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ABSTRACT

Relative positional encoding is widely used in vanilla and linear transformers to
represent positional information. However, existing encoding methods of a vanilla
transformer are not always directly applicable to a linear transformer, because the
latter requires a decomposition of the query and key representations into separate
kernel functions. Nevertheless, principles to design encoding methods suitable for
linear transformers remain under-studied. In this work, we put together a variety
of existing encoding approaches under a canonical form and further propose a
family of relative positional encoding algorithms via unitary transformation. Our
formulation leads to a principled framework that can be used to develop new rel-
ative positional encoding methods that preserve the linear space-time complexity.
Equipped with different parameters, the proposed linearized relative positional en-
coding (LRPE) family derives effective encoding for various applications. Exper-
iments show that compared with existing methods, LRPE achieves competitive
performance on language modeling and various challenging downstream tasks,
e.g., machine translation and text classification. In the meantime, it highlights a
general paradigm to design broadly more relative positional encoding methods,
applicable inclusively to linear and vanilla transformers.

1 INTRODUCTION

Transformers have achieved remarkable progress in natural language processing (Devlin et al., 2019;
Radford et al., 2019; Brown et al., 2020), computer vision (Dosovitskiy et al., 2020; Liu et al.,
2021; Arnab et al., 2021) and audio processing (Gulati et al., 2020). As an important ingredient in
transformers, positional encoding assigns a unique representation for each position of a token in a
sequence so that the transformers can sense the position of input tokens. Among these encoding
methods, absolute positional encoding (Vaswani et al., 2017; Sukhbaatar et al., 2015; Devlin et al.,
2019; Liu et al., 2020) maps each individual position index into a continuous encoding. Whereas
relative positional encoding (Shaw et al., 2018; Su et al., 2021; Horn et al., 2021; Liutkus et al., 2021;
Huang et al., 2020; Raffel et al., 2019) generates encoding for each query-key pair, representing their
relative positional offset. We focus on relative positional encoding as they are not constrained by
input lengths (Chen, 2021) while showing superior performance (Shaw et al., 2018).

Linear transformers Chen (2021); Qin et al. (2022); Su et al. (2021) attract more attention recently
as they can achieve linear space-time complexity with respect to input sequence length, while main-
taining comparable performance with vanilla transformers. Most existing linear transformers use
absolute positional encoding methods to encode positional information, since most existing relative
positional encoding methods are designed for vanilla transformers and are not directly applicable
to linear transformers. The main cause behind this limitation is that linear transformers decompose
key and value representations in the self-attention modules into separate kernel functions to achieve
linear space-time complexity. Such an additional requirement on the decomposibility is not always
satisfied by existing relative positional encoding methods. On the other hand, despite some individ-
ual works (Qin et al., 2022; Chen, 2021), general principles to design relative positional encoding for
linear transformers remain largely under-studied. A recent work, RoPE Su et al. (2021) proposes a
new set of multiplicative encoding solutions based on rotate positional encoding and can be applied
to linear transformers. In Section C.7, we show that RoPE can be seen as a special form of LRPE.
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Figure 1: Illustration of existing relative positional encoding (left) and the proposed LRPE (right).
Q, K, and V are all in the shape of n by d, where n is input length and d is feature dimension.
Tensors in the same dashed line box are associated for computation. In the vanilla relative positional
encoding, query key attention has to be calculated first, leading to a quadratic complexity. Wt−s

refers to relative positional encoding, where t, s are two positional indices on the query and key,
respectively. Our LRPE achieves a decomposable encoding, i.e., Wt and Ws are only dependent on
positions of the query and key, making it fully compatible with linear transformers. When dealing
with long sequences, d ≪ n, the computation complexity is dominated by n, rendering d negligible.

In this work, we aim to bridge this gap and study principal framework to develop relative positional
encoding applicable for both linear and vanilla transformers. To this end, we start by presenting a
canonical form of relative positional encoding, which reveals that differences in existing encoding
methods boil down to choices of a set of query, key and relative positional matrix primitives. By
properly selecting and composing these primitives, we could derive various existing encoding meth-
ods for vanilla (Vaswani et al., 2017; Huang et al., 2020; Shaw et al., 2018) and linear (Qin et al.,
2022) transformers.

Taking advantage of the canonical form, we introduce the main contribution of our work, i.e., a
special family of relative positional encoding methods called linearized relative positional encod-
ing (LRPE). Specifically, we supply a sufficient condition to design compatible encoding methods
specially for linear transformers and prove that the linearized relative positional encoding is unitary
transformation. Benefits of using unitary transformation are two-fold. On one side, since it is de-
rived from the decomposable positional matrix, it can maintain the linear space-time complexity as
shown in Fig. 1. Second, the property of the unitary transformation allows us to effectively derive
the family of closed-form solutions. In particular, we show that a number of encoding methods per-
tain to the LRPE family, including those used in RoPE (Su et al., 2021) and PermuteFormer (Chen,
2021).

Furthermore, LRPE sheds light on a simple yet flexible theoretical paradigm to develop new effec-
tive relative positional encodings. To demonstrate this, we derive non-exhaustively three additional
LRPE encoding methods by parameterizing the generic solution differently, including solutions
living in either real or complex domains. Since unitary transformations are special cases of rela-
tive positional matrix, LRPE are applicable in both linear and vanilla transformers, and exclusively
suitable within encoder and/or decoder layers. We experimentally demonstrate the effectiveness
of the LRPE family on autoregressive and bidirectional language modelling, and on challenging
downstream tasks, including machine translation and text classification. Results show that LRPE
achieves competitive capability in representing relative positional information, commonly resulting
in superior performance than previous encoding methods.

In summary, our main contributions are three-fold:

• We present a canonical form of relative positional encoding, which derives most existing
relative positional encoding methods as its special case, including those used in linear and
vanilla transformers.

• Based on the canonical form, we propose linearized relative position encoding (LRPE), a
simple yet principal formulation to derive an encoding family that respect the linear space-
time complexity in linear transformers, while being also applicable to vanilla transformers.
We show several existing relative positional encoding methods in linear transformers are in
LRPE family. We also provide additional particular solutions from this generic form.

• Experiments on various downstream tasks, including language modeling, machine transla-
tion and text classification show that the LRPE family show more robust and commonly
superior results across tasks than previous relative encoding methods, are flexible in be-
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ing plugged into linear/vanilla models, in encoder and/or decoder layers. In addition, it is
generic to derive existing and potentially new encoding methods.

2 BACKGROUND AND PRELIMINARY

In this section, we provide preliminary knowledge and describe related work to facilitate the rest
discussions. In the following, we denote the k-th row of matrix M as mT

k, the d-dimensional identity
matrix as Id. We omit the subscript d when it is unambiguous from the context. The complete list
of notations can be found in Appendix A.

2.1 TRANSFORMER AND ITS LINEARIZATION

We first briefly review vanilla transformer (Vaswani et al., 2017) and its linearization (Katharopoulos
et al., 2020). The key component of transformer models is the self-attention block, which involves
three matrices Q (Query), K (Key) and V(Value); each of them is a linear projection taking X ∈
Rn×d as input:

Q = XWQ,K = XWK ,V = XWV ∈ Rn×d. (1)

The output O ∈ Rn×d is computed using the Softmax weighted sum:

O = Softmax(QKT/
√
d)V. (2)

The computation overhead of the vanilla transformer grows quadratically with respect to the se-
quence length n, which becomes the bottleneck for transformers to handle long input sequences.
Linearization of self-attention aims to reduce the computation complexity to linear (Katharopoulos
et al., 2020; Ke et al., 2021; Qin et al., 2022; Vyas et al., 2020; Peng et al., 2021; Xiong et al., 2021),
typically achieved via a decomposable kernel function ϕ : Rd → Rd̄. Specifically, the output of
linear attention is computed as:

O = ∆−1ϕ(Q)[ϕ(K)TV],

∆ = diag(ϕ(Q)[ϕ(K)T1n]).
(3)

The key property of linear attention is the decomposability of the kernel function. This enables to
compute ϕ(K)TV ∈ Rd×d first, which leads to the O(nd2) complexity, further reducing to O(n)
with longer inputs (d ≪ n). See Appendix B for a detailed discussion.

2.2 POSITIONAL ENCODING

Self-attention is capable of parallel sequence processing but cannot capture positional information of
each token. To address this issue, positional encoding methods are proposed, which can be generally
categorized into two groups: absolute positional encoding and relative positional encoding.

Absolute positional encoding employs handcraft functions (Vaswani et al., 2017; Sukhbaatar et al.,
2015) or learnable encoding lookup tables P ∈ Rn×d (Devlin et al., 2019; Liu et al., 2020) to
represent position indices as encodings. These encodings are then combined with the context vector
additively:

qs = WQ(xs + ps),ks = WK(xs + ps),vs = WV (xs + ps), (4)

where the encoding formulation only depends on the absolute position index s, and the positional
encoding size is restricted by the input sequence length.

Relative positional encoding considers relative position offsets between two input tokens (Shaw
et al., 2018), i.e.,

est = xTsW
T
QWKxt + f(xs,xt, t− s), (5)

where s, t are the two positional indexes, est denotes the attention score before softmax. Compared
to absolute positional encoding, relative positional encoding generally achieves better performance
as it can handle variable input length (Chen, 2021). However, extra cost on computation and memory
makes it not so efficient than absolute positional encoding (Likhomanenko et al., 2021).

Most existing relative positional encoding methods (Raffel et al., 2019; Shaw et al., 2018; Huang
et al., 2020) require computing query-key attention QKT and combine with relative positional in-
formation, which incurs quadratic complexity. In contrast, linear attention avoids such a query-key
product to achieve the linear complexity. Therefore, common relative positional encoding methods
are usually not applicable in linear transformers.
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3 OUR METHOD

In this section, we present our main technical contribution on linearized relative positional encoding,
which is an encoding family that preserve the linear space-time complexity. Specifically, we start by
presenting a canonical form of relative positional encoding, and show that existing encoding meth-
ods can be derived by instantiating the canonical form with different choices of so-called primitive
queries, keys and positional matrices in Section 3.1. When imposing the decomposability constraint
on this canonical form, we obtain a sufficient condition for linearized relative positional encoding
(LRPE) and derive a family of concrete solutions in real and complex domains in Section 3.2. We
provide an implementation sketch in Section 3.3.

3.1 CANONICAL FORM OF RELATIVE POSITIONAL ENCODING

In order to better establish connections between existing relative positional encoding methods and
understand their design principles, in this section, we first present a canonical form of relative po-
sitional encoding. In particular, given a query qs and key ks pair, their relative positional encoding
frel : Cd × Cd → C can be represented as:

frel(qs,kt) =

m∑
l=1

(q̂(l)
s )HW

(l)
t−sk̂

(l)
t , (6)

where H represents conjugate transposition and m represents number of primitives. We refer
q̂
(l)
s ∈ Cd

(l)
1 , k̂

(l)
t ∈ Cd

(l)
2 ,W

(l)
t−s ∈ Cd

(l)
1 ×d

(l)
2 as query, key and relative positional matrix primitives,

respectively, used as constituent components to construct the relative positional encoding. Note
that query primitives do not always indicate a reliance on query embeddings, similarly for other
primitives. For example, an identify matrix can also serve as primitives, as we will show shortly in
Section 3.1.1.

To demonstrate Eq. 6 is a generic formulation, we show that it flexibly induces a wide range of
existing relative encoding methods (Shaw et al., 2018; Su et al., 2021; Horn et al., 2021; Liutkus
et al., 2021; Huang et al., 2020; Raffel et al., 2019) by selecting and compositing different choices
of primitives. Among them, we highlight two examples in the following section, and leave the
complete discussions in the Appendix C.1.

3.1.1 TYPICAL ENCODING EXAMPLES FROM THE CANONICAL FROM

Additive. In (Huang et al., 2020), the relative positional encoding is formulated as an extra additive
term to the query-key inner-product:

frel(qs,kt) = qH
s kt + wt−s, (7)

which can be derived by including an extra identity term as a primitive, formally denoted as:

m = 2,

q̂(1)
s = qs, k̂

(1)
t = kt,W

(1)
t−s = Id,

q̂(2)
s = Id, k̂

(2)
t = Id,W

(2)
t−s = wt−sId.

(8)

Multiplicative. In RoPE (Su et al., 2021), the relative positional encoding works in the form of the
weighted inner product:

frel(qs,kt) = qH
sWt−skt, (9)

which can be denoted as:

m = 1,

q̂(1)
s = qs, k̂

(1)
t = kt,W

(1)
t−s = Wt−s.

(10)

4



Under review as a conference paper at ICLR 2023

3.1.2 SIMPLIFICATION

For the ease of remaining discussion, we introduce necessary notations and simplify Eq. 6.

d̂1 =

m∑
l=1

d
(l)
1 , d̂2 =

m∑
l=1

d
(l)
2 ,

q̂s =
[
(q̂

(1)
s )T, . . . , (q̂

(m)
s )T

]T
∈ Cd̂1 , k̂t =

[
(k̂

(1)
t )T, . . . , (k̂

(m)
t )T

]T
∈ Cd̂2 ,

Ŵt−s = block-diag{W(1)
t−s . . . ,W

(m)
t−s} ∈ Cd̂1×d̂2 .

(11)

with these notations, we can rewrite Eq. 6 into the matrix form: frel(qs,kt) = q̂H
s Ŵt−sk̂t. Since

every component of q̂s and k̂t are handled with no difference, without losing generality, we only
discuss cases where m = 1:

frel(qs,kt) = qH
sWt−skt. (12)

3.2 LINEARIZED RELATIVE POSITION ENCODING

Eq. 6 is a canonical form of relative positional encoding, meaning that its variants are applicable to
vanilla transformers but not necessarily for linear ones. To design relative encoding compatible with
linear transformers, the attention computation has to respect the decomposibilty condition. This
additional condition leads to the linearized relative position encoding (LRPE) family, defined as
follows.
Definition 3.1. A relative position encoding is called linearized relative position encoding (LRPE),
when the following holds:

∀qs,kt ∈ Cd, frel(qs,kt) = qH
sWt−skt = (Msqs)

H(Mtkt) = qH
sM

H
sMtkt, (13)

where qs,kt ∈ Cd, Ws,Ms ∈ Cd×d,W0 = Id.

The assumption of W0 = Id implies that the interaction between tokens from the same position
only depends on the content, which is reasonable enough that most encoding methods respect. In
its essence, Eq. 13 ensures the positional matrix is decomposable. In this way, the query-key inner-
product can be avoided in the attention computation. Consequently, complexity of computing LRPE
is O(nd2), where n is sequence length, d is embedding dimension as Appendix C.2 shows in detail.

We prove that Eq. 13 can be simplified based on the following proposition:
Proposition 3.2. Eq. 13 is equivalent to Eq. 14 and Wt is Unitary matrix,

Wt−s = WH
s Wt. (14)

Proof of Proposition 3.2. According to the arbitrariness of qs,kt, Eq. 13 is equivalent to

Wt−s = MH
sMt. (15)

Take s = t in Eq 13, we get (since we assume that W0 = Id):

MH
sMs = W0 = Id. (16)

Thus, Ms is a unitary matrix. On the other hand, note that for any unitary matrix P, we always have

Wt−s = MH
sMt = MH

s IdMt = MH
sP

HPMt = (PMs)
H(PMt). (17)

This means that left multiplying Mt by a unitary matrix P does not change Eq. 13. Since Ms and
MH

0 are also unitary matrices, we can perform the following transformation:

Ms = MH
0Ms. (18)

With Ms, Eq. 15 becomes
Wt−s = M

H

sMt. (19)
Take s = 0, we have

Wt = M
H

0Mt = MH
0M0Mt = IdMt = Mt. (20)
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Thus Eq. 19 becomes
Wt−s = WH

s Wt. (21)

Since Ms is a unitary matrix, Ws is also a unitary matrix, i.e.,

WH
s Ws = Id. (22)

The detailed proof can be found in Appendix 3.2. In the following section, we derive some particular
solutions for Eq. 14.

3.2.1 PARTICULAR SOLUTIONS

In this section, we discuss Eq. 14 and give a family of solutions. It is worth noting that the solutions
we provide are all in the form of Ws = PHΛ(s)P, where P,Λ(s) are unitary matrix. The complete
derivation can be found in Appendix C.4, C.5, C.6.

Table 1: LRPE variants. The rows of the table represent the type of the P matrix, and the columns
represent the type of the Λ(s) matrix.

P type
Λ(s) type Unitary

(Solution 1)
Orthogonal
(Solution 2)

Orthogonal
learnable

(Solution 2)

Permutation
(Solution 3)

Householder - Type1 Type2 Type4
Householder learnable - - Type3 -

Permutation - Type5 Type6 Type7
FFT Type8 - - -

Unitary (Solution 1) The first case is discussed in the complex domain, which is not common in
transformer models yet exhibiting an elegant solution.

Proposition 3.1. The following form of Ws ∈ Cd×d satisfies Eq. 14:

Ws = PHΛ(s)P,

Λ(s) = diag{exp(isα1), . . . , exp(isαd)},
(23)

where P ∈ Cd×d is unitary matrix, αk, k = 1, . . . , d are parameters.

Orthogonal (Solution 2) Now we consider the real domain, a more general case in transformers.

Proposition 3.2. The following form of Ws ∈ Rd×d satisfies Eq. 14:

Ws = PTΛ(s)P,Λ(s) =

[
A(s)

B(s)

]
,

A(s) =

A
(s)
1

. . .
A

(s)
p

 ∈ R2p×2p,B(s) = Iq ∈ Rq×q,A
(s)
k =

[
cos(sαk) − sin(sαk)
sin(sαk) cos(sαk)

]
,

(24)
where P ∈ Rd×d is orthogonal matrix, αk, k = 1, . . . , d are parameters.

Permutation (Solution 3) The last case is inspired by PermuteFormer (Chen, 2021), which is
associated with the permutation matrix:

Proposition 3.3. The following form of Wk ∈ Rd×d satisfies Eq. 14:

Wk = PTΛ(k)P,

π : {1, 2, · · · , d} → {1, 2, · · · , d} is permutation,

Λ(k) = (I)πk ,

(25)

where P ∈ Rd×d is the orthogonal matrix.
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3.3 THE LRPE FAMILY

LRPE (Ws = PHΛ(s)P) contains two components, i.e., a fixed unitary matrix P and a unitary ma-
trix family Λ(s) as mentioned in proposition 3.1, 3.2, and 3.3. The P can be seen as a rotation matrix
that rotates the token feature to a particular coordinate system and the Λ(s) derives the positional
information from the rotated feature.

In this paper, we select three types of commonly used orthogonal matrix, i.e., (1) householder matrix
(Golub & Van Loan, 2013), (2) permutation matrix, and (3) FFT matrix (Bracewell & Bracewell,
1986). We combine the selected Matrix P with three LRPE solutions above to obtain 8 practical
LRPE types as shown in Table 1. Detailed information can be found in Appendix C.7.

4 EXPERIMENTS

Table 2: Quantitative results of the autoregressive language model on the WikiText-103 dataset. The
best result is highlighted with bold and the second best with underlined. ↓ means smaller is better.

Method Linear attention Vanilla attention
PPL (val)↓ PPL (test)↓ PPL (val)↓ PPL (test)↓

Competitors

Base 33.94 33.74 30.82 29.78
RoPE 33.40 33.13 30.13 29.31
SPE 43.50 41.91 32.99 32.26
PER 32.86 32.53 32.21 31.95
T5 - - 30.70 29.74
XL - - 32.93 34.36

Householder

Type1 33.65 33.58 29.66 28.80
Type2 32.83 32.80 29.60 28.69
Type3 33.04 32.81 29.62 28.81
Type4 35.05 34.80 31.66 31.32

Permutation
Type5 34.24 33.89 29.92 29.10
Type6 33.13 33.05 29.83 28.87
Type7 34.07 33.87 31.96 31.37

FFT Type8 36.78 36.31 29.85 28.96

Figure 2: Validation PPL of linear (left) and vanilla attention (right) of the bidirectional language model
pretrained on the WikiText-103 dataset. In both cases, the best result of proposed LRPE has a better PPL and
faster converge speed than competing methods.

L L

4.1 EXPERIMENTAL SETTINGS

Primary tasks. We validate the effectiveness of the proposed LRPE on various NLP tasks that
resort to different Transformer architectures. Specifically, we first study the autoregressive language
model (Radford et al., 2018) with a GPT-like decoder-only structure. This is followed by the bidirec-
tional language model (encoder-only), which adopts the Roberta architecture (Liu et al., 2020) and
is pretrained and then fine-tuned on several downstream tasks from the GLUE benchmark (Wang
et al., 2018). Then, we evaluate LRPE on machine translation (encoder-decoder).

Competing methods. Our baseline is the Transformer model (Vaswani et al., 2017) without relative
positional encoding. For comparison, we also choose four state-of-the-art methods , i.e., RoPE (Su
et al., 2021), SPE (Liutkus et al., 2021), PermutateFormer (abbreviated as “PER”) (Chen, 2021), T5
(Raffel et al., 2019) and Transformer-XL (Dai et al., 2019) (abbreviated as “XL”), and test them in
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both linear attention and vanilla attention. In the linear attention, we employ 1+elu(·) (Katharopou-
los et al., 2020) as the kernel function.

Training configuration. Our experiments are implemented in the Fairseq framework (Ott et al.,
2019) with V100 GPUs. All the methods share the same configurations which are listed in Appendix
D.1.

Table 3: Quantitative results of the Roberta model fine-tuned on the GLUE dataset. MNLI is re-
ported by the match/mismatch splits. All the downstream tasks are measured by the accuracy. The
best result is highlighted with bold and the second with underlined. ↑ means larger is better.

Attention Method MNLI QNLI QQP SST-2 AVG↑

Linear

Base 74.87/ 75.37 82.59 88.17 87.27 81.65
RoPE 67.13/67.69 79.97 85.11 78.21 77.61
SPE 67.07/68.51 74.79 71.43 78.67 72.99
PER 67.43/69.26 76.13 83.93 86.93 78.61

Type5 74.66/75.05 83.10 85.98 88.30 83.01

Vanilla

Base 79.37/79.07 87.79 88.33 90.25 86.44
RoPE 75.21/76.06 86.20 87.34 87.73 84.12
SPE 76.01/76.61 85.67 87.66 89.33 84.67
T5 77.83/78.84 86.93 87.78 89.91 85.61

Type1 79.18/79.85 87.57 87.89 89.11 85.94

4.2 RESULTS IN LINEAR SETTING

Autoregressive language model. The autoregressive language model has 6 decoder layers and is
trained on the WikiText-103 dataset (Merity et al., 2017). We use the Perplexity (PPL) as the evalu-
ation metric and report the results in Table 2. We observe that under the linear setting, most variants
of LRPE present performance gain over the baseline. Our best model, i.e., Type2, outperforms
RoPE and SPE on both validation and test sets to a large margin, and achieves comparable results to
PER with minor difference. Clearly, the proposed method is effective in encoding causal data.

Bidirectional language model. The bidirectional model follows an encoder-only structure, i.e.,
Roberta (Liu et al., 2020), with 12 layers. We first pretrain it on the WikiText-103 dataset, and
present the results in Fig. 2 and Appendix D.2. Generally, LRPE (Type2 in this case) has better
performance, i.e., smaller validation PPL in all evaluation steps, than competing methods. Notably,
it surpasses RoPE, SPE and PER by nearly 10%, 27% and 37% in terms of the final PPL, indicating
its superiority in bidirectional language modeling.

We then fine-tune the pretrained model on the GLUE dataset (Wang et al., 2018). We use different
learning rates among 1e-5, 3e-5, 6e-5, 1e-4 and choosing the best result after fine-tuning for 3
epochs. From Table 3, we find that the two representative LRPE variants, i.e., Type5, perform
consistently better than other methods in all metrics. The average score of Type5 beats RoPE, SPE,
and PER by more than 4.4%.

Machine translation. For this task, we adopt the base transformer model which consists of 6 en-
coder layers and 6 decoder layers, and train it on the WMT’14 En-De dataset (Bojar et al., 2014).
We ran each experiment 5 times and report the averaged results. Note that in practical, we only
embed the linear attention and its corresponding relative positional encoding in encoders, since we
empirically find that the model cannot converge appropriately when the linear attention appears in
decoders. We measure the accuracy with BLEU, and the quantitative results on both validation
and test sets are displayed in Table 4. Most variants in the LRPE family have comparable perfor-
mances to the competing methods on the validation set, and Type4 ranks first on the test data, which
demonstrates again the validity of our LRPE.

However, a few variants present less competitive results than the state-of-the-arts on the test data.
Empirically, this is caused by the relatively high sensitivity of parameter tuning on the machine
translation performance while all listed methods share the identical parameter setting. We will
concentrate on how to further improve their accuracy by specializing the parameters for each variant
in the future work.
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Table 4: Quantitative results of machine translation on the WMT’14 En-De dataset. Evaluation
metrics include the validation loss, validation BLEU (Papineni et al., 2002), and test SACRE BLEU
(Post, 2018). The best result is highlighted with bold and the second with underlined. ↑ means
larger is better. ±∆ means standard deviation.

Method Linear attention Vanilla attention
BLEU (val)↑ BLEU (test)↑ BLEU (val)↑ BLEU (test)↑

Baselines

Base 29.57± 0.06 26.34± 1.05 29.92± 0.3 27.50± 0.18
RoPE 29.60± 0.04 26.32± 0.36 30.09± 0.06 27.25± 0.39
SPE 29.39± 0.02 26.74± 0.12 29.76± 0.06 27.34± 0.12
PER 29.84 ± 0.04 27.47 ± 0.1 29.73± 0.08 27.19± 0.30
T5 - - 29.95± 0.09 27.56 ± 0.22

Householder

Type1 29.60± 0.05 26.16± 0.51 30.09± 0.02 27.18± 0.27
Type2 29.65± 0.04 26.13± 0.77 30.07± 0.02 27.28± 0.37
Type3 29.68± 0.03 26.02± 0.61 30.08± 0.03 27.44± 0.16
Type4 29.78± 0.05 27.47 ± 0.45 29.95± 0.05 27.41± 0.16

Permutation
Type5 29.61± 0.04 26.13± 0.5 30.08± 0.05 27.18± 0.52
Type6 29.71± 0.04 26.13± 1.16 30.09± 0.02 27.39± 0.49
Type7 29.82± 0.03 27.45± 0.12 29.96± 0.03 27.21± 0.28

FFT Type8 - - 30.10 ± 0.06 27.46± 0.22

Table 5: Ablation results with different rotation matrix P for language modeling on the WikiText-
103 dataset.

Method Linear attention Vanilla attention
PPL (val)↓ PPL (test)↓ PPL (val)↓ PPL (test)↓

Householder 32.83 32.80 29.60 28.69
Permutation 33.13 33.05 29.83 28.87

Identity 34.09 33.70 30.05 29.24

4.3 MODEL ANALYSIS

An explanation of LRPE. According to the discussion in Section. 3.3, The LRPE rotates the
token feature through P, and encodes the positional information through Λ(s). In Table 5, we ablate
the effectiveness of the P matrix on the autoregressive language modeling task. Our approach
with the Householder matrix and the Permutation matrix achieve marginally better results than the
one without rotation (Identity matrix). It indicates that we can get better performance by carefully
selecting the projection of the positional encoding.

Complexity and efficiency. The implementation of the proposed LRPE does not affect the com-
putational complexity of the linear transformer, i.e., preserving the linear complexity as O(n). We
also measure the training speed of the bidirectional language model on the same local machine (i.e.,
a GeForce GTX 1060 card), and observe that the speed after using LRPE is only 9% slower than
the baseline on average. The detailed comparison of the efficiency can be found in Appendix D.3.
In general, UPRE does not incur significant computational burden to the transformer, and can fulfill
the practical needs by maintaining comparable efficiency.

Generalization to vanilla attention. Finally, we investigate the generalization of LRPE towards
the vanilla attention. The results are reported in Fig. 2, Table 2, 3, and 4. The conclusion is con-
sistent with that of the linear setting, i.e., improving the vanilla transformer baseline and achieving
competitive performance to the competing methods. It indicates the good flexibility of LRPE as it
can be seamlessly applied to any attention type.

CONCLUSION

In this paper, we standardize the form of relative positional encoding in both linear and vanilla
transformers, and focus the case in the linear attention. The unitary transformation is employed
as a special solution to the linearized relative positional encoding, and the solutions as per various
constraints constitute the unitary relative positional encoding (LRPE) family. We validate the effec-
tiveness of LRPE through extensive experiments on several NLP tasks with different transformer
architectures. It outperforms state-of-the-art methods under both linear and vanilla settings.
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Appendix

A MATHEMATICAL NOTATIONS

Notation Meaning
X Hidden state.

Q,K,V Query, key, value.
WQ,WK ,WV Weight matrices for Q,K,V.

O Attention output.
mT

s s-th row of matrix M (real domain).
mH

s s-th row of matrix M (complex domain).
ϕ Kernel function for linear attention.
1d All-ones vector with dimention d.
Id Identity matrix with dimention d.

block-diag Combining matrices into larger
block diagonal matrices as in Eq. 26

Table 6: Mathematical notations used in the paper.

block-diag{W1,W2, . . . ,Wn} =


W1

W2

. . .
Wn

 . (26)

B COMPUTATION OF VANILLA/LINEAR ATTENTION

B.1 BASIC NOTATIONS

Both vanilla and linear attention blocks involve three matrices, i.e., Q (Query), K (Key) and V
(Value). All of them are linear projections of input X ∈ Cn×d, i.e.,

X =

x
T
1
...
xTn

 ∈ Rn×d,

Q =

q
T
1
...
qTn

 = XWQ =

x
T
1WQ

...
xTnWQ

 ∈ Rn×d,

K =

k
T
1
...
kTn

 = XWK =

x
T
1WK

...
xTnWK

 ∈ Rn×d,

V =

v
T
1
...
vTn

 = XWV =

x
T
1WV

...
xTnWV

 ∈ Rn×d,

(27)

where WQ,WK ,WV ∈ Rd×d.

The vector form is organized as

qs = WT
Qxs,ks = WT

Kxs,vs = WT
V xs. (28)

The attention output is

O =

o
T
1
...
oTn

 ∈ Rn×d. (29)
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B.2 VANILLA ATTENTION

In vanilla attention, the output is computed using the Softmax weighted sum, i.e.,

os = Attention(qs,K,V)

=

n∑
t=1

astvt

=

n∑
t=1

exp
(
qTskt/

√
d
)
vt∑n

r=1 exp
(
qTskr/

√
d
) ,

O = Softmax(QKT/
√
d)V.

(30)

B.3 LINEAR ATTENTION

The linear attention is formulated as follows,

os = LinearAttention(qs,K,V)

=

n∑
t=1

astvt

=

n∑
t=1

ϕ(qs)
Tϕ(kt)∑n

t=1 ϕ(qs)Tϕ(kt)
vt

=

∑n
t=1 ϕ(qs)

Tϕ(kt)vt∑n
t=1 ϕ(qs)Tϕ(kt)

= ϕ(qs)
T

∑n
t=1 ϕ(kt)vt

ϕ(qs)T
∑n

t=1 ϕ(kt)
,

O = ∆−1ϕ(Q)ϕ(K)TV

= ∆−1ϕ(Q)[ϕ(K)TV],

∆ = diag(ϕ(Q)[ϕ(K)T1n]).

(31)

C PROOF OF THEOREM

C.1 MORE EXAMPLES

In the following, we provide two additional examples of relative positional encoding with the canon-
ical form.

RPR (Shaw et al., 2018):

frel(qs,kt) = qH
s kt + qH

s ct−s,

ct−s = wclip(t−s,k),

clip(x, k) = max(−k,min(k, x)),

ws ∈ Cd,−k ≤ s ≤ k.

(32)

The canonical form is

m = 2,

q̂(1)
s = qs, k̂

(1)
t = kt,W

(1)
t−s = Id,

q̂(2)
s = qs, k̂

(2)
t = Id,W

(2)
t−s =

1

d
[ct−s . . . ct−s]︸ ︷︷ ︸

d columns

.
(33)
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DeBERTa (Huang et al., 2020):

frel(qs,kt) = qH
s kt + qH

s k̄g(s−t) + q̄H
g(t−s)kt,

g(x) =


0 x ≤ −c

2c− 1 x ≥ c

x+ c others.

(34)

The canonical form is

m = 3,

q̂(1)
s = qs, k̂

(1)
t = kt,W

(1)
t−s = Id,

q̂(2)
s = qs, k̂

(2)
t = Id,W

(2)
t−s =

1

d

[
k̄g(s−t) . . . k̄g(s−t)

]︸ ︷︷ ︸
d columns

,

q̂(3)
s = Id, k̂

(3)
t = kt,W

(3)
t−s =

1

d

[
q̄g(t−s) . . . q̄g(t−s)

]︸ ︷︷ ︸
d columns

.

(35)

cosFormer (Qin et al., 2022):

frel(qs,kt) = qH
s kt cos(α(t− s)), (36)

which indicates that the relative positional encoding is effectively a coefficient term in the attention
matrix, as such, it can be derived via a positional matrix primitive with the coefficients.

m = 1,

q̂(1)
s = qs, k̂

(1)
t = kt,W

(1)
t−s = cos(α(t− s))Id.

(37)

C.2 LINEARIZED RELATIVE POSITIONAL ENCODING

Proof of 3.2. For this, we only need to prove that the time complexity is linear with respect to n. To
this end, we first give basic notations as follows,

Q =

q
H
1
...
qH
n

 ∈ Cn×d,K =

k
H
1
...
kH
n

 ∈ Cn×d,V =

v
H
1
...
vH
n

 ∈ Cn×d,

Q̃ =

(M1q1)
H

...
(Mnqn)

H

 ∈ Cn×d, K̃ =

(M1k1)
H

...
(Mnkn)

H

 ∈ Cn×d.

(38)

The time complexity of transforming Q,K to Q̃, K̃ is O(nd2). The next step is to calculate the
output, i.e.,

O = Q(KHV) ∈ Cn×d,

O = ∆−1Q̃K̃HV

= ∆−1Q̃[K̃HV],

∆ = diag(Q̃)[K̃H1n].

(39)

Clearly, Eq. 39 is a standard formulation for the linear attention with the time complexity as O(nd2).
Combing it with the first step, we have the total time complexity as O(nd2), which is unchanged.

C.3 LINEARIZED RELATIVE POSITIONAL ENCODING

Before the proof, we first give the following theorems (Yao & Algebra, 2015):

14
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Theorem C.1. If matrix W ∈ Cd×d is a unitary matrix, there exists another unitary matrix P ∈
Cd×d, such that

W = PHΛP,

Λ = diag{exp(iθ1), . . . , exp(iθd)},
i2 = −1.

(40)

Theorem C.2. If matrix W ∈ Rd×d is an orthogonal matrix, there exists another orthogonal matrix
P ∈ Rd×d, such that

W = PTΛP,

Λ = diag{Λ1, . . . ,Λr; 1, . . . , 1;−1, . . . ,−1},

Λk =

[
cos θk − sin θk
sin θk cos θk

]
, k = 1, . . . r.

(41)

C.4 UNITARY (SOLUTION 1)

Proof of Proposition 3.1. According to Theorem C.1, we can assume that Ws has the following
form (P ∈ Cd×d is a unitary matrix),

Ws = PHΛ(s)P,

Λ(s) = diag{exp(iθ(s)1 ), . . . , exp(iθ
(s)
d )}.

(42)

Hence, Eq. 14 is equivalent to

WH
s Wt = Wt−s,

PHΛ(s)HPPHΛ(t)P = PHΛ(t−s)P,

PHΛ(s)HΛ(t)P = PHΛ(t−s)P,

Λ(s)HΛ(t) = Λ(t−s),

diag
{
j(θ

(t)
1 − θ

(s)
1 ), j(θ

(t)
2 − θ

(s)
2 ), · · · , j(θ(t)d − θ

(s)
d )

}
= diag

{
jθ

(t−s)
1 , jθ

(t−s)
2 , · · · , jθ(t−s)

d

}
.

(43)
In this case, ∀k = 1, . . . , d, we have

θ
(t)
k − θ

(s)
k = θ

(t−s)
k + 2kπ, k ∈ Z. (44)

Note that 2tπ does not affect the result, so we can assume t = 0, i.e.,

θ
(t)
k − θ

(s)
k = θ

(t−s)
k . (45)

Taking t = s+ 1, we get

θ
(s+1)
k − θ

(s)
k = θ

(1)
k ,

θ
(s)
k = sθ

(1)
k ≜ sαk.

(46)
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C.5 ORTHOGONAL (SOLUTION 2)

Proof of Proposition 3.2. According to Theorem C.2, we can assume that Ws has the following
form (P ∈ Rd×d is an orthogonal matrix),

Ws = PTΛ(s)P,

Λ(s) =

A(s)

B(s)

C(s)

 ,

A(s) =

A
(s)
1

. . .
A

(s)
n

 ∈ R2p×2p,

B(s) = Iq ∈ Rq×q,

C(s) = −Ir ∈ Rr×r,

A
(s)
k =

[
cos θ

(s)
k − sin θ

(s)
k

sin θ
(s)
k cos θ

(s)
k

]
.

(47)

Hence, Eq. 14 is equivalent to

WT
sWt = Wt−s,

PTΛ(s)TPPTΛ(t)P = PTΛ(t−s)P,

PTΛ(s)TΛ(t)P = PTΛ(t−s)P,

Λ(s)TΛ(t) = Λ(t−s),A(s)T

B(s)T

C(s)T


A(t)

B(t)

C(t)

 =

A(t−s)

B(t−s)

C(t−s)

 ,

(48)

where
A(s)TA(t) = A(t−s),

B(s)TB(t) = B(t−s),

B(s)TB(t) = C(t−s).

(49)

For A(s), considering the k-th component, we get

A
(s)
k

T
A

(t)
k = A

(t−s)
k

=

[
cos θ

(s)
k sin θ

(s)
k

− sin θ
(s)
k cos θ

(s)
k

][
cos θ

(t)
k − sin θ

(t)
k

sin θ
(t)
k cos θ

(t)
k

]

=

[
cos θ

(s)
k cos θ

(t)
k + sin θ

(s)
k cos θ

(t)
k sin θ

(s)
k cos θ

(t)
k − cos θ

(s)
k sin θ

(t)
k

− sin θ
(s)
k cos θ

(t)
k + cos θ

(s)
k sin θ

(t)
k cos θ

(s)
k cos θ

(t)
k + sin θ

(s)
k sin θ

(t)
k

]

=

 cos
(
θ
(t)
k − θ

(s)
k

)
− sin

(
θ
(t)
k − θ

(s)
k

)
sin

(
θ
(t)
k − θ

(s)
k

)
cos

(
θ
(t)
k − θ

(s)
k

) 
= A

(t−s)
k

=

[
cos θ

(t−s)
k − sin θ

(t−s)
k

sin θ
(t−s)
k cos θ

(t−s)
k

]
.

(50)

Hence, ∀k = 1, . . . , d, we have

θ
(t)
k − θ

(s)
k = θ

(t−s)
k + 2kπ, k ∈ Z. (51)
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Note that 2tπ does not affect the result, so we can assume t = 0, i.e.,

θ
(t)
k − θ

(s)
k = θ

(t−s)
k . (52)

Taking t = s+ 1, we have
θ
(s+1)
k − θ

(s)
k = θ

(1)
k ,

θ
(s)
k = sθ

(1)
k ≜ sαk.

(53)

Next, for B(s), the conclusion is more obvious, i.e.,

B(s)TB(t) = ITqIq

= Iq

= B(t−s).

(54)

Finally, for C(s), we have
C(s)TC(t) = (−ITr )(−Ir)

= Ir

̸= C(t−s).

(55)

In that case, we must have r = 0.

C.6 PERMUTATION (SOLUTION 3)

Prior to the proof, we first provide some relevant definitions and propositions.
Definition C.3. Permutation π is a bijection defined on the integer set:

π : {1, 2, · · · , d} → {1, 2, · · · , d}, d ∈ Z+. (56)

Definition C.4. For matrix

M =


mT

1

mT
2

...
mT

d

 ∈ Rd×d,mk ∈ Rd, k = 1, . . . , d, (57)

Mπ is defined as

Mπ =


mT

π(1)

mT
π(2)

...
mT

π(d)

 . (58)

Definition C.5. For identity matrix Id ∈ Rd×d and permutation π, we define

Λk = (Id)πk . (59)

For Λk, we have the following important properties:
Lemma C.6. For permutation π, matrix M ∈ Rd×d and Λk ∈ Rd×d defined in C.5, we have

Mπ = Λ1M. (60)

Proof. We first organize Id ∈ Rd×d in the following form, where ek ∈ Rd, k = 1, . . . , d represents
the one-hot vector with the k-th element as one, i.e.,

Id =


eT1
eT2
...
eTd

 . (61)
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Notice that
eTkM = mT

k, (62)

so we get

Λ1M =


eTπ(1)
eTπ(2)

...
eTπ(d)

M

=


eTπ(1)M

eTπ(2)M
...

eTπ(d)M



=


mT

π(1)

mT
π(2)

...
mT

π(d)


= Mπ.

(63)

Theorem C.7. For Λk defined in C.5, we have:

Λk = Λk
1 . (64)

Proof. We use induction for the proof.

For k = 1, the conclusion is obvious. Now assuming that the conclusion holds for k = s− 1, when
k = s, we have

Λs = (Id)πs

= ((Id)πs−1)π

= (Λs−1)π

= (Λs−1
1 )π.

(65)

The next step is to prove
(Λs−1

1 )π = Λs
1 = Λ1Λ

s−1
1 . (66)

The above conclusion follows from C.6.

Theorem C.8. Λk ∈ Rd×d defined in C.5 are orthogonal matrices, i.e.,

ΛkΛ
T
k = ΛT

kΛk = Id. (67)

Proof. We first prove that the conclusion holds for k = 1:

Λ1Λ
T
1 =


eTπ(1)
eTπ(2)

...
eTπ(d)

 [
eπ(1) eπ(2) . . . eπ(d)

]
,

[
Λ1Λ

T
1

]
st

= eTπ(s)eπ(t)

= δst,

Λ1Λ
T
1 = Id.

(68)
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Since Λ1 is a square matrix, we also have

ΛT
1Λ1 = Id. (69)

In general cases, we only use C.7, i.e.,

ΛkΛ
T
k = Λk

1(Λ
k
1)

T

= Λk
1(Λ

T
1)

k

= Λk−1
1 Λ1Λ

T
1(Λ

T
1)

k−1

= Λk−1
1 (ΛT

1)
k−1

= . . .

= Id.

(70)

With the same proof, we get
ΛT

kΛk = Id. (71)

Based on the above conclusions, we can prove Proposition 3.3 below.

Proof of Proposition 3.3. According to Theorem C.8 and the production of the orthogonal matrix is
an orthogonal matrix, we can assume that Wk has the following form (P ∈ Rd×d is an orthogonal
matrix), i.e.,

Wk = PTΛ(k)P. (72)
The next step is to verify that it satisfies Eq. 14, which follows Theorem C.7 and C.8:

WT
sWt = PTΛ(s)TPPTΛ(t)P

= PTΛ(s)TΛ(t)P

= PTΛ(s)T(Λ(1))tP

= PTΛ(s)T(Λ(1))s(Λ(1))t−sP

= PTΛ(s)TΛ(s)(Λ(1))t−sP

= PTΛ(t−s)P

= Wt−s.

(73)

C.7 IMPLEMENTATION

LRPE(Ws = PHΛ(s)P) contains two components, i.e., the fixed unitary matrix P and the unitary
matrix family Λ(s) mentioned in proposition 3.1, 3.2, and 3.3. We first introduce the choice of
matrices P/Λ(s), and then illustrate some implementation tricks.

Choice of matrices

For matrix P, we employ three types as follows,

• Householder matrix: denoted as a vector v ∈ Rd, i.e.,

W = Id − 2vvT/(vTv). (74)

In our implementation, we sample v from standard normal distribution, and make it deter-
ministic or learnable.

• Permutation matrix: formulated as per the following permutation (inspired by Flash (Hua
et al., 2022)), i.e.,

π(2k) = k, π(2k + 1) = ⌊d/2⌋+ 1, 1 ≤ 2k, 2k + 1 ≤ d. (75)
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• FFT matrix: a matrix form of FFT (Fast Fourier Transform).

For matrix family Λ(s), we use the following settings:

• For unitary (Solution 1) (3.1), we use the same method in (Su et al., 2021) with initialized
αt = 10000−2t/d, and make it deterministic. Since this method involves complex numbers,
we only use the FFT matrix for the choice of P.

• For orthogonal (Solution 2) (3.2), we test with two versions. In the first version, we set
the dimension of the identity submatrix q = ⌊d/2⌋, initialized αt = 10000−2t/d as in (Su
et al., 2021) and make it deterministic. In the second version, we choose the dimension
of identity submatrix q = 0 with initialized αt = 10000−2t/d as in (Su et al., 2021), and
make it learnable.

– Another notable version to choose the dimension of the identity submatrix q = 0 with
initialized αt = 10000−2t/d as in (Su et al., 2021), and make it deterministic. When
using this version along with the identity matrix, we can get RoPE (Su et al., 2021).

• For permutation (Solution 3) (3.3), we randomly choose the permutation and make it de-
terministic.

– Notice that when combing this method with identity matrix, we can get a version of
PermutateFormer (Chen, 2021).

Implementation tricks

According to the following facts, we can simplify the computation, i.e.,

qH
sW

H
s Wtkt = qH

sP
H(Λ(s))

H

PPHΛ(t)Pkt

= qH
sP

H(Λ(s))
H

Λ(t)Pkt

= (Λ(s)Pqs)
H(Λ(t)Pkt).

(76)

Hence, in practice, we can use Ws = PHΛ(s) instead of Ws = PHΛ(s)P to reduce the computa-
tional costs.

C.8 PSEUDOCODE

In this section, we provide pseudocodes for LRPE in Python:

import torch
import torch.nn as nn
import numpy as np

class Lrpe(nn.Module):
def __init__(self, core_matrix, p_matrix, max_positions=512,

embedding_dim=768,
theta_type="a", theta_learned=False,

householder_learned=False):
super().__init__()
self.core_matrix = core_matrix
self.p_matrix = p_matrix
self.theta_type = theta_type
self.theta_learned = theta_learned
self.householder_learned = householder_learned

# Lambda matrix
if self.core_matrix == 1:

if self.theta_learned:
print("Learn theta!")
self.theta = nn.Parameter(10000 ** (-2 / embedding_dim *

torch.arange(embedding_dim // 2)).reshape(1, 1, -1))
else:

print(f"Theta_type {self.theta_type}")
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elif self.core_matrix == 2:
print("Mixed")

elif self.core_matrix == 3:
print("Permutation")
permutation = self.get_permutation(max_positions, embedding_dim)
self.register_buffer("permutation", permutation)

elif self.core_matrix == 4:
print("Complex exp")
if self.theta_learned:

print("Learn theta!")
self.theta = nn.Parameter(10000 ** (-2 / embedding_dim *

torch.arange(embedding_dim)).reshape(1, 1, -1))
else:

print(f"Theta_type {self.theta_type}")

# P matrix
if self.p_matrix == 1:

print("Identity")
elif self.p_matrix == 2:

print("Householder")
if self.householder_learned:

print("learn householder!")
self.v = nn.Parameter(torch.randn(1, embedding_dim, 1))

else:
v = torch.randn(1, embedding_dim, 1)
v = v / torch.norm(v)
print(f"Householder norm is {torch.norm(v)}")
self.v = nn.Parameter(v, requires_grad=False)

elif self.p_matrix == 3:
print("Fourier")

elif self.p_matrix == 4:
print("Odd_even")

self.p = self.get_p()
self.core_transform = self.get_core_transform()

def forward(self, x):
’’’
input shape: (b, l, e), b stands for batch size, l stands for

sequence length, e stands for embedding dimension.
’’’
x = self.p(x)
x = self.core_transform(x)
return x

def get_p(self):
if self.p_matrix == 1:

def f(x):
return x

return f
elif self.p_matrix == 2:

return self.householder
elif self.p_matrix == 3:

def f(x):
return torch.fft.fft(x, norm="ortho")

return f
elif self.p_matrix == 4:

return self.odd_even_permutation

def get_core_transform(self):
if self.core_matrix == 1:

return self.reflect
elif self.core_matrix == 2:

return self.mix_reflect
elif self.core_matrix == 3:
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return self.do_permutation
elif self.core_matrix == 4:

return self.complex_exp

def get_permutation(self, max_positions, embedding_dim):
permutation = torch.randperm(embedding_dim).reshape(1, -1)
expanded = [torch.arange(embedding_dim).unsqueeze(0)]
for _ in range(max_positions - 1):

previous = expanded[-1]
current = previous.gather(-1, permutation)
expanded.append(current)

expanded = torch.stack(expanded, dim=1)
return expanded

def odd_even_permutation(self, x):
# 2k->k, 2k+1->d+k
e = x.shape[-1]
d = e - e // 2
permutation = torch.arange(e)
index = torch.arange(e)
permutation[::2] = index[::2] // 2
permutation[1::2] = (index[1::2] - 1) // 2 + d
permutation = permutation.to(x.device)
x = x.gather(-1, permutation.expand_as(x))

return x

def do_permutation(self, x):
b, l, e = x.shape
x = x.gather(-1, self.permutation[:, :l, :].expand_as(x))

return x

def reflect(self, x):
b, l, d = x.shape
e = d - 1 if d % 2 == 1 else d
return self.transform(x, e)

def mix_reflect(self, x):
b, l, d = x.shape
assert d >= 3
# split
e = d // 2
# to even
if e % 2:

e += 1
return self.transform(x, e)

def transform(self, x, e):
assert e % 2 == 0
b, l, d = x.shape
# do identity transformation
x1 = x[:, :, e:]
# do reflection
x = x[:, :, :e]
if self.theta_learned:

theta = self.theta
else:

if self.theta_type == "a":
theta = 10000 ** (-2 / e * torch.arange(e // 2))

elif self.theta_type == "b":
theta = np.pi / 2 / l / (e // 2) * torch.arange(1, e // 2 +

1)
elif self.theta_type == "c":

theta = np.pi / 2 / l / torch.arange(1, e // 2 + 1)
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theta = theta.reshape(1, 1, -1).to(x)
theta = torch.stack([theta, theta], dim=-1).reshape(1, 1, e)
theta = theta * torch.arange(l).reshape(1, -1, 1).to(x)
# (-q1, -q3), (q0, q2) -> (-q1, q0, -q3, q2)
x_half = torch.stack([-x[..., 1::2], x[..., ::2]],

dim=-1).reshape_as(x)
x_transform = x * torch.cos(theta) + x_half * torch.sin(theta)
# merge
if e != d:

x_transform = torch.cat([x_transform, x1], dim=-1)

return x_transform

def complex_exp(self, x):
b, l, e = x.shape
if self.theta_learned:

theta = self.theta
else:

if self.theta_type == "a":
theta = 10000 ** (-2 / e * torch.arange(e))

theta = theta.reshape(1, 1, -1).to(x.device)
matrix = theta * torch.arange(l).reshape(1, -1, 1).to(x.device)

sin_cos =
torch.complex(torch.cos(matrix),torch.sin(matrix)).to(x.device)

x = self.element_wise_complex(x, sin_cos)
return x

def element_wise_complex(self, t1, t2):
return torch.complex(t1.real * t2.real - t1.imag * t2.imag,

t1.real * t2.imag + t1.imag * t2.real)

def householder(self, x, eps=1e-6):
if self.householder_learned:

v = self.v / (torch.norm(self.v) + eps)
else:

v = self.v
# (b, n, e), (1, e, 1) -> (1, n, 1)
y = torch.matmul(x, v)
# (1, n, 1), (1, 1, e) -> (1, n, e)
y = torch.matmul(y, v.transpose(1, 2))

return x - 2 * y

D EXPERIMENT

D.1 CONFIGURATION

We provide detailed data, model and training configurations in Table 7. For published datasets,
WikiText-103 is obtained from https://www.salesforce.com/products/einstein/ai-research/the-
wikitext-dependency-language-modeling-dataset/, with Creative Commons Attribution-ShareAlike
License. The GLUE dataset is obtained from https://gluebenchmark.com/. The WMT’14 EN-DE
dataset is downloaded from https://www.statmt.org/wmt14/:

D.2 RESULTS OF BIDIRECTIONAL LANGUAGE MODEL

We report the pretrained results of the bidirectional language model in Table 8. Our LRPE achieves
competitive performance in both linear attention and vanilla attention. Notably, the UPPE variant
UPRE ol h has the best quantitative results in all evaluation metrics.
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Table 7: Detailed configurations used in our experiments. “Total batch size” means
batch per gpu × update freq × num gpus. “Attention dropout” is only used for vanilla atten-
tion. “ALM”: autoregressive Language Model. “BLM”: bidirectional Language Model. “MT”:
Machine Translation.

AML BLM MT
Data WikiText-103 WikiText-103 WMT14 EN-DE
Tokenizer method BPE BPE BPE
Src Vocab size 267744 50265 40480
Tgt Vocab size - - 42720
Encoder layers 0 12 6
Decoder layers 6 0 6
Hidden dimensions 512 768 512
Number of heads 8 12 8
FFN dimensions 2048 3072 2048
FFN activation function Relu Gelu Relu
Seqence length 512 512 /
Total batch size 128 512 /
Max token per batch / / 4400
Number of updates 50k 50k 100k
Warmup steps 4k 3k 4k
Peak learning rate 5e-4 5e-4 7e-4
Learning rate scheduler Inverse sqrt Polynomial decay Inverse sqrt
Optimizer Adam Adam Adam
Adam ϵ 1e-8 1e-6 1e-8
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
Weight decay 0.01 0.01 0
Gradient clipping 0.0(1.0 for Type8) 0 0
Hidden dropouut 0.1 0.1 0.1
Attention dropout 0 0.1 0

Table 8: Quantitative results of the Roberta model pretrained on the WikiText-103 dataset. The best
result is highlighted with bold and the second with underlined. ↓ means smaller is better.

Method Linear attention Vanilla attention
Loss (val)↓ PPL (val)↓ Loss (val)↓ PPL (val)↓

Competitors

Base 2.32 4.98 1.92 3.77
RoPE 2.21 4.64 1.85 3.60
SPE 2.74 6.68 2.04 4.11
PER 2.54 5.81 - -
T5 - - 1.90 3.72

Householder

Type1 2.34 5.06 1.83 3.55
Type2 2.08 4.22 1.82 3.53
Type3 2.09 4.26 1.83 3.55
Type4 2.31 4.95 2.02 4.06

Permutation
Type5 2.29 4.90 1.85 3.61
Type6 2.11 4.30 1.82 3.54
Type7 2.27 4.81 2.07 4.18

FFT Type8 - - 1.88 3.68

D.3 EFFICIENCY

We compare the training speed of LRPE with other methods in Table D.2, which indicates that our
method maintains good efficiency without incurring too much computational burden.
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Table 9: Training speed of different methods on the bidirectional language model. The value stan-
dards for the speed relative to the base method. ↑ means larger is faster.

Method Linear attention Vanilla attention
Relative speed↑ Relative speed↑

Base (Vaswani et al., 2017) 1.00 1.00
RoPE (Su et al., 2021) 0.95 0.97

SPE (Liutkus et al., 2021) 0.42 0.41
PER (Chen, 2021) 0.88 -

T5 (Raffel et al., 2019) - 0.70
LRPE 0.91 0.95
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