no layer is initially excluded from LoRA252

fine-tuning. Meanwhile, the constant scale N en-253

sures that when all layers are selected for fine-254

tuning, the scale of each selected layer for LoRA255

fine-tuning is preserved, resulting in α̂(i) = 1 for256

all layers, aligning with the vanilla LoRA scale as257

shown above.258

4.2 Flexible Layer Selection Stage259

Optimization Strategy. Given the continuous260

relaxation α̂ defined above, we propose to solve261

Algorithm 1 The Flexora Framework
1: Input: Number of steps T and K; Initialized LoRA pa-

rameters θ0 and hyperparameter α0 = 0; Learning rate
ηα and ηθ

2: for t = 0 to T − 1 do
3: Sample a mini-batch Btrain ∼ Strain
4: θt+1 ← θt −

ηθ∇θ

(
1

|Btrain|
∑

x∈Btrain
ℓ(x, θ;αt)

) ∣∣
θ=θt

5: α0
t+1 ← αt

6: for k = 0 to K − 1 do
7: Sample a mini-batch Bval ∼ Sval

8: αk+1
t+1 ← αk

t+1 −
ηα∇α

(
1

|Bval|
∑

x∈Bval
ℓ(x, θt+1;α)

) ∣∣
α=αk

t+1

9: end for
10: αt+1 ← αK

t+1

11: end for
12: return α∗ = αT

the well-defined HPO problem in Equation 2 us- 262

ing the widely applied unrolled differentiation 263

(UD) method (Franceschi et al., 2017, 2018; Fu 264

et al., 2016; Maclaurin et al., 2015; Shaban et al., 265

2019). The UD method typically involves two 266

alternating optimization processes: (a) the inner- 267

level and (b) the outer-level optimization. In this 268

paper, the outer-level optimization is defined as 269

argminθ∈Rd Rtrain(θ, α), in which the layer selec- 270

tion hyperparameter α is fixed, and the LoRA pa- 271

rameters θ are updated using stochastic gradient 272

methods (e.g., SGD (Sra et al., 2011)) on the train- 273

ing dataset Strain. This step focuses on optimiz- 274

ing model performance by adjusting the parame- 275

ters associated with the selected layers (line 3-4 276

in Algorithm 1). Meanwhile, the inner-level opti- 277

mization is argminα∈RN R̂val(θ, α), in which the 278

layer selection hyperparameter α is updated using 279

stochastic gradient methods (e.g., SGD) based on 280

the validation performance of the optimized LoRA 281

parameters θ from the inner-level process (lines 6–9 282

in Algorithm 1). This step intends to maximize the 283

validation performance of LoRA fine-tuning based 284

on a subset of selected layers. These two alternat- 285

ing processes therefore iteratively refine both the 286

model parameters and the layer selection criteria, 287

making LoRA layer selection more computation- 288

ally efficient in practice. After T iterations of these 289

alternating processes, the converged αT is output 290

as the optimal layer selection denoted as α∗ (line 291

12 in Algorithm 1). 292

Selection Strategy. To begin with, we introduce 293

the following proposition: 294

Proposition 1. If α is initialized to zeros, then for 295

any T ≥ 0 and K ≥ 0 in Alg. 1,
∑N

i=1 α
(i) = 0. 296
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Table 1: Comparison of accuracy across various common sense reasoning tasks using Llama3-8B. The baseline
experimental configuration is detailed in Appendix B. Here, "Pre-trained" refers to using the base model for
reasoning, "Full FT" indicates full parameter fine-tuning, and "Random (Greedy)" represents the best result from
randomly selected layers. Unless otherwise specified, the results are based on the default LoRA Rank of 8.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Pre-trained 48.55 67.08 59.91 67.02 63.35 61.18
Full FT 90.53 79.32 81.16 81.92 79.36 82.46

LoRA(r = 8) 89.72 76.39 82.24 82.86 80.99 83.04
LoRA(r = 16) 89.99 78.47 82.77 81.63 79.68 82.51
LoRA(r = 32) 90.01 79.56 84.36 82.36 80.99 83.46
LoRA-SP 89.37 78.97 83.67 83.27 79.01 82.86
LoRA-FA 89.16 75.97 82.16 82.79 79.03 81.83
VeRA 90.98 78.63 83.64 83.55 78.84 83.13
LoRAPrune (Ratio = 0.5) 88.42 77.12 81.23 82.96 80.42 82.03
AdaLoRA (r0 = 4) 90.17 80.20 77.19 83.15 77.93 81.73
LoRA-drop 91.86 77.91 76.46 77.30 75.24 79.75

Random (Greedy) 91.15 81.54 83.58 83.77 81.22 84.25
Flexora(r = 8) 93.62 85.91 85.79 84.61 82.36 86.46
Flexora(r = 16) 93.71 85.26 84.99 85.62 83.03 86.52
Flexora(r = 32) 93.87 86.02 85.01 84.27 81.97 86.23

The proof of this proposition is provided in Ap-297

pendix A.1. This result highlights that the mean298

value of the hyperparameter α remains 0, indicat-299

ing that after the layer selection stage, the elements300

in the optimized hyperparameter α∗ can take on301

both positive and negative values. Therefore, we302

propose to determine the layers for LoRA fine-303

tuning by selecting layers with α(i) > 0 , as these304

layers are expected to make positive contributions.305

In contrast, layers with α(i) ≤ 0 are believed to306

be less beneficial or even harmful to LoRA fine-307

tuning. As a result, this method not only facilitates308

automatic layer selection but also provides flexibil-309

ity in adjusting the number and specific layers for310

LoRA fine-tuning, helping to mitigate the potential311

overfitting and improve overall performance.312

4.3 Fine-Tuning Stage313

During the fine-tuning stage, as illustrated in Fig-314

ure 1c, we adopt a selective activation strategy. In315

this phase, we freeze the layers not selected for316

fine-tuning, keeping their parameters unchanged,317

and focus on retraining only the selected layers318

to enhance performance. This targeted approach319

concentrates computational resources on the most320

critical layers for the downstream task. By retrain-321

ing the LoRA parameters from scratch in these322

layers, the model adaptively learns optimal repre-323

sentations, reducing the risk of overfitting and im-324

proving performance, especially for simpler tasks.325

We will validate this approach with the empirical326

results presented below. 327

5 Empirical Results 328

In this section, we present comprehensive experi- 329

ments to support the effectiveness of our Flexora 330

framework with datasets and experimental setup de- 331

tailed in Sec. 5.1, main results detailed in Sec. 5.2, 332

and ablation studies detailed in Sec. 5.3. 333

5.1 Datasets and Setup 334

To evaluate the performance of our proposed Flex- 335

ora method, we primarily focus on reasoning 336

and reading comprehension tasks. Since Flex- 337

ora is the first algorithm to select layers based 338

on specific downstream tasks, we refer to and 339

modify the dataset selection process of Hu et al. 340

(2023). We selected the Winogrande(Sakaguchi 341

et al., 2019), PIQA(Bisk et al., 2019), and Hel- 342

laswag(Zellers et al., 2019) reasoning benchmarks 343

as recommended by Hu et al. (2023), and ad- 344

ditionally included the reading comprehension 345

benchmark RACE(Lai et al., 2017). Each of 346

these datasets, measured by accuracy, has inde- 347

pendent training, validation, and test sets. In 348

all experiments, we use the training set to train 349

the LoRA parameters, the validation set to tune 350

the hyperparameters introduced by Flexora, and 351

finally the test set for evaluation. It is impor- 352

tant to emphasize that the test set remains un- 353

seen during the training phase. Our experimen- 354

tal setup includes 11 mainstream large-scale lan- 355
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Figure 3: Comparison of the accuracy of various models (Llama-3-8B, ChatGLM3-6B, Mistral-7B-v0.1, and
Gemma-7B) across different tasks. Bars with green diagonal stripes represent LoRA accuracy, while blue circles
indicate Flexora accuracy, and the red dotted line represents the improvement ratio of Flexora over LoRA. Notably,
Flexora generally outperforms LoRA in most tasks and models, demonstrating its effectiveness.

guage models (LLMs), such as Llama3-8B (Meta,356

2024) and others. Our Flexora method is imple-357

mented on the Llama-factory framework(Zheng358

et al., 2024) and evaluated using the Opencom-359

pass framework(Contributors, 2023). The bench-360

marks for comparison include pre-trained models,361

Full FT, LoRA, and various LoRA enhancement362

methods that reduce trainable parameters, such as363

LoRAPrune, AdaLoRA, LoRA-drop, and others.364

Detailed descriptions of the experimental setup are365

provided in Appendix B. All experiments are con-366

ducted on a single NVIDIA A100 GPU.367

5.2 Main Results368

In this section, we evaluate the performance im-369

provement of Flexora on Llama3-8B, and the re-370

sults are listed in Table 1. The loss metrics are371

discussed in Appendix D.1. The results show that372

Flexora outperforms all baseline methods. Specif-373

ically, compared with full fine-tuning and LoRA,374

Flexora fine-tunes 0.02% and 50% of its parame-375

ters, respectively, to achieve superior performance.376

This demonstrates that fine-tuning too many param-377

eters can lead to overfitting, which not only fails378

to improve the performance of the model on down-379

stream tasks but may also reduce the generalization380

ability of the model due to the overfitting effect.381

Therefore, it is crucial to select the layers most rele-382

vant to the downstream tasks for optimization. The383

flexible layer selection stage of Flexora is able to384

consider the relationship between the pre-trained385

parameters of each LLM layer and the downstream386

task. This stage effectively identifies the most criti-387

cal layers for various downstream tasks and mini-388

mizes the risk of model overfitting by focusing on389

training these layers, resulting in excellent perfor- 390

mance. In Table 1, we also compare Flexora with 391

other methods that attempt to enhance the model 392

by reducing model parameters. Particularly, the 393

experimental results using LoRAShear are detailed 394

in Appendix C.4 and the experimental results us- 395

ing Flexora on full-parameter fine-tuning and on 396

the instruction model are detailed in Appendix C.5 397

and C.6 respectively. The results show that Flex- 398

ora can most accurately identify the most impor- 399

tant parameters to achieve the largest performance 400

improvement. Flexora introduces a flexible layer 401

selection stage, but incurs no additional compu- 402

tational overhead (see Appendix C.1 for details). 403

Flexora is a vertical method, and the discussion of 404

integration with many LoRA enhancement meth- 405

ods is detailed in Appendix C.3. We also evaluate 406

Flexora at different LoRA ranks, and the results 407

show that changing the rank has a negligible impact 408

on the performance of Flexora. The specific layers 409

selected are listed in Table 17 in the Appendix. It is 410

worth noting that the layers selected by Flexora are 411

roughly consistent under different level conditions, 412

which shows that Flexora effectively identifies the 413

layers that are most suitable for downstream tasks. 414

We also discuss the impact of different search sam- 415

ples on the training time and final performance of 416

the flexible layer selection stage, as detailed in Ap- 417

pendix C.7. In addition, Flexora shows strong gen- 418

eralization and scalability across different LLMs. 419

As shown in Figure 3 and explained in detail in 420

Appendix C.2, almost all LLMs can significantly 421

improve performance with fewer fine-tuning param- 422

eters by leveraging Flexora. In Appendix G, we 423

compare Flexora with LoRA using specific cases. 424
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Table 2: Comparison of the accuracy of different randomly selected fine-tuning layers with the same number of
fine-tuning layers. We fixed the number of fine-tuning layers to match the number selected by Flexora, ensuring that
the number of fine-tuning parameters remained constant while the layers were randomly selected for fine-tuning.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Random 1 92.97 82.91 80.98 83.98 81.10 84.39
Random 2 93.11 80.79 76.09 85.45 81.16 83.32
Random 3 92.52 80.47 83.50 84.54 81.93 84.59
Random (Avg.) 92.87 81.39 80.19 84.66 81.40 84.10
Flexora 93.62 85.91 85.79 84.61 82.36 86.46

Table 3: Comparison of the performance of models with and without a fine-tuning phase on various tasks.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Flexora (w/o Fine-Tuning Stage) 48.93 80.20 66.38 62.72 60.76 63.80
Flexora (w/ Fine-Tuning Stage) 93.62 85.91 85.79 84.61 82.36 86.46

The model fine-tuned with Flexora outperforms425

LoRA on challenging cases and provides correct426

explanations for answers not seen in the training427

set, demonstrating its strong learning and general-428

ization capabilities. Finally, we discuss the impact429

of two hyperparameters K and T introduced by430

Algorithm 1 on the results. The results show that431

changes in K and T have little effect on the layer432

selection results and model performance. For a433

more detailed discussion, see Appendix C.8.434

5.3 Ablation Studies435

Effective Layer Selection in Flexora. In the first436

ablation experiment, we maintained the number of437

layers selected by Flexora unchanged but chose438

different layers for fine-tuning, aiming to verify439

whether Flexora selected the right layers. The ex-440

perimental results are shown in Table 2. The result441

underscores two key points: First, Flexora can442

precisely determine the number of layers for fine-443

tuning. Even when the specific fine-tuning layers444

are chosen at random, the results continue to out-445

perform LoRA. The theoretical explanation for this446

result can be found in Sec. 6. Secondly, Flexora447

enables adaptive layer selection for fine-tuning, op-448

timizing performance and generalization by focus-449

ing on crucial layers while mitigating local optima-450

induced performance degradation (see Appendix F451

for details). Appendix C.10 provides an analysis of452

the characteristics of the selected layers in Flexora,453

revealing a distinct layer selection pattern. The loss454

metrics are discussed in Appendix D.2.455

Flexible Layer Selection in Flexora. In the sec-456

ond ablation experiment, we manually determine457

the number of fine-tuning layers and compare Flex-458

ora with random selection, highlighting the flexi-459

bility of Flexora. The results in Table 4 show that it 460

can achieve the best performance regardless of the 461

number of fine-tuning layers. The specific layers 462

selected are shown in Table 18. The loss metrics 463

are discussed in Appendix D.3. A noteworthy ob- 464

servation is that Flexora usually chooses the initial 465

and final layers. An intuitive explanation is that the 466

initial and final layers of the model have a signifi- 467

cant impact on the data. The initial layers directly 468

contact the original input, while the final layers are 469

related to the model output, rendering them crucial. 470

In addition, for the same downstream task, the input 471

of the initial layer is consistent and closely coupled 472

to the task, and the output of the final layer is also 473

consistent. Focusing on optimizing these layers 474

can improve learning efficiency. This conclusion 475

has also been confirmed by other studies. LoRAS- 476

hear(Chen et al., 2023) observed that the knowl- 477

edge distribution in LLM is mainly concentrated in 478

the initial and final layers. LASER(Sharma et al., 479

2023) revealed steep loss gradients in both initial 480

and final layers, enhancing model training efficacy. 481

LISA (Pan et al., 2024) found much higher weight 482

norms in initial and final layers, indicating their 483

increased importance. 484

Importance of the Fine-Tuning Stage In the 485

third ablation experiment, we investigated the sig- 486

nificance of the Fine-Tuning Stage in the Flexora 487

method by comparing model performance from the 488

Flexible Layer Selection Stage and the Fine-Tuning 489

Stage on the test set. Results in Table 3 show that 490

omitting the Fine-Tuning Stage significantly de- 491

grades performance. This is because the layer selec- 492

tion stage outputs continuous values α̂(i) ∈ [0, 1]N 493

, while we need discrete α ∈ {0, 1}N values. The 494

discrepancy between continuous and discrete α val- 495
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Table 4: Comparison of the accuracy of fine-tuning a subset of layers. We standardized the number of layers to be
fine-tuned and compared the performance of layers selected by Flexora against those selected randomly.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Random (6 Layers) 59.79 70.25 46.32 54.54 53.45 56.87
Flexora (First 6 Layers) 60.04 (+0.25) 77.20 (+6.95) 57.54 (+11.22) 69.71 (+15.17) 58.35 (+4.90) 64.57 (+7.70)
Random (12 Layers) 81.90 77.82 57.35 78.41 72.16 73.53
Flexora (First 12 Layers) 88.85 (+6.95) 79.71 (+1.89) 65.82 (+8.47) 79.42 (+1.01) 72.33 (+0.17) 77.23 (+3.70)
Random (18 Layers) 91.15 81.54 83.58 83.77 81.22 84.25
Flexora (First 18 Layers) 91.31 (+0.16) 82.21 (+0.67) 84.69 (+1.11) 84.07 (+0.30) 81.53 (+0.31) 84.76 (+0.51)
Random (24 Layers) 90.58 80.90 82.16 82.19 79.22 83.01
Flexora (First 24 Layers) 91.01 (+0.43) 81.21 (+0.31) 82.87 (+0.71) 83.53 (+1.34) 80.22 (+1.00) 83.77 (+0.76)

ues leads to a performance gap. The Fine-Tuning496

Stage is crucial as it addresses this gap by refin-497

ing the model to better approximate the discrete α498

values, thereby mitigating the performance loss.499

6 Theoretical Insights500

In this section, we provide theoretical explanations501

for why Flexora (using only a subset of LoRA lay-502

ers) can achieve excellent results. We first intro-503

duce Theorem 1 below, and then derive our general504

Proposition 2, aiming to offer theoretical insights.505

Theorem 1 (Theorem 3.8 in (Hardt et al., 2016)).506

Assume that f(·; z) ∈ [0, 1] is an L-Lipschitz507

and β-smooth loss function for every sample z.508

Suppose that we run stochastic gradient method509

(e.g., SGD) for T steps with monotonically non-510

increasing step sizes ηt ≤ c/t (t ∈ [T ]), and the511

number of samples is m. In particular, omitting512

constant factors that depend on β, c, and L, we513

have Rtest(θ, η) ≤ Rtrain(θ, η) + T 1−1/(βc+1)

m .514

Theorem 1 reveals that if all the conditions ex-515

cept for β in Theorem 1 remain the same, a smaller516

smoothness β will typically result in a smaller test517

error Rtest(θ, η), indicating a better generalization518

performance in practice. The specific definition of519

smoothness β can be found in Appendix A.2. To520

show how the number of LoRA layers is related to521

this β, we then follow the practice in (Shu et al.,522

2020) to prove our Proposition 2 below.523

Proposition 2. For an N -layer linear multi-layer524

perceptron (MLP): y(N) ≜
∏N

j=1W
(j)x with525

MSE function ℓ ≜ (y(N) − y)2/2 where y de-526

notes the true label, let λ(i) =
∥∥W (i)

∥∥ for any527

i ∈ [N ], we then have
∥∥∥∥ ∂ℓ

∂W
(i)
1

− ∂ℓ

∂W
(i)
2

∥∥∥∥ ≤528 (∏N
j=1,j ̸=i λ

(j)
)2

∥x∥2
∥∥∥W (i)

1 −W
(i)
2

∥∥∥.529

The proof of Proposition 2 is in Appendix A.3.530

Given Proposition 2, the block-wise smoothness531

β
(N)
i on layer i ∈ [N ] of an N -th layer MLP can532

be bounded by: β(N)
i ≤

(∏N
j=1,j ̸=i λ

(j)
)2

∥x∥2. 533

From this bound, we can see that as the number 534

of layers N increases, the upper bound of β
(N)
i 535

will also be increasing as λ(i) > 1 for i ∈ [N ]. 536

Thus, shallow MLP of fewer layers are more likely 537

to have smaller overall smoothness β. Thanks to 538

this smaller overall smoothness β, shallow MLP of 539

fewer layers are more likely to achieve a smaller 540

generalization gap (i.e., the second term on the 541

right-hand side of Theorem 1) than deep MLP with 542

more layers. When the training error Rtrain(θ, η) is 543

the same, that is, both shallow and deep MLPs are 544

fully trained to converge, the shallower MLP may 545

have a lower test error Rtest(θ, η) and thus may 546

exhibit better performance on downstream tasks. 547

To demonstrate that Proposition 2 is also applica- 548

ble to the Transformer model and LoRA method, 549

we present theoretical insights and experiments in 550

Appendix E. These experiments demonstrate that, 551

the smoothness of the Transformer model also in- 552

creases exponentially with the number of layers. 553

We can now answer the question posed earlier. 554

Flexora employs LoRA adapters to a subset of 555

LLM layers, effectively reducing the smoothness 556

of the network. When sufficiently trained to conver- 557

gence, the aforementioned theory suggests that net- 558

works with less smoothness are more likely to bet- 559

ter generalization and performance on downstream 560

tasks. In summary, the reason Flexora achieves 561

excellent results is that it makes the model more 562

suitable for downstream tasks. 563

7 Conclusion 564

We introduce Flexora, a method to enhance fine- 565

tuning efficiency and effectiveness in large lan- 566

guage models (LLMs) by automatically selecting 567

critical layers. By formulating layer selection as 568

an HPO problem and using UD. Experiments show 569

Flexora decreases parameters , mitigates overfit- 570

ting, is scalable and outperforms baselines. 571
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Limitations572

In this section, we aim to highlight some potential573

considerations that may lead to suboptimal perfor-574

mance of Flexora. The layer selection strategy in575

Flexora is primarily based on the magnitude of576

the optimized hyperparameters. If the validation577

set used for optimizing these hyperparameters is578

too small, especially when the downstream task is579

complex, it may result in the optimization process580

converging to a hyperparameter gap that is too nar-581

row. In such cases, the layer selection strategy may582

fail, leading to the incorrect choice of layers for sub-583

sequent optimization stages, ultimately resulting in584

poor performance. To address the issue of having585

a minimal validation set for different datasets, we586

conducted additional experiments on search sam-587

ples, as detailed in Appendix C.7. These experi-588

ments demonstrate that an insufficient number of589

samples can indeed lead to poor performance. How-590

ever, this issue can be mitigated by increasing the591

number of search samples. Furthermore, although592

Flexora is a vertical method and can theoretically593

be combined with all LoRA methods, there are cer-594

tain methods for which fine-tuning only specific595

layers significantly impacts the model’s fine-tuning596

effectiveness. In such cases, these methods may597

not be compatible with Flexora.598

Ethics Statement599

We have manually reevaluated the dataset we cre-600

ated to ensure it is free of any potential for discrim-601

ination, human rights violations, bias, exploitation,602

and any other ethical concerns.603
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A Theorems and proofs778

We first prove Proposition 1, then introduce the theorems proposed by (Blair, 1985) and (Hardt et al.,779

2016), which reveal the properties of β-smooth, a necessary theoretical basis for proving Proposition 2.780

Finally, we prove Proposition 2.781

A.1 Proof of proposition 1782

The proof of Proposition 1 is expressed as follows:783

Proof. It is easy to verify that784

∂α̂(j)

∂α(i)
=

{
α̂(j)(1− 1

n α̂
(j)), if j = i

− 1
n α̂

(j)α̂(i), if j ̸= i
.785

Therefore, given that
∑n

i=1 α̂
(i) = n786

n∑
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∂α̂(j)
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(
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n
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α̂(i)
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787

When applying SGD to update α, we have788

n∑
i=1

α(i) − η
n∑

i=1

n∑
j=1

∂R̂val

∂α̂(j)

∂α̂(j)

∂α(i)
=

n∑
i=1

α(i) .789

That is, the updated α shares the same summation as the one before the updates, which therefore790

concludes our proof.791

A.2 Definition of β-Smooth792

Definition 1. β-smooth refers to the Lipschitz continuity of the gradient of the loss function, that is, for
all w and w′:

∥∇f(w; z)−∇f(w′; z)∥ ≤ β∥w − w′∥
where ∥ · ∥ denotes the norm of the vector, and f(w; z) is the loss function with parameter w for sample z.793

Let fdeep(w) and fshallow(w) be the loss functions for deep and shallow architectures, respectively.794

According to Definition 1, the relationship between βdeep and βshallow illustrates the relationship between795

the generalization and performance of deep and shallow networks.796

A.3 Proof of proposition 2797

Abstract LLM into a layered network:(Shu et al., 2020) As shown in Figure 4, we abstract LLM into a798

hierarchical network, and the weight of each layer is represented by W (i). Figure 4 represents the general799

case. The output of the i-th layer network is:800

y =

n∏
j=1

W (j)x. (5)801

Gradient analysis: For the abstract network, represented in Equation 5. The gradient of the loss802

function ℓ with respect to the weight W (i) is:803

∂ℓ

∂W (i)
=

 n∏
j=i+1

W (j)

 ∂ℓ

∂y(i)
x

i−1∏
j=1

W (j)

 . (6)804

The proof of Proposition 2 is expressed as follows:805
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𝑥

Decoder Layer 0

…

Decoder Layer n

…

Decoder Layer N - 1

output

Figure 4: We present LLM as a hierarchical network. In this context, all parameters of a Decoder layer are
represented as a weight matrix W for subsequent analysis.

Proof. For the abstract network, we begin with Definition 1: 806∥∥∥∥∥ ∂ℓ

∂W
(i)
1

− ∂ℓ

∂W
(i)
2

∥∥∥∥∥
=
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2

)
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∥∥∥∥∥∥ .
(7) 807

Taking MSE Loss as an example, for one predictions y(N) and their corresponding true values y: 808

ℓ ≜ (y(N) − y)2/2, (8) 809

therefore: 810

∂ℓ

∂y(i)
=
(
y(N) − y

) N∏
j=i+1

W (j). (9) 811

We select the MSE loss function and calculat the i-th layer of N layers network, Substituting Equation 9 812

into Equation 7: 813
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(10) 814

which therefore concludes our proof. 815
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B Experimental setting816

In the main experiment, we compared Flexora with the baseline. The datasets and experimental parameters817

are as follows:818

B.1 Dataset819

In this section, we introduce the statistics of the dataset and the additional processing performed on the820

dataset. The statistics of the dataset are shown in Table 5. In addition, We added new templates to the821

original dataset to ensure the model could complete the required tasks and output formats. It is important822

to note that the added templates did not alter the original dataset, and special processing was performed823

for different LLMs. The specific examples are as follows:824

Dataset Format of Hellaswag

dataset: Hellaswag
dataset format:
{
"instruction": "{Article}\n
Question: {Question}\n
A. {Option A}\n
B. {Option B}\n
C. {Option C}\n
D. {Option D}\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:",
"output": "{Answer}"
}
example:
{
"instruction": "A man is sitting on a roof. He\n
Question: Which ending makes the most sense?\n
A. is using wrap to wrap a pair of skis.\n
B. is ripping level tiles off.\n
C. is holding a Rubik’s cube.\n
D. starts pulling up roofing on a roof.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:",
"output": "D"
}

825

Dataset Format of PIQA

dataset: PIQA
dataset format:
{
"instruction": "There is a single choice question.
Answer the question by replying A or B.’\n
Question: {Question}\n
A. {Option A}\n
B. {Option B}\n
Answer:",
"output": "{Answer}"
}
example:
{
"instruction": "There is a single choice question.
Answer the question by replying A or B.’\n
Question: When boiling butter, when it’s ready, you can\n
A. Pour it onto a plate\n
B. Pour it into a jar\n
Answer:",
"output": "B"
}

826
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Dataset Format of Winogrande

dataset: Winogrande
dataset format:
{
"instruction": "There is a single choice question,
you need to choose the correct option to fill in the blank.
Answer the question by replying A or B.’\n
Question: {Question}\n
A. {Option A}\n
B. {Option B}\n
Answer:",
"output": "{Answer}"
}
example:
{
"instruction": "There is a single choice question,
you need to choose the correct option to fill in the blank.
Answer the question by replying A or B.’\n
Question: Sarah was a much better surgeon than Maria so _ always got the
easier cases.\n
A. Sarah\n
B. Maria\n
Answer:",
"output": "B"
}

827

Dataset Format of RACE

dataset: RACE
dataset format:
{
"instruction": "{Article}
{Question}\n
[ {Option A}, {Option B}\, {Option C}, {Option D}]",
"output": "{Answer}"
}
example:
{
"instruction": "I am a psychologist. I first met Timothy, a quiet,
overweight eleven-year-old boy, when his mother brought him to me to discuss
his declining grades. A few minutes with Timothy were enough to confirm that
his self-esteem and general happiness were falling right along with _ .
I asked about Timothy’s typical day. He awoke every morning at six thirty
so he could reach his school by eight and arrived home around four thirty each
afternoon. He then had a quick snack, followed by either a piano lesson
or a lesson with his math tutor. He finished dinner at 7 pm, and then he sat
down to do homework for two to three hours. Quickly doing the math in my
head, I found that Timothy spent an average of thirteen hours a day
at a writing desk.\n
What if Timothy spent thirteen hours a day at a sewing machine instead of
a desk? We would immediately be shocked, because that would be called
children being horribly mistreated. Timothy was far from being mistreated,
but the mountain of homework he faced daily resulted in a similar consequence
--he was being robbed of his childhood. In fact, Timothy had no time
to do anything he truly enjoyed, such as playing video games, watching
movies, or playing board games with his friends.\n
Play, however, is a crucial part of healthy child development.
It affects children’s creativity, their social skills, and even their brain
development. The absence of play, physical exercise, and freefrom social
interaction takes a serious toll on many children. It can also cause
significant health problems like childhood obesity, sleep problems
and depression.\nExperts in the field recommend the minutes children
spend on their homework should be no more than ten times the number
of their grade level./nWhat did the writer think of Timothy after
learning about his typical day?/n
[’Timothy was very hardworking.’,
’Timothy was being mistreated.’,
’Timothy had a heavy burden.’,
’Timothy was enjoying his childhood.’]",
"output": "C"
}

828

B.2 Specific experimental parameters 829

Based on the Llama3-8B model configuration, several adjustments were made to optimize model per- 830

formance. In the baseline model experiment, generation parameters were adjusted to ensure the correct 831
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Table 5: Number of samples in the train, validation, and test datasets for various dateset.

Number of samples train dataset validation dataset test dataset

Hellaswag 39900 10000 10000
PIQA 16000 2000 3000
Winogrande 40398 1267 1767
RACE 87866 4887 4934

Table 6: Detailed experimental parameters. This table lists the specific parameters we used in the experiments
for various methods. These parameters include the target module of LoRA (Lora Target), the maximum sequence
length (Max Length), the number of samples for supervised fine-tuning (SFT Samples), the learning rate (LR), the
number of search samples (Search Samples), the initial rank (Init Rank), the target rank (Target Rank), and the
ratio of pruning (Ratio). Epoch represents the epoch of training. In particular, the epochs of Flexora in the Flexora
Layer Selection stage and the Fine-tuning stage are different. In the table, the former is the epoch of the Flexible
Layer Selection stage and the latter is the epoch of the Fine-tuning stage. All other parameters not listed here remain
consistent across all experiments.

Methods LoRA Target Max Length SFT Samples LR Search Samples Init Rank Target Rank Ratio Epoch

LoRA q & v Proj 1024 20000 0.0001 - - - - 3

Flexora q & v Proj 1024 20000 0.0001 20000 - - - 1/3

AdaLoRA q & v Proj 1024 20000 0.0001 - 4 8 - 3

LoRA-drop q & v Proj 1024 20000 0.0001 20000 - - - 3

LoRAShear q & v Proj 1024 20000 0.0001 20000 - - 0.5 3

Dora q & v Proj 1024 20000 0.0001 20000 - - - 3

rsLoRA q & v Proj 1024 20000 0.0001 20000 - - - 3

LoRAPrune q & v Proj 1024 20000 0.0001 20000 - - 0.5 3

output. In the LoRA experiment, adjustments to the generation parameters were retained, and LoRA-832

related parameters were adjusted. In the Flexora experiment, the size of the validation set was adjusted833

to control the time required to search for the optimal layer. In the AdaLoRA experiment, the initial834

rank size was modified to ensure that the fine-tuning parameters are consistent with Flexora. In the835

LoRA-drop experiment, the number of fine-tuning layers was set to be consistent with Flexora to ensure836

that the fine-tuning parameters are consistent. In the LoRAShear experiment, the pruning ratio was837

modified, where the parameter amount with a pruning ratio of 50% is consistent with Flexora. For specific838

experimental parameters, see the table 6.839

B.3 Other LLMs experimental parameters840

In order to explore the versatility and scalability of Flexora, we conducted experiments on multiple841

different LLMs. The specific training parameters are shown in Table 7.842

C More results843

C.1 Computational Overhead of Flexora844

This section analyzes the computational overhead of Flexora, focusing on the flexible layer selection845

stage and comparing the overall cost with LoRA.846

Flexible Layer Selection Cost Flexora operates in two phases: (1) flexible layer selection and (2)847

fine-tuning. The layer selection phase identifies the optimal layer combination, and its computational cost848

scales with the number of samples used for the search. Table 14 shows the average search time increases849

with the number of samples, but remains manageable. For example, searching with 1,000 samples takes850

0.08 hours, while searching with 10,000 samples takes 0.8 hours. This demonstrates the efficiency of851

the search process, even for larger datasets. It is important to note that the cost associated with the852

flexible layer selection phase is relatively low, especially when considering the significant improvements853
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Table 7: Detailed LLM experiment parameters. This table provides a comprehensive overview of the specific
parameters used for different large language models (LLMs) in our experiments. These parameters include the
LoRA alpha value (LoRA Alpha), the dropout rate of LoRA (LoRA Dropout), the rank used in LoRA (LoRA Rank),
and the target module of LoRA (LoRA Target). In addition, the table lists the specific templates used for each LLM,
which are derived from Llama-factory (Template). For experiments involving different downstream tasks using the
same model, all other parameters are kept consistent to ensure fair comparison and best performance.

LLM LoRA Alpha LoRA Dropout LoRA Rank LoRA Target Tamplate (From Llama-factory)

Llama3 16 0 8 q & v Proj llama3

Llama 16 0 8 q & v Proj defult

Llama2 16 0 8 q & v Proj llama2

chatglm3 16 0 8 query_key_value chatglm3

Mistral-v0.1 16 0 8 q & v Proj mistral

gemma 16 0 8 q & v Proj gemma

zephyr 16 0 8 q & v Proj zephyr

vicuna 16 0 8 q & v Proj vicuna

xuanyuan 16 0 8 q & v Proj xuanyuan

qwen1.5 16 0 8 q & v Proj qwen

yi 16 0 8 q & v Proj yi

in accuracy it yields. While the search time does increase with the number of samples, the overall cost 854

remains acceptable, particularly in tasks where accuracy is of paramount importance. In such scenarios, 855

the benefits of identifying the optimal layer combination far outweigh the modest computational expense 856

incurred during the search process. Moreover, the efficiency of this search process allows for exploration 857

of a wider range of potential layer combinations, increasing the likelihood of discovering highly effective 858

architectures that contribute to improved model performance and generalization. This efficient layer 859

selection strategy is a crucial component of Flexora, enabling it to achieve state-of-the-art results without 860

incurring prohibitive computational costs. 861

Comparison with LoRA During fine-tuning, Flexora significantly reduces both training time and the 862

number of trainable parameters compared to LoRA, as shown in Table 8. Flexora reduces training time 863

by 4.0% to 22.6% and the number of trainable parameters by 41.2% to 50.0% across various datasets. 864

Importantly, the total computational cost of Flexora (search plus fine-tuning) is comparable to LoRA’s 865

fine-tuning cost alone. For instance, on Hellaswag, LoRA fine-tuning requires 5.30 hours, while Flexora 866

takes 4.71 + 0.08 = 4.79 hours. On Winogrande, LoRA requires 4.96 hours, and Flexora takes 3.84 + 867

0.08 = 3.92 hours. This shows Flexora doesn’t introduce significant additional overhead compared to 868

LoRA, while achieving better performance and efficiency. 869

Resource-Constrained Scenarios Flexora’s efficiency is particularly beneficial in resource-constrained 870

settings. The layer search can use a small number of samples (e.g., 1,000), requiring minimal resources 871

(e.g., 0.08 hours). The reduction in trainable parameters and training time further makes Flexora suitable 872

for deployment in resource-limited environments. In conclusion, Flexora exhibits minimal computational 873

overhead, comparable to LoRA, while substantially improving efficiency and performance, making it a 874

practical approach for fine-tuning large language models. 875

C.2 The results of other LLMs experiment 876

Wide Applicability of Flexora. According to the parameter settings in Table 7, the verification results 877

for various LLMs are presented in Table 9. The selected LLMs include Llama3-8B, Llama-7B, Llama2-7B, 878

ChatGLM3-6B, Mistral-7B-v0.1, Gemma-7B, Zephyr-7B-beta, Vicuna-7B-v1.5, XuanYuan-6B, Qwen1.5- 879

7B, and Yi-6B. These models demonstrate unique characteristics in terms of training data, architecture 880

design, and optimized training. First, the models utilize varied training data, leading to differences in data 881

distribution. Additionally, some models have enhanced attention mechanisms: Mistral-7B-v0.1 employs 882

grouped query attention (GQA) and sliding window attention (SWA), while ChatGLM3-6B features a 883
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Table 8: Comparison of training time and parameters, with the green font indicating the reduction ratio, is conducted
on a single NVIDIA A100 GPU using Llama3-8B. The time metric reflects the wallclock time for the fine-tuning
phase of LoRA and Flexora, excluding the layer selection phase.

Metrics Method Hellaswag PIQA Winogrande RACE

Time (h)
LoRA 5.30 4.03 4.96 8.37
Flexora 4.71 (11.1%) 3.87 (4.0%) 3.84 (22.6%) 7.46 (10.9%)

# Params (M)
LoRA 3.4 3.4 3.4 3.4
Flexora 2.00 (41.2%) 1.70 (50.0%) 1.70 (50.0%) 1.70 (50.0%)

special attention design to support tool calling and code execution capabilities. Activation functions vary884

across these models. Llama3-8B uses the SwiGLU activation function, inspired by the PaLM model, to885

improve performance and convergence speed, while ChatGLM3-6B uses the Swish activation function.886

Furthermore, differences in reasoning optimization and multilingual capabilities contribute to varied887

reasoning abilities across fields. The experimental result of each model is shown in Table 9, which presents888

the scores of each model on different downstream tasks after LoRA and Flexora fine-tuning. It should889

be noted that all models fine-tuned using LoRA will have a certain degree of overfitting, while Flexora890

can effectively identify and analyze unnecessary layers in specific downstream tasks and prune them to891

reduce model overfitting. After optimization by Flexora, these LLMs showed significant performance892

improvements on downstream tasks. In particular, models that originally performed poorly on some tasks,893

such as ChatGLM3-6B, experienced significant improvements, achieving more than a 15% increase on the894

RACE-mid and RACE-high tasks. This improvement is attributable to the key layer selection by Flexora895

and efficient model learning. In summary, Flexora is applicable across Transformer models of various896

structures, excels in diverse tasks, and effectively enhances areas where model capabilities are lacking.897

C.3 The results of other LoRAs experiment898

Strong Scalability of Flexora. Recently, as highlighted in the introduction, many LoRA improvement899

methods have been proposed and have achieved excellent performance in specific fine-tuning tasks. In this900

section, we explore the potential of combining our algorithm with other emerging LoRA algorithms. Four901

promising LoRA variants are selected from different methods, each demonstrating impressive performance.902

Specifically, DoRA (Decomposed Low Rank Adaptation by Weight) (Mao et al., 2024a) achieves low-rank903

adaptation through weight decomposition, and rsLoRA (Rank-Stabilized LoRA) (Kalajdzievski, 2023)904

addresses the slow training speed of traditional LoRA by introducing a rank-stable scaling factor when905

increasing the rank. These methods primarily solve the parameter overfitting problem within the LoRA906

parameters but overlook the overall overfitting problem. By innovatively combining these methods with907

our algorithm, we first address the overall overfitting problem and then tackle the overfitting issue of the908

remaining LoRA parameters, thereby significantly improving performance. Additionally, we attempt to909

integrate with other methods to enhance the representation ability of LoRA. For instance, MoSLoRA910

(Mixture-of-Subspaces in Low-Rank Adaptation) (Wu et al., 2024a)decomposes LoRA into subspaces911

via structural re-parameterization, employing a learnable mixer to fuse more subspaces more flexibly.912

LoReFT (Low-rank Linear Subspace ReFT) (Wu et al., 2024c)is a parameter-efficient finetuning method913

that operates on a frozen base model, learning task-specific interventions on hidden representations. The914

specific experimental results are shown in Table 10. The results indicate that Flexora can be effectively915

integrated with DoRA and rsLoRA, alleviating the overfitting problem of LLM and improving performance916

with less than half of the parameters. Notably, the integration of Flexora and LoReFT can further enhance917

performance. Flexora helps LoReFT identify the most suitable layer for fine-tuning, avoiding performance918

loss caused by manually selecting the fine-tuning layer. However, MoSLoRA is not suitable for integration919

with Flexora because MoSLoRA combines the A and B matrices of all LoRA layers. Deleting a layer920

would cause significant changes and degrade performance. The specific implementation requires replacing921

LoRA with DoRA, rsLoRA, MoSLoRA, or LoReFT for inner layer optimization during the flexible922

layer selection stage, while the outer layer optimization remains unchanged. These adjustments can be923
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Table 9: Detailed comparison of the accuracy of different LLMs. This table presents a comprehensive comparison of
the accuracy results obtained by fine-tuning various mainstream Large Language Models (LLMs) using Flexora and
LoRA methods. The accuracy metrics are reported across multiple benchmark datasets, including HellaSwag, PIQA,
Winogrande, RACE-mid, and RACE-high. The average accuracy across all datasets is also provided. The exact
values of accuracy improvements for each method, highlighted in red, indicate the performance gains achieved.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Llama3-8B-LoRA 89.72 76.39 82.24 82.86 80.99 83.04
Llama3-8B-Flexora 93.62

(+3.90)
85.91
(+9.52)

85.79
(+3.55)

84.61
(+1.75)

82.36
(+1.37)

86.46
(+3.42)

Llama-7B-LoRA 76.10 69.80 67.01 75.69 70.81 71.88
Llama-7B-Flexora 85.28

(+9.18)
71.93
(+2.13)

74.11
(+7.10)

81.62
(+5.93)

78.62
(+7.81)

78.31
(+6.43)

Llama2-7B-LoRA 79.60 75.90 78.60 79.32 75.07 77.70
Llama2-7B-Flexora 90.89

(+11.29)
81.72
(+5.82)

82.85
(+4.25)

84.89
(+5.57)

83.19
(+8.12)

84.71
(+7.01)

Chatglm3-6B-LoRA 83.02 70.62 69.93 63.43 59.46 69.29
Chatglm3-6B-Flexora 85.12

(+2.10)
74.81
(+4.19)

72.69
(+2.76)

79.18
(+15.75)

76.33
(+16.87)

77.63
(+8.33)

Mistral-7B-v0.1-LoRA 94.35 82.15 84.85 83.79 82.39 85.51
Mistral-7B-v0.1-Flexora 95.08

(+0.73)
86.89
(+4.74)

85.50
(+0.65)

85.72
(+1.93)

84.25
(+1.86)

87.49
(+1.98)

Gemma-7B-LoRA 94.85 83.19 80.19 85.73 83.96 85.58
Gemma-7B-Flexora 95.76

(+0.91)
87.54
(+4.35)

83.58
(+3.39)

89.62
(+3.89)

88.19
(+4.23)

88.94
(+3.35)

Zephyr-7B-beta-LoRA 93.77 75.03 78.37 83.45 82.25 82.57
Zephyr-7B-beta-Flexora 95.05

(+1.28)
85.58
(+10.55)

84.95
(+6.58)

86.19
(+2.74)

84.30
(+2.05)

87.21
(+4.64)

Vicuna-7B-v1.5-LoRA 87.64 69.48 63.85 67.30 73.90 72.43
Vicuna-7B-v1.5-Flexora 90.43

(+2.79)
79.49
(+10.01)

76.06
(+12.21)

82.94
(+15.64)

81.90
(+8.00)

82.16
(+9.73)

XuanYuan-6B-LoRA 82.38 74.16 65.27 78.04 72.11 74.39
XuanYuan-6B-Flexora 88.41

(+6.03)
79.43
(+5.27)

73.40
(+8.13)

84.89
(+6.85)

80.70
(+8.59)

81.37
(+6.97)

Qwen1.5-7B-LoRA 91.75 75.03 78.14 87.59 81.36 82.77
Qwen1.5-7B-Flexora 91.96

(+0.21)
84.33
(+9.30)

80.69
(+2.55)

89.90
(+2.31)

87.08
(+5.72)

86.79
(+4.02)

Yi-6B-LoRA 89.46 78.29 76.01 80.02 85.13 81.78
Yi-6B-Flexora 92.24

(+2.78)
84.82
(+6.53)

84.96
(+8.95)

88.72
(+8.70)

86.91
(+1.78)

87.53
(+5.75)
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Table 10: Detailed comparison of the accuracy of the combination of Flexora and different LoRA algorithms
on Llama3-8B. This table presents a detailed comparison of the accuracy results obtained by integrating Flexora
with various improved LoRA algorithms, including DoRA, rsLoRA, MoSLoRA and LoReFT, while maintaining
other experimental settings constant. The accuracy metrics are reported across multiple benchmark datasets,
including HellaSwag, PIQA, Winogrande, RACE-mid, and RACE-high, with the average accuracy across all
datasets also provided. The results are compared against those obtained from direct fine-tuning without Flexora.
The experimental findings indicate that the application of Flexora can significantly reduce model overfitting and
enhance overall performance.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

LoRA 89.72 76.39 82.24 85.86 80.99 83.04
Flexora (w/ LoRA) 93.62 85.91 85.79 84.61 82.36 86.46

rsLoRA 94.33 87.21 85.32 87.60 84.36 87.76
Flexora (w/ rsLoRA) 94.83 87.58 86.69 88.21 85.46 88.55

DoRA 93.62 85.75 84.77 86.77 83.39 86.86
Flexora (w/ DoRA) 94.10 86.05 86.32 87.12 84.45 87.61

LoReFT 96.31 90.24 87.48 88.21 85.33 89.51
Flexora (w/ LoReFT) 96.47 91.06 87.23 88.36 84.97 89.62

MoSLoRA 93.53 85.97 84.26 86.13 83.75 86.73
Flexora (w/ MoSLoRA) 93.76 86.43 85.36 85.09 82.07 86.54

Table 11: Detailed comparison of commonsense reasoning task accuracy. This table provides a comprehensive
comparison of the accuracy results for various methods applied to common sense reasoning tasks, conducted on
the Llama-7B model. The methods compared include the pre-trained model, LoRA, LoRAShear with different
pruning ratios (0.5), and Flexora. The accuracy metrics are reported across multiple benchmark datasets, including
BoolQ, PIQA, HellaSwag, Winogrande, ARC-e, ARC-c, and OBQA. The average accuracy across all datasets is
also provided. The “Ratio" column represents the ratio of parameter pruning in LoRAShear.

Methods BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Pre-trained 57.98 60.94 34.35 52.25 31.82 27.30 35.80 42.92
LoRA 67.76 69.80 76.10 67.01 67.21 35.23 38.60 60.24
LoRAShear (Ratio = 0.5) 63.40 72.15 49.83 56.40 49.45 34.31 35.86 51.63
Flexora 73.54 71.93 85.28 74.11 71.22 45.64 39.86 65.94

achieved through direct modification. The results demonstrate that Flexora exhibits strong scalability924

when combined with algorithms for enhancing LoRA parameters, highlighting its great potential.925

C.4 Comparison with LoRAShear926

Better Performance of Flexora. In this section, the accuracy of Flexora is compared with that of927

LoRAShear across various datasets, with specific results presented in Table 11. Since LoRAShear is not928

open source and poses challenges for direct experimentation, the comparison relies on the experimental929

configurations and results reported in the LoRAShear paper. Notably, Flexora can freely adjust the selected930

layers according to the dataset, achieving an average pruning parameter rate of 50%. Consequently, under931

the same pruning rate, Flexora outperforms by 14% (Ratio = 0.5). Experiments have shown that under932

the same pruning rate, Flexora can achieve better performance. Note that during the test, BoolQ only has933

training and test sets. We still keep the test set unchanged for testing the model, use 80% of the training set934

data to train LoRA parameters, and use the other 20% of the data to train the hyperparameters introduced935

by Flexora. In addition, the reason for the poor performance on the ARC and OBQA datasets is that the936

number of validation sets is small, and the layer selection may not be accurate enough. For a discussion937

on the number of validation sets and the accuracy, see section C.7.938

C.5 Flexora in full-parameter fine-tuning939

Flexora can improve the performance of full parameter fine-tuning. In this section, we evaluate940

the performance of Flexora in the context of full-parameter fine-tuning. Specifically, while maintaining941

the inner loop optimization steps unchanged, we modify the trainable parameters in the outer loop from942
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Table 12: Performance comparison of Full Fine-Tuning (Full FT), LoRA, and their Flexora-enhanced variants across
multiple reasoning and reading comprehension tasks, including Hellaswag, PIQA, Winogrande, RACE-mid, and
RACE-high. Results are reported as accuracy, with improvements over baseline methods indicated in parentheses.
Flexora significantly enhances both Full FT and LoRA, with the largest gains observed for LoRA, achieving an
average accuracy of 86.46% (+3.42% over LoRA).

Method Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Full FT 90.53 79.32 81.16 81.92 79.36 82.46
Flexora(w/ Full FT) 91.32(+0.79) 83.21(+3.89) 81.73(+0.57) 83.13(+1.21) 80.37(+1.01) 83.95(+1.49)
LoRA 89.72 76.39 82.24 82.86 80.99 83.04
Flexora(w/ LoRA) 93.62 (+3.90) 85.91 (+9.52) 85.79 (+3.55) 84.61 (+1.75) 82.36 (+1.37) 86.46 (+3.42)

Table 13: Comparison of Flexora with base models and instruction-tuned models on various datasets. Numbers
in parentheses indicate the relative improvement over the corresponding base model or instruction-tuned model.
Flexora demonstrates consistent improvements across all datasets and settings.

Method Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Base Model 48.55 67.08 59.91 67.02 63.35 61.18
Flexora(w/ Base Model) 93.62 (+45.07) 85.91 (+18.83) 85.79 (+25.88) 84.61 (+17.59) 82.36 (+19.01) 86.46 (+25.28)
Instruct Model 89.38 80.36 81.35 81.36 79.48 82.39
Flexora(w/ Instruct Model) 93.53 (+4.15) 85.76 (+5.4) 85.67 (+4.32) 84.58 (+3.22) 82.19 (+2.71) 86.35 (+3.96)

the LoRA adapter to the full set of parameters of the LLM itself. The experimental results, presented in 943

Table 12, demonstrate that although Flexora enhances performance in full-parameter fine-tuning compared 944

to baseline methods, it still falls short of the performance achieved by LoRA + Flexora. This suggests 945

that full-parameter fine-tuning, which involves adjusting all layers of the model, is more susceptible to 946

overfitting, even when employing the layer selection mechanism of Flexora. These findings underscore 947

the significance of parameter-efficient approaches like LoRA, particularly in scenarios where overfitting 948

is a critical concern, such as in customization or personalization tasks with limited disk storage. The 949

capability of Flexora to identify and prioritize critical layers proves especially advantageous in these 950

contexts, offering a balanced trade-off between model adaptability and resource efficiency. 951

C.6 Flexora in instruct model 952

Effectiveness of Flexora on instruct models. To demonstrate the effectiveness of Flexora on the 953

instruct model, we conducted experiments on Meta-Llama-3-8B-Instruct. The experimental results are 954

shown in Table 13, which show that Flexora always maintains excellent performance on both the base 955

model and the instruct model. This confirms that Flexora is effective in different fine-tuning scenarios 956

(including instruct model adaptation). 957

C.7 Different search sample 958

Flexibility of Flexora in search sample . In Flexora, search time is managed by adjusting the max- 959

imum number of search samples (corresponding to the size of the validation dataset) to align with the 960

requirements of the downstream task. In Table 14, we explore the relationship between different numbers 961

of search samples, downstream task performance, and search time. For simpler datasets like Hellaswag and 962

PIQA, a 10-minute search with 1,000 samples significantly improves performance. For more challenging 963

tasks, at least 1 hour of search time is required for 5,000 samples. In more difficult tasks, using too few 964

samples can prevent validation loss from converging. To optimize performance, it is recommended to 965

dynamically adjust the number of search samples based on the convergence of the validation loss. In 966

summary, for simpler downstream tasks, Flexora can be rapidly applied to reduce model overfitting signif- 967

icantly and enhance performance. For more challenging downstream tasks, Flexora balances performance 968

and training resources by adjusting the number of search samples. 969
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Table 14: Detailed analysis of the impact of different numbers of search samples on the Flexora accuracy of
Llama3-8B. This table investigates how varying the number of search samples, i.e., different validation dataset
sizes, affects the performance of Flexora. The accuracy metrics are reported across multiple benchmark datasets,
including HellaSwag, PIQA, Winogrande, RACE-mid, and RACE-high, with the average accuracy across all
datasets also provided. The number of search samples tested includes 1000, 2000, 5000, 10000, and 200000. All
experimental conditions remain unchanged except for the size of the validation set, allowing for a focused analysis
on the impact of search sample size on model performance.

# Samples Hellaswag PIQA Winogrande RACE-mid RACE-high Average Time(h)

1000 93.00 80.52 83.04 76.74 72.93 0.08
1267 - - 85.79 - - 0.12
2000 92.29 85.91 - 80.15 78.82 0.17
4887 - - - 84.82 82.36 0.4
5000 93.17 - - - - 0.42
10000 93.62 - - - - 0.8

Table 15: Performance comparison of different hyperparameter settings K and T on various datasets. The rows
represent different combinations of hyperparameters K and T . The columns represent the accuracy results on
different datasets: HellaSwag, PIQA, Winogrande, RACE-mid, and RACE-high. The last column shows the average
accuracy across all datasets.

# K and T Hellaswag PIQA Winogrande RACE-mid RACE-high Average

K = 4, T = 1 93.57 85.76 85.72 84.62 82.46 86.43
K = 8, T = 1 93.62 85.91 85.79 84.61 82.36 86.46
K = 4, T = 2 93.78 85.37 84.16 83.96 83.17 86.09
K = 8, T = 2 93.07 85.16 85.01 84.57 82.06 85.97
K = 4, T = 4 92.97 85.72 85.56 85.07 82.11 86.29
K = 8, T = 4 93.89 86.01 85.79 84.99 82.46 86.63

C.8 Ablation experiments on training settings970

The choice of K and T is not important The K and T parameters of Flexora are inherited from the971

UD algorithm (Bao et al., 2021). As discussed in Section 2, some applications of the UD algorithm are972

highly sensitive to the choice of K and T (Liu et al., 2019). Therefore, we conducted ablation experiments973

to determine the optimal values for K and T . The specific experimental results are presented in Table 15.974

The results demonstrate that Flexora is highly robust to variations in K and T . This robustness may975

be attributed to the significant variability in the contribution of LLM layers to downstream tasks. For976

a detailed discussion, see Section C.10. Regardless of the settings for K and T , Flexora consistently977

identifies the layers that contribute the most to downstream tasks.978

C.9 More results for preliminary study979

This section provides additional experimental results that are not shown in Section 3.1. In these exper-980

iments, we kept the randomly selected layers unchanged and only varied the LoRA rank. The specific981

experimental results are shown in Table 16. The results indicate that regardless of the selected rank, the982

model’s performance improves with an increasing number of LoRA fine-tuned layers up to a certain983

threshold. Beyond this threshold, further increasing the number of fine-tuned layers may lead to a decline984

in model performance. This intriguing phenomenon motivates our research.985

C.10 Selection of layers986

For different LLMs and datasets, the layers chosen by Flexora vary due to the different parameters987

learned in the pre-training stage and the diversity of downstream tasks. In Table 17, Table 18, Table 19,988

Table 20, and Table 21, we show the layers chosen by Flexora in all experiments and the corresponding989

training parameters. In this section, the preferences of the layers chosen by Flexora are analyzed in detail,990

providing layer-wise insights for LLMs.991
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The Effectiveness of Flexora Comes from Reducing Overfitting. In Table 17, the layers and parameter 992

amounts selected by different LoRA methods are presented. A comparison between LoRA-drop and 993

Flexora reveals that Flexora is more effective. LoRA-drop tends to select the later layers, as these 994

outputs exhibit a larger two-norm, aligning with Proposition 2. This result suggests that layers selected 995

during fine-tuning should not concentrate in a specific range but rather be distributed across various 996

ranges, fully utilizing the extensive knowledge system of LLMs. Comparing LoRA with DoRA and 997

rsLoRA shows that LoRA selects more layers, requiring more training parameters but yielding worse 998

performance. This suggests a higher degree of overfitting when Flexora is applied to LoRA compared to 999

the other two methods. Therefore, using more advanced LoRA improvement algorithms can significantly 1000

reduce overfitting and enhance performance, underscoring the importance of the fine-tuning approach. 1001

Interestingly, certain layers are consistently fine-tuned in the same downstream task, regardless of whether 1002

LoRA, DoRA, or rsLoRA is used. For example, in Hellaswag, layers [0, 1, 2, 4, 14, 15, 19, 20, 21, 23, 1003

26, 27, 28, 29, 31] are consistently selected, suggesting these layers are crucial for this task or represent 1004

general knowledge layers (see the next two paragraphs for details), closely related to the LLM itself . 1005

General Knowledge Layers. In Table 18, the layers and parameters selected in the second ablation 1006

study are shown. Observing the "Select first 6 layers by Flexora" row reveals that certain layers, such as 1007

[27, 28], are crucial for any downstream task. These layers may store general knowledge, suggesting that 1008

their fine-tuning could enhance the performance across most downstream tasks. 1009

Downstream task-specific layers. Table 19 displays the layers and parameter amounts selected by 1010

various LLMs for different downstream tasks. As evident from the table, the same model utilizes the 1011

aforementioned general knowledge layers across different tasks. Additionally, unique layers for each 1012

downstream task, termed downstream task-specific layers, are predominantly found in the first and last 1013

layers. The distinction between general knowledge layers and downstream task-specific layers can be 1014

attributed to the self-attention mechanism, which effectively differentiates these layers. In the self- 1015

attention mechanism, similar knowledge is aggregated, leading to this layer differentiation. Furthermore, 1016

concerning downstream task-specific layers, two conclusions are drawn: (a) Fewer layers are selected for 1017

simpler datasets to minimize overfitting. (b) Typically, the initial and final layers are selected for a given 1018

dataset. This selection pattern may stem from the initial layer processing the original input and the final 1019

layer generating the model’s output representation. Given the consistent and predefined input and output, 1020

learning these parameters is deemed effective. 1021

Poor Effects with No Critical Layers Tables 20 and 21 serve as evidence for the existence of down- 1022

stream task-specific and general knowledge layers. Failure to select these layers, due to reasons like 1023

random selection or lack of convergence, leads to poor performance. 1024

Table 16: Performance of the model on various datasets (Hellaswag, PIQA, Winogrande, RACE-mid, RACE-high)
under different LoRA ranks and varying numbers of LoRA fine-tuned layers.

Rank Layers Hellaswag PIQA Winogrande RACE-mid RACE-high Average

r = 4

6 layers 58.36 68.23 45.71 53.35 52.99 55.73
12 layers 78.23 76.53 54.78 79.04 54.99 68.71
18 layers 89.01 80.57 82.79 82.37 80.96 83.14
24 layers 88.21 79.36 82.97 82.39 80.12 82.61
32 layers 87.68 74.36 81.74 81.10 79.63 80.90

r = 8

6 layers 59.79 70.25 46.32 54.54 53.45 56.87
12 layers 81.9 77.82 57.35 78.41 72.16 73.53
18 layers 91.15 81.54 83.58 83.77 81.22 84.25
24 layers 90.58 80.9 82.16 82.19 79.22 83.01
32 layers 89.72 76.39 82.24 82.86 80.99 82.44

r = 16

6 layers 60.98 71.36 47.12 55.78 54.26 57.90
12 layers 80.23 78.01 62.69 79.55 75.62 75.22
18 layers 91.63 81.69 85.06 84.27 83.69 85.27
24 layers 90.11 79.60 83.57 82.13 78.39 82.76
32 layers 89.99 78.47 82.77 81.63 79.68 82.51

r = 32

6 layers 60.45 71.46 50.36 57.36 55.13 58.95
12 layers 82.4 79.07 63.17 80.13 78.63 76.68
18 layers 92.08 82.14 86.07 85.35 83.04 85.74
24 layers 91.55 81.37 85.13 85.75 83.17 82.76
32 layers 90.01 79.56 84.36 82.36 80.99 83.46
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In summary, it is evident that almost all LLMs feature downstream task-specific layers and general1025

knowledge layers. Fine-tuning these layers effectively mitigates model overfitting and enhances both1026

generalization and performance. Fortunately, Flexora accurately and efficiently identifies both the1027

downstream task-specific layers and the general knowledge layers.

Table 17: Comprehensive overview of layer selection strategies in main experiments. This table presents a detailed
breakdown of the layer selection strategies used in different experiments involving the Llama3-8B model and its
variants (Flexora, LoRA-drop, DoRA + Flexora, and rsLoRA + Flexora). For each model, the specific datasets
utilized (HellaSwag, PIQA, RACE, and Winogrande) are listed along with the corresponding layers selected for
each dataset. The “Layer selection" column provides the indices of the layers chosen for each experiment, indicating
the specific layers of the model that were fine-tuned or modified. Additionally, the “Parameter(M)" column indicates
the total number of parameters (in millions) used in each configuration. This detailed breakdown allows for a clear
understanding of the experimental setup, the layer selection process, and the parameter allocation across different
models and datasets, facilitating a deeper analysis of the impact of these strategies on model performance. Unless
otherwise specified, the results are based on the default LoRA Rank of 8.

Methods Dataset Layer selection Parameter(M)

Llama3-8B + Flexora(r = 8)

Hellaswag [0, 1, 2, 3, 4, 5, 6, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31] 2.0
PIQA [1, 2, 3, 4, 5, 7, 8, 9, 14, 20, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 1, 2, 3, 4, 7, 8, 9, 12, 14, 25, 26, 27, 28, 29, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 16, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Llama3-8B + Flexora(r = 16)

Hellaswag [0, 1, 2, 3, 4, 5, 10, 14, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31] 2.0
PIQA [1, 2, 3, 4, 5, 7, 8, 10, 14, 20, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 1, 2, 3, 4, 7, 8, 9, 11, 14, 25, 26, 27, 28, 29, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Llama3-8B + Flexora(r = 32)

Hellaswag [0, 1, 2, 3, 4, 5, 6, 11, 15, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31] 2.0
PIQA [1, 2, 3, 4, 5, 7, 10, 12, 14, 20, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 1, 2, 3, 4, 7, 8, 10, 12, 14, 24, 26, 27, 28, 29, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 16, 19, 20, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Llama3-8B + LoRA-drop

Hellaswag [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.0
PIQA [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.7
RACE [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.7

Winogrande [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.7

Llama3-8B + DoRA + Flexora

Hellaswag [0, 1, 2, 4, 5, 14, 15, 19, 20, 21, 23, 26, 27, 28, 29, 31] 1.8
PIQA [0, 1, 2, 4, 7, 23, 24, 25, 26, 27, 28, 29, 31] 1.5
RACE [1, 3, 4, 7, 9, 12, 14, 23, 25, 27, 28, 29, 31] 1.3

Winogrande [0, 1, 2, 3, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Llama3-8B + rsLoRA + Flexora

Hellaswag [0, 1, 2, 4, 6, 14, 15, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31] 1.8
PIQA [0, 1, 2, 3, 15, 20, 21, 25, 26, 27, 28, 29, 31] 1.3
RACE [0, 1, 2, 3, 7, 8, 12, 13, 25, 26, 27, 28, 29, 31] 1.5

Winogrande [1, 2, 3, 6, 14, 15, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.9

Llama3-8B + LoReFT + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 19, 20, 21, 23, 26, 27, 28, 29, 31] 1.8
PIQA [0, 1, 2, 4, 7, 22, 24, 25, 26, 27, 28, 29, 30, 31] 1.5
RACE [0, 1, 3, 4, 7, 9, 14, 23, 25, 27, 28, 29, 31] 1.3

Winogrande [0, 1, 2, 3, 4, 5, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Llama3-8B + MoSLoRA + Flexora

Hellaswag [0, 1, 2, 4, 5, 14, 16, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31] 1.8
PIQA [0, 1, 2, 3, 4, 20, 21, 25, 26, 27, 28, 29, 31] 1.3
RACE [0, 1, 2, 3, 7, 9, 11, 13, 25, 26, 27, 28, 29, 31] 1.5

Winogrande [1, 2, 3, 8, 10 15, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.9

1028

D Loss1029

This section presents the training, evaluation, and validation loss during the Flexora flexible layer selection1030

and fine-tuning stages, accompanied by intuitive explanations.1031

D.1 Effectiveness of Flexora.1032

Figure 5 plots the training and validation loss curves for Llama-8B during the flexible layer selection1033

stage across four different datasets over one epoch. Both inner and outer layer optimizations are observed1034

to converge well during the flexible layer selection stage, demonstrating the effectiveness of Flexora.1035

D.2 Flexora can Correctly Identify Critical Layers.1036

Figures 6, 7, 8, and 9 depict the training and evaluation loss from the first ablation study. In all experiments,1037

the training loss converges effectively, demonstrating robust training performance. However, variations in1038

evaluation loss underscore the model’s generalization capabilities. Flexora generally surpasses methods1039

that randomly select an equivalent number of layers, demonstrating its ability to accurately identify critical1040

layers for more effective improvements.1041
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Table 18: Detailed display of selected layers in the second ablation study. In the second ablation experiment, we
manually determined the number of fine-tuning layers and contrasted the performance of Flexora with random
layer selection strategies. This table presents the results of this experiment, showcasing different configurations
where a specific number of layers (6, 12, 18, and 24) were selected for fine-tuning. For each configuration, the table
compares the layers selected by Flexora with those selected randomly. The datasets used in this experiment include
HellaSwag, PIQA, RACE, and Winogrande. The “Layer selection" column lists the indices of the layers chosen for
fine-tuning in each dataset, while the “Parameter(M)" column indicates the total number of parameters (in millions)
used in each configuration. This detailed breakdown provides insights into how different layer selection strategies,
with a manually determined number of fine-tuning layers, impact the performance of model across different datasets,
facilitating a comprehensive comparison between Flexora and random selection methods.

Methods Dataset Layer selection Parameter(M)

Select first 6 layers by Flexora

Hellaswag [0, 26, 27, 28, 29, 31] 0.6
PIQA [2, 4, 26, 27, 28, 29] 0.6
RACE [0, 7, 12, 27, 28, 29] 0.6

Winogrande [22, 23, 24, 26, 27, 28] 0.6

Random selection 6 layers

Hellaswag [2, 4, 11, 19, 23, 25] 0.6
PIQA [2, 4, 11, 19, 23, 25] 0.6
RACE [2, 4, 11, 19, 23, 25] 0.6

Winogrande [2, 4, 11, 19, 23, 25] 0.6

Select first 12 layers by Flexora

Hellaswag [0, 2, 3, 14, 15, 21, 23, 26, 27, 28, 29, 31] 1.3
PIQA [1, 2, 3, 4, 7, 20, 25, 26, 27, 28, 29, 30] 1.3
RACE [0, 1, 3, 7, 8, 12, 13, 25, 27, 28, 29, 31] 1.3

Winogrande [0, 3, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.3

Random selection 12 layers

Hellaswag [1, 3, 4, 12, 14, 18, 20, 21, 22, 27, 29, 31] 1.3
PIQA [1, 3, 4, 12, 14, 18, 20, 21, 22, 27, 29, 31] 1.3
RACE [1, 3, 4, 12, 14, 18, 20, 21, 22, 27, 29, 31] 1.3

Winogrande [1, 3, 4, 12, 14, 18, 20, 21, 22, 27, 29, 31] 1.3

Select first 18 layers by Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 14, 15, 19, 21, 23, 26, 27, 28, 29, 30, 31] 1.9
PIQA [0, 1, 2, 3, 4, 5, 7, 8, 19, 20, 23, 25, 26, 27, 28, 29, 30, 31] 1.9
RACE [0, 1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 15, 25, 27, 28, 29, 30, 31] 1.9

Winogrande [0, 1, 3, 5, 7, 9, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.9

Random selection 18 layers

Hellaswag [1, 2, 5, 8, 9, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26, 30] 1.9
PIQA [1, 2, 5, 8, 9, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26, 30] 1.9
RACE [1, 2, 5, 8, 9, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26, 30] 1.9

Winogrande [1, 2, 5, 8, 9, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26, 30] 1.9

Select first 24 layers by Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31] 2.6
PIQA [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.6
RACE [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 23, 24, 25, 27, 28, 29, 30, 31] 2.6

Winogrande [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.6

Random selection 24 layers

Hellaswag [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31] 2.6
PIQA [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31] 2.6
RACE [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31] 2.6

Winogrande [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31] 2.6

D.3 Flexora can Reduce Overfitting. 1042

Figures 10, 11, 12, and 13 present the training and evaluation loss from the sencond ablation study. 1043

Consistent with previous experiments, the training loss converges, indicating a strong training effect on 1044

the training set. Notably, the 24-layer (red) model consistently shows the lowest training loss, suggesting 1045

optimal learning, whereas the 6-layer (blue) model consistently records the highest, indicating poorer 1046

training performance. However, differences in evaluation loss reveal variations in model generalization 1047

across different layers. The 18-layer (green) model consistently exhibits the lowest evaluation loss, 1048

indicating superior generalization and downstream task performance, corroborated by actual results. The 1049

24-layer (red) model’s evaluation loss consistently exceeds that of the 18-layer (green) model, suggesting 1050

significant overfitting. Similarly, the 6-layer (blue) model consistently records the highest evaluation loss, 1051

indicative of underfitting. 1052

In summary, too few training layers can lead to underfitting and poor performance, as seen in the 6-layer 1053

(blue) model. Conversely, too many layers can also result in overfitting, as evidenced by the 24-layer (red) 1054

model’s performance. However following the selection strategy of Flexora, choosing the right number of 1055

layers can minimize overfitting and improve performance 1056
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Figure 5: Training and validation loss during the flexible layer selection phase. The figure shows the training and
validation loss over 20,000 steps for four different datasets (Hellaswag, PIQA, RACE, and Winogrande), where
the batch size at each step is 1. The blue line shows the validation loss and the orange line shows the training loss.
These plots visually compare how the performance of the models changes during the flexible layer selection phase,
highlighting the convergence behavior.
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Table 19: Comprehensive overview of layer selection strategies and parameter allocation in various experiments.
This table provides an in-depth breakdown of the layer selection strategies employed across different models and
datasets in the experiments. The models tested include Llama3-8B, Chatglm3-6B, Mistral-7B-v0.1 and others, all
combined with Flexora. For each model, the specific datasets used (HellaSwag, PIQA, RACE, and Winogrande)
are listed along with the corresponding layers selected for each dataset. The “Layer selection" column details the
indices of the layers chosen for each experiment, indicating the specific layers of the model that were fine-tuned or
modified. Additionally, the “Parameter(M)" column indicates the total number of parameters (in millions) used in
each configuration. This detailed breakdown allows for a clear understanding of the experimental setup, the layer
selection process, and the parameter allocation across different models and datasets, facilitating a deeper analysis of
the impact of these strategies on model performance.

Methods Dataset Layer selection Parameter(M)

Llama3-8B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31] 2.0
PIQA [1, 2, 3, 4, 5, 7, 8, 9, 14, 20, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 1, 2, 3, 4, 7, 8, 9, 12, 14, 25, 26, 27, 28, 29, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 16, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Chatglm3-6B + Flexora

Hellaswag [1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 16, 18, 20] 0.9
PIQA [0, 1, 2, 3, 5, 6, 7, 8, 9, 19, 21, 23, 25, 27] 1.0
RACE [2, 6, 8, 9, 10, 11, 14, 15, 16, 17, 18, 20, 23, 26] 1.0

Winogrande [0, 2, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 25, 26] 1.0

Mistral-7B-v0.1 + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 7, 14, 22, 26, 27, 30] 1.5
PIQA [6, 8, 14, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 30, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 5, 6, 7, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.9

Gemma-7B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 18, 20, 23, 27] 1.9
PIQA [0, 1, 8, 9, 10, 12, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27] 1.9
RACE [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 16] 1.4

Winogrande [0, 1, 2, 3, 4, 5, 6, 7, 8, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] 2.1

Vicuna-7B-v1.5 + Flexora

Hellaswag [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12] 1.6
PIQA [1, 2, 3, 5, 7, 8, 11, 12, 13, 14, 21, 31] 1.6
RACE [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 1.6

Winogrande [0, 2, 3, 4, 6, 8, 9, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.6

Zephyr-7B-beta + Flexora

Hellaswag [1, 13, 15, 17, 18, 22, 23, 24, 25, 26, 27, 28, 30, 31] 1.5
PIQA [2, 3, 6, 7, 14, 15, 16, 17, 22, 26, 27, 28] 1.4
RACE [1, 2, 4, 6, 7, 9, 11, 13, 14, 17, 26, 30, 31] 1.4

Winogrande [1, 3, 5, 6, 8, 13, 27, 28, 29, 30, 31] 1.2

Yi-6B + Flexora

Hellaswag [0, 1, 2, 3, 4, 6, 8, 9, 10, 19, 20, 21, 22] 1.3
PIQA [1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 15, 16, 17, 18, 20, 23] 1.6
RACE [1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 17, 21] 1.2

Winogrande [0, 1, 2, 3, 5, 6, 7, 11, 23, 26, 27, 30, 31] 1.3

Llama-7B + Flexora

Hellaswag [0, 1, 2, 4, 5, 6, 8, 12, 16, 30, 31] 1.4
PIQA [2, 12, 14, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.1
RACE [4, 5, 6, 7, 8, 10, 11, 23, 30, 31] 1.3

Winogrande [0, 2, 3, 6, 7, 8, 10, 11, 13, 16, 23, 28, 29, 30, 31] 2.0

Llama2-7B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 7, 8, 12] 1.3
PIQA [0, 1, 2, 3, 7, 8, 11, 13, 14, 21, 24, 29, 30, 31] 1.8
RACE [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16] 1.8

Winogrande [0, 1, 3, 4, 8, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30] 2.5

XuanYuan-6B + Flexora

Hellaswag [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 17] 1.7
PIQA [3, 4, 7, 8, 12, 14, 16, 17, 19, 21, 23, 25, 28, 29] 1.8
RACE [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 20, 21, 22, 25, 28, 29] 2.5

Winogrande [2, 3, 4, 8, 9, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] 2.5

Qwen1.5-7B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 7, 9, 17] 1.3
PIQA [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 17] 1.8
RACE [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] 1.7

Winogrande [0, 1, 2, 3, 4, 5, 6, 7, 8, 21, 24, 25, 27, 28, 30] 2.0
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Table 20: Detailed display of selected layers in the first ablation study. This table presents the results of the
first ablation experiment, where the number of layers selected by Flexora was kept constant, but different layers
were chosen for fine-tuning. The table includes three different random layer selection strategies (Random1,
Random2, and Random3) applied to various datasets (HellaSwag, PIQA, RACE, and Winogrande). For each
random selection method, the “Layer selection" column lists the indices of the layers chosen for fine-tuning in
each dataset. The “Parameter(M)" column indicates the total number of parameters (in millions) used in each
configuration. This detailed breakdown allows for a clear understanding of how different layer selection strategies
impact the performance of model across different datasets while maintaining a consistent number of layers for
fine-tuning.

Methods Dataset Layer selection Parameter(M)

Random1

Hellaswag [0, 1, 2, 3, 4, 6, 7, 8, 10, 11, 14, 18, 19, 20, 21, 25, 26, 27, 28] 2.0
PIQA [0, 2, 4, 10, 12, 16, 17, 18, 23, 24, 25, 26, 27, 28, 29, 30] 1.7
RACE [1, 2, 4, 7, 9, 11, 12, 14, 15, 18, 20, 23, 24, 26, 28, 30] 1.7

Winogrande [1, 2, 4, 5, 9, 10, 11, 13, 15, 17, 20, 21, 24, 26, 30, 31] 1.7

Random2

Hellaswag [0, 2, 3, 4, 5, 6, 10, 12, 13, 15, 17, 20, 21, 22, 23, 24, 28, 29, 30] 2.0
PIQA [0, 1, 3, 4, 8, 13, 14, 18, 19, 22, 24, 26, 28, 29, 30, 31] 1.7
RACE [5, 6, 7, 8, 9, 11, 12, 13, 15, 19, 20, 21, 25, 27, 28, 30] 1.7

Winogrande [2, 5, 6, 7, 8, 10, 11, 13, 14, 17, 18, 22, 25, 26, 28, 30] 1.7

Random3

Hellaswag [0, 1, 3, 4, 6, 9, 12, 13, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29] 2.0
PIQA [0, 3, 4, 9, 12, 13, 14, 15, 16, 24, 25, 26, 27, 28, 30, 31] 1.7
RACE [0, 1, 2, 9, 11, 12, 14, 18, 19, 20, 21, 23, 25, 26, 29, 30] 1.7

Winogrande [2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 20, 22, 23, 29, 30, 31] 1.7

Table 21: Detailed display of layer selection with varying numbers of searching samples. This table presents the
results of an experiment where different numbers of searching samples (1000, 2000, 5000, and 10000) were used to
determine the layers for Flexora. The datasets involved in this experiment include HellaSwag, PIQA, RACE, and
Winogrande. For each number of searching samples, the “Layer selection" column lists the indices of the layers
chosen for fine-tuning in each dataset. The “Parameter(M)" column indicates the total number of parameters (in
millions) used in each configuration. This detailed breakdown provides insights into how the number of searching
samples impacts the layer selection process and the performance of model across different datasets.

Methods Dataset Layer selection Parameter(M)

1000 searching samples

Hellaswag [0, 2, 4, 5, 6, 8, 10, 16, 21, 26, 27, 28, 30, 31] 1.5
PIQA [0, 1, 2, 3, 4, 16, 25, 26, 27, 28, 29, 30, 31] 1.4
RACE [0, 1, 2, 3, 4, 16, 21, 28, 29, 30, 31] 1.2

Winogrande [0, 1, 2, 3, 4, 16, 20, 25, 26, 27, 28, 29, 30, 31] 1.5

2000 searching samples

Hellaswag [1, 2, 3, 4, 8, 10, 11, 16, 30, 31] 1.0
PIQA [0, 1, 2, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.5
RACE [0, 1, 2, 3, 4, 10, 20, 23, 27, 28, 29, 30, 31] 1.4

Winogrande [0, 1, 2, 3, 4, 20, 25, 27, 30, 31] 1.0

5000 searching samples

Hellaswag [0, 1, 2, 3, 4, 8, 31] 0.7
PIQA [0, 2, 3, 4, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.6
RACE [1, 3, 4, 6, 9, 10, 11, 12, 14, 27, 28, 29, 30, 31] 1.5

Winogrande [1, 2, 3, 4, 6, 7, 8, 9, 26, 27, 30, 31] 1.3

10000 searching samples

Hellaswag [0, 1, 4, 10, 12, 14, 21, 24, 26, 27, 28, 29, 30, 31] 1.5
PIQA [0, 1, 3, 4, 7, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31] 1.7
RACE [1, 2, 7, 13, 14, 23, 25, 26, 27, 28, 29, 31] 1.3

Winogrande [6, 7, 9, 10, 15, 19, 20, 22, 26, 27, 30, 31] 1.3
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Figure 6: Comparison of train loss and evaluation loss
in the Hellaswag dataset during the first ablation study.
This figure presents the train loss (left) and evaluation
loss (right) over 20,000 steps for the Hellaswag dataset,
where the batch size at each step is 1. The performance
of the Flexora method is compared against three differ-
ent random layer selection strategies (Random 1, Ran-
dom 2, and Random 3). The train loss graph shows
how the training performance of model evolves, while
the evaluation loss graph highlights the generalization
capability of model on the validation set. This detailed
comparison provides insights into the effectiveness of
Flexora relative to random selection methods in terms
of both training and evaluation metrics.
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Figure 7: Comparison of train loss and evaluation loss
in the PIQA dataset during the first ablation study. This
figure presents the train loss (left) and evaluation loss
(right) over 20,000 steps for the PIQA dataset, where
the batch size at each step is 1. The performance of
the Flexora method is compared against three different
random layer selection strategies (Random 1, Random
2, and Random 3). The train loss graph shows how
the training performance of model evolves, while the
evaluation loss graph highlights the generalization ca-
pability of model on the validation set. This detailed
comparison provides insights into the effectiveness of
Flexora relative to random selection methods in terms
of both training and evaluation metrics.
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Figure 8: Comparison of train loss and evaluation loss
in the RACE dataset during the first ablation study. This
figure presents the train loss (left) and evaluation loss
(right) over 20,000 steps for the RACE dataset, where
the batch size at each step is 1. The performance of
the Flexora method is compared against three different
random layer selection strategies (Random 1, Random
2, and Random 3). The train loss graph shows how
the training performance of model evolves, while the
evaluation loss graph highlights the generalization ca-
pability of model on the validation set. This detailed
comparison provides insights into the effectiveness of
Flexora relative to random selection methods in terms
of both training and evaluation metrics.
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Figure 9: Comparison of train loss and evaluation loss
in the Winogrande dataset during the first ablation study.
This figure presents the train loss (left) and evaluation
loss (right) over 20,000 steps for the Winogrande dataset,
where the batch size at each step is 1. The performance
of the Flexora method is compared against three differ-
ent random layer selection strategies (Random 1, Ran-
dom 2, and Random 3). The train loss graph shows
how the training performance of model evolves, while
the evaluation loss graph highlights the generalization
capability of model on the validation set. This detailed
comparison provides insights into the effectiveness of
Flexora relative to random selection methods in terms
of both training and evaluation metrics.
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Figure 10: Training loss and evaluation loss during fine-
tuning of different numbers of layers in the Flexora on
the Hellaswag dataset. This figure presents the training
loss (left) and evaluation loss (right) over 20,000 steps
for the Hellaswag dataset. The performance is compared
across four different configurations where the first 6,
12, 18, and 24 layers of the Flexora model are fine-
tuned. The training loss graph shows that the model
with 24 layers (red) achieves the lowest training loss,
indicating it fits the training data very well. However,
the evaluation loss graph reveals that the model with
18 layers (green) achieves the lowest evaluation loss,
suggesting better generalization to unseen data. This
discrepancy highlights the overfitting issue, where the
model with 24 layers performs well on the training data
but does not generalize as effectively as the model with
18 layers.

0 5000 10000 15000 20000
Step

2.5

5.0

7.5

10.0

12.5

Lo
ss

Train Loss
6 layers
12 layers
18 layers
 24 layers 

0 5000 10000 15000 20000
Step

3.1

3.2

3.3

Lo
ss

Evaluation Loss
6 layers
12 layers
18 layers
24 layers

Figure 11: Training loss and evaluation loss during fine-
tuning of different numbers of layers in the Flexora
on the PIQA dataset. This figure presents the training
loss (left) and evaluation loss (right) over 20,000 steps
for the PIQA dataset. The performance is compared
across four different configurations where the first 6,
12, 18, and 24 layers of the Flexora model are fine-
tuned. The training loss graph shows that the model
with 24 layers (red) achieves the lowest training loss,
indicating it fits the training data very well. However,
the evaluation loss graph reveals that the model with
18 layers (green) achieves the lowest evaluation loss,
suggesting better generalization to unseen data. This
discrepancy highlights the overfitting issue, where the
model with 24 layers performs well on the training data
but does not generalize as effectively as the model with
18 layers.
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Figure 12: Training loss and evaluation loss during fine-
tuning of different numbers of layers in the Flexora
on the RACE dataset. This figure presents the training
loss (left) and evaluation loss (right) over 20,000 steps
for the RACE dataset. The performance is compared
across four different configurations where the first 6,
12, 18, and 24 layers of the Flexora model are fine-
tuned. The training loss graph shows that the model
with 24 layers (red) achieves the lowest training loss,
indicating it fits the training data very well. However,
the evaluation loss graph reveals that the model with
18 layers (green) achieves the lowest evaluation loss,
suggesting better generalization to unseen data. This
discrepancy highlights the overfitting issue, where the
model with 24 layers performs well on the training data
but does not generalize as effectively as the model with
18 layers.
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Figure 13: Training loss and evaluation loss during fine-
tuning of different numbers of layers in the Flexora on
the Winogrande dataset. This figure presents the train-
ing loss (left) and evaluation loss (right) over 20,000
steps for the Winogrande dataset. The performance is
compared across four different configurations where the
first 6, 12, 18, and 24 layers of the Flexora model are
fine-tuned. The training loss graph shows that the model
with 24 layers (red) achieves the lowest training loss,
indicating it fits the training data very well. However,
the evaluation loss graph reveals that the model with
18 layers (green) achieves the lowest evaluation loss,
suggesting better generalization to unseen data. This
discrepancy highlights the overfitting issue, where the
model with 24 layers performs well on the training data
but does not generalize as effectively as the model with
18 layers.
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E Theoretical insights and numerical experiments on the smoothness constant of 1057

Llama3-8B 1058

E.1 Theoretical insights 1059

Consider a neural network with weight matrices decomposed as: 1060

W (i) = W
(i)
1 (frozen) +W

(i)
2 (trainable), 1061

similar to LoRA’s low-rank adaptation. We analyze the gradient difference for the trainable component 1062

W
(i)
2 . 1063

The network output is given by: 1064

y(N) =

 N∏
j=1

(W
(j)
1 +W

(j)
2 )

x, 1065

Let ℓ be the MSE loss: 1066

ℓ =
1

2

(
y(N) − y

)2
, 1067

where y(N) is the network output. The gradient of ℓ w.r.t. W (i)
2 is: 1068

∂ℓ

∂W
(i)
2

=

 N∏
j=i+1

(W
(j)
1 +W

(j)
2 )

 · ∂ℓ

∂y(i)
· x

i−1∏
j=1

(W
(j)
1 +W

(j)
2 )

 . (11) 1069

For two networks differing only in W
(i)
2 , the gradient difference is: 1070

∥∥∥∥∥ ∂ℓ

∂W
(i)
2,1

− ∂ℓ

∂W
(i)
2,2

∥∥∥∥∥ =

∥∥∥∥∥∥
 N∏
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(j)
1 +W

(j)
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( ∂ℓ
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(i)
1

− ∂ℓ

∂y
(i)
2

)
x

i−1∏
j=1

(W
(j)
1 +W

(j)
2 )

∥∥∥∥∥∥ . (12) 1071

For MSE loss, the gradient at layer i is: 1072

∂ℓ

∂y(i)
= (y(N) − y)

N∏
j=i+1

(W
(j)
1 +W

(j)
2 ). (13) 1073

The difference between the two network outputs is: 1074

y
(N)
1 − y

(N)
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 i∏
j=1

(W
(j)
1,1 +W

(j)
1,2 )

 −

 i∏
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2,1 +W
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x (14) 1075
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The difference between the differentials of the two network loss functions with respect to the output is:1078
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Therefore the block-wise smoothness β(N)
i on layer i ∈ [N ] of an N -th layer MLP can be bounded by:1086

β
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Let the weights of the i-th layer be decomposed as W (i) = W
(i)
1 +W

(i)
2 , with the spectral norm given1088

by:1089

λ(i) =
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where W
(i)
1 is frozen, and W

(i)
2 is trainable. We aim to decompose the following expression:1091  N∏
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Using the triangle inequality:1093
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Substituting the spectral norms of each layer into the product and expanding:1097
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Squaring the product and expanding: 1099
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The final decomposition result is: 1101
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Finally, we can get the upper bound of the block-wise smoothness β(N)
i as: 1103
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Therefore, for the same LLM backbone, N and λ1 are the same. If we do not add a LoRA adapter to 1105

a certain layer, then λ2 of that layer is 0. The fewer LoRA adapters we add to the LLM backbone, the 1106

smaller the second term, and the lower the upper bound of the block-wise smoothness β(N)
i . 1107

E.2 numerical experiments 1108

We introduced β-smoothness in definition 1, which refers to the Lipschitz continuity of the gradient of the 1109

loss function. As shown in Appendix E.1, Proposition 2 is a general proposition that can be well extended 1110

to the LoRA method. In this section, we use the results of numerical experiments to prove that our theory 1111

is reasonable in the LoRA method when discussing the relationship between the number of network layers 1112

and β-smoothness. 1113

Assuming that the function we are discussing is continuous and differentiable, we introduce a very 1114

small perturbation ϵ = 1e− 5. Then, Definition 1 can be simplified to: 1115

∥∇f(w; z)−∇f(w + ϵ; z)∥ ≤ β∥ϵ∥. (24) 1116

Therefore, the estimation formula for β-smoothness can be obtained: 1117

∥∇f(w; z)−∇f(w + ϵ; z)∥
∥ϵ∥

≤ β. (25) 1118

According to Equation 25, we use Llama3-8B as an example to calculate the β-smoothness of different 1119

layers of the model across various datasets (Hellaswag, PIQA, RACE, Winogrande). This is done to 1120

verify the relationship between the β-smoothness of model and the number of layers. The specific 1121

experimental steps are as follows: we selected a model fine-tuned with LoRA for each dataset, perturbed 1122

its trainable LoRA parameters, randomly sampled 10 data points from the corresponding dataset as input, 1123

and calculated the average β-smoothness of these ten data points. We use this average β-smoothness to 1124

represent the β-smoothness of network. The experimental results are shown in Figure 14. The vertical axis 1125

uses a logarithmic scale, and it can be seen that across different datasets, the β-smoothness of the Llama3- 1126

8B network (i.e., the Smoothness constant in Figure 14) increases exponentially with the number of 1127

network layers. In summary, large language models represented by Llama3-8B exhibit properties similar 1128

to those of MLP networks as described in Proposition 2, where β-smoothness increases exponentially 1129

with the number of network layers. 1130
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Figure 14: The β-smoothness constants of the Llama3-8B model across different datasets (Hellaswag, PIQA, RACE,
Winogrande) as a function of the number of layers. The vertical axis is on a logarithmic scale, demonstrating that
the β-smoothness increases exponentially with the number of layers for all datasets.

F Flexora can identify the best single solution1131

The literature extensively documents the prevalence of multiple local optima in hyperparameter optimiza-1132

tion (HPO) problems (Bao et al., 2021; Franceschi et al., 2017). This phenomenon is particularly relevant1133

in layer selection for LoRA fine-tuning, where varying layer combinations yield divergent performance1134

outcomes due to intricate inter-layer interactions and task-specific characteristics. Here, we systematically1135

analyze the emergence of multiple solutions and demonstrate how Flexora effectively identifies the1136

optimal configuration.1137

F.1 Why Multiple Solutions Emerge?1138

The multiplicity of solutions arises from two primary factors.1139

Local vs. Global Optima: In layer selection problems, multiple local optima typically exist due to1140

varying performance of different layer combinations across tasks. Certain combinations may excel on1141

training data but underperform on validation sets (indicating overfitting), while others demonstrate superior1142

validation performance despite marginally weaker training results.1143

Optimization Trajectory: As shown in Table 14, the evolutionary path of model during optimization1144

leads to distinct local optima at different stages. Initial phases often favor simpler layer configurations,1145

while subsequent optimization may uncover more sophisticated combinations that better capture task-1146

specific characteristics.1147

F.2 How Flexora Finds the Optimal Single Solution1148

To improve the performance of Flexora and prevent convergence to suboptimal local solutions, we1149

implemented a dual-strategy approach. On the training strategy, we established validation set performance1150

as our primary optimization criterion, systematically evaluating various layer combinations to determine1151

the most general configuration. In addition, we adopted an early stopping mechanism that monitors1152

validation performance and terminates optimization when a steady state is reached, thereby preventing1153

overfitting and selecting the best layer combination. On the optimization target preconditioning, we apply1154

continuous relaxation to the target hyperparameters using formula 4 in Section 4.1, which significantly1155
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Figure 15: Distribution of α values across different layers for the Llama3-8B model using LoRA with a rank of 8.
The panels (a) through (d) correspond to the Hellaswag, PIQA, RACE, and Winogrande datasets, respectively. Each
bar represents the α value for a specific layer, with the x-axis indicating the layer number and the y-axis showing
the α value.

improves optimization stability and efficiency. As shown in Figure 15, our strategy produces well- 1156

converged hyperparameters with significant absolute value differences (α > 0 vs. α ≤ 0), reflecting 1157

significant changes in layer importance. This differential importance ultimately enables Flexora to 1158

consistently identify a single optimal solution. 1159
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G Special cases1160

This section details the performance of Flexora and LoRA across four distinct datasets. The results1161

indicate that Flexora demonstrates superior comprehension and judgment on more challenging questions1162

within the test dataset, compared to LoRA. In certain instances, Flexora successfully explains problems1163

not previously encountered during training, showcasing its robust learning and generalization capabilities.1164

Special cases of Hellaswag

dataset: Hellaswag
"1": {

"origin_prompt": "A lady walks to a barbell. She bends down and grabs
the pole. The lady\n
Question: Which ending makes the most sense?\n
A. swings and lands in her arms.\n
B. pulls the barbell forward.\n
C. pulls a rope attached to the barbell.\n
D. stands and lifts the weight over her head.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n
Answer:",
"Flexora prediciton": " D",
"LoRA prediciton" : "B",
"gold": "D"

},
"2": {

"origin_prompt": "Two women in a child are shown in a canoe while a man
pulls the canoe while standing in the water, with other individuals
visible in the background. The child and a different man\n
Question: Which ending makes the most sense?\n
A. are then shown paddling down a river in a boat while a woman talks.\n
B. are driving the canoe, they go down the river flowing side to side.\n
C. sit in a canoe while the man paddles.\n
D. walking go down the rapids, while the man in his helicopter almost
falls and goes out of canoehood.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n
Answer:",
"Flexora prediciton": " C",
"LoRA prediciton" : "B",
"gold": "C"

},
"3": {

"origin_prompt": "The boy lifts his body above the height of a pole.
The boy lands on his back on to a red mat. The boy\n
Question: Which ending makes the most sense?\n
A. turns his body around on the mat.\n
B. gets up from the mat.\n
C. continues to lift his body over the pole.\n
D. wiggles out of the mat.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n
Answer:",
"Flexora prediciton": " B",
"LoRA prediciton" : "B",
"gold": "B"

}
"4": {

"origin_prompt": "We see a person holding face wash then putting it on
their face. They rinse the face and add the face wash with a brush. We\n
Question: Which ending makes the most sense?\n
A. see a closing title screen.\n
B. see a black screen with the credits.\n
C. see an illustration on how to add the wash using a brush.\n
D. then see a replay then the person putting the face wash on.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n
Answer:",
"Flexora prediction": " C",
"LoRA prediciton" : "A",
"gold": "C"

},
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Special cases of PIQA

dataset: PIQA
"1": {

"origin_prompt": "ice box\n
A. will turn into a cooler if you add water to it\n
B. will turn into a cooler if you add soda to it\n
Answer:",
"Flexora prediciton": "A",
"LoRA prediciton" : "A",
"gold": "A"

},
"2": {

"origin_prompt": "how do you put eyelashes on?\n
A. glue them on with mascara.\n
B. put eyelash glue on the fake eyelashes and then let it get tacky.
then, place it on top of your actual eyelashes and let it dry on.\n
Answer:",
"Flexora prediciton": "A",
"LoRA prediciton" : "B",,
"gold": "B"

},
"3": {

"origin_prompt": "How do I fill holes and tiny gaps in the concrete when
making a concrete countertop?\n
A. Use a concrete slurry\n
B. Use a concrete brush\n
Answer:",
"Flexora prediciton": "A",
"LoRA prediciton" : "B",
"gold": "A"

}
"4": {

"origin_prompt": "When I’m deep frying a turkey, how defrosted
should it be?\n
A. It should be completely defrosted, otherwise the oil may
boil over and start a fire.\n
B. It should be completely frozen, otherwise the oil may boil
over and start a fire.\n
Answer:",
"\ours{} prediction": " A\nExplanation: A turkey should be completely
defrosted before deep frying. If it is not, the oil may boil over
and start a fire.",
"Flexora prediciton" : "A",
"LoRA prediciton" : "B",
"gold": "A"

},
"5": {

"origin_prompt": "How do you properly prepare a steak.\n
A. Take the steak out of warm storage and let come to room temperature,
generously add salt and pepper to both sides and let sit
for 10 minutes.\n
B. Take the steak out of cold storage and let come to room temperature,
generously add salt and pepper to both sides and let sit
for 10 minutes.\n
Answer:",
"Flexora prediction": " B\nExplanation: B. Taking the steak
out of cold storage and letting it come to room temperature is
the correct answer. The steak should be at room temperature before
cooking. The steak should be generously salted and peppered on both
sides and let sit for 10 minutes.",
"LoRA prediciton" : "B",
"gold": "B"

},
"6": {

"origin_prompt": "To cream butter and sugar together, you can\n
A. Place it in a bowl and use a hand warmer\n
B. Place in a bowl and use a hand mixer\n
Answer:",
"Flexora prediction": " B\nExplanation: B. Place in a bowl and
use a hand mixer\nExplanation: To cream butter and sugar together,
you can place it in a bowl and use a hand mixer.",
"LoRA prediciton" : "B",
"gold": "B"

},
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Special cases of RACE

dataset: RACE
"1": {

"origin_prompt": "Read the article, and answer the question by replying A,
B, C or D.\n\n
Article:\nThe rain had continued for a week and the flood
had created a big river which were running by Nancy Brown’s
farm. As she tried to gather her cows to a higher ground,
she slipped and hit her head on a fallen tree trunk.
The fall made her unconscious for a moment or two. When she came to,
Lizzie, one of her oldest and favorite cows, was licking her face. \n
At that time, the water level on the farm was still rising.
Nancy gathered all her strength to get up and began walking
slowly with Lizzie. The rain had become much heavier,
and the water in the field was now waist high. Nancy’s pace
got slower and slower because she felt a great pain in her head.
Finally, all she could do was to throw her arm around Lizzie’s
neck and try to hang on. About 20 minutes later, Lizzie managed
to pull herself and Nancy out of the rising water and onto
a bit of high land, which seemed like a small island in
the middle of a lake of white water. \n
Even though it was about noon, the sky was so dark and the rain
and lightning was so bad that it took rescuers more than
two hours to discover Nancy. A man from a helicopter
lowered a rope, but Nancy couldn’t catch it. A moment later,
two men landed on the small island from a ladder in the helicopter.
They raised her into the helicopter and took her to the school gym,
where the Red Cross had set up an emergency shelter.
\nWhen the flood disappeared two days later, Nancy immediately
went back to the \"island.\" Lizzie was gone. She was one of
19 cows that Nancy had lost in the flood. \"I owe my life to
her,\" said Nancy with tears.\n\n
Q: What did Nancy try to do before she fell over?\n\n
A. Measure the depth of the river\n
B. Look for a fallen tree trunk\n
C. Protect her cows from being drowned\n
D. Run away from the flooded farm\n",

",
"Flexora prediciton": "D",
"LoRA prediciton" : "B",
"gold": "D"

}
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Special cases of Winogrande

dataset: Winogrande
"1": {

"origin_prompt": "Question: Sarah was a much better surgeon
than Maria so _ always got the easier cases.\n
A. Sarah\n
B. Maria\n
Answer:",
"Flexora prediciton": "B",
"LoRA prediciton" : "B",
"gold": "B"

},
"2": {

"origin_prompt": "Question: Sarah was a much better surgeon
than Maria so _ always got the harder cases.\n
A. Sarah\n
B. Maria\n
Answer:",
"Flexora prediciton": "B",
"LoRA prediciton" : "B",
"gold": "A"

},
"3": {

"origin_prompt": "Question: They were worried the wine would ruin
the bed and the blanket, but the _ was’t ruined.\n
A. blanket\n
B. bed\n
Answer:",
"Flexora prediciton": "B",
"LoRA prediciton" : "A",
"gold": "B"

},
"4": {

"origin_prompt": "Question: Terry tried to bake the eggplant
in the toaster oven but the _ was too big.\n
A. eggplant\n
B. toaster\nAnswer:",
"Flexora prediction": " A\nExplanation: The eggplant was
too big to fit in the toaster oven.",
"LoRA prediciton" : "B",
"gold": "A"

},
"5": {

"origin_prompt": "Question: At night, Jeffrey always stays up
later than Hunter to watch TV because _ wakes up late.\n
A. Jeffrey\n
B. Hunter\n
Answer:",
"Flexora prediciton": "A",
"LoRA prediciton" : "B",
"gold": "A"

},
"6": {

"origin_prompt": "Question: The cat of Sarah has some mouth problems,
so she takes it to see Maria. _ is a responsible cat owner.\n
A. Sarah\n
B. Maria\n
Answer:",
"Flexora prediction": " A\nExplanation: A is a responsible cat
owner because she takes her cat to see a veterinarian.",
"LoRA prediciton" : "B",
"gold": "A"

},
"7": {

"origin_prompt": "Question: Benjamin was chosen instead of Brett to
be the makeup artist for the play because _ was less experienced.\n
A. Benjamin\n
B. Brett\n
Answer:",
"Flexora prediction": " B",
"LoRA prediciton" : "A",
"gold": "B"

},
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