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Abstract

Large Language Models (LLMs) present strong001
general capabilities, and a current compelling002
challenge is stimulating their specialized capa-003
bilities, such as machine translation through004
low-cost instruction tuning. The standard data005
for instruction-following is organized as a con-006
catenated series of instructions, inputs, and out-007
puts. Due to the inherent pattern of the atten-008
tion mechanism in LLMs, these models tend009
to concentrate more on nearby tokens. Conse-010
quently, there is a high risk of forgetting instruc-011
tions during the decoding process, particularly012
when dealing with long contexts. To allevi-013
ate the instruction forgetting issue on transla-014
tion, we propose SWIE (Segment-Weighted015
Instruction Embedding) and an instruction-016
following dataset OVERUNDER. SWIE im-017
proves the model instruction understanding018
by adding an instruction representation on019
the following input and response representa-020
tions. OVERUNDER improves model faithful-021
ness by comparing over-translation and under-022
translation samples with the correct transla-023
tion. We apply our methods to two main-024
stream open-source LLMs, i.e., BLOOM and025
LLaMA. Experimental results demonstrate that026
using SWIE and OVERUNDER in models im-027
proves translation performance and faithfulness028
over the strong baselines. Furthermore, SWIE029
improves the model performance on various030
long-context scenarios, including in-context031
translation, translation on language direction032
in the instruction-tuning corpus, and transla-033
tion on zero-shot language pairs. The effective-034
ness of SWIE is demonstrated on the IFEval035
instruction-following test set, indicating its po-036
tential for broader task applicability.037

1 Introduction038

In recent years, super closed-source large language039

models (LLMs) like GPT-4 and ChatGPT have040

demonstrated remarkable performance on transla-041

tion tasks without fine-tuning (Jiao et al., 2023b;042

Hendy et al., 2023; Raunak et al., 2023; He et al.,043

2023). Considering the hardware constraints in re- 044

search, many current works employ a small amount 045

of instruction data for fine-tuning to elicit the 046

capabilities of medium-sized models. Typically, 047

instruction-following data is organized by a se- 048

quence of the task instruction (for a translation 049

task, it can be “Please translate the sentence from 050

English to Chinese”), the task input, and the output. 051

Some existing studies (Jiao et al., 2023a; Zhang 052

et al., 2023; Zeng et al., 2023) have adopted vari- 053

ous instruction data construction and training meth- 054

ods in the translation domain, achieving appealing 055

results with relatively low computational cost. 056

The localization of the attention mechanism in 057

LLMs has been a widely observed phenomenon. 058

For example, Liu et al. (2023) demonstrates that 059

the model performance significantly degrades when 060

the model must access information in the middle 061

of a long context. In the instruction-following data 062

setting, we hypothesize that this feature leads to 063

a high risk of attention inadequacy and forgetting 064

issues for the instruction placed at the beginning 065

of the text, especially when generating an output 066

with a long context. To verify the above hypoth- 067

esis, we experimented with translation language 068

direction detection with different sentence lengths 069

and observed that the translation direction accuracy 070

decreases with the input text getting longer, prov- 071

ing the instruction forgetting phenomenon evident 072

in translation tasks. For translation tasks, ignoring 073

instructions can lead to the low quality of transla- 074

tion output, especially the unfaithfulness problem 075

(compassing over-translation and under-translation, 076

i.e., the model translation results contains the con- 077

tent that is not contained in the source or omits the 078

content in the source). Therefore, our work aims to 079

improve the translation faithfulness of instruction- 080

tuning by addressing the above issues. 081

This paper introduces a novel method for im- 082

proving instruction tuning named SWIE (Segment- 083

Weighted Instruction Embedding), which utilizes 084
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trainable adapters to encode instruction and in-085

troduces segment weight to enable a natural inte-086

gration of instruction representations and global087

representations. To further improve the model088

translation faithfulness, we present OVERUNDER,089

an instruction dataset that utilizes our proposed090

framework to collect contrastive negative samples091

that specifically target over-translation and under-092

translation issues.093

We evaluate our methods on two machine trans-094

lation benchmarks and two mainstream backbone095

models, i.e., BLOOM (Workshop et al., 2022) and096

LLaMA (Touvron et al., 2023)1. SWIE shows097

wide effectiveness in various machine translation098

scenarios for LLMs. For the instruction-following099

scenario, the combination of SWIE and OVERUN-100

DER leads to significant improvements (e.g., up101

to 2.83 BLEU in LLaMA-7b on the Flores test102

set). For in-context translation, SWIE notably im-103

proves the translation performance by around 7104

to 10 BLEU scores. Additionally, we observed105

that SWIE exhibits further improvements in long-106

context and zero-shot settings. Furthermore, our107

human and statistic faithfulness evaluation results108

indicate that SWIE and OVERUNDER improve109

the translation faithfulness effectively. Evaluation110

on instruction-following benchmark IFEval shows111

SWIE boosts the general instruction-following112

ability of the models (e.g., 9.54% relative improve-113

ment can be seen in prompt-level evaluation). In114

summary, our contributions are as follows:115

• We propose Segment-weighted Instruction116

Embedding (SWIE) that augments the instruc-117

tion information in global positions and in-118

troduces a translation faithfulness contrastive119

instruction-tuning dataset OVERUNDER cov-120

ering the over-translation and the under-121

translation unfaithfulness negative samples.122

• Our experiments show that both SWIE and123

OVERUNDER consistently improve the trans-124

lation quality on lexical and semantic metrics.125

The strength of SWIE can be seen in differ-126

ent scenarios of translation, including direct127

instruction following and in-context learning.128

• According to our further analysis experiments,129

SWIE shows more significant improvements130

in long-context and zero-shot scenarios. We131

also quantified and visualized that SWIE132

1We acquired the LLaMA weights through the official
application form and adhered to the stipulations of the license.

leads to a higher internal instruction attention 133

score. Additionally, the human and statistic 134

evaluation on faithfulness presents that both 135

SWIE and OVERUNDER lead to a more faith- 136

ful translation, and our evaluation of the IFE- 137

val test set shows that SWIE improves the 138

general instruction-following ability. 139

2 Backgound 140

2.1 Instruction Tuning Formalization 141

Instruction tuning is one of the alignment methods 142

to make language models meet human preferences. 143

In a typical instruction tuning data item, the initial 144

part of the text is task instruction s, followed by an 145

optional task input x, and the model is expected to 146

generate the task target output y finally (Ye et al., 147

2022). The standard instruction tuning is trained 148

with maximum likelihood estimation (MLE), and 149

the training objection can be calculated by Equa- 150

tion 1. 151

LMLE = −
T∑
t=1

logP (yt | y<t;x; s) (1) 152

2.2 The Attention Pattern in Translation 153

Instruction-following Data 154

Most open-source LLMs use the causal decoder ar- 155

chitecture because of the wide observation of scal- 156

ing law on the causal decoder (Raffel et al., 2020; 157

Zhao et al., 2023). In particular, we found that 158

instruction tuning in transformers shows a highly 159

consistent pattern, with concentrated attention on 160

the special tokens of each span, which provides a 161

predictable sign to predict the position importance. 162

We sample an instruction-tuning example on a ma- 163

chine translation task and forward the example on 164

Parrot-hint (Jiao et al., 2023a) based on BLOOMZ- 165

3b2, and observe in the heapmat in Figure 1 that 166

the two strongest (excluding the beginning token) 167

and global attention concentrated tokens are the 168

end of instruction and the input separately. A 169

similar observation is also claimed by Xiao et al. 170

(2023), which notes that special tokens contain- 171

ing not much meaning can gather attention. The 172

heatmap further reveals that the attention mech- 173

anism tends to pay more attention to the nearby 174

text except for the special tokens, and the attention 175

2We perform max pooling on the last 10 layers and multi-
heads of the model to generate a heatmap that shows the most
significant feature at an abstract level.
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Figure 1: The heatmap is the attention score of a sample
translation instruction data. The most prominent and
globally focused tokens correspond to the ending tokens
of the instruction and input span separately.

score on output spans to the end of instruction grad-176

ually decays with the distance getting longer, which177

can be evidence of instruction forgetting problems.178

Figure 2: The model structure of SWIE. In the selected
transformer layers, an adapter will transform the hidden
states of the instruction span, and we get an instruction
representation Itransl . Then, a segment Sigmoid weight
Wseg is used to control the fusion ratio of instruction
representation on different positions.

3 SWIE: Segment-weighted Instruction179

Embedding180

To solve the instruction forgetting problem, we181

propose segment-weighted instruction embedding.182

The schematic diagram of the method is shown in183

Figure 2. An instruction-tuning data can be divided184

into several segments: instruction, input, output,185

etc. We extract the instruction of each sample from 186

the hidden states of certain layers3. Then, we add 187

a trainable lightweight adapter for the instruction 188

representation to enable the model to learn a new 189

pattern to fusion instruction information with the 190

input and output spans. After instruction states 191

passing the adapter, we fuse the max pooled4 trans- 192

formed feature representation with a well-designed 193

segment-aware weight. The two main components 194

of SWIE are described as follows. 195

3.1 Instruction Adapter 196

The adapter follows the structure in (Houlsby et al., 197

2019). The instruction representation can be ob- 198

tained in the output of each decoder layer, and we 199

use an instruction adapter to re-parameterize in- 200

struction. 201

Let Hl be the hidden output of lth layer, and the 202

H ins
l represents the max pool result of the instruc- 203

tion part in Hl. We use a down-sampling linear 204

layer Ldown, a Tanh activation layer σ, and an up- 205

sampling linear layer Lup as the adapter, following 206

Equation 2. 207

f(H ins
l ) = Lup(σ(Ldown(H

ins
l ))) (2) 208

3.2 Segment-Weight and Global Fusion 209

We use a segment weight containing a Sigmoid 210

function for each span. During our preliminary 211

experiments (Section D.2), we discovered that fus- 212

ing features directly with a constant weight for all 213

positions would corrupt the model’s representation 214

during training. 215

Combining the observation in Section 2.2, the 216

ending special tokens of each span have concen- 217

trated attention scores. We assign the two tokens 218

and the few nearby tokens for weights nearly zero 219

based on the above observation to avoid the atten- 220

tion pattern on the two ending tokens destroyed. 221

A sentence is tokenized into a list of token in- 222

dexes and then fed into the model, and for the 223

segment index list, we define the segments by in- 224

struction, input, and output, and the segments are 225

separated by our pre-defined special token in the 226

prompts. Assuming the tokenized span list set is 227

S = {sins, sinput, soutput, · · · } (ins is an abbre- 228

viation for “instruction”), and we assign a cor- 229

respondent index set D = {0, 1, 2, · · · }, where 230

3The position and number of layer selections will be ana-
lyzed in Section D.1

4Our preliminary experiments indicate that the pooling
method is not a sensitive setting.

3



D → S. For s ∈ S, let the length of the span231

token list be Ns, the span index be Ds, the constant232

bias for Sigmoid function be b, segment weight be233

W s ∈ R1×Ns , and the value of ws
i (i ∈ [0, Ns−1])234

can be calculated as Equation 4. Wseg is the con-235

catenation of W sins , W sinput and W soutput .236

Sigmoid(x) =
1

1− e−x
(3)237

238

ws
i =

{
0 s = sins

Sigmoid(i− b) s ̸= sins
(4)239

Hl := Hl +Wseg · f(H ins
l ) (5)240

4 OVERUNDER: A Natural Hallucination241

Dataset242

In the machine translation task, the two most243

frequent phenomena of model unfaithfulness244

for fluent output are over-translation and under-245

translation. Over-translation refers to the situ-246

ation in which the translated sentence contains247

words irrelevant to the source sentence, and under-248

translation refers to the situation in which the trans-249

lation sentence lacks part of the information from250

the source sentence. Thus, we prompt gpt-3.5-251

turbo5 to mimic the two typical error types, and252

the prompts are appended in Table.13.253

To qualify the extent of under-translation or over-254

translation errors of generated sentences, we use255

awesome-align (Dou and Neubig, 2021) to evaluate256

the word-level cross-lingual alignment rate, and the257

statistic result is shown in Table.1. For reference258

corpus, the coverage of both source and target is259

around 90%, indicating that the statistical metric260

is roughly accurate. The source sentences of the261

under-translation dataset mainly cover semantics262

in the source sentences, but the semantics of the263

source sentences are significantly reduced in the264

target sentences. Conversely, the over-translation265

dataset behaves in the opposite manner. We con-266

duct a detailed analysis of OVERUNDER in the267

Section A of the appendix.268

data source coverage target coverage

reference 0.8845 0.8699
under data 0.5800 0.7180
over data 0.6958 0.5771

Table 1: Data statistics of generated over-translation and
under-translation data.

5https://platform.openai.com/docs/models/gpt-3-5

5 Emprical Experiments 269

Following (Jiao et al., 2023a), we chose BLOOM 270

and LLaMA (with parameter sizes from 3B to 271

around 7B) as the backbone models. There are 272

4 translation directions included, De ⇒ En, En ⇒ 273

De, En ⇒ Zh, and Zh ⇒ En. The implement de- 274

tails can be seen in Section B, including training 275

hyper-parameters settings. 276

5.1 Training Setting 277

Alpaca The Alpaca dataset (Taori et al., 2023) 278

is a high-quality multi-task instruction-following 279

dataset that contains 52K items. LLMs fine-tuned 280

by the Alpaca dataset are set as baselines with basic 281

instruction following ability. 282

Parrot-hint We set Parrot-hint (Jiao et al., 2023a) 283

as our strong baseline. The Parrot-hint dataset 284

includes 3 sub-datasets: the Alpaca Dataset, the 285

WMT17-20 dataset, and the MQM instruction 286

dataset. Parrot-hint contains 200K data in total. 287

OVERUNDER In the training process, we utilize 288

Alpaca Dataset, the WMT17-20 dev sets in Parrot- 289

hint sub-datasets, to ensure the basic ability of the 290

fine-tuned models. The mixup dataset contains 291

instruction-following data without a hint and with 292

a hint, and data with a hint both have an auxiliary 293

task based on translation. Therefore, we use a 294

curriculum learning strategy to fine-tune the data in 295

two stages. Note that the source of positive samples 296

in OVERUNDER is also WMT17-20 dev sets. 297

5.2 Evaluation 298

This section introduces the test sets and the evalua- 299

tion metrics we use. 300

WMT22 Test Sets WMT22 test sets come from 301

the news translation track of WMT22 competition6. 302

The test sets include 1984, 2037, 2037, and 1875 303

samples for De ⇒ En, En ⇒ De, En ⇒ Zh, and Zh 304

⇒ En, respectively. 305

Flores-200 Dev-test Flores-200 is a multi- 306

language translation benchmark. We use the dev- 307

test split as our test set, and there are 1012 samples 308

for each translation direction. 309

Automatic Evaluation For lexical evaluation, 310

we use BLEU (Papineni et al., 2002); for semantic 311

evaluation, we use COMET with reference. Both 312

6https://github.com/wmt-conference/wmt22-news-
systems
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Model
De ⇒ En En ⇒ De En ⇒ Zh Zh ⇒ En Average

bleu comet bleu comet bleu comet bleu comet bleu comet

WMT22 Winners
33.70 85.46 38.40 88.09 54.30 81.12 33.50 87.84 39.97 85.62

BLOOMZ-3b WMT22
Alpaca 14.68 68.49 5.55 49.10 20.20 81.46 11.65 75.38 13.02 68.61
Parrot-hint 22.05 75.59 17.80 67.64 33.95 83.70 21.33 78.19 23.78 76.28
w/ SWIE 22.80 75.33 17.55 66.68 34.19 84.13 21.58 78.50 24.03 76.16
w/ OVERUNDER 22.97 75.37 18.59 69.12 35.05 82.90 21.69 77.83 24.58 76.31
w/ OVERUNDER w/ SWIE 23.52 76.15 18.90 69.60 35.37 83.66 21.99 78.11 24.95 76.88

BLOOMZ-7b1-mt WMT22
Alpaca 18.64 73.37 9.97 61.65 25.52 82.31 15.07 77.79 17.30 73.78
Parrot-hint 23.80 77.77 20.58 73.63 35.49 84.61 22.58 78.93 25.61 78.74
w/ SWIE 25.28 77.91 19.86 72.93 36.76 84.76 22.96 79.28 26.22 78.72
w/ OVERUNDER 25.16 78.37 21.61 74.84 36.76 84.34 23.17 79.21 26.68 79.19
w/ OVERUNDER w/ SWIE 25.25 78.52 21.57 74.70 37.13 84.52 23.36 79.18 26.83 79.23

LLaMA-7b WMT22
Alpaca 28.92 82.77 21.72 79.70 17.72 71.96 15.95 74.95 21.07 77.34
Parrot-hint 28.90 82.84 25.96 82.78 28.12 79.84 20.61 75.61 25.90 80.27
w/ SWIE 28.72 83.04 26.14 82.22 28.20 78.96 20.22 75.47 25.82 79.92
w/ OVERUNDER 29.27 83.37 27.20 82.55 30.26 80.59 21.20 76.58 26.98 80.77
w/ OVERUNDER w/ SWIE 30.38 83.43 27.10 82.09 30.69 80.20 21.47 76.50 27.41 80.56

LLaMA-7b Flores
Parrot-hint 40.83 88.50 31.14 85.73 26.96 80.08 22.48 83.62 30.35 84.48
w/ SWIE 40.88 88.51 30.89 85.47 27.05 79.27 22.76 83.55 30.40 84.20
w/ OVERUNDER 39.57 88.51 32.19 85.80 28.73 81.57 21.24 83.57 30.43 84.86
w/ OVERUNDER w/ SWIE 40.21 88.60 32.39 85.78 29.79 81.51 21.29 83.65 30.92 84.89

Table 2: Translation performance of LLMs on WMT22 and Flores test sets. The bolded scores refer to the best
performance under the same or comparable settings.

of them are widely used metrics in machine transla-313

tion, and we use ScareBLEU7 and Unbabel/wmt22-314

comet-da in the evaluation implementation.315

5.3 Main Results316

The main results are shown in Table.2. For models317

fine-tuned by Alpaca, the translation performance318

indicates the basic language ability of the model319

with an instruction-following format. Overall, we320

had the following main observations.321

Firstly, according to the comparison between322

OVERUNDER and Parrot-hint, we found that323

OVERUNDER notably led to performance enhance-324

ment. Secondly, according to the comparison be-325

tween SWIE and Parrot-hint, our method shows326

a significant 0.5 BLEU scores average improve-327

ment on BLOOMZ-7b1-mt, and steady improve-328

ments in BLOOMZ-3b can also be seen. Thirdly,329

by combining the OVERUNDER and SWIE, a fur-330

ther improvement also can be seen in all of the331

backbones. By combining the dataset and model,332

we can see further improvements in all of the back-333

7https://github.com/mjpost/sacrebleu

bones. When compared with the baseline, there 334

are noticeable enhancements in the overall trans- 335

lation. BLOOMZ-3b has a 1.16 BLEU improve- 336

ment, while BLOOMZ-7B and LLaMA-7b have 337

1.22 BLEU and 1.51 BLEU improvements, respec- 338

tively. On the Flores test set, the combination of 339

OVERUNDER and SWIE also shows the best over- 340

all performance in the ablation experiments. 341

To verify the robustness of SWIE, we have at- 342

tached the results of the ablation and sensitivity 343

experiments for the layer selection and weight func- 344

tions in Appendix Section D. Moreover, the exper- 345

iments in parameter-efficient LoRA setting (Sec- 346

tion F) and the significance test (Section E) in var- 347

ious sentence length settings are also provided in 348

the Appendix. 349

6 Analysis 350

6.1 In-Context Translation 351

To evaluate the effectiveness of SWIE in the long- 352

instruction scenario and extend the evaluation to 353

a widely used scenario for LLMs, we conduct ex- 354

periments on in-context translation with translation 355
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demonstrations. We follow the settings in the main356

experiments, use WMT22 De⇒En as the test set,357

and use BLOOMZ-3b as the backbone model. The358

translation demonstrations are sampled randomly359

from the Flores test set and concluded in the in-360

struction part. When using 20 translation demon-361

strations, the token lengths range from 1820 to362

2600. Based on the model inference results, we363

observed that adding in-context demonstrations de-364

stroys the translation performance without SWIE365

because the model forgets the translation instruc-366

tion and generates irrelevant content. According to367

the results in Table. 3, the model translation perfor-368

mance decreases with the demonstration numbers369

getting higher. Meanwhile, SWIE notably leads370

to BLEU improvements from 7 to 10, which indi-371

cates the potential of SWIE for in-context learning372

scenarios.

Ndemo 2 5 10 20

OVERUNDER 13.51 7.73 4.58 0.49
OVERUNDER w/ SWIE 20.28 17.82 15.16 8.63

Table 3: BLEU scores in in-context translation. Ndemo

means the number of demonstrations.

373

6.2 Long Context Zero-shot Translation374

To prove the instruction-forgetting phenomenon,375

we designed a zero-shot translation direction exper-376

iment to determine the relationship between trans-377

lation quality and the distance between translation378

outputs and instruction.379

We use the Flores test set, which includes about380

200 languages, and we select three low-resources381

contained in the Flores test set for testing. The382

original test set has 992 sentences for each transla-383

tion direction. We expanded the test set to multi-384

sentence (3/5/7/9) using a sliding window and splic-385

ing nearby sentences, with the final expanded test386

sets approximating the original number. The input387

with 9 sentences has around 1k tokens.388

As Figure 3 shows, with the extended test sets389

sentences getting longer, the worse performance390

can be seen in the translation accuracy. This phe-391

nomenon indicates that the instruction informa-392

tion will be weakened by a longer context. Com-393

pared with the Parrot-hint, our method shows much394

higher accuracy in Czech and Korean for all sen-395

tence number settings (e.g. 7% and 12% for396

Czech and Korean in one sentence testing, respec-397

tively). Both of the two settings can rarely recog-398

Figure 3: Comparison accuracy for zero-shot translation
directions between models with and without SWIE, and
cs, ja, and ko representing Czech, Japanese, and Korean,
respectively.

Figure 4: Average BLEU on WMT22 test sets (En ⇔
De, En ⇔ Zh) with different concatenation sentence
numbers.

nize Japanese. 399

6.3 Long Context Translation 400

Similar to the data processing method in Sec- 401

tion 6.2, we extend the WMT22 test set to multi- 402

sentence(3/5/7/9) by contacting the nearby sen- 403

tences with a sliding window, and the input with 404

9 sentences has around 1k tokens. We compare 405

the original BLOOMZ-3b fine-tuned on OVERUN- 406

DER and BLOOMZ-3b with SWIE fine-tuned on 407

OVERUNDER. And the translation results can be 408

seen as Figure 4. We can observe that with the 409

source sentence getting longer, SWIE shows con- 410

sistently higher translation performance advance. 411

412

6.4 Faithfulness Evaluation 413

In human evaluation, we follow the evaluation set- 414

ting of (Weng et al., 2020). We simplify the er- 415

ror division and narrow the range to faithfulness 416

problems (including over-translation and under- 417

translation mistakes). Then, we define the faith- 418
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fulness error degree and the corresponding error419

scores “No Error”, “Minor”, and “Major” as 0, 1,420

and 2, respectively. We sample 100 test results421

from the Zh⇒En test set and engaged three na-422

tive language speakers, who are undergraduate stu-423

dents, compensating them at a rate of $10 per 1000424

sentences to assess the error degree of the output425

data. Final labels were based on majority voting.426

The statistical result shows that both SWIE and427

OVERUNDER have a lower faithfulness error score,428

and their combination decreases the overall error429

score to nearly half of the baseline.430

We also provide a statistical faithfulness evalua-431

tion based on the word-alignment toolkit, which is432

appended in Section G.

setting minor↓ major↓ error score↓

Parrot-hint 0.06 0.03 0.12
w/ SWIE 0.09 0.01 0.11
w/ OVERUNDER 0.06 0.02 0.10
w/ SWIE w/ OVERUNDER 0.05 0.01 0.07

Table 4: The human evaluation of translation faithful-
ness error rate on SWIE and OVERUNDER.

433

6.5 Visualize Inadequate Attention on434

Instruction435

Our standard instruction-following data item is se-436

quentially organized as instruction, input, and out-437

put. The attention score in transformers can show438

the positions the model addresses more. We sample439

20 random translation examples from test sets and440

report mean results. According to the observation441

in Figure 1, the attention scores on the ending to-442

kens of instruction and input can represent a global443

feature of attention on the corresponding spans.444

Therefore, we simplify the visualization by calcu-445

lating attention distributions on the special tokens446

at the end of each span.447

Assuming a is the attention score matrix, s is a448

span belonging to S = {sins, sinput, soutput, · · · },449

the es is the special token index of the end of the450

span s, and the T is the length of instruction data451

token list. We use Cs to represent the accumulated452

attention score in a position as shown in Equation 6.453

Cs =

T∑
i=es+1

a[i][es] (6)454

As depicted in Figure 5, it is evident that the middle455

layers of the model manifest a considerably higher456

attention accumulation score on the input spans,457

whereas the bottom and top layers exhibit more bal- 458

anced attention on instruction. The phenomenon 459

indicates that the model concentrates on the trans- 460

lation task more on the middle layers. We compute 461

the ratio of the attention score at the ending posi- 462

tion of the instruction and the attention score at the 463

ending position of the input. As illustrated in Fig- 464

ure 6, our method leads to a much higher attention 465

ratio on instruction in most layers, implying that 466

the SWIE effectively improves the model perfor- 467

mance via enhancing instruction attention. 468

Figure 5: Accumulative attention scores of instruction
and input spans on each layer. This figure is based on
BLOOMZ-3b, fine-tuned by the Parrot-hint dataset in
the origin model structure.

Figure 6: The comparison between models with and
without SWIE on attention ratio between the attention
accumulation score on instruction Cins

s and the attention
accumulation score on input Cinput

s . This experiment
is based on BLOOMZ-3b.

6.6 Instruction-Following Ability Evaluation 469

We conduct experiments on an instruction- 470

following test set IFEval (Zhou et al., 2023). IFE- 471
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setting prompt-level instruction-level

Alpaca 0.1164 0.2110
Alpaca-SWIE 0.1275 0.2230

Table 5: Instruction following ability evaluation on IFE-
val test set.

val contains 541 instruction-following test cases472

and focuses on verifiable instructions, including473

response word count, keyword frequency, etc. The474

results in Table 5 show that SWIE strengthens475

the instruction-following ability, demonstrating the476

generalization ability of SWIE.477

7 Related work478

7.1 Instruction Tuning and Variant Methods479

Instruction fine-tuning has shown surprising gener-480

alization ability on different tasks (Wei et al., 2021;481

Honovich et al., 2022; Wang et al., 2022). In the482

context of instruction tuning LLMs for machine483

translation, Jiao et al. (2023a); Zhang et al. (2023)484

have proposed multi-task instruction data construc-485

tion frameworks for instruction tuning open-source486

LLMs on machine translation. Zeng et al. (2023)487

proposed a contrastive learning loss to train the488

model to learn contrastive sample pairs.489

On general tasks, existing works are proposed490

to add instruction or context learning objections491

to improve instruction fine-tuning generalization492

ability and performance. Choi et al. (2022) pro-493

posed a distilling-based context injection method494

to preserve the long context information in the495

fixed model when the model is used in static long496

prompts situations. Ye et al. (2022) models the497

instruction in the condition given input and target498

for tasks with fixed labels. Snell et al. (2022) dis-499

tills context like task explanation or step-by-step500

reasoning from the teacher model. Ge et al. (2023)501

compress the long context into an adding memory502

slot module for in-context learning.503

The above methods focus on diverse or complex504

instruction modeling but do not stress the risk of505

instruction forgetting under the premise of position506

independence and without requiring fixed instruc-507

tions.508

7.2 Translation Faithfulness in Language509

Models510

Faithfulness (also called hallucination) in neural511

machine translation has been discussed for a long512

time (Lee et al., 2018; Müller et al., 2020). It513

is widely observed that the sources of unfaith- 514

fulness can be the lack of knowledge or inad- 515

equate attention to the source (Ferrando et al., 516

2022; Raunak et al., 2021). On machine trans- 517

lation hallucination detection benchmarks, exist- 518

ing datasets are constructed by humans or perturb- 519

ing the translation model (Raunak et al., 2021). 520

Human-making datasets like HalOmi (Dale et al., 521

2023) are costly and hard to scale up. Datasets 522

generated by the model perturbing method are 523

low quality because the sentences generated are 524

far from the natural text style and the distribution 525

of modern LLMs. Thus, our proposed unfaithful- 526

translation-mimicking dataset construction method 527

can fill the gap with high-quality and fluent nega- 528

tive samples. 529

8 Conclusion 530

We proposed SWIE and OVERUNDER, a novel 531

additional model structure for strengthening the at- 532

tention of the model to instruction, and an effective 533

data construction method for machine translation 534

faithfulness. The experiments on various back- 535

bone models and test sets show the effectiveness 536

of SWIE and OVERUNDER in translation qual- 537

ity and faithfulness. The zero-shot long-context 538

translation direction experiment indicates that the 539

origin model structure shows weaker instruction 540

following ability with the input text getting longer, 541

and SWIE alleviates instruction forgetting in dif- 542

ferent input length settings. Furthermore, the long- 543

context translation experiment shows the SWIE 544

outperforms the corresponding baseline more obvi- 545

ously in a longer input setting. Through the internal 546

attention scores of the models, we visualize the at- 547

tention distribution on the original model and the 548

attention shift induced by SWIE, thereby corrobo- 549

rating our assumption regarding the necessity for 550

increased attention on instruction. The experiments 551

on the IFEval instruction-following dataset indicate 552

that SWIE also improves the models on general 553

instruction-following tasks. Overall, SWIE effec- 554

tively mitigates the instruction forgetting issue and 555

enhances both translation quality and faithfulness. 556

Its wide effectiveness in various scenarios and set- 557

tings indicates the considerable potential of SWIE. 558

The following aspects can be explored in the 559

future based on our work: (1) investigating explain- 560

able and trainable methodologies for constructing 561

segment-weight and (2) extending the data con- 562

struction method to other tasks. 563
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9 Limitations564

Our work focuses on improving the translation565

faithfulness of LLMs, but there are the follow-566

ing limitations. Firstly, the diversity and scale of567

the datasets and models in the training process are568

limited due to the computational resource require-569

ments. Consequently, it remains uncertain whether570

scaling up the instruction fine-tuning process would571

unlock greater potential or uncover additional phe-572

nomena. Secondly, the SWIE induces approxi-573

mately 20% inference latency, indicating the poten-574

tial to boost the efficiency of the method in future575

work.576
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A Details of OVERUNDER 734

Instruction-tuning datasets can be organized flex- 735

ibly, and the standard format contains instruction, 736

input, and output. After we constructed the over- 737

translation and under-translation contrastive sam- 738

ples based on the WMT17-20 dev set (the data 739

source is the same as the setting in Parrot (Jiao et al., 740

2023a) with the proposed automatic pipeline, we 741

organized the final instruction data as Figure 7. The 742

total number of samples in the dataset is 54,420. 743

B Implement details 744

We use the transformers and DeepSpeed8 frame- 745

work for model training and inference. The train- 746

ing hyper-parameters follow the setting of (Jiao 747

et al., 2023a), and we report the results of the best 748

checkpoints within 1.5 epochs. We uniformly set 749

the dim of the instruction adapter to 32 and se- 750

lect the 5th, 6th, and 7th layers to add SWIE. The 751

3B size models are trained on 8 V100 GPUs, and 752

the 7B size models are trained on 4 A100 (40G) 753

GPUs. We trained all models in DeepSpeed stage 754

1 with freezing embedding layers to reduce the 755

memory requirement and prevent the models from 756

over-fitting. 757

C Training Cost Analysis 758

We use the same device (V100-32G) to train 759

BLOOMZ-3b. The adapter parameters are only 760

0.02% of the full model, and the train samples per 761

second of SWIE is a 25% decrease compared with 762

the baseline.

setting parameter size train samples per second

SWIE 2,360,793,702 30.629
SFT 2,360,294,400 38.384

Table 6: Training cost comparison of SWIE and stan-
dard supervised fine-tuning on BLOOMZ-3b.

763

D Ablation Study 764

D.1 The Impact of the selected layers 765

The layer selection is a possible variable on the 766

final model effect and the inference latency. In the 767

8https://github.com/microsoft/DeepSpeed
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primary analysis, we select the 5th, 6th, and 7th768

layers, that is, the bottom three layers of the model.769

We conducted the sensitivity experiments for layer770

selection on BLOOMZ-3b, which contains 30 lay-771

ers in total. We fix the layer number to 3 according772

to the trade-off for training and inference cost and773

the model performance, and the results in Table 7774

indicate that the selection of top, middle, or bottom775

three layers is not sensitive for the final overall re-776

sult. However, adding adapters for all layers shows777

an obvious decrease, which could be caused by the778

higher difficulty for a model to learn new features779

for every layer compared with certain three layers.780

layer selection BLEU(mean) COMET (mean)

5-7 24.92 76.76
14-16 24.95 76.88
26-28 24.97 76.77
all layer 24.48 76.30

Table 7: Layer sensitivity ablation study.

D.2 The Comparison of Constant Weight and781

Segment-Weight782

As shown in Table.8, we compare the performance783

on Parrot-hint for weight setting and keep the other784

settings the same as the main experiments on four785

language directions (En⇔De and En⇔Zh) of the786

WMT22 test set. The constant weight setting keeps787

the same upper bound as the Sigmoid weight. A788

significant decrease of 0.4 scores on the mean of789

BLEU and COMET indicates our hypothesis on790

the necessity of Sigmoid weight.

layer selection BLEU(mean) COMET(mean)

Sigmoid 24.03 76.16
Const 23.62 75.79

Table 8: Segmoid weight and constant weight compari-
son.

791

E Significance Test792

We conduct a significance test to ensure our exper-793

iments are significant with random settings. We794

choose 5 random seeds as initials, including 1, 6,795

19, 42, and 3307. The following experiments were796

conducted using the same settings in Figure 4 and797

are based on BLOOMZ-3b. As shown in Table 9,798

the p-values on all sentence length settings are be-799

low 0.05, indicating the effectiveness of SWIE is 800

statistically significant.

Nsentence 1 3 5 7 9

p-value 4.5e-2 1.0e-2 2.3e-2 4.3e-2 4.8e-2

Table 9: This table presents the statistical analysis on
the BLEU scores of the experiment in Figure 4, where
Nsentence means the concatenation number of sentences
in the test set.

801

F SWIE with LoRA 802

To expand SWIE in light-weight adapter settings, 803

we also provide the experiments of SWIE with 804

LoRA. The hyperparameters related to LoRA fol- 805

low the setting in Jiao et al. (2023a), and the other 806

settings follow the main experiments. The exper- 807

imental results in Table 10 show that the perfor- 808

mance of SWIE combining LoRA in all length set- 809

tings is consistently higher than using only LoRA. 810

Meanwhile, the SWIE only increases 1/8 train- 811

able parameters in LoRA settings, maintaining high 812

training efficiency.

Nsentence 1 3 5 7 9

OVERUNDER 18.61 17.73 16.51 14.85 13.33
OVERUNDER w/ SWIE 18.72 18.04 16.78 15.20 13.53

Table 10: The average BLEU scores for models with
and without the incorporation of SWIE under the LoRA
setting, where Nsentence means the concatenation num-
ber of sentences in the test set.

813

G Statistical Faithfulness Evaluation 814

There is no widely used standard toolkit on the qual- 815

ification of word-level machine translation faithful- 816

ness yet, so we both conduct statistic-based and hu- 817

man evaluations. The same statistic-based method 818

as Section 4, we use word alignment tools to match 819

the source sentences and the inference sentences 820

word by word, then calculate the recall of source 821

words matching rate and hypothesis words match- 822

ing rate, and then the ratio can reflect the absence 823

and the redundancy extent. The final scores are de- 824

rived by averaging the source and target coverage 825

rate on our WMT22 test sets. The result shows in 826

Table.11 that both SWIE and OVERUNDER can 827

improve the faithfulness of results, showing the 828

effectiveness of our proposed method. 829
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setting score

Parrot-hint 87.94
w/ SWIE 88.28
w/ OVERUNDER 88.84
w/ SWIE w/ OVERUNDER 88.80

Table 11: The ablation study of faithfulness score on
SWIE and OVERUNDER.

Figure 7: An instance of translation instruction and an
instance of OVERUNDER. A faithful translation is given
first, then two bad translations with over-translation or
under-translation problems are followed.

H Case Study830

We select 2 typical hard translation samples which831

will easily lead to hallucination. In the cases in832

Table 12, the bold text indicates the better transla-833

tion part in the generated text. As demonstrated,834

the model incorporating SWIE exhibits superior835

performance in terms of semantic faithfulness.836
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id type content

1
reference In which, “harboring generosity like the ocean” emphasizes

the spirit of inclusiveness, reflecting the mindset of “inviting
all talents”, which is manifested as absorbing the premium con-
cepts of university operation and talent training of world famous
universities;“seeking the truth while upholding morality” lays
emphasis on the spirit of the pursuit for truth and kindheartedness,
meaning that universities shall accept the cultivation of virtue and
the tempering of personality while pursuing for truth; “being
brave enough to keep exploring” reflects the spirit of reform
and innovation, including innovation in knowledge and science
and technology, as well as reform, development and innovation;
“building our country” stresses the spirit of patriotism and dedi-
cation, meaning that universities shall always share the glory and
disgrace with the destiny of the country.

w/ OVERUNDER Among them, "Haining River" emphasizes the spirit of openness
and inclusiveness, reflects the spirit of "using talent from all over
the world", and manifests the high-quality concept of absorbing
world-class universities’ excellent ideas for education and training;
"Qianzhen Zhu De" emphasizes the spirit of seeking truth to the
best spirit, namely, the university should pursue the pursuit of truth
while receiving the cultivation of virtue and moral cultivation, and
reform and innovation; "Xuanqiang" reflects the spirit of reform
and innovation, including the pursuit of knowledge and scientific
innovation, as well as the reform and development and革故鼎
new.

w/ OVERUNDER w/ SWIE Among them, "Hainan River" emphasizes the spirit of openness
and inclusiveness, reflecting the "heart of using all the talents in
the world", and showing the absorption of the high-quality concept
of the education and training of world famous universities; "Xu-
anzhen and De" emphasizes the spirit of seeking truth to the best,
which means that while universities pursue truth, they should also
receive the cultivation of virtue and the cultivation of personality;
"opening up before the people" reflects the spirit of reform and in-
novation, which includes the pursuit of knowledge and innovation
in science and technology, as well as the reform and development,
reform and innovation; "building my country" emphasizes
the spirit of patriotism and dedication, which means that uni-
versities should always share the fate of the nation.

2
target [Nora Books] Authentic, 3 volumes, Roald Dahl Complete Collec-

tion, Charlie and the Chocolate Factory + Matilda + Boy: Tales of
Childhood, 6-12 years old children’s book authentic children’s
literature

w/ OVERUNDER Nora Book has 6-12 year old children’s books for reading chil-
dren’s literature.

w/ OVERUNDER w/ SWIE There are three books in the original edition of "Nora Book" and
the whole collection of "Charlie and the Chocolate Factory",
"Matilda" and the childhood stories of "Good Boy" for chil-
dren aged 6 to 12.

Table 12: Case study for comparison on the faithfulness improvement of SWIE. The bold parts mean the more
faithful spans of generated translation.
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type prompt

under-translation You are an unprofessional [source language] to [target language] translator
who is not fully faithful to the original text in the translation process there is a
problem of omission, i.e., the translation leaves out parts of the original text.
Please translate the following [source language] sentence:
[source sentence]
If the following is a high-quality human [target language] translation:
[target sentence]
Please give a direct low-quality [target language] translation with omission
problems, noting that you are not simply rewriting the previous translation, but
need to emulate a translator that may have omissions, i.e., omitting parts of the
original text.

over-translation You are an [source language] to [target language] translator, but your translation
is unprofessional. In the translation process, you have not been completely
faithful to the original text, resulting in a translation that is not in the original
text.
This is a translation illusion problem; you need to provide a translation with the
illusion problem. Please translate the following [source language] sentence:
[source sentence]
If the following is a high-quality human [target language] translation:
[target sentence]
Please give a straightforward and low-quality [target language] translation
with an additive or a translation illusion problem. Please note that you need
to simulate a translator with possible translation enhancement problems and
translate what is not in the original text, rather than simply rewriting the previous
translation.

Table 13: The prompts for producing the OVERUNDER dataset.
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