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Abstract

Large Language Models (LLMs) can correct001
their self-generated responses, but a decline002
in accuracy after self-correction is also wit-003
nessed. To have a deeper understanding of self-004
correction, we endeavor to decompose, evalu-005
ate, and analyze the self-correction behaviors of006
LLMs. By enumerating and analyzing answer007
correctness before and after self-correction, we008
decompose the self-correction capability into009
confidence (being confident to correct answers)010
and critique (turning wrong answers to correct)011
capabilities, and propose two metrics from a012
probabilistic perspective to measure these 2 ca-013
pabilities, along with another metric for overall014
self-correction capability evaluation. Based on015
our decomposition and evaluation metrics, we016
conduct extensive experiments and draw some017
empirical conclusions. For example, we find018
different models can exhibit distinct behaviors:019
some models are confident while others are020
more critical. We also find the trade-off be-021
tween the two capabilities (i.e. improving one022
can lead to a decline in the other) when ma-023
nipulating model self-correction behavior by024
prompts or in-context learning. Further, we025
find a simple yet efficient strategy to improve026
self-correction capability by transforming Su-027
pervision Fine-Tuning (SFT) data format, and028
our strategy outperforms vanilla SFT in both029
capabilities and achieves much higher accuracy030
after self-correction. Our code will be publicly031
available on GitHub. 1032

1 Introduction033

With the increase of training corpus and the number034

of parameters (Radford et al., 2018, 2019; Brown035

et al., 2020), LLMs have shown remarkable per-036

formance in various tasks, but it remains challeng-037

ing to avoid generating incorrect answers. One038

approach for better performance is intrinsic self-039

correction (Kamoi et al., 2024; Pan et al., 2024),040

1https://anonymous.4open.science/r/
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which allows the model to check and revise its self- 041

generated answers without external feedback (Wu 042

et al., 2024; Xi et al., 2023), and this process is 043

quite analogous to human thinking. Madaan et al. 044

(2024); Liu et al. (2024) find self-correction can 045

lead to better responses at the cost of increased 046

inference time (Qu et al., 2024), significantly en- 047

hancing model performance. However, negative 048

opinions on self-correction also exist (Huang et al., 049

2024; Jiang et al., 2024; Valmeekam et al., 2023), 050

and Stechly et al. (2023); Tyen et al. (2024); Jiang 051

et al. (2024) find LLMs even can not determine 052

the correctness of answers, as they often turn cor- 053

rect answers to incorrect ones or fail to correct 054

erroneous answers. The debate in previous work 055

indicates a lack of deeper understanding of self- 056

correction. To narrow this gap, we propose a 057

methodology to decompose, evaluate, analyze, and 058

improve the self-correction capability of LLMs. 059

Self-correction decomposition. In §2, we enu- 060

merate the correctness of answers before and after 061

self-correction and analyze four scenarios, based 062

on which we decompose the self-correction capa- 063

bility into: 1. confidence capability (maintaining 064

confidence in correct answers) and 2. critique ca- 065

pability (turning wrong answers to correct). 066

Self-correction evaluation. To measure these 067

two capabilities, in §3 we introduce Confidence 068

Level (CL) and Critique Score (CS) from a prob- 069

abilistic perspective, which respectively represent 070

the conditional probabilities of the model generat- 071

ing a correct answer after self-correction, given 072

the initial answer is correct/incorrect. We also 073

mathematically prove that the accuracy after self- 074

correction can essentially be seen as a weighted 075

sum of these two metrics, which further validates 076

the rationality of our decomposition. By analyzing 077

lower and upper bounds of CL and CS, we propose 078

Relative Self-correction Score to measure the over- 079

all self-correction capability. The calculation of 080

proposed metrics relies on event probabilities, so 081
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I'm sure 9.8 is bigger. Sorry, I made a mistake.
Now I think 9.11 is bigger.

Sorry for my mistake.
Actually 9.8 is bigger. I still think 9.11 is bigger.

The bigger number is 9.8 The bigger number is 9.11

Which one is the bigger
number, 9.11 or 9.8?

Stage1: 
Question Answering

Stage2: 
LLM Self-Correction

Stage2: 
LLM Self-Correction

Confident：✓⇒✓ Unconfident：✓⇒✗ Stubborn：✗⇒✗Critical：✗⇒✓

Figure 1: An example of four scenarios in self-correction. For a correct initial answer, LLM can (1). confidently
maintain it or (2). unconfidently change it into a wrong answer. For a wrong initial answer, LLM can (3). critique
and make it correct or (4). stubbornly insist the wrong answer.

we further provide probability estimation methods082

for both classification and generation tasks.083

Self-correction analysis. Based on our pro-084

posed metrics, in §4 we conduct extensive experi-085

ments across a variety of models and find that: 1.086

self-correction usually but not necessarily leads to087

higher performance; 2. confidence capability is088

generally better than critique capability for most089

models; 3. different models can exhibit distinct090

behaviors; some models are "conservative" (high091

CL and low CS) while others are more "liberal"092

(low CL and high CS); 4. models from the same093

series tend to behave similarly, which may because094

of their similar pre-training corpus. In §5, we at-095

tempt to manipulate self-correction behaviors of096

LLMs by prompting (Li et al., 2024; Huang et al.,097

2024) and in-context learning (ICL) (Dong et al.,098

2024), finding that simultaneous enhancement in099

both capabilities can hardly be achieved without100

fine-tuning, and improving one capability often101

leads to a decline in the other.102

Self-correction improvement. Based on the103

above findings and analysis, in §6 we propose Con-104

fidence and Critique improvement Tuning (CCT),105

a simple yet efficient training strategy to improve106

self-correction capability of LLMs. Unlike vanilla107

SFT, which directly teaches the model a correct108

answer with the question as context, CCT utilizes109

the question along with initial correct/incorrect an-110

swers as context and teaches model the final answer,111

enabling the model to maintain correct answers112

and refine wrong answers. Experimental results113

demonstrate that CCT outperforms SFT by a large114

margin on accuracy after self-correction, breaking115

the trade-off and achieving higher both CL and CS.116

Our contributions can be summarized as follows:117

1. We decompose self-correction capability into 118

confidence and critique capacities, and in- 119

troduce two metrics to measure them, along 120

with another metric to measure overall self- 121

correction capability. 122

2. Based on our proposed metrics and probability 123

estimation methods, we conduct extensive ex- 124

periments across a variety of LLMs and draw 125

some empirical conclusions. 126

3. We also find confidence and critique capaci- 127

ties can hardly be improved simultaneously 128

through prompting or ICL, and further ana- 129

lyze the trade-off between them. 130

4. We propose CCT, a simple yet efficient train- 131

ing method to improve self-correction capa- 132

bility, outperforming SFT in both aspects. 133

2 Self-Correction Decomposition 134

According to different settings discussed in Kamoi 135

et al. (2024), the self-correction we study can be 136

categorized as post-hoc intrinsic self-correction, 137

where LLMs can review and refine their generated 138

responses without external feedback and then out- 139

put the revised final answers. Since there is no 140

standard verifier to determine the correctness of a 141

generated answer during this process, the model 142

should first determine whether the answer is cor- 143

rect by itself. If deemed correct, the model persists 144

in outputting it; if considered incorrect, the model 145

then adjusts and outputs a revised answer. We di- 146

vide the process before and after self-correction 147

into two phases: 148

• Phase 1 (Question Answering): a question is fed 149

into the model and an answer that can be either 150

correct or incorrect is generated. 151
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• Phase 2 (Self-Correction): the model is instructed152

to correct its answer and output a revised answer153

that also can be correct or incorrect.154

Similar to Zhang et al. (2024a), by considering155

the Cartesian product of the outcomes from these156

two phases we categorize four scenarios (as illus-157

trated in Figure 1):158

1. Confident (!→!): The model initially gen-159

erates a correct answer and confidently main-160

tains this correct answer.161

2. Unconfident (!→%): The model initially162

generates a correct answer but lacks confi-163

dence in its correctness, subsequently produc-164

ing a wrong answer after self-correction.165

3. Critical (%→!): The model initially gen-166

erates a wrong answer but arrives at a correct167

answer through effective reflection.168

4. Stubborn (%→%): The model initially gen-169

erates a wrong answer and stubbornly insists170

on this incorrect answer.171

Essentially, model confidence in correct answers172

(case 1) and lack of confidence (case 2) are in-173

versely related; likewise, the reflection capacity174

(case 3) and obstinacy in incorrect answers (case175

4) are also inversely equivalent. Thus, the four176

self-correction cases can be distilled into two key177

capacities: Confidence Capability (confidence in178

correct answers) and Critique Capability (the abil-179

ity to correct wrong answers).180

3 Evaluation Metrics181

To further investigate the two decomposed capa-182

bilities in §2, we first formalize the problem and183

introduce relevant mathematical notations (§3.1).184

Then we propose two metrics from a probabilis-185

tic perspective to measure these two capabilities,186

and demonstrate that model performance after self-187

correction (i.e., accuracy) is essentially a weighted188

sum of these two metrics (§3.2). Also, a unified189

metric to measure overall self-correction capabil-190

ity is proposed in §3.3. Since the computation of191

our metrics depends on the probability of events,192

we then provide probability estimation methods193

in Appendix D and analyze metric convergence in194

Appendix E.195

3.1 Problem Formulation and Notations196

Initially, we have a set comprising of n questions,197

denoted as A = {q1, q2, ..., qn}. For a given ques-198

tion qi, the probability that the model generates a 199

correct answer through a single temperature-based 200

sampling before and after self-correction are de- 201

noted as P (ai) and P (bi), respectively. We define 202

a stochastic process: 203

• Randomly sampling a question q from A with 204

equal probability. 205

In the above random process, the probability of 206

the model generating a correct answer for the ques- 207

tion q before and after self-correction is denoted 208

as P (a) and P (b), respectively. We define their 209

expectations as Accuracy1 and Accuracy2 (Acc1 210

and Acc2 for short), then we have: 211

Acc1 = E[P (a)] =

∑
i=1,...,n P (ai)

n
(1) 212

Acc2 = E[P (b)] =

∑
i=1,...,n P (bi)

n
(2) 213

For convenience, all of the notations mentioned 214

and their meanings are shown in Appendix A. 215

3.2 Confidence Level and Critique Score 216

How confident are LLMs in their correct answers? 217

To answer this question from a probabilistic per- 218

spective, we introduce a metric named Confidence 219

Level (CL). Similarly, to measure the capability to 220

critique and turn wrong answers to correct, we in- 221

troduce another metric termed Critique Score (CS). 222

CL/CS is defined as the conditional probability 223

of a model generating a correct answer after self- 224

correction given it has generated a correct/wrong 225

one initially, then we have: 226

CL = E[P (b|a)] =
∑n

i=1 P (ai)P (bi|ai)∑n
i=1 P (ai)

, (3) 227

228

CS = E[P (b|¬a)] =
∑n

i=1[1− P (ai)]P (bi|¬ai)∑n
i=1[1− P (ai)]

,

(4) 229

where P (bi|ai)/P (bi|¬ai) is the conditional 230

probability of a model correctly answering qi after 231

self-correction given that it has answered it cor- 232

rectly/wrong initially, and the derivation details 233

are shown in Appendix B. To intuitively illustrate 234

CL/CS, we present a Venn diagram in Figure 2 to 235

compare two types of models. 236

Intuitively, a model with a strong self-correction 237

ability tends to show a higher Acc2, which is 238

caused by its high CL and CS. We also find the 239
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P(a) P(b)P(a,b) P(a) P(b)P(a,b)

Critical Model
(low CL, high CS)

Confident Model
(high CL, low CS)

Figure 2: Venn diagram for confident/critique models in
complete probability space. The red , orange circles
and their overlap area denote the probability of a model
correctly answering questions before self-correction,
after self-correction, and both respectively. the overlap
area of confident models is much larger than that of
critical models.

accuracy after self-correction (Acc2) satisfies the240

following relationship (with derivation shown in241

Appendix B.3):242

Acc2 = Acc1 ∗ CL+ (1−Acc1) ∗ CS (5)243

Essentially, Acc2 is the weighted sum of CL and244

CS with weights Acc1 and 1−Acc1 respectively,245

and improving CL/CS will increase Acc2. Besides,246

this equation also further validates the rationality247

of our decomposition in §2.248

3.3 Relative Self-Correction Score249

Measuring self-correction capability with a single250

unified metric. The above two metrics respec-251

tively reflect different aspects of self-correction252

capability, which is beneficial for a detailed anal-253

ysis. However, it is hard to compare the overall254

self-correction ability of two models with these255

two metrics, as one model may process a higher256

CL while the other exhibits a higher CS. Another257

potential metric that can reflect self-correction ca-258

pability is Acc2, but it can be significantly influ-259

enced by the initial ability (i.e. Acc1). For in-260

stance, in §4 Llama3-8B-Instruct shows an Acc1261

of 71.0% and an Acc2 of 78.1% on the GSM8k,262

indicating a substantial improvement in accuracy263

after self-correction. Conversely, GPT-4 Turbo has264

an Acc1 of 93.6% and an Acc2 of 92.1%, showing265

a slight decrease in accuracy. Intuitively, Llama3-266

8B-Instruct seems to possess better self-correction267

ability, yet GPT-4 Turbo has a higher Acc2.268

To fairly compare the overall self-correction ca-269

pabilities of different models and eliminate the270

influence of Acc1, we propose the Relative Self-271

Correction Score (RSS), which is essentially a272

normalized form of Acc2. Similar to Yang et al.273

RSS = 
Acc2  100%0% lower

bound
upper
bound

Figure 3: Visualized expression of Relative Self-
correction Score.

(2024b), we derive the upper and lower bounds of 274

Acc2 and define RSS as the position of the actual 275

Acc2 within this range (also shown in Figure 3): 276

RSS =
Acc2 −Acclow2

Accupp2 −Acclow2

=
Acc2 −Acc21

2Acc1 − 2Acc21
,

(6) 277

where Acclow2 = Acc21, Acc
upp
2 = 2Acc1−Acc21 278

denotes lower and upper bound of Acc2 respec- 279

tively, with derivation details shown in Appendix 280

C. Empirically we have RSS ∈ (0, 1), and higher 281

RSS indicates better self-correction capability. 282

Specifically, when there is no change in accuracy 283

after self-correction (i.e. Acc1=Acc2), we have 284

RSS = 0.5. RSS > 0.5 signifies an increase in 285

accuracy after self-correction, whereas RSS < 0.5 286

indicates a decrease. 287

4 Experiments 288

4.1 Experimental Setup 289

Models Experiments are conducted on both open- 290

source and closed-source models. For the closed- 291

source models, we assess Qwen-Max (Bai et al., 292

2023), GPT-3.5 Turbo, and GPT-4 Turbo (Achiam 293

et al., 2023) by API calls. For the open-source 294

models, we evaluate Llama3-(8B,70B) (AI@Meta, 295

2024), Qwen2.5-(7B,72B) (Yang et al., 2024a), 296

DeepSeek-LLM-7B (DeepSeek-AI, 2024), Mistral- 297

7B-v3 (Jiang et al., 2023a), and GLM4-9B (GLM 298

et al., 2024), and parameters of these models are 299

publicly available on HuggingFace 2. 300

Dataset We evaluate self-correction capability 301

on both classification and generation tasks, includ- 302

ing domains in mathematics, coding, instruction 303

following, common-sense reasoning, and knowl- 304

edge. To be specific, the dataset we utilized include 305

GSM8k (Cobbe et al., 2021), Humaneval (Chen 306

et al., 2021), IFEval (Zhou et al., 2023), MMLU 307

(Hendrycks et al., 2021), BoolQ (Clark et al., 2019), 308

and CommonsenseQA (Talmor et al., 2019). 309

More implementation details are shown in Ap- 310

pendix F.1. 311

2https://huggingface.co/
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Models
GSM8k MMLU BoolQ

Acc1 Acc2 CL CS Acc1 Acc2 CL CS Acc1 Acc2 CL CS

Llama3-8B-Instruct 71.0 78.1 91.7 44.9 62.2 64.0 94.9 13.1 62.3 64.8 86.0 29.8
Deepseek-7B-Chat 61.2 60.9 95.9 5.6 47.8 47.9 98.7 1.3 57.8 57.6 98.8 1.2
Mistral-7B-Instruct 50.1 51.1 90.9 11.0 59.2 59.2 98.4 2.3 61.4 62.5 98.5 5.4
Qwen2.5-7B-Chat 91.9 92.4 99.4 14.5 71.0 71.5 93.3 18.0 58.8 60.9 93.9 13.8
GLM4-9B-Chat 64.9 63.7 87.9 19.0 63.5 64.6 83.3 32.1 61.1 64.8 77.1 45.5

Llama3-70B-Instruct 90.7 92.7 97.3 48.1 78.2 79.5 97.2 16.2 76.3 76.4 84.7 49.3
Deepseek-67B-Chat 82.4 82.3 99.1 3.7 65.3 66.3 94.8 12.9 69.8 69.8 89.9 23.4
Qwen2.5-72B-Chat 95.7 95.9 99.9 7.5 82.6 83.4 98.2 13.5 65.5 75.9 93.9 41.5

Qwen-Max 96.1 96.4 99.9 11.5 83.8 85.0 99.2 11.6 71.3 73.6 98.2 12.5
GPT-3.5 Turbo 81.3 84.0 95.6 33.8 65.3 65.6 89.6 20.5 68.5 70.3 75.7 58.8
GPT-4 Turbo 93.6 92.1 96.8 23.9 84.3 82.3 88.4 49.6 80.5 78.6 87.8 40.6

Table 1: Experiment results on GSM8k, MMLU and BoolQ. We report accuracy(%) before and after self-correction
(denoted as Acc1 and Acc2). Confidence Level (CL) and Critique Score (CS) are also shown for fine-grained
analysis of self-correction behavior.
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Figure 4: Relative Self-correction Score (RSS) results
on GSM8k (shown in ascending order of Acc2). Except
for showing RSS for each evaluated model in a bar, we
also show Acc2, upper and lower bounds of Acc2 in
lines of different colors for comparison.

4.2 Experimental Results312

Self-correction capability evaluation experiments313

are conducted on various models and Accuracy (%)314

before and after self-correction is reported. We also315

report Confidence Level and Critique Score during316

the self-correction process for fine-grained analysis,317

as the results shown in Table 1 and 6. To measure318

overall self-correction capability and remove the319

effect of initial Accuracy, we show Relative Self-320

correction Score results on GSM8k in Figure 4, and321

more results are illustrated in Table 7. Our findings322

include:323

1. Self-correction does not necessarily lead to an324

increase in Accuracy. For example, on the GSM8k325

dataset, accuracy of GPT-3.5 Turbo is improved326

by 2.7% after self-correction, whereas accuracy of327

GPT-4 Turbo is decreased by 1.5%. As a result,328

RSS of GPT-3.5 Turbo is much higher than that of 329

GPT-4 Turbo. 330

2. In general, the CL values are relatively high, 331

while the CS values are relatively low. This in- 332

dicates that models tend to have high confidence 333

but still have considerable room for improvement 334

in their critique capabilities. Furthermore, mod- 335

els with higher CS values (e.g., Llama3-8-Instruct) 336

tend to process lower CL values, suggesting that it 337

may be hard for models to achieve both high confi- 338

dence and critique capabilities simultaneously. 339

3. Different models exhibit distinct behaviors. 340

For instance, Deepseek-7B-Chat and Mistral-7B- 341

Instruct are generally more "conservative", tending 342

not to alter their answers after self-correction, re- 343

sulting in high CL and low CS. On the other hand, 344

Llama3-8B-Instruct and GLM4-9B-Chat are more 345

"liberal", often overturning their initial answers and 346

providing new ones after self-correction, which 347

leads to low CL and high CS. 348

4. Models from the same series tend to show 349

similar behaviors. For example, both Llama3- 350

8B-Instruct and Llama3-70B-Instruct exhibit low 351

CL and high CS, whereas Qwen2.5-7B-Chat and 352

Qwen2.5-72B-Chat tend to show high CL and low 353

CS, and this phenomenon indicates confidence and 354

critique capabilities are likely influenced by the 355

pre-training data. 356

5 Behavior Manipulation 357

In this section, we explore manipulating self- 358

correction behavior of LLMs without fine-tuning. 359

We try to utilize different prompts (§5.1), provide 360

different in-context learning (ICL) examples (§5.2), 361

and observe the change in self-correction behavior. 362
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Prompt
GSM8k MMLU BoolQ Avg Avg

CL CS CL CS CL CS CL CS

Reask 91.70.0 44.90.0 94.90.0 13.10.0 86.00.0 29.80.0 90.90.0 29.30.0
Confidence 93.5+1.8 32.9−12.0 99.0+4.1 2.0−11.1 96.1+10.1 8.9−20.9 96.2+5.3 14.6−14.7

Critique 77.7−14.0 47.9+3.0 71.1−23.8 26.0+22.9 54.6−31.4 62.3+32.5 67.8−23.1 48.7+19.4

Table 2: Self-correction behavior under different kinds of prompts. Green and red text denotes the change in
accuracy of "Confidence"/"Critique" prompt relative to "Reask" prompt baseline.

Acc1  100%0% CS CL

Confidence prompt 
/ ICL example Critique prompt / ICL example Confidence prompt 

/ ICL example

Figure 5: A trade-off between CL and CS. Confidence
prompt/ICL example can lead higer CL and lower CS;
critique prompt/ICL example can cause lower CL and
higher CS.

Experimental results indicate it is hard to consis-363

tently enhance both confidence and critique capa-364

bilities simultaneously through prompt or ICL, and365

we also illustrate the trade-off between CL and CS366

in Figure 5. Improving one aspect often leads to367

a decline in the other, so there is no guarantee of368

improving overall self-correction capability simply369

by different prompts or ICL examples.370

5.1 Manipulation by Prompt371

In §4, our prompt to encourage LLMs to self-372

correct is simply to ask LLMs the question again.373

By taking this as a baseline, we try two other374

prompt strategies and make a comparison. Huang375

et al. (2024) utilizes a critique prompt to encour-376

age LLMs to find errors in answers, while Li et al.377

(2024) emphasizes the importance of confidence in378

correct answers. Inspired by previous research, we379

attempt confidence prompt and critique prompt to380

manipulate the self-correction behavior of Llama3-381

8B-Instruct (see Appendix H for prompt details),382

with experimental results presented in Table 2.383

We observe that confidence prompt enhances CL384

across all tasks but diminishes CS. Conversely, cri-385

tique prompt improves CS but the price is a reduc-386

tion in CL. To improve self-correction capability of387

LLM, we should improve both confidence and cri-388

tique simultaneously, which can be hardly achieved389

by simply changing a different prompt. Besides,390

the debate (§1) on whether self-correction can im-391

prove performance could also be caused by the392

difference in prompts.393
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Figure 6: Self-correction behavior of 4-shot ICL with
different confidence example numbers. With the in-
crease of confident example number, CL increases, and
CS decreases.

5.2 Manipulation by ICL 394

Prior work (Dong et al., 2024; Yang et al., 2023) 395

has demonstrated that LLMs can do in-context 396

learning by providing only a few examples, and 397

we explore manipulating self-correction by ICL ex- 398

amples in the form of case 1 (confidence example) 399

and case 3 (critique example) in §2. In confidence 400

example, model generates a correct answer and 401

maintains it after self-correction; while in critique 402

example, model gives a wrong answer but success- 403

fully corrects it after self-correction. We evaluate 404

the Llama3-8B-Instruct model under a 4-shot set- 405

ting and utilize the 0-shot setting as a baseline for 406

comparison, varying the number of confidence and 407

critique examples among the four examples used. 408

As the experimental results shown in Figure 6, we 409

find that a higher number of confidence examples 410

increases confidence but diminishes critique capa- 411

bility, whereas more critique examples enhance CS 412

but reduce CL. When the number of these two ex- 413

amples is the same (2:2), model behavior is similar 414

to that of 0-shot setting. 415
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6 Improvement Tuning416

We have decomposed self-correction capability into417

confidence capability and critique capability (§2)418

and find a trade-off between them without fine-419

tuning (§5). In this section, we further explore420

training models to acquire better self-correction421

performance by improving both the above two ca-422

pabilities simultaneously, and propose a fine-tuning423

method named Confidence-and-Critique Improve-424

ment Tuning (CCT), which can be divided into425

Confidence Level Improvement Tuning (CLT) and426

Critique Score Improvement Tuning (CST). CLT427

is designed to increase confidence capability, while428

CST aims to enhance the critique capacity.429

A theoretical comparison of different training430

methods. Vanilla Supervised Fine-Tuning (SFT)431

teaches the model how to complete a task (i.e. how432

to generate the correct answer for a given question),433

but this paradigm can hardly teach a model how to434

reflect and self-correct. In contrast, CLT provides435

a user question and a correct answer as the context,436

training the model to be confident in this correct437

answer. Similarly, CST gives a user question ac-438

companied by a wrong answer as the context and439

teaches model critique capability by taking a cor-440

rect answer as supervision. CLT and CST training441

data can be acquired by automatic transformation442

of SFT training set, and an example of these train-443

ing data is shown in Appendix I. CCT training data444

is essentially a mixture of CLT and CST, improv-445

ing self-correction by combining the advantages of446

them. There are also other self-correction improve-447

ment training methods (Yan et al., 2024; Han et al.,448

2024; Welleck et al., 2023) with strong verifiers449

(Zhang et al., 2024b; Chen et al., 2024) or rein-450

forcement learning (Kumar et al., 2024), but CCT451

is much simpler and can be achieved by automatic452

transformation of SFT data, so we do not compare453

CCT to these methods and only investigate the im-454

provement to SFT.455

An empirical comparison of these training meth-456

ods. We fine-tune Llama2-7B-Base on three tasks457

by the above training approaches with Lora (Hu458

et al., 2021), and more implementation details are459

shown in Appendix F.2. As the experimental re-460

sults displayed in Table 3, we report Accuracy461

(%) before and after self-correction (denoted as462

Acc1, Acc2) of fine-tuned models under different463

training strategies, along with CL and CS for fine-464

grained analysis. Our findings indicate that while465

Task Method Acc1 Acc2 CL CS

GSM8k

SFT 39.3 40.3 75.2 17.7
CLT 30.3 34.2 94.6 8.0
CST 33.1 42.2 80.5 23.2
CCT 36.0 44.2 89.9 18.4

MMLU

SFT 48.6 48.9 70.3 28.6
CLT 26.4 26.4 99.9 0.1
CST 47.6 27.4 5.1 47.6
CCT 51.2 55.5 85.5 24.0

BoolQ

SFT 63.6 63.8 75.8 42.8
CLT 53.8 53.8 99.1 1.0
CST 58.8 41.5 1.3 98.9
CCT 62.4 74.0 83.7 57.8

Table 3: Experiment results of different training meth-
ods on GSM8k, MMLU and BoolQ. CCT outperforms
SFT in Acc2, CL,CS, showing better self-correction
capability, and we also show results for CLT and CST
for comparison.

0 10 20 30 40 50 60 70 80 90

50

55

60

65
A

cc
ur

ac
y(

%
)

Acc1
Acc2

0 10 20 30 40 50 60 70 80 90 100
CLT data proportion (%)

0

20

40

60

80

100

C
L/

C
S

 (%
)

CL
CS

Figure 7: Self-correction behaviors under different pro-
portions of CLT and CST training data on BoolQ.

SFT achieves the best initial performance (Acc1), 466

it exhibits relatively weak self-correction capability 467

and achieves minimal performance improvement 468

after self-correction. On the other hand, CLT and 469

CST significantly enhance confidence and correc- 470

tion abilities, respectively, yielding the highest CL 471

or CS. However, these single-focus tuning strate- 472

gies often substantially compromise model capa- 473

bility in the other aspect, even leading to negative 474

performance gains after self-correction. In contrast, 475

CCT can enhance both confidence and critique ca- 476

pabilities simultaneously, and the corresponding 477

CL and CS generally surpass those of SFT. No- 478

tably, CCT can lead to considerable accuracy im- 479
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Figure 8: A comparison of SFT, CCT, and SFT+CCT.
Acc2 is presented in colorful bars and the whited parts
denote Acc1. SFT+CCT can achieve both high Acc1
and Acc2.

provements after self-correction and achieve the480

highest Acc2 across all three tasks, significantly481

outperforming other methods, which suggests that482

CCT can effectively enhance the self-correction483

capabilities of LLMs.484

Exploring the proportions of CLT and CST.485

Empirical results have shown a single CLT or CST486

can not improve self-correction capability, but a487

mixture of them (CCT) can be effective. We fur-488

ther investigate performance of fine-tuned models489

under different mixing ratios by keeping the total490

size of the training set constant while adjusting491

the proportions of the two types of data. We test492

each data mixture three times with different ran-493

dom seeds and report the average result, as the494

experimental results on BoolQ shown in Figure495

7. We find that as the proportion of CLT data in-496

creases, CL consistently rises, while the CS value497

monotonically decreases. Acc1 and Acc2 exhibit498

an inverted U-shaped curve (initially increasing and499

then decreasing), and the model achieves its highest500

self-correction performance when the proportion501

of CLT data is approximately 40%.502

Can we combine CCT with SFT? Since SFT503

can make model achieve high Acc1 and CCT504

achieves high Acc2, we then explore combining505

them for both high Acc1 and Acc2. As the results506

shown in Figure 8, SFT achieves high Acc1 but507

low Acc2; CCT achieves high Acc2 but Acc1 is rel-508

atively low; and SFT+CCT can achieve both high509

Acc1 and Acc2. This phenomenon indicates that510

we can improve self-correction capability in SFT511

stage by adding some CCT data. Since CCT data512

can be acquired from SFT data, we can also treat513

CCT as an effective data augmentation strategy.514

7 Related Work 515

Self-Correction LLMs can correct responses by 516

themselves (Liu et al., 2024) or with external feed- 517

back (Jiang et al., 2023b), and this self-correction 518

capability can be improved by prompting (Li et al., 519

2024; Wu et al., 2024) or fine-tuning (Welleck et al., 520

2023; Kumar et al., 2024). Unlike previous work, 521

we provide a new perspective to decompose, evalu- 522

ate, analyze, and improve self-correction. 523

Evaluation and Metrics The evaluation of 524

LLMs (Chang et al., 2023) mainly focuses on spe- 525

cific capabilities (e.g. mathematics (Gao et al., 526

2024b), instruction-follow (Zhou et al., 2023)) or 527

properties (e.g. MBTI (Pan and Zeng, 2023), con- 528

sistency (Yang et al., 2024b)). We evaluate self- 529

correction capability with metrics derived from a 530

probabilistic perspective. 531

Post-Training LLMs usually require further 532

post-training to enhance specific capabilities af- 533

ter pre-training. SFT (Zhang et al., 2023; Wei et al., 534

2021) can improve general ability on multiple tasks; 535

RLHF (Ouyang et al., 2022) and DPO (Rafailov 536

et al., 2024; Gao et al., 2024a) can align LLMs 537

with human preference. Our CCT improves self- 538

correction capability by transforming the format of 539

SFT data and be combined with SFT. 540

8 Conclusion 541

We propose a methodology to decompose, evalu- 542

ate, and analyze the self-correction capabilities of 543

LLMs. By enumerating four cases, we decompose 544

self-correction capability into confidence capabil- 545

ity and critique capability, and propose two metrics 546

from a probabilistic perspective to measure these 547

two capabilities, along with another metric to mea- 548

sure the overall self-correction capability. Based 549

on our metrics and probability estimation methods, 550

we conduct extensive experiments and draw some 551

empirical conclusions. A trade-off between these 552

two capabilities is also observed when manipulat- 553

ing behaviors by prompt or ICL, and further we 554

propose a simple yet efficient training strategy for 555

self-correction improvement by transforming data 556

format in SFT stage. To summarize, our decompo- 557

sition and evaluation methodology can be helpful 558

to self-correction behavior analysis and our train- 559

ing strategy can improve self-correction capability, 560

thus paving the way for further exploration in LLM 561

self-correction. 562
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Limitations563

The calculation of our proposed metrics relies564

on probability estimation, which necessitates re-565

peated sampling for the same question, being more566

computationally expensive than traditional non-567

probability evaluation.568

Our decomposition and analysis are simplified569

and real self-correction can be more complex. For570

instance, generating wrong answers before and af-571

ter self-correction might be due to 1. the model572

stubbornly adhering to an incorrect answer or 2.573

the question being too hard and beyond current574

capability of the model. Our analytical approach575

can not distinguish between these two scenarios576

and treats them the same. Besides, our evaluation577

methodology can only reflect the self-correction578

capability on a whole dataset, but can not indicate579

which type of questions is more likely to cause the580

model to exhibit confidence or critique behaviors,581

and identifying these questions for a given model582

still requires human efforts in case studies. Thus,583

we leave a more detailed and fine-grained analysis584

of self-correction to future work.585

Although we have observed that models from586

the same series exhibit similar self-correction be-587

haviors and hypothesize that these behaviors are588

influenced by the pre-training data, the underlying589

reasons for how these behaviors come into being590

remain unknown, and we leave further explorations591

on deeper reasons to further work.592

Though we have simply explored static data mix-593

ing of CCT and CLT §6, more mixing strategies594

can be further explored. For instance, a balancing595

strategy could be dynamically adjusting the pro-596

portion of different training data based on current597

CL and CS at training time, and we leave further598

exploration to future work.599

Model behavior manipulation has been tried with600

some simple prompts in §5. Further, a deeper in-601

vestigation into how prompts influence model be-602

havior is intriguing and important, and we leave it603

to future research.604

The probability estimation methods utilized for605

classification tasks is relatively simple, further op-606

timization can be explored. For instance, we can607

utilize more tokens that have semantics similar to608

the answer to estimate the probability. Besides,609

more probability estimation methods are also dis-610

cussed by Geng et al. (2024).611

Ethical Considerations 612

The data we utilized are open for research, and 613

evaluated LLMs are all publicly available by either 614

parameters or API calls. Therefore, we do not 615

anticipate any ethical concerns in our research. 616
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Appendix918

A Mathematical Notations919

This section shows all of the mathematical nota-920

tions used in this paper. If you forget the meaning921

of any notation, please refer to Table 4. We lever-922

age ˆ to symbolize estimates (e.g. P̂ (ai) represents923

the estimate of the true value P (ai) ). For sim-924

plicity, we only show true values in Table 4, and925

estimates are omitted.926

B Metric Derivation Details927

This section shows a detailed derivation of Con-928

fidence Score (§B.1) and Critique Score (§B.2),929

along with the proof of Equation 5 (§B.3).930

B.1 Derivation of CL931

Let’s think about the stochastic process defined in932

§3.1:933

• Randomly sampling a question q from A with934

equal probability.935

Initially, the prior probability of selecting qi in936

the above random process is P (select qi) = 1
n .937

After introducing the condition that the model has938

answered question qi correctly initially, the poste-939

rior probability of qi being selected in the random940

process becomes P (select qi) = P (ai)∑
j=1,...,n P (aj)

.941

By leveraging this posterior probability for the cal-942

culation of expected values, we have:943

CL = E[P (b|a)]

=
∑

i=1,...N

P (select qi)P (bi|ai)

=
∑

i=1,...,n

P (ai)∑
j=1,...,n P (aj)

P (bi|ai)

=

∑
i=1,...,n P (ai)P (bi|ai)∑

i=1,...,n P (ai)
,

(7)944

where P (bi|ai) is the conditional probability of945

a model correctly answering qi after self-correction946

given that it has correctly answered it initially. The947

higher CL is, the more confident the model is about948

its correct answers. High CL also indicates the949

model is confident and will not change its correct950

answer even when challenged.951

B.2 Derivation of CS952

We can derive CS in a manner similar to Equation 7,953

but here we would give another form of derivation:954

CC = E[P (b|¬a)]

= E[
P (b,¬a)
P (¬a)

]

=

∑
i=1,...,n P (bi,¬ai)/N∑
i=1,...,n P (¬ai)/N

=

∑
i=1,...,n P (bi|¬ai)P (¬ai)∑

i=1,...,n P (¬ai)

=

∑
i=1,...,n[1− P (ai)]P (bi|¬ai)∑

i=1,...,n[1− P (ai)]
,

(8) 955

where P (bi|¬ai) is the conditional probability of 956

a model correctly answering ai after self-correction 957

given that it has answered it wrong initially, and 958

model answer ai wrong with probability P (¬ai) = 959

1−P (ai). CS reflects the extent to which the model 960

persists in providing wrong answers. A lower CS 961

value indicates a greater tendency for the model to 962

stubbornly maintain erroneous responses, whereas 963

a higher CS value suggests a greater willingness of 964

the model to correct these errors. 965

B.3 Proof of Equation 5 966

How can we ensure that a model maintains a high
accuracy after self-correction? According to the
probability decomposition formula, we have:

P (bi) = P (bi|ai)P (ai) + P (bi|¬ai)P (¬ai),

which indicates: (1) In the scenario where the 967

model provides a correct answer initially, high con- 968

fidence in its answer will lead to a low likelihood of 969

changing its response, and consequently results in a 970

high probability of correctness after self-correction; 971

(2) Conversely, if the model initially provides an 972

incorrect answer, it has the opportunity to correct 973

its error after self-correction, which also facilitates 974

a higher likelihood of giving a correct answer. 975

Based on these observations, it can be intuitively 976

concluded that higher values of CL and CS will 977

lead to an increase in Acc2. Besides, we also dis- 978

cover the following mathematical relationships: 979
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Notations Meanings

A question set

qi the ith question in A

P (ai) the probability of generating a correct answer for question qi through a single
temperature-based sampling before self-correction

P (bi) the probability of generating a correct answer for question qi through a single
temperature-based sampling after self-correction

P (a) the probability of generating a correct answer for a random question q in A through
a single temperature-based sampling before self-correction

P (b) the probability of generating a correct answer for a random question q in A through
a single temperature-based sampling after self-correction

P (bi|ai) the conditional probability of generating a correct answer after self-correction, given
the initial answer is correct

P (bi|¬ai) the conditional probability of generating a correct answer after self-correction, given
the initial answer is incorrect

Acc1 accuracy before self-correction (i.e. expectation of P (a))

Acc2 accuracy before self-correction (i.e. expectation of P (b))

Acclow2 lower bound of Acc2

Accupp2 upper bound of Acc2

Table 4: Mathematical notations and their meanings.

Acc2

=

∑n
i=1 P (bi)

n

=

∑n
i=1 P (bi|ai)P (ai) + P (bi|¬ai)P (¬ai)

n

=

∑n
i=1 P (ai)

n

∑n
i=1 P (ai)P (bi|ai)∑n

i=1 P (ai)

+

∑n
i=1[1− P (ai)]

n

∑n
i=1 P (¬ai)P (bi|¬ai)∑n

i=1[1− P (ai)]

= Acc1 ∗ CL+ (1−Acc1) ∗ CS
(9)980

C Derivation of RSS981

The derivation of Relative Self-correction Score982

(RSS) can be summarized as follows: Initially, we983

utilize an assumed inequation to estimate the pos-984

sible range of of CL and CS. Subsequently, by985

using Equation 5, we determine the corresponding986

range for Acc2, thus obtaining the upper and lower987

bounds for Acc2, and ultimately deriving the final988

RSS.989

From a probabilistic perspective, Acc1, CL, and990

CS are interpreted as follows: Acc1 represents the 991

probability that the model correctly answers a ques- 992

tion without any conditions. In contrast, CL and 993

CS represent the conditional probabilities that the 994

model correctly answer the question given that it 995

has previously answered it right or wrong, respec- 996

tively. For questions the model is already capable 997

of answering correctly, there is a higher likelihood 998

of continuing to do so. Conversely, for questions 999

the model initially answers incorrectly, the proba- 1000

bility of subsequently correcting is lower. Based 1001

on the this analysis, we assume the following in- 1002

equality holds: 1003

CS ≤ Acc1 ≤ CL 1004

Experimental results in §4 also empirically 1005

demonstrate that this inequality is valid. So we 1006

have CS ∈ [0, Acc1] and CL ∈ [Acc1, 1]. By sub- 1007

stituting CS = 0 and CL = Acc1 into Equation 5, 1008

we have the lower bound for Acc2 is: 1009

Acclow
2 = Acc1 ·Acc1 + (1−Acc1) · 0 = Acc21 1010

By substituting CS = Acc1 and CL = 1 into 1011
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Equation 5, the upper bound for Acc2 becomes:1012

Acc
upp
2 = Acc1·1+(1−Acc1)·Acc1 = 2Acc1−Acc211013

We define RSS as the normalized Acc2, indicat-1014

ing its position within the aforementioned interval:1015

RSS =
Acc2 −Acclow

2

Acc
upp
2 −Acclow

2

=
Acc2 −Acc21

2Acc1 − 2Acc21
1016

D Probability Estimation1017

Metrics in §3 are derived from a probabilistic per-1018

spective, and their calculation relies on 3 key prob-1019

ability values P (ai), P (bi|ai) and P (bi|¬ai) of1020

each question qi. However, the actual values of1021

these probabilities are unattainable. In practice, we1022

utilize statistical methods to obtain their estimates1023

P̂ (a), P̂ (bi|ai) and P̂ (bi|¬ai) to substitute these1024

true values for metric computation. Currently, nat-1025

ural language processing (NLP) tasks can be gener-1026

ally divided into classification tasks and generation1027

tasks, and we will discuss the probability estima-1028

tion methods applied to these two types of tasks1029

separately.1030

Probability Estimation for Classification Tasks.1031

For a K-class classification task, let the set1032

of all candidate labels be denoted as L =1033

{l0, l1, . . . , lK−1} (e.g., for the MMLU, the can-1034

didate set is {A,B,C,D}). A question qi is fed1035

into the model and the model is asked to output the1036

predicted label. When the model performs next-1037

token prediction, it first generates a logit vector1038

(o0, o1, ...o|V |−1), where each value corresponds to1039

the logit of a token in the vocabulary V and |V | de-1040

notes the size of the vocabulary. In the generation1041

process, The logit vector is then passed through1042

a softmax layer to produce the probability distri-1043

bution of the next token in the whole vocabulary.1044

However, for classification tasks, we are only inter-1045

ested in the probability distribution over candidate1046

label set L instead of vocabulary V . Therefore,1047

we discard most logit values, retaining only those1048

corresponding to candidate labels, resulting in a re-1049

duced logit vector (o
′
0, o

′
1, . . . , o

′
K−1). After apply-1050

ing the softmax layer, the model predicts the prob-1051

ability for each label P (l0), P (l1), . . . , P (lK−1).1052

(1). Without any loss of generality, assume the1053

correct label is l0, then we have P̂ (ai) = P (l0).1054

(2). Next, we feed the correct answer l01055

into the model and ask the model to self-1056

correct. The model outputs the probability1057

distribution over candidate labels, denoted as1058

P (l0|l0), P (l1|l0), . . . , P (lK−1|l0), then we have 1059

P̂ (bi|ai) = P (l0|l0). 1060

(3). The computation of P̂ (bi|¬ai) is more com- 1061

plex. For each incorrect label lj (j ̸= 0), we in- 1062

put it to the model and allow for self-correction, 1063

obtaining the probability of correcting it to the 1064

correct label P (l0|lj). Finally, by using the 1065

law of total probability, we have P̂ (bi|¬ai) = 1066∑
j=1,...,K−1 P (l0|lj)P (lj). 1067

Probability Estimation for Generation Task. 1068

We employ multiple sampling to estimate prob- 1069

abilities by observing the frequency of correct 1070

and incorrect answers. Given a question qi, we 1071

pose it to the model and obtain an initial an- 1072

swer. Subsequently, the model is prompted to self- 1073

correct the initial answer, resulting in a final an- 1074

swer. This process is repeated T times, and for 1075

each pair of initial and final answers, we evaluate 1076

their correctness. This yields a sequence of results 1077

(a0i , b
0
i ), (a

1
i , b

1
i ), . . . , (a

T−1
i , bT−1

i ), where (ati, b
t
i) 1078

denotes the outcome of the t-th repetition. Specifi- 1079

cally, ati and bti indicate the correctness of the initial 1080

and final answers, respectively. For a correct initial 1081

answer, ati = 1; otherwise, ati = 0 and The same 1082

logic applies to bti. Utilizing frequency to estimate 1083

probability, we have: 1084

(1). P̂ (ai) =
∑T−1

t=0 ati
T ; 1085

(2). P̂ (bi|ai) =
∑T−1

t=0 atib
t
i∑T−1

t=0 ati
; 1086

(3). P̂ (bi|¬ai) =
∑T−1

t=0 (1−ati)b
t
i∑T−1

t=0 (1−ati)
1087

E Metric Convergence 1088

We study the convergence of our proposed three 1089

metrics for sampling-based probability estimation 1090

method. Taking experimental results for Llama3- 1091

8B-Instruct on GSM8k shown in Figure 9 as an 1092

example, our metrics can converge and arrive at 1093

relatively stable values through about 3 times sam- 1094

pling. 1095

F Implementation Details 1096

F.1 More Implementation Details for §4 1097

Most of these open-source models are released with 1098

two versions, the pre-trained base model and the 1099

chat model (base model + instruction tuning and 1100

alignment), and we focus our evaluation solely 1101

on chat models For classification tasks, we esti- 1102

mate probability by logits; for generation tasks, we 1103

estimate probability by multiple samplings, and 1104
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Figure 9: Metric convergence for sampling-based prob-
ability estimation method.

more details about probability estimation meth-1105

ods are available in Appendix D. For each ques-1106

tion, we repeatedly sample 10 times with default1107

sampling hyper-parameters (e.g. temperature) re-1108

leased by model developers. For each small open-1109

source model (< 10B), we run the experiments on1110

a single Nvidia A100 80G GPU; for each large1111

model (about 70B), experiments are conducted on1112

4 Nvidia A100 80G GPUs. For faster generation1113

speed, we utilize vllm 3 to accelerate.1114

For closed-source models whose logits are un-1115

available, we treat classification tasks as generation1116

tasks and estimate probability by sampling. To re-1117

duce API calls, we only sample 3 times for each1118

question. For a dataset with more than 500 items,1119

we randomly sample 500 items and test on this1120

subset. There are also different versions of closed-1121

3https://github.com/vllm-project/vllm

source models, and we utilize the latest version 1122

of GPT-3.5 Turbo (gpt-3.5-turbo-0125) and GPT-4 1123

Turbo (gpt-4-turbo-2024-04-09). 1124

F.2 More Implementation Details for §6 1125

For GSM8k, we sample multiple answers for each 1126

question by Llama3-8B-Instruct to build an answer 1127

base, then select correct-correct answer pairs to 1128

construct CLT data and correct-wrong answer pairs 1129

to construct CST data, which is similar to Welleck 1130

et al. (2023); Kumar et al. (2024). For MMLU and 1131

BoolQ, we construct CLT and CST automatically 1132

from the original training data (choosing the correct 1133

answer twice for CLT and choosing the correct and 1134

a random wrong answer from candidates). 1135

We train models through the implementation pro- 1136

vided by Ivison et al. (2024) 4. For BoolQ and 1137

GSM8k, we train 2 epochs; for MMLU we train 1138

only 1 epoch due to the large training set. More 1139

training hyper-parameters are shown in Table 5.

learning rate 5e-5
lr scheduler cosine
mixed precision bf16
weight decay 0.0
warmup ratio 0.0
lora rank 64
lora alpha 16
lora dropout 0.1

Table 5: Training hyper-parameters.

1140

G More Experimental Results 1141

We show more experimental results in this sec- 1142

tion: Experiment results on IFEval, Humaneval, 1143

and CommonsenseQA are shown in Table 6; rela- 1144

tive self-correction score results are shown in Table 1145

7. 1146

H Prompt 1147

We show the prompts utilized in §5 for LLM self- 1148

correction behavior manipulation in Table 2. 1149

I Example Data of Different Training 1150

Methods 1151

We show a native example datum of SFT, along 1152

with transformed version of this datum in CLT and 1153

CST in Figure 10. 1154

4https://github.com/allenai/open-instruct
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Models
IFEval Humaneval CommonsenseQA

Acc1 Acc2 CL CS Acc1 Acc2 CL CS Acc1 Acc2 CL CS

Llama3-8B-Instruct 64.0 70.1 92.8 29.7 52.7 50.1 77.7 19.4 74.7 76.7 94.9 23.0
Deepseek-7B-Chat 37.4 38.6 93.0 6.1 39.7 39.9 99.7 0.6 67.1 67.4 99.7 1.3
Mistral-7B-Instruct 44.2 43.6 90.7 6.3 32.4 32.1 84.8 6.8 70.0 71.2 99.0 6.5
Qwen2.5-7B-Chat 71.7 74.8 96.1 20.8 74.3 75.3 96.5 14.0 82.6 82.0 93.6 26.9
GLM4-9B-Chat 29.9 31.0 90.5 5.6 64.9 63.7 86.9 20.7 77.8 78.8 87.0 50.0

Llama3-70B-Instruct 76.0 80.5 96.4 30.1 74.8 69.9 84.8 25.8 82.1 83.7 97.1 22.3
Deepseek-67B-Chat 51.0 51.9 96.7 5.3 65.2 65.0 97.2 4.7 74.4 76.2 95.4 20.5
Qwen2.5-72B-Chat 84.7 84.8 97.1 17.3 81.7 81.3 97.5 8.9 85.5 86.7 98.4 18.0

Qwen-Max 83.4 85.2 97.9 21.6 80.9 81.5 96.2 19.1 90.1 88.5 97.0 10.7
GPT-3.5 Turbo 65.9 67.7 94.2 16.6 64.4 66.3 91.5 20.6 79.9 76.2 86.7 34.4
GPT-4 Turbo 79.1 81.9 96.7 26.2 82.5 83.9 95.8 27.9 85.0 77.4 81.7 52.9

Table 6: Experiment results on IFEval, Humaneval and CommonsenseQA. We report accuracy(%) before and after
self-correction (denoted as Acc1 and Acc2). Confidence Level (CL) and Critique Score (CS) are also shown for
fine-grained analysis of self-correction behavior.

Models GSM8k IFEval Humaneval MMLU BoolQ CommensenseQA

Llama3-8B-Instruct 67.3 63.3 44.7 53.9 55.3 55.3
Deepseek-7B-Chat 49.3 52.5 50.5 50.1 49.5 50.5
Mistral-7B-Instruct-v3 51.9 50.0 49.2 50.0 52.4 52.9
Qwen2.5-7B-Chat 54.1 57.7 52.6 51.2 54.3 47.9
GLM4-9B-Chat 56.7 52.6 47.3 52.4 57.7 52.7

Llama3-70B-Instruct 61.8 62.3 37.1 53.8 50.1 55.5
Deepseek-67B-Chat 49.7 51.8 49.6 52.3 50.0 54.7
Qwen2.5-72B-Chat 52.5 50.7 48.6 52.9 72.8 55.1
Qwen-Max 55.0 56.5 52.0 54.5 55.7 41.1
GPT-3.5 Turbo 59.0 54.1 54.0 50.7 54.3 38.6
GPT-4 Turbo 38.1 58.7 54.9 42.7 44.1 20.2

Table 7: Relative Self-correction Score results.

Confidence Prompt I think your answer is likely to be correct. Can you refine it and give a final
answer?

Critique Prompt Are you sure? Please reconsider and answer the question again.

Table 8: Prompts utilized in self-correction behavior manipulation.

Which one is the bigger
number, 9.11 or 9.8?

CLT CST

SFT

CCT = CLT + CST 

Please self-correct and
answer the question again.

The bigger number is 9.11

Sorry for my mistake.
Actually 9.8 is bigger.

Which one is the bigger
number, 9.11 or 9.8?

Please self-correct and
answer the question again.

The bigger number is 9.8

I'm sure 9.8 is bigger

Which one is the bigger
number, 9.11 or 9.8?

The bigger number is 9.8

Context
(not for loss calculation)

Supervision Labels
(for loss calculation)

Figure 10: A native example of training data from SFT, CLT and CST, and training data of CCT is a mix of CLT
and CST.
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